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Abstract: Missing data or missing values are a common phenomenon in applied panel data research
and of great interest for panel data unit root testing. The standard approach in the literature is to
balance the panel by removing units and/or trimming a common time period for all units. However,
this approach can be costly in terms of lost information. Instead, existing panel unit root tests could be
extended to the case of unbalanced panels, but this is often difficult because the missing observations
affect the bias correction which is usually involved. This paper contributes to the literature in two
ways; it extends two popular panel unit root tests to allow for missing values, and secondly, it
employs asymptotic local power functions to analytically study the impact of various missing-value
methods on power. We find that zeroing-out the missing observations is the method that results in
the greater test power, and that this result holds for all deterministic component specifications, such
as intercepts, trends and structural breaks.

Keywords: panel unit root tests; local power function; missing values; bias correction; unbalanced
panel; structural breaks

JEL Classification: C22; C23

1. Introduction

It is almost always the case in applied panel data research that some values will
be missing, leading to unbalanced panels. Missing observations can happen for various
reasons. In macroeconomics, the available data do not start at the same date for all
countries, or the frequency of data collection for many variables changed over time; for
example, where data were available on an annual basis, now they are also available
every quarter, and therefore there are missing values at the quarter dates for the time
that only annual observations were available. Firm and bank-level data are plagued by
mergers and bankruptcies or the introduction of new banks and firms in the sample.
“Windsorising” the data (trimming the outliers), which is standard practice in corporate
finance, also creates missing values. In household survey data, many households drop out
with time. In financial data, there are missing values on certain days, for example, holidays
and weekends.

This paper examines the problem of missing values in panel data unit root testing.
Missing observations were first studied in a time series framework with stationary data.
Many of the early contributions can be found in Harvey (1989), but the first was by Savin
and White (1978), which examined the Durbin and Watson (1950, 1951, 1971) test for serial
correlation. Their main result was that ignoring the missing values by closing up the
observations leads to a Durbin–Watson statistic that has the same null limiting distribution,
and the bounds critical values are still valid. Bhargava (1989) examined the impact of
missing values on the power of the Durbin–Watson test using an approximation of the
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power function and found that in the presence of an intercept in the model, and without
very large gaps in the data, it is still reasonable to use the test. For non-stationary data,
the first contributions were those of Shin and Sarkar (1994a, 1994b), which examine the
impact of missing values on the instrumental variable unit root tests of Hall (1989) and the
Dickey–Fuller test of Dickey and Fuller (1979). Shin and Sarkar (1994b) find that under
the null hypothesis of a unit root, the estimator and t-statistics have the same distribution
as in the non-missing data case. However, the sampling pattern does affect the power of
the tests.

Ryan and Giles (1998) re-examine the two schemes for dealing with missing observa-
tions in Dickey–Fuller unit root tests found in Shin and Sarkar (1994b), and propose a third
one. The first scheme simply removes the gaps from the series and assumes that the existing
observations are continuous. The second scheme replaces the missing values with the last
recorded observation before the gap, and the third scheme uses linear interpolation to fill in
the missing data by taking the average of two observations, the last one before the gap and
the first one after the gap. They first confirm the findings of Shin and Sarkar (1994b) that
the first two schemes leave the unit root test null distributions unchanged but show that the
third scheme introduces additional terms in the limiting distribution. Furthermore, using
extensive Monte Carlo simulations they show that the first scheme delivers the highest
power, while linear interpolation provides some empirical size gains but significant power
loss. However, the second scheme leads to more power in the augmented Dickey–Fuller
test which deals with serial correlation (Dickey and Fuller 1981).

The first contribution of this paper is to extend the popular panel unit root tests of
Harris and Tzavalis (1999), Karavias and Tzavalis (2014) to unbalanced panels. This is the
first paper that considers how to adjust panel data unit root tests to unbalanced panels. It
is not straightforward to adapt the single time series results in panels because most panel
unit root tests require bias corrections which will be affected by the pattern and location of
the missing values, see, e.g., Levin et al. (2002), Im et al. (2003), among others. The problem
is even more serious when the bias correction is estimated by simulations.

The tests of Harris and Tzavalis (1999), Karavias and Tzavalis (2014) are fixed-T tests
with a wide range of deterministic component specifications including, individual unit
intercepts, linear trends and common structural breaks. This allows us to study the impact
of missing values on various settings. We focus on panel unit root tests with a large number
of cross-section units N, and a small number of time series observations T because this was
the original dynamic panel data framework introduced by Holtz-Eakin et al. (1988) and
the framework of the first panel data unit root test, that of Breitung and Meyer (1994). It
is also one of the most common in terms of applications, see, e.g., Karavias et al. (2021).
The panel data unit root tests of Harris and Tzavalis (1999), Karavias and Tzavalis (2014)
are popular in applied research and have been implemented in statistical software.1 They
have several advantages beyond being applicable to short panels; they are invariant to the
initial conditions, they allow for flexible and general trend functions, and they allow for
cross-section heteroskedasticity.

We adjust the above test statistics for missing values by providing new bias correction
formulas and deriving their asymptotic limiting distributions. The adjustment allows for
general patterns of missing values that can differ across individuals and leads to excellent
test size properties. Under the null hypothesis, the distribution of the adjusted test statistics
remains identical to the case without missing values. This result holds for any missing-value
correction scheme, unlike the single time series results of Ryan and Giles (1998).

The paper’s second contribution is to employ the Harris and Tzavalis (1999), Karavias
and Tzavalis (2014) tests and the fixed-T framework to study which method for dealing
with missing data results in tests with greater power. The power properties of these tests
have been studied previously in Madsen (2010) and Karavias and Tzavalis (2016, 2017). In
this paper, we extend the local power functions of Karavias and Tzavalis (2016, 2017) to
allow for missing values, and then use these functions to theoretically compare the three
missing value schemes from Ryan and Giles (1998). The results show that the zeroing-out
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scheme leads to the greatest power for all types of deterministic components. This is also
the first paper that examines the nexus between missing values and structural breaks. We
find that zeroing-out once more leads to greater power, but the ranking of the other two
schemes depends on the relative locations of the missing values and the structural breaks.

The paper is structured as follows. Section 2 presents the tests of Harris and Tzavalis
(1999), Karavias and Tzavalis (2014). Section 3 introduces missing values and describes
how they can be analysed in the fixed-T framework. Section 4 presents the missing-
value-adjusted statistics and their limiting distributions under the null and under local
alternatives. Section 5 compares the impact of popular schemes for dealing with missing
values, for various deterministic specifications. Section 6 concludes the paper.

2. Panel Unit Root Tests without Missing Values

Assume that there are N cross-section units and T time series observations and con-
sider the following data generating processes:

yi,t = ai + ui,t, (1)

yi,t = ai + bit + ui,t, (2)

yi,t = a1,i I(t ≤ T0) + a2,i I(t > T0) + ui,t, (3)

yi,t = a1,i I(t ≤ T0) + a2,i I(t > T0) + b1,i I(t ≤ T0)t + b2,i I(t > T0)t + ui,t, (4)

for i = 1, . . . , N and t = 1, . . . , T. For notational convenience, we further assume that
the initial observation is yi,0 and it is observed resulting in a total of T + 1 time series
observations per unit.

Model (1) is includes individual (or incidental) intercepts and model (2) includes
individual intercepts and individual trends. The models in (3) and (4) consider a single
structural break in the intercepts and trends of the series, at time T0. The break is assumed
to be common for all units as in Bai (2010). The parameters a1,i and b1,i are the intercept
and trend individual effects before the break and a2,i and b2,i are those after the break. The
first two models have been considered in Harris and Tzavalis (1999), while models (3) and
(4) have been considered in Karavias and Tzavalis (2014).

The error term ui,t is assumed to be an autoregressive process of order one, as follows:

ui,t = ρui,t−1 + εi,t, (5)

for i = 1, . . . , N and t = 1, . . . , T. The key parameter of interest is the autoregressive
parameter ρ, which determines the stationarity of the panel process.

For models (1) and (2) the null hypothesis of non–stationarity is given by H0 : ρ = 1,
while the alternative of stationarity is H1 : ρ < 1. For models (3) and (4) the null hypothesis
depends on whether there is a structural break under the null or not. Both choices are
considered in Karavias and Tzavalis (2014) and could have been considered here, however,
the results in terms of missing values do not change qualitatively and in the following
we will only consider the case where a structural break occurs only under the alternative.
Explicitly stated, the null hypothesis is H0 : ρ = 1 & a1,i = a2,i for (3), and H0 : ρ =
1 & a1,i = a2,i & b1,i = b2,i for (4). We will further assume that the date of the break is
known to the researcher, as the missing values analysis also does not change if the date of
the break is unknown.

To remove the individual effects from yi,t we employ the annihilator matrices Qm,
where m = 1, 2, 3, 4 corresponds to models (1)–(4). We introduce the following notation:
Let IT be a T × T identity matrix, e be a T × 1 vector of ones, and τ = (1, 2, 3, ..., T)′.
Moreover, let e1 and τ1 be T × 1 vectors such that e1,t = et and τ1,t = τt if t ≤ T0 and 0
otherwise, and let e2 and τ2 be T × 1 vectors such that e2,t = et and τ2,t = τt if t > T0 and 0
otherwise. The vectors ej and τj are effectively “breaking” versions of e and τ. Qm is an
annihilator matrix with the general formula Qm = IT − Zm(Z′mZm)−1Z′m, and where Zm
depends on the model. Define Z1 = e, Z2 = {e, τ}, Z3 = {e1, e2} and Z4 = {e1, e2, τ1, τ2}.
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By premultiplying models (1)–(4) with the corresponding Qm, the least-squares estimator
of the transformed model is given by:

ρ̂m =

(
N

∑
i=1

y′i,−1Qmyi,−1

)−1( N

∑
i=1

y′i,−1Qmyi

)
, (6)

where yi,−1 = (yi,0, yi,1, . . . , yi,T−1)
′ and yi = (yi,1, yi,2, . . . , yi,T)

′.
The estimator (6) is inconsistent because it suffers from the well known Hurwicz-

Nickell bias.2 Harris and Tzavalis (1999), Karavias and Tzavalis (2014) derive expressions
for this bias when ρ = 1 and show that it depends on the deterministic component
specification. Furthermore, they show that the bias can be estimated and ρ̂ be bias-corrected.
The following test statistic, and its asymptotic distribution, is then used for testing the null
hypotheses:3

tm =
ρ̂m − Bm − 1√

Var(ρ̂m)

d−→ N(0, 1), (7)

where Bm is the bias correction and it is given by the probability limit of ρ̂m − 1. Harris and
Tzavalis (1999), Karavias and Tzavalis (2014) provide explicit formulas for Bm and Var(ρ̂m),
for models (1)–(4). For (3) and (4), the expressions of tm, Bm and ρ̂m also depend on the
date of the break. This dependence is suppressed in our notation because the date of the
break does not have an impact on the theoretical results of the paper.

The first contribution is to examine how the above statistic and its limiting distribution
change in the presence of missing values. Missing values are introduced in the next section.

3. Missing Values

So far we have assumed that there are T + 1 observations of yi,t for every i ∈ 1, . . . , N.
Let the data spawn from t = {0, 1, . . . , T}, and let there be a missing value at time t∗,
where 1 < t∗ < T. Under the null hypotheses that H0 : ρ = 1 for models (1)–(2) and
H0 : ρ = 1 & a1,i = a2,i for (3), and H0 : ρ = 1 & a1,i = a2,i = ai & b1,i = b2,i = bi for (4),
(1)–(4) imply the following data generating process:

yi = yi,−1 + εi (8)

yi = yi,−1 + bie + εi, (9)

where εi = (εi,1, ..., εi,T)
′. In matrix form, the above equations (presenting only the first, to

save space) become: 

yi,1
...

yi,t∗−2
yi,t∗−1

yi,t∗

yi,t∗+1
yi,t∗+2

...
yi,T


=



yi,0
...

yi,t∗−3
yi,t∗−2
yi,t∗−1

yi,t∗

yi,t∗+1
...

yi,T−1


+



ui,1
...

ui,t∗−2
ui,t∗−1

ui,t∗

ui,t∗+1
ui,t∗+2

...
ui,T


.

When there is a missing value yi,t∗ , the dynamic nature of the system results in yi,t∗

appearing in two equations of the system, the t∗ and the t∗ + 1. This means that one
missing value plagues two equations of the system as can also be seen from the above
representation.

There is a fundamental difference in the way that missing values are treated in a
fixed-T framework compared to single time series analysis. In single time series, it is
assumed that the data generating process is based on the index t, as in models (1)–(4), but
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only a subset of these observations is available, t1, t2, . . . , tT . A new pseudo series is created
based on the index ti, i.e., xk = ρxk−1 + αk, where k = t1, t2, . . . , tT and the estimation of
ρ is based on xk. This approach is reasonable when T is asymptotic because the impact
of the index change is asymptotically negligible. When T is fixed as it is here, the idea is
to work with a fixed set of equations, see, e.g., Hayashi (2000, sec. 5.3). We will examine
methods that keep the asymptotic distribution of the test the same, but we wish to find
which method results in maximum power.

Define Di to be a deterministic matrix that reshuffles the data to deal with missing
values in the unit i. Notice that Di allows for the pattern and number of missing values
to differ across units. If there are no missing values, Di = IT . If there is a missing value
for unit i at time t∗, then [Di]t∗ ,t∗ = 0, which is how missing values are introduced into
the model. Effectively, Di multiplies the missing value with 0 and we assume that the
outcome of this algebra is 0. Because this is a dynamic model and two equations are affected
by a missing value at time t∗, it must also be [Di]t∗+1,t∗+1 = 0. The rest of the diagonal
elements of Di are equal to 1, while the off-diagonal elements are the ones performing the
missing-value correction scheme.

The different schemes for dealing with missing values, see, e.g., Ryan and Giles (1998),
such as closing the gaps, using linear interpolation and using the last available observation,
dictate different versions of Di. In the following section, we will derive the asymptotic
distribution of the statistic in (7) and the asymptotic local power without assuming a
specific type of Di. This means that the analysis can be used for comparing other methods
for dealing with missing values, beyond the ones in Section 5.

4. Asymptotic Distribution and Local Power Function

The main idea behind the asymptotic analysis comes from Hayashi (2000, p. 338), and
to demonstrate it we consider (1), which can be quasi-differenced according to Equation (5)
and be written as yi,t = ρyi,t−1 + (1 − ρ)ai + εi,t. Stacking the model across the time
dimension, it becomes:

yi = ρyi,−1 + (1− ρ)aie + εi. (10)

Then, we premultiply the model by Di, which is the transformation matrix that deals
with the missing values in each unit, and apply a second transformation, the within
transformation, to remove the deterministic components. The removal of the individual
effects is based on:

QD
1,i = IT − (Die)(e′iD

′
i Die)−1(e′Di). (11)

Notice how QD
1,i now depends on the individual i, since individuals are allowed to

differ in terms of the number and location of missing values. The general expression of QD
m,i

is QD
m,i = IT − (DiZm)(Z′mD′i DiZm)−1(Z′mDi). Then, ρ̂ is the estimator which minimises

the least squares criterion in the transformed model and it equal to:

ρ̂D
m =

(
N

∑
i=1

y′i,−1D′i Q
D
m,iDiyi,−1

)−1( N

∑
i=1

y′i,−1D′i Q
D
m,iDiyi

)
. (12)

The asymptotic analysis is based on the following set of assumptions. These are not
the weakest assumptions possible, however, they are useful for allowing us to study the
problem of missing values analytically.

Assumption 1 (Errors/No Selectivity Bias). (i) ui, for i = 1, ..., N, is a sequence of independent
random vectors with E(ui|Di) = 0 and E(uiu′i|Di) = σ2 IT , where σ2 < ∞. (ii) ui follows a
multivariate normal distribution.

Assumption 2 (Variable Independence). ui,t, for i = 1, ..., N, and t = 1, ..., T, is independent
of ai, bi, a1,i, a2,i, b1,i, b2,i and yi,0, and Var(yi,0) < ∞.
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Assumption 3 (Invertibility). For m ∈ {1, . . . , 4}, N−1 ∑N
i=1 y′i,−1D′i Q

D
m Diyi,−1 > 0 with

probability 1 for all possible break points, T and N.

Assumption 4 (Missing Values). As N → ∞,

1
N

N

∑
i=1

E(D′i Q
D
i Di)

p−→ ΦD, (13)

where ΦD is positive definite.

Assumption 1 is standard in the literature, see, e.g., Verbeek and Nijman (1992). It
implies that the errors are not correlated with the missing values, in other words there
is no selectivity bias. Still, the individual effects can be correlated with missing observa-
tions. The assumption also implies that conditionally on the missing values, the errors are
homoskedastic across both the time series and cross-section dimensions and not serially
correlated. Cross-section dependence is not allowed, and finally, the second part imposes
normality, which helps in simplify the formulas below. Assumption 2 is also standard and
necessary for deriving the asymptotic local power function. Assumption 3 is an invertibility
assumption that also restricts the presence of the structural breaks to locations that allow
the existence of Q3 and Q4. Effectively, it is a high-level assumption that implies the need
for trimming the sample at the beginning and the end. For more information, see also
Karavias and Tzavalis (2014). Assumption 4, is a regularity condition that allows the
existence of the estimator bias in the presence of missing values.

We are now able to present the limiting distribution of ρ̂m in the presence of miss-
ing data:

Proposition 1. Let Assumptions 1, 3 and 4 hold. Furthermore, for models (3) and (4) let the date
of the break be known. Then, under H0, and as N → ∞:

tm =
ρ̂m − Bm − 1√

Vm/N
d−→ N(0, 1). (14)

The quantities Bm and Vm are defined as:

Bm =
tr(Λ′ΦD)

tr(Λ′ΦDΛ)
, (15)

Vm =
2tr(ΩD)

[tr(Λ′ΦDΛ)]2
, (16)

where ΩD is such that,
1
N

N

∑
i=1

A2
m,i

p−→ ΩD, (17)

and Am,i = (1/2)(Λ′D′i Qm,iDi + D′i Qm,iDiΛ)− Bm(Λ′D′i Qm,iDiΛ). Finally, Λ is a matrix
with elements [Λ]i,j = 1 for i < j and [Λ]i,j = 1 otherwise, for i, j ∈ {1, ..., T}.

Proposition 1 derives the asymptotic distribution of ρ̂ under the null hypothesis and
under a general pattern of missing value treatment. The proof of the proposition is based
on Harris and Tzavalis (1999), Karavias and Tzavalis (2014) and is omitted. Expressions
(15) and (16) make clear how the bias and variance of the estimator should be adjusted
in the presence of missing values. The result in (14) differs from those in Harris and
Tzavalis (1999), Karavias and Tzavalis (2014) in that it contains the matrix Di. Proposition
1 demonstrates that the limiting distribution of a statistic adjusted for the missing values
remains the same as in the case without missing values. This finding is in line with part
of the previous literature, see, e.g., Shin and Sarkar (1994b). Unlike Ryan and Giles (1998)
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however, the limiting distribution does not change in the case of linear interpolation,
because the distribution does not depend on the type of Di.

When the date of the break is unknown, Karavias and Tzavalis (2014) suggest com-
puting the minimum of tm for models m = 3, 4, over every permissible break date, as
determined by Assumption 2. The limiting distribution in this case will depend on the
correlations between the tm for different break dates, which will be affected by the missing
values. Therefore, the critical values of Karavias and Tzavalis (2014) are no longer valid in
this case. Instead, one can use the bootstrap proposed in Karavias and Tzavalis (2019) to
derive the appropriate critical values. The case of unknown breaks will not be pursued in
the analysis below because the impact of missing values is qualitatively the same as in the
case of known breaks.

To employ the statistic in (14), it is necessary to a employ consistent estimator of Bm,
which is given by:

B̂m =
∑N

i=1 Λ′D′i Qm,iDi

∑N
i=1 Λ′D′i Qm,iDiΛ

, (18)

and a consistent estimator for Vm, which is given by:

V̂m =
1
N ∑N

i=1 2tr(Â2
m,i)[

1
N ∑N

i=1 Λ′D′i Qm,iDiΛ
]2 , (19)

where Âm,i = (1/2)(Λ′D′i Qm,iDi + D′i Qm,iDiΛ)− B̂m(Λ′D′i Qm,iDiΛ).
The following proposition examines the behaviour of the tm statistics under local

alternatives, as in Karavias and Tzavalis (2016, 2017). The main advantage of the local
power theory is that it allows us to examine analytically the impact of each type of missing
value correction, and this is more transparent than doing Monte Carlo simulations, where
the results depend also on other parameters in the experimental design. The local power
function is an approximation of the power function in a N−1/2 neighbourhood of the null
hypothesis. The local alternatives are defined as ρN = cN−1/2, where c > 0, because N is
the only increasing data dimension.

Proposition 2. Let Assumptions 1–4 hold. Furthermore, for models (3) and (4) let the date of the
break be known. Then, under H1 : ρN = cN−1/2, and as N → ∞:

tm =
ρ̂m − Bm − 1√

Vm/N
d−→ N(−cKm, 1). (20)

The quantity Km is given by:

Km =
tr(FΛ′ΦD) + tr(Λ′ΦDΛ)− 2Bmtr(FΛ′ΦD)

2tr(ΩD)
, (21)

where F = [dΘ/dρ]ρ=1 and Θ is a T × T matrix that has elements: [Θ]i,j = 0 if i = j or i < j,
and [Θ]i,j = ρ(i−j−1).

Proposition 2 states the limiting distribution of tm under local alternatives. The proof
of the proposition is based on Karavias and Tzavalis (2016, 2017) and is omitted. The result
is elegant and states that the probability of rejecting the null when it is not true (c > 0) is a
monotonic function of Km. It suffices therefore to examine the sign and magnitude of Km;
the larger the Km, the more powerful the test. Km = 0 means that the test has trivial power,
while if Km < 0, the test is biased.

5. Dealing with Missing Values

In this section we evaluate Km for various types of Di to see which way of dealing with
missing values results in greater test power. We will consider the three schemes which have
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previously appeared in the single time series literature (see, e.g., Ryan and Giles (1998)):
Closing the gaps, filling in the previous available value, and using linear interpolation.

With respect to interpolation, there are various methods can produce estimates of
the missing values, but we follow Ryan and Giles (1998) and only use the average of the
two observations before and after the missing values. There are other methods available,
which ultimately introduce a bias-variance trade-off problem, but we leave this direction
for future research.

The first option that we examine is zeroing-out the missing observations, which is
equivalent to “closing the gaps”. The zeroing-out happens by creating Di to be a diagonal
matrix with diagonal elements [Di]t∗ ,t∗ = [Di]t∗+1,t∗+1 = 0 if observation yi,t∗ is missing,
and equal to [Di]t,t = 1 for t 6= t∗. The second option in the literature is to substitute the
missing value with the previous available value, i.e., yi,t∗ = yi,t∗−1. This is possible by
defining the matrix Di as:

Di =



1i,1
. . .

1i,t∗−1
0i,t∗ 1i,t∗ 0i,t∗ 0i,t∗

1i,t∗+1 0i,t∗+1 0i,t∗+1 0i,t∗+1 0i,t∗+1
1i,t∗+2

. . .
1i,T


Finally, the third option is to substitute the missing value with the average of yi,t∗−1

and yi,t∗+2. This is possible by creating Di as:

Di =



1i,1
. . .

1i,t∗−1
0i,t∗ 1/2i,t∗ 0i,t∗ 0i,t∗ 1/2i,t∗

1/2i,t∗+1 0i,t∗+1 0i,t∗+1 1/2i,t∗+1 0i,t∗+1
1i,t∗+2

. . .
1i,T


In unreported Monte Carlo simulations it is found that all three above transformations

have size very close to the nominal.4 It is therefore of interest which transformation results
in higher power.

Table 1 below compares the three methods in terms of local asymptotic power, based
on the theoretical results of (21). We consider the case of a single missing value and where
Di = D, that is, the missing value appears in all units and at the same place. This is a
simplifying assumption, but our interest is not on the power of tests per se, but rather
in determining the relative power of the three ways of dealing with missing values. We
allow the missing value to appear towards the beginning, the middle, and the end of the
sample at times b0.25Tc, b0.5Tc and b0.75Tc. We further set T = 20, and for the Karavias
and Tzavalis (2014) we allow the dates of the breaks to take place at the same dates as the
missing values. Table 1 below reports Km from Equation (21), for m = 1, 3. A higher value
of Km means higher test power.
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Table 1. Asymptotic local power of the Harris and Tzavalis (1999), Karavias and Tzavalis (2014) tests
for the model with incidental intercepts and a single missing value.

Harris and Tzavalis (1999)
Missing Value Location Zo Pr Li
b0.25Tc 8.545 8 8.26
b0.5Tc 8.559 8.276 8.423
b0.75Tc 8.544 8.126 8.26

Karavias and Tzavalis (2014)
Break fraction: b0.25Tc
Missing Value Location Zo Pr Li
b0.25Tc 6.32 6.304 6.107
b0.5Tc 6.825 6.384 6.637
b0.75Tc 6.825 6.506 6.637
Break fraction: b0.5Tc
Missing Value Location Zo Pr Li
b0.25Tc 5.835 5.624 5.798
b0.5Tc 5.319 5.094 4.692
b0.75Tc 5.835 5.624 5.798
Break fraction: b0.75Tc
Missing Value Location Zo Pr Li
b0.25Tc 6.825 6.384 6.637
b0.5Tc 6.825 6.507 6.637
b0.75Tc 6.32 6.101 6.107

Notes: The above table provides the values of Km for one missing value in the sample. The missing value appears
at the same place for all units at the locations b0.25Tc, b0.5Tc and b0.75Tc, for T = 20. For the Karavias and
Tzavalis (2014) test, three break dates are also considered, again at the locations b0.25Tc, b0.5Tc and b0.75Tc. “Zo”
stands for zeroing-out, “Pr” stands for previous observed value and “Li” stands for linear interpolation. A larger
value of Km indicates higher power.

Notes: The above table provides the values of Km for one missing value in the sample.
The missing value appears at the same place for all units at the locations b0.25Tc, b0.5Tc
and b0.75Tc, for T = 20. For the Karavias and Tzavalis (2014) test, three break dates are also
considered, again at the locations b0.25Tc, b0.5Tc and b0.75Tc. “Zo” stands for zeroing-out,
“Pr” stands for previous observed value and “Li” stands for linear interpolation. A larger
value of Km indicates higher power.

The results of Table 1 demonstrate that the Harris and Tzavalis (1999) test performs
best when the missing value is zeroed-out, and the next best method in terms of power
is the linear interpolation. The worse method is substituting the missing value with the
previous observation. This is the first result in the panel unit root test literature on the
impact and treatment of missing values. The fact that zeroing-out produces the highest
power agrees with the single time series results of Ryan and Giles (1998). However, they
find that linear interpolation performs worst, which is contrary to what is found here, as
linear interpolation outperforms the previous value substitution.

In the presence of structural breaks the results are less clear-cut. The zeroing-out
method dominates the other two, for all combinations of structural break and missing
value dates. However, the ranking between the other two methods depends on the relative
location of the missing value and the date of the structural break. If the missing observation,
or the next, coincides with the date of the structural break, then the substitution of the last
available observation leads to higher power than linear interpolation. For the rest of the
cases, linear interpolation leads to greater power.

The presence of linear trends in m = 2, 4 results in Km = 0 in (21). This is the known
problem of trivial local power in the presence of incidental trends, see, e.g., Moon et al.
(2007) and Karavias and Tzavalis (2016, 2017). This result demonstrates that panel unit
root tests do not have power in the presence of incidental trends in a neighbourhood of the
null hypothesis. For the purposes of the analysis here, this means that the asymptotic local
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power functions cannot be used to show which method is the best. However, unreported
Monte Carlo simulations show that for alternatives far from the null, the results for the case
without trends still hold.

The results of Table 1 allow for a comparison of the relative power of the three missing
value methods. The absolute powers can be calculated from T (vα + cKm), where T is the
cumulative distribution function of the standard normal distribution, and vα is the α-level
percentile of said distribution. The absolute power gains of zeroing-out over the other
methods are greater when T is smaller, c is closer to 0, and when the number of missing
values is larger.

The above conclusions extend to settings with multiple missing values, and cases
where the number and locations of missing values differ across units. To save space,
we do not present these results but are available upon request. The Harris and Tzavalis
(1999), Karavias and Tzavalis (2014) tests can accommodate cross-section dependence in
the form of an additive time effect, however, that does not change the above analysis or
its conclusions.

6. Conclusions

This paper examined the impact of missing value correction methods in panel data
unit root tests. The analysis focused on the fixed-T tests of Harris and Tzavalis (1999) and
their extension in the presence of structural breaks by Karavias and Tzavalis (2014).

The first contribution of the paper is the extension of the aforementioned tests to
allow for missing observations in the data. The fixed effects estimators in dynamic panel
data models are inconsistent and need to be bias-corrected; the present paper shows how
this bias correction can be done and provides the appropriate formulas for using the tests
in practice.

The second contribution is a study of the power properties of the tests under various
methods for dealing with missing data. To carry out this analysis, we derived asymptotic
local power functions which can be used to analytically compare different methods. We
used the new formulas to compare the methods of zeroing-out (which is equivalent to
closing the gaps in the data), replacing the missing value with the last available observation
and using linear interpolation in the form of the average of the two adjacent observations.
Overall, the results show that the zeroing-out or “closing gaps” methodology dominates
the other two and should be the preferred method in practice.
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Notes
1 In Stata, the test by Harris and Tzavalis (1999) has been implemented in the official “xtunitroot” command, while the test of

Karavias and Tzavalis (2014), which allow for structural breaks, have been implemented by the community contributed command
of “xtbunitroot” by Chen et al. (2021).

2 In the current context the term “bias” is frequently used to describe inconsistency. This happens because when the time series
dimension is assumed fixed, the autoregressive parameter estimator bias (Hurwicz 1950; Nickell 1981) persists asymptotically
and creates inconsistency.
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3 The assumptions under which this result holds are presented in Section 4 below.
4 Ryan and Giles (1998) find size distortions under the null which leads them to consider size-adjusted power. This is not

needed here.
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