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Mind the gap: covariate constrained 
randomisation can protect against substantial 
power loss in parallel cluster randomised trials
Caroline Kristunas1,2*, Michael Grayling3, Laura J. Gray1 and Karla Hemming4 

Abstract 

Background: Cluster randomised trials often randomise a small number of units, putting them at risk of poor bal-
ance of covariates across treatment arms. Covariate constrained randomisation aims to reduce this risk by removing 
the worst balanced allocations from consideration. This is known to provide only a small gain in power over that aver-
aged under simple randomisation and is likely influenced by the number and prognostic effect of the covariates.

We investigated the performance of covariate constrained randomisation in comparison to the worst balanced alloca-
tions, and considered the impact on the power of the prognostic effect and number of covariates adjusted for in the 
analysis.

Methods: Using simulation, we examined the Monte Carlo type I error rate and power of cross-sectional, two-arm 
parallel cluster-randomised trials with a continuous outcome and four binary cluster-level covariates, using either sim-
ple or covariate constrained randomisation. Data were analysed using a small sample corrected linear mixed-effects 
model, adjusted for some or all of the binary covariates. We varied the number of clusters, intra-cluster correlation, 
number and prognostic effect of covariates balanced in the randomisation and adjusted in the analysis, and the size 
of the candidate set from which the allocation was selected. For each scenario, 20,000 simulations were conducted.

Results: When compared to the worst balanced allocations, covariate constrained randomisation with an adjusted 
analysis provided gains in power of up to 20 percentage points. Even with analysis-based adjustment for those covari-
ates balanced in the randomisation, the type I error rate was not maintained when the intracluster correlation is very 
small (0.001). Generally, greater power was achieved when more prognostic covariates are restricted in the randomi-
sation and as the size of the candidate set decreases. However, adjustment for weakly prognostic covariates lead to a 
loss in power of up to 20 percentage points.

Conclusions: When compared to the worst balanced allocations, covariate constrained randomisation provides 
moderate to substantial improvements in power. However, the prognostic effect of the covariates should be carefully 
considered when selecting them for inclusion in the randomisation.

Keywords: Group-randomised trial, Restricted randomisation, Candidate set size, Covariate adjusted analysis, Small 
sample
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Background
Cluster randomised trials (CRTs) typically randomise a 
relatively small number of clusters [1, 2]. The randomi-
sation of a small number of units is known to increase 
the possibility of chance imbalances across intervention 

Open Access

*Correspondence:  c.a.kristunas@bham.ac.uk
1 Department of Health Sciences, University of Leicester, Leicester, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-022-01588-8&domain=pdf


Page 2 of 12Kristunas et al. BMC Medical Research Methodology          (2022) 22:111 

and control arms, which can lead to a reduction in study 
power, as well as potentially undermining the validity of 
the findings [3–5]. Restricted randomisation is advocated 
as a method to prevent this chance of imbalance [6].

Historically, restricted randomisation methods 
for CRTs included either stratified randomisation or 
matched pair designs [7, 8]. Matched pair designs have 
mostly been viewed with scepticism [6, 9], but stratifica-
tion has become widely adopted [2, 10]. Yet, implement-
ing stratification in trials with a small number of clusters 
and more than a couple of strata can lead to sparse strata 
which cannot be balanced across study arms [11, 12]. The 
matched pair design has been shown to be more efficient 
than stratification when there are more than 10 clusters 
per arm and the matching is strong, but otherwise there 
is little gain from either stratification or pair matching 
over simple randomisation [13]. Consequently, in CRTs, 
randomisation methods such as minimisation and covar-
iate constrained randomisation that focus on the global 
balance - as opposed to balance on discrete characteris-
tics – have become more popular [14].

Under covariate constrained randomisation, the pool of 
possible randomisation schemes (randomisation space) 
is restricted to exclude those schemes with the worst 
balance of the covariates of interest. This is determined 
by using a balance metric to score the balance of each 
scheme with respect to the covariates [15, 16]. A ran-
domisation scheme is then selected at random from the 
restricted randomisation space, known as the candidate 
set.

Covariate constrained randomisation often provides a 
better balance than other restricted randomisation tech-
niques [16]. In addition, it has been shown to lead to a 
small increase in power compared to simple randomisa-
tion, whilst maintaining the type I error rate provided 
that all covariates used in the design are adjusted in 
the analysis [15, 17, 18]. However, despite the appeal of 
covariate constrained randomisation, it is relatively rarely 
used, being adopted in only around 10% of CRTs [2]. This 
could be due to the general slow uptake of novel methods, 
but the existence of packages in SAS, Stata and R that 
allow covariate constrained randomisation to be imple-
mented [19–21], should have encouraged some use. The 
lack of uptake might instead be explained by researchers 
questioning whether the complexity of implementing this 
method is justified, when the gains in power are relatively 
small, in comparison to covariate adjustment alone. For 
example, in their evaluations, Li et al. found that covari-
ate constrained randomisation often resulted in only a 
small increase in power, compared to simple randomi-
sation with comparable covariate adjustment [17, 18]. 
Researchers may therefore choose not to balance some 
prognostic covariates, so that they are able to implement 

a simpler method of randomisation, such as stratification 
or simple randomisation.

However, to date, power gains have been compared to 
that averaged over all possible allocations under simple 
randomisation [22]. Yet, in any given CRT the range of 
power that can be achieved under different allocations 
can vary considerably depending on the number and size 
of the clusters and the intra-cluster correlation [23, 24], 
and it is possible that the allocation selected under simple 
randomisation might be that with the lowest power. We 
suggest that rather than compare to the power averaged 
over all simple randomisations, a more useful metric is to 
compare to those allocations that represent the “worst” 
possible set of allocations (i.e., the bottom  10th percentile 
of the allocations).

Since balancing covariates in the design requires 
adjustment for those covariates in the analysis in order 
to maintain the type I error rate, consideration of the 
prognostic effect of the covariates is also needed [17, 18]. 
In individually randomised trials with continuous out-
comes, adjusting for prognostic covariates increases pre-
cision, and adjusting for non-prognostic covariates does 
not detrimentally affect precision [25]. However, when 
the outcome is binary and the sample size small, adjust-
ment for covariates can lead to an inflated type I error 
rate [25–27]. For CRTs, the impact of the magnitude of 
the prognostic effect and number of covariates adjusted 
in the analysis is unclear.

Objectives
Our primary objective was to consider the perfor-
mance of covariate constrained randomisation com-
pared to the allocations with the worst possible 
balance. Under this comparison we confirm previous 
findings of (i) the necessity to adjust the analysis for 
all of the covariates balanced in the randomisation, in 
order to maintain the type I error rate; (ii) the gain in 
power from balancing more covariates and decreas-
ing the candidate set size; and (iii) the gain in power 
obtained under covariate constrained randomisation 
over simple randomisation with covariate adjustment. 
Our secondary objective, was to consider the impact of 
the prognostic effect and number of covariates on the 
power of an adjusted analysis under simple randomi-
sation. We limited our considerations to equal alloca-
tions, cross-sectional designs, continuous outcomes 
and binary cluster-level covariates.

Motivating example
We illustrate the use of covariate constrained ran-
domisation using data adapted from a planned CRT. 
Ten emergency departments (the clusters) will be ran-
domised 1:1 to an acute mental healthcare bundle, or to 
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standard emergency department healthcare. Regardless 
of their size, it is expected that each emergency depart-
ment will contribute around 300 patients over the dura-
tion of the trial. Two possible primary outcomes are 
being considered: a clinical outcome that is quite rare 
and likely to have an intra-cluster correlation of around 
0.001; and a process-type outcome with a likely intra-
cluster correlation of 0.1.

Three potential binary cluster-level confounders have 
been identified: (i) annual patient volume (classified 
as small or large); (ii) existence of a dedicated men-
tal health team; and (iii) direct access to urgent men-
tal health follow-up appointments. The values of these 
potential confounders for each emergency department 
are shown in Table  1, alongside the strata that would 
be formed if a stratified randomisation was used. Ran-
domising using stratification would result in eight 
(= 2*2*2) sparse stratum, with only two strata com-
prising more than one emergency department, making 
it unlikely that a balanced allocation will be achieved 
(Table  1). A forth binary cluster-level confounder was 
also being considered, the use of a formal guideline, 
policy or tool for mental healthcare, but limited infor-
mation was available on this at the time of randomi-
sation. Further information could be obtained on this 
confounder during the trial and adjusted for in the 
analysis. Covariate constrained randomisation is con-
sidered to be an appealing method for this trial, as it 
may allow all confounders to be balanced in the ran-
domisation and improve the power.

The researchers seek guidance on how to conduct 
the randomisation for their trial, particularly whether 
the benefits of using covariate constrained randomisa-
tion are likely to outweigh the additional complexity 
of using this method over simple randomisation, and 
whether it would be beneficial to collect information on 
the fourth confounder for inclusion in the analysis.

Methods
For our primary objective, a series of simulation studies 
were conducted based on our motivating example, using 
a cross-sectional, two-arm parallel CRT, with 1:1 alloca-
tion to treatment arms, a continuous outcome and up 
to four binary cluster-level covariates. In brief, for each 
simulated trial, covariate constrained randomisation 
was used to select a randomisation scheme. Given the 
selected randomisation scheme, individual-level out-
come data were generated for each participant under an 
assumed treatment effect. These data were then analysed 
using linear mixed models with a small sample correction 
and the p-values stored. For each scenario, this entire 
process was repeated 20,000 times to determine the 
Monte Carlo power and type I error rate.

We considered a range of scenarios, increasing the 
number of clusters, intra-cluster correlation coefficients 
within the range of the two potential primary outcomes, 
number of cluster-level covariates balanced in the ran-
domisation and adjusted for in the analysis, and the size 
of the candidate set.

For our secondary objective, some of the simulation 
studies for our primary objective were adapted to con-
sider the power and type I error rate under simple ran-
domisation, as the number and size of the prognostic 
effect of the covariates in the data generation model were 
varied. Further details are provided at the end of this 
section.

Generation of the randomisation scheme
For each scenario, four binary cluster-level covariates 
were randomly generated from a Bernoulli distribution 
for each cluster. The allocation of the treatment to clus-
ters was then determined by:

1. Generating the entire randomisation space
2. Scoring the balance of each possible scheme

Table 1 Illustrative case study randomising ten emergency departments (clusters) with three cluster-level binary covariates

Emergency department (cluster)
Characteristic 1 2 3 4 5 6 7 8 9 10

Large patient volume Yes No Yes Yes No Yes No No No No

Dedicated mental health team Yes No Yes Yes Yes No No No No Yes

Access to urgent mental health follow-up Yes No No No Yes Yes Yes No No No

Strata
1 2 3 4 5 6 7 8

Large patient volume Yes Yes Yes Yes No No No No

Dedicated mental health team Yes Yes No No Yes Yes No No

Access to urgent mental health follow-up Yes No Yes No Yes No Yes No

Number of clusters 1 2 1 0 1 1 1 3
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3. Forming a candidate set of schemes from those 
schemes with a desired degree of balance

4. Selecting a scheme at random from this candidate 
set.

For scenarios with a smaller number of clusters, the 
generated randomisation space consisted of all possi-
ble schemes, whereas for larger trials, the randomisa-
tion space was restricted to 20,000 schemes (duplicates 
removed), for computational feasibility.

The balance of each scheme was scored using the 
“B” balance metric, as considered by Li et  al. [17] and 
proposed by Raab and Butcher [14], which takes the 
weighted sum of the squared difference in the mean 
covariate values across the intervention and control 
arms:

where, ωc is the weight for the cth cluster-level covari-
ate (taken to be the inverse variance of the cluster means 
for the cth covariate); C is the total number of covari-
ates included in the constrained randomisation; and z1c 
and z0c are the average of the cth cluster-level covariates 
across intervention and control clusters, respectively.

The schemes were then ordered by their balance score 
and candidate sets formed by taking, in increments of 
10%, a percentage of the schemes with the best or worst 
scores. When the candidate set consisted of 100% of the 
schemes, this was equivalent to using simple randomi-
sation. A scheme was then selected at random from the 
candidate set, which determined the treatment alloca-
tion for the clusters in that scenario.

Generation of the outcome observations for each 
individual within each cluster
The continuous outcome, Yij , for the ith ( i = 1, . . . ,M ) 
participant, in the jth ( j = 1, . . . ,K  ) cluster, was gener-
ated from the following linear mixed-effects model:

where zj is the vector of cluster-level covariates, the 
coefficient vector γ = 2L×1 represents the prognostic 
effect of each of the L covariates included in the cluster-
level data generation; Xj is the binary treatment indica-
tor (determined by the selected randomisation scheme); 
and θ , is the treatment effect. The two variance terms 
for the random cluster effects ( αj ∼ N (0, σ 2

b ) ) and the 
residual variance ( εij ∼ N

(

0, σ 2
e = 1

)

 ) together define 
the intra-cluster correlation ρ = σ 2

b /
(

σ 2
b + σ 2

e

)

.

B =

C
∑

c=1

ωc(z1c − z0c)
2

Yij = zTj γ + θXj + αj + εij

Analysis of outcomes
Given the selected randomisation scheme and indi-
vidual-level data, the trial was analysed using a linear 
mixed-effects model, with a random cluster effect and 
fixed-effects for each of the covariates being adjusted for 
in the analysis. The model was fitted by restricted maxi-
mum likelihood using the lme function from the nlme 
package in R [28]. An F-test was used to test the treat-
ment effect. Satterthwaite corrected degrees of freedom 
were used, as they perform better than Kenward-Roger 
and between-within corrections for parallel CRTs ran-
domising 10 or more clusters [29].

To fully compare the performance of covariate con-
strained randomisation with simple randomisation and 
the worst possible allocations, three situations were 
considered, adjusting for a varying number of covari-
ates relative to those constrained in the randomisation. 
Firstly, to confirm the need for those covariates balanced 
in the randomisation to be adjusted in the analysis, when 
all covariates were balanced in the randomisation, fewer 
covariates were adjusted in the analysis. Secondly, the 
same number of covariates were balanced in the ran-
domisation as were adjusted in the analysis. This mim-
ics the situation in which no additional information on 
prognostic covariates is gained during the trial. The final 
situation is when information on additional prognostic 
covariates is obtained during the trial and so those addi-
tional covariates are also adjusted for in the analysis. In 
this case, more covariates were adjusted in the analysis 
than were balanced in the randomisation.

Estimation of the power and type I error rate
The process of simulating the CRT, randomisation, out-
come generation and analysis was repeated 20,000 times 
under each scenario, to provide a Monte Carlo standard 
error of approximately 0.002 for the type I error rate and 
0.003 for power [30]. The proportion of the simulations 
that detected a treatment effect (p-value < 0.05) provided 
the Monte Carlo power ( θ  = 0 ) and the type I error rate 
( θ = 0).

Simulation scenarios
Each scenario included five, nine or 13 clusters of size 
300 per arm, which are representative of the smaller 
CRTs which are likely to benefit most from covariate con-
strained randomisation, since approximately 35% of CRTs 
randomise less than 20 clusters (Table 2) [2, 31]. We con-
sidered a range of intra-cluster correlations: 0.001, 0.01, 
0.05 and 0.1, in keeping with those values commonly 
reported in CRTs [32]. Four independent cluster-level 
covariates following a Bernoulli distribution with a prob-
ability of 0.3 (for comparability with the findings of Li 
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et al. [17]) were included. Each cluster-level covariate had 
a fixed magnitude of effect (2) on the outcome. Treat-
ment effects were either zero (to assess type I error) or 
one of three non-zero values to assess the power, selected 
to ensure power did not reach 100%.

Impact of the prognostic effect and number of covariates 
adjusted in the analysis under simple randomisation
To investigate the impact of the number of covariates 
being adjusted in the analysis and the magnitude of their 
prognostic effect, we conducted further simulations 
including four, eight or 12 covariates in the data genera-
tion model, and with three magnitudes of the prognostic 
effect of the covariates (0.25, 0.5 and 1.0) (Table 3). These 
further simulations were conducted for the trial with 
nine clusters per arm and an intra-cluster correlation 
coefficient of 0.05, and under simple randomisation only.

Results
Type I error under covariate constrained randomisation
When not all of the covariates that were balanced in 
the randomisation were adjusted in the analysis, the 

type I error rate was not well maintained under covari-
ate constrained randomisation, becoming increas-
ingly inflated as the candidate set size was restricted 
(Additional file  1: Fig.  1). When all of the covariates 
that were balanced in the randomisation were adjusted 
for in the analysis, as well as when additional covari-
ates were also adjusted for in the analysis, the type I 
error rate was generally well maintained across the dif-
ferent candidate set sizes (Fig. 1 and Additional file 1: 
Fig.  2). However, both under simple randomisation 
and covariate constrained randomisation, if the intra-
cluster correlation was particularly small (0.001 and 
0.01) the type I error became increasingly conservative 
as fewer clusters were randomised, even occurring in 
some scenarios with 26 clusters (Fig. 1 and Additional 
file 1: Fig. 2).

Power for covariate constrained randomisation comparing 
the best to worst balanced randomisation schemes
Here we focus only on those scenarios in which the 
type I error rate was well maintained, as comparisons 
of power are otherwise unreasonable. The following 

Table 2 Summary of the factorial design of the simulation study for the primary objective

Parameter Values

Number of clusters in each treatment arm (K) 5, 9, 13

Number of observations per cluster (M) 300

Intra-cluster correlation (ρ) 0.001, 0.01, 0.05, 0.1

Standardised treatment effect (θ) 0 or 0.5 (0.2 (13 clusters per arm),
0.25 (9 clusters per arm, ICC = 0.01 or 0.001))

Number of covariates in the data generation model (L) 4

Magnitude of prognostic effect of covariates 2

Number of covariates balanced in the randomisation (C) 1, 2, 3, 4

Candidate set 10%, 20%, …, 90% worst schemes, 100% 
(simple randomisation), 10%, …, 90% best 
schemes

Number of covariates adjusted in the analysis (A) 1, 2, 3, 4

Table 3 Summary of the factorial design of the simulation study for the secondary objective

Parameter Values

Number of clusters in each treatment arm (K) 9

Number of observations per cluster (M) 300

Intra-cluster correlation (ρ) 0.05

Standardised treatment effect (θ) 0 or 0.5

Number of covariates in the data generation model (L) 4, 8, 12

Magnitude of prognostic effect of covariates 0.25, 0.5, 1.0

Number of covariates balanced in the randomisation (C) 1, 2, 3, 4

Candidate set 100% (simple randomisation)

Number of covariates adjusted in the analysis (A) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
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scenarios are therefore excluded: covariate constrained 
randomisation when not all of the covariates balanced 
in the randomisation were adjusted in the analysis; sim-
ple and covariate constrained randomisation when the 
analysis was adjusted for all of the covariates present 
and the intra-cluster correlation coefficient was 0.001 
(or 0.01 for a total of 10 clusters only).

Under covariate constrained randomisation, a dif-
ference in power of up to approximately 20 percent-
age points was observed between the best and worst 
randomisation schemes (Fig.  2, Additional File 2). 
Power increased as the candidate set was restricted to 
include only those schemes with the best balance and 
as more covariates were balanced in the randomisa-
tion (Fig. 2, Additional File 2). The difference in power 
was greatest when the intra-cluster correlation coef-
ficient was small, few clusters were randomised, and 
more covariates were balanced in the randomisation 
(Fig. 2, Additional File 2). When all four of the covari-
ates were adjusted in the analysis, the power under 
simple randomisation could be improved upon by bal-
ancing on all or some of those covariates in the ran-
domisation (Fig. 3, Additional File 3). The power gains 
from balancing on the covariates were most evident 
when compared to those schemes with the worst bal-
ance (Fig. 3, Additional File 3).

Impact of the prognostic effect and number of covariates 
adjusted in the analysis under simple randomisation
Under simple randomisation, the type I error was well 
maintained under an adjusted analysis regardless of the 
number of covariates, or the size of their prognostic 
effect (Additional file  1: Fig.  3). When the prognostic 
effect was strong and fewer covariates were adjusted in 
the analysis than were present in the data generation 
model, a small gain in power was observed with each 
additional covariate that was adjusted for in the analy-
sis (Fig. 4). If all of the covariates were adjusted for and 
the prognostic effect was strong, then there was a much 
larger gain in power (Fig.  4). When the prognostic 
effect of the covariates was weak, covariate adjustment 
resulted in a loss of power as more covariates were 
adjusted for (Fig. 4).

Application to the motivating example
Based on the findings of the simulation study, it is clear 
that a covariate constrained randomisation could not 
be used for the trial in the motivating example if the 
clinical measure (with intra-cluster correlation 0.001) 
was chosen, as the type I error rate could not be main-
tained under an adjusted analysis. This would also be 
the case if simple randomisation was used with an 
adjusted analysis and even if some additional clusters 
could be recruited. Assuming therefore that the process 

Fig. 1 Type I error rate when an increasing number of covariates (C) are balanced in the randomisation and the same number of covariates (A = C) 
are adjusted in the analysis
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measure was selected as the primary outcome, we per-
formed a covariate constrained randomisation assum-
ing a prognostic value of two for each covariate and a 
standardised treatment effect of 0.5, the power under 
a covariate constrained randomisation with a 10% can-
didate set size was 3 percentage points greater than 
that averaged over all simple randomisations, whereas 
the power was 6 percentage points greater than the 
10% of schemes with the worst balance, that could be 
selected under simple randomisation. An additional 
gain in power could be obtained by gathering informa-
tion on guideline use and adjusting for it in the analy-
sis. However, despite the benefits in power that can be 
obtained through covariate constrained randomisa-
tion, for the trial in the motivating example the bene-
fit is limited to restricting the possible randomisation 
schemes to those with the best balance. If more clusters 
could be recruited then a greater gain in power would 
be obtained through the use of covariate constrained 
randomisation.

Discussion
Summary of findings
Previous studies have suggested that, in parallel CRTs, 
covariate constrained randomisation provides only 

small gains in power over simple randomisation [17, 18]. 
However, these comparisons have been with the power 
averaged over all possible randomisation schemes under 
simple randomisation [17, 18], disregarding the some-
times-considerable variability in power between dif-
ferent allocations of clusters [23]. We have shown that 
when compared to the worst balanced randomisation 
schemes, covariate constrained randomisation can pro-
vide moderate to substantial improvements in power, 
even under comparable covariate adjustment in the 
analysis, and is therefore more beneficial than previ-
ously thought. Moreover, when the intra-cluster corre-
lation coefficient is small even an analysis adjusted for 
all of the covariates constrained in the randomisation 
and a Satterthwaite small sample correction is unable 
to maintain the type I error rate. Finally, we found that 
increasing the number of covariates adjusted in the 
analysis had a non-linear association with power and in 
some scenarios, under simple randomisation, a reduc-
tion in power was observed when many covariates with 
a weak prognostic effect were included. This differs 
from what is known for individually randomised trials 
with continuous outcomes [25].

Fig. 2 Power when an increasing number of covariates (C) are balanced in the randomisation and the same number of covariates (A = C) are 
adjusted in the analysis
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Research in context
Several of our findings echo what was already known 
[14–18, 25, 33]. Firstly, any covariates that are balanced 
in the randomisation should be adjusted for in the anal-
ysis, to ensure correct type I errors and greatest power. 
This is supportive of Li’s finding: “analysis-based adjust-
ment is always necessary even after design-based adjust-
ment” [17]. Secondly, assuming all covariates have been 
adjusted for, covariate constrained randomisation pro-
vides only small to moderate gains in power over the 
average power under simple randomisation [17].

Until now, the implication that the power gains 
observed under covariate constrained randomisation are 
due to the analysis adjustment, rather than the act of con-
straining the randomisation, might have led researchers 
to conclude that the complexity of implementing covari-
ate constrained randomisation might not be warranted. 
However, in almost all evaluations of covariate con-
strained randomisation, performance has been compared 
to that averaged across all possible simple random allo-
cations, which masks the potential variability in power 
between different allocations. We therefore compared 
the performance with the worst set of allocations that 
could be selected (whilst also adjusting for covariates in 

the analysis). It is under this comparison that we iden-
tified the largest gains in power. For example, with 26 
clusters, an intra-cluster correlation coefficient of 0.05, 
and a candidate set size of 10%, a gain in power of 17.8 
percentage points was observed over those allocations 
with the worst balance, compared to a gain in power of 
6.4 percentage points over the average under simple ran-
domisation. Although no trial would employ a method of 
randomisation that only selects from the worst balanced 
allocations, this comparison gives an indication of the 
“worst case scenario” under simple randomisation, which 
could be avoided by using covariate constrained ran-
domisation. Additionally, we consider the situation where 
information on some prognostic covariates becomes 
available during the trial and show the power that can be 
achieved by adjusting for these additional covariates in 
the analysis. The magnitude of the power gain over sim-
ple randomisation with covariate adjustment is similar 
to that found by Li et al., but demonstrates the benefit of 
collecting information on additional prognostic covari-
ates during a trial [17].

Under individual randomisation, with a continu-
ous outcome, it is known that adjustment for covariates 
improves power, irrespective of the number included and 

Fig. 3 Power when an increasing number of covariates (C ≤ A) are balanced in the randomisation and all four covariates are adjusted in the analysis 
(A = 4)
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their prognostic value [25]. In contrast, for binary out-
comes, caution is required, as over adjustment for covari-
ates without prognostic value can lead to reductions in 
precision [25]. In our assessment of covariate adjustment 
for CRTs, we identified that it may result in substantial 
gains in power for covariates that exert a large influence 
on the outcome. Yet, despite considering only continuous 
outcomes, we identified the need for careful considera-
tion of whether to adjust for covariates in the analysis of 
parallel CRTs: adjusting for too many non-prognostic 
covariates may result in a loss of power. This is likely to 
be as a result of the covariate adjustment increasing the 
standard error of the treatment effect estimate by using 
additional degrees of freedom, which is not outweighed 
by the prognostic effect of the covariates reducing the 
bias in the estimate [25].

Small sample corrections are known to be crucial to 
obtain nominal type I errors in the analysis of clustered 
data with fewer than about 40 clusters [29]. However, 
despite using the Satterwhite small sample correction, 

when the intra-cluster correlation was small and few 
clusters were randomised, the type I error became con-
servative across both simple and covariate constrained 
randomisation. Whilst perhaps not widely appreciated, 
we are not the first to observe small sample corrections 
performing poorly when the intra-cluster correlation 
coefficient is small: small sample corrected generalised 
estimating equations and linear mixed-effects models 
with Kenward-Roger or between-within small sample 
corrections fail to maintain the type I error rate when the 
intra-cluster correlation coefficient is small, and therefore 
are not recommended in these scenarios [29]. However, 
the Satterthwaite correction has been shown to main-
tain the type I error rate with small intra-cluster corre-
lations in settings without covariate adjustment and so 
our finding is likely a problem of the performance of the 
small sample correction for a covariate adjusted analysis. 
Future work to investigate the performance of various 
small sample corrections for a covariate adjusted analy-
sis is required, since it appears to differ to that under an 

Fig. 4 Power under simple randomisation with covariate adjustment, for a data generation model with four, eight or 12 covariates, adjusted for A of 
the covariates in the analysis, with covariate coefficients of (1) 0.25, (2) 0.5 or (3) 1.0. All with 18 clusters and an intra-cluster correlation coefficient of 
0.05. (Total variance changes across scenarios)
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unadjusted analysis. Cluster-level analysis methods have 
been shown to maintain the type I error rate fairly well 
when the number of clusters is small [29], however, this 
has also not been investigated under a covariate adjusted 
analysis, where the loss of degree of freedom is likely to 
have a detrimental effect on the performance of these 
methods.

We observed the power of an analysis that is adjusted 
for a fixed number of covariates, varies depending on the 
total number of covariates present in the data genera-
tion model. This is a result of a change in the total vari-
ance, with a change in the number of covariates in the 
data generation model; as more covariates are present the 
total variance increases, resulting in a lower power than 
when the same number of covariates are adjusted for, 
but fewer covariates are present. Secondly, the change 
in power as additional covariates are adjusted for in the 
analysis is not uniform, there is a greater change when 
the final covariate present in the data generation model 
is adjusted in the analysis, than when previous covariates 
are adjusted for. This is likely to be due to the removal 
of any remaining bias in the treatment effect estimate, 
by correctly specifying the analysis model, reducing the 
variability in the outcome estimate across different allo-
cations, thus reducing the variability in the power.

Limitations
Throughout this study CRTs with an equal allocation, 
cross-sectional design, equal size clusters (fixed at 300), 
a continuous outcome, and binary cluster-level covari-
ates were considered, which may limit the generalisabil-
ity of the findings. In practice, clusters are unlikely to be 
of equal size and may be informative of the outcome of 
interest. This has been shown to result in a reduction in 
power [34]. Covariate constrained randomisation might 
be able to mitigate this effect, if the size of the clusters was 
included as a covariate to be balanced in the randomi-
sation. The balance metric used in the study can also be 
used for continuous covariates and those with more than 
two categories, so our methods can naturally be extended 
to these types of outcomes. Alternative balance metrics 
exist which have been implemented into software and 
may perform better for these types of outcomes [19–21]. 
If known, individual-level covariates could be constrained 
in the randomisation, and have been in previous stud-
ies [17, 18], but practically speaking, information on 
these is unlikely to be known at the point of randomisa-
tion. Under covariate constrained randomisation we also 
fixed the prognostic effect of the covariates. Under sim-
ple randomisation, the size of the prognostic effect of the 
covariates can influence the power of an adjusted analysis. 
It is expected that greater power will be achieved under 

covariate constrained randomisation when those covari-
ates being balanced have a strong prognostic effect.

We have considered CRTs randomising few clusters 
and used Satterthwaite correction degrees of freedom 
to account for this, a further correction to the standard 
errors may have improved the maintenance of the type I 
error rate. Furthermore, post-randomisation withdrawal 
of a cluster can occur, which will not only impact the 
power of the trial, but may also impact the balance of the 
allocation of the remaining clusters. We do not investi-
gate this here, but the effect on the balance of the alloca-
tion of a cluster withdrawing from the trial will depend 
on the covariate values of the cluster, and will therefore 
depend entirely on which cluster withdraws from the 
trial. It is also often the case that not all of the clusters are 
known a priori, requiring randomisation to be conducted 
sequentially, in which case covariate constrained ran-
domisation would not be suitable. Our work is also lim-
ited to two-arm parallel designs, covariate constrained 
randomisation is likely to perform differently for other 
designs of cluster trial. Further work is being conducted 
for stepped-wedge designs, where thought is needed as 
to how best to define a balanced allocation and research-
ers could look at the cluster randomised crossover 
design, although the impact of an imbalance in cluster-
level covariates is likely to be less due to the comparisons 
made within the same cluster.

We showed here that the greatest power is achieved 
when the candidate set size is at its smallest. How-
ever, care is needed in the application of this finding, as 
decreasing the size of the candidate set might result in a 
low absolute number of possible allocations which might 
be viewed as non-random. For example, for a trial ran-
domising 16 clusters, a 10% candidate set size would 
include 1,287 randomisation schemes, which is unlikely 
to be problematic. However, for a trial randomising only 
eight clusters, a 10% candidate set would include only 7 
randomisation schemes, which might be viewed as too 
few to be considered random. In addition, we did not 
investigate whether the randomisation schemes forming 
the candidate sets resulted in cluster allocations being 
confounded [15, 19]. It is possible that poor balance 
would be obtained unless two clusters are always allo-
cated to different treatment arms, in this case the alloca-
tion of one cluster can be predicted by the allocation of 
the other which could impact the validity of the randomi-
sation [15, 19]. Increasing the candidate set size may be 
able to eliminate this problem. Several authors have dis-
cussed the potential validity of restricted randomisations, 
and these may prove useful in determining the appropri-
ate size of the candidate set for a particular covariate con-
strained randomisation [15, 33, 35, 36].
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CRT : Cluster randomised trial.
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