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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The gas turbine model is validated by a 
well-used commercial software. 

• An adapted sequential method is estab-
lished for fault diagnosis of aero 
engines. 

• Effect of heat soakage is considered in 
fault diagnosis under dynamic 
conditions. 

• The economic impact of our method is 
assessed for hydrogen powered flights. 

• The established method could diagnose 
faults successfully under dynamic states.  

A R T I C L E  I N F O   
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A B S T R A C T   

At present, aero engine fault diagnosis is mainly based on the steady-state condition at the cruise phase, and the 
gas path parameters in the entire flight process are not effectively used. At the same time, high quality steady- 
state monitoring measurements are not always available and as a result the accuracy of diagnosis might be 
affected. There is a recognized need for real-time performance diagnosis of aero engines operating under tran-
sient conditions, which can improve their condition-based maintenance. Recent studies have demonstrated the 
capability of the sequential model-based diagnostic method to predict accurately and efficiently the degradation 
of industrial gas turbines under steady-state conditions. Nevertheless, incorporating real-time data for fault 
detection of aero engines that operate in dynamic conditions is a more challenging task. The primary objective of 
this study is to investigate the performance of the sequential diagnostic method when it is applied to aero engines 
that operate under transient conditions while there is a variation in the bypass ratio and the heat soakage effects 
are taken into consideration. This study provides a novel approach for quantifying component degradation, such 
as fouling and erosion, by using an adapted version of the sequential diagnostic method. The research presented 
here confirms that the proposed method could be applied to aero engine fault diagnosis under both steady-state 
and dynamic conditions in real-time. In addition, the economic impact of engine degradation on fuel cost and 
payload revenue is evaluated when the engine under investigation is using hydrogen. The proposed method 
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demonstrated promising diagnostic results where the maximum prediction errors for steady state and transient 
conditions are less than 0.006% and 0.016%, respectively. The comparison of the proposed method to a 
benchmark diagnostic method revealed a 15% improvement in accuracy which can have great benefit when 
considering that the cost attributed to degradation can reach up to $702,585 for 6000 flight cycles of a hydrogen 
powered aircraft fleet. This study provides an opportunity to improve our understanding of aero engine fault 
diagnosis in order to improve engine reliability, availability, and efficiency by online health monitoring.   

1. Introduction 

As one of the engines of socio-economic growth, energy plays a 
paramount role in the evolution of modern society [1]. In recent years, 
an emerging body of research attention has been paid to energy con-
sumption, for example, innovation cooperation and knowledge transfer 
that benefits energy technology progress and energy efficiency 
enhancement, which contributes to changes in energy consumption and 
low-carbon transition of energy structure [2]. Energy consumption 
market has long been dominated by fossil fuels, such as oil, coal and 
natural gas, which are the main sources of CO2 and typical non-CO2 
greenhouse gases [3]. Attaining the global warming-limit goals, like 
1.5 ◦C higher than the pre-industrial levels [4], should be largely 
equivalent to controlling conventional energy consumption. In addition, 
the non-fossil energy technologies [5] and low-carbon transition [6] are 
of great importance in the long term [7]. Recent years have seen 
renewed interest in hydrogen powered aero engines as it is clean, flex-
ible, energy-efficient and can be produced from renewable sources. 
Some studies on hydrogen-based technologies could be referred to [8,9]. 

As reported by the International Civil Aviation Organization (ICAO), 
the passenger traffic and freight traffic are projected to rise annually 
from 2018 to 2038 by 4.2% and 3.5%, respectively [10]. Gas turbine 
engines play a critical role in civil aviation, particularly turbofan engines 
with a high bypass ratio which have the advantage of improved fuel 
consumption and propulsive efficiency [11]. It is reported that Rolls- 
Royce has a revenue of 11 billion USD per year from aero engine ser-
vice and part replacement [12] indicating the importance of this area. 
Gas path measurements are associated with engine health and could be 
used for performance diagnosis to support condition based maintenance 
and reduce the cost of engine service [13,14]. It is noted that the per-
formance diagnosis of gas turbines is crucially important to engine 
safety and efficiency for aircraft assets [15]. Consequently, the condition 
monitoring of gas turbines is a useful tool to improve their safety, reli-
ability, and availability [16,17]. Currently, gas path analysis (GPA) is 
still one of the most effective ways for performance-based fault diagnosis 
of gas turbines [14]. The maintenance schedule conducted by the gas 
turbine performance specialist could be optimized by using the diag-
nostic results through GPA [18]. Typical gas path deterioration of gas 
turbines include fouling, erosion, corrosion, object damage, tip 

Nomenclature 

a health index decay rate 
A Area [m2] 
AW Auxiliary work [W] 
b exponential time-scaling parameter 
BPR Bypass ratio 
CFG Nozzle coefficient 
CM Corrected mass flow 
CN Corrected engine shaft rotational speed 
CP Characteristic parameter 
CW Compressor work [W] 
E Residual error 
EFC Extra fuel cost [$] 
EFF Efficiency [kg] 
EFW Extra fuel weight 
FAR Fuel-air ratio 
FC Film coefficient [(m2 • K)/W] 
H Enthalpy [kJ/kg] 
I Shaft inertia [kg • m2] 
km Material thermal conductivity [W/(m • K)] 
leff Effective length heat flow transport [m] 
LCR Loss of cargo revenue [$] 
MN Mach number 
N Shaft rotational speed [rpm] 
NG Net thrust [N] 
NT Net thrust [N] 
NumA Number of aircrafts with the same type in airline fleet 
NumE Number of engines per aircraft 
OT Operating time [Second] 
P Pressure [atm] 
PR Pressure ratio 
Q Heat rate [W] 

R gas constant [J/(kg • K)] 
S Entropy [kJ/(kg • K)] 
SP Engine shaft surplus power [W] 
T Temperature [Kelvin] 
TW Turbine work [W] 
U Heat transfer coefficient [W/(m2 • K)] 
UP Unit price [$/kg] 
V Velocity [m/s] 
W Mass flow rate [kg/s] 
WAR Water-air ratio 
X Degradation factor 
Z Gas path measurement 

Greek Symbols 
γ Ratio of specific heats 
ρ Density [kg/m3] 
τ Time constant [s] 

Subscripts 
amb Ambient 
BP Fan bypass 
Core Fan core 
crit Critical condition 
DP Design point 
g Gas flow 
ht heat transfer 
in Inlet 
m Metal 
OD Off-design 
out Outlet 
sn Sonic condition 
SLS Sea-level standard  
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clearance damage and thermal distortion [16]. 
Diagnostic methods are divided into three main sub-groups: model- 

based methods, data-driven methods, and hybrid methods [19]. The 
model-based methods [20] are one of the most well-known tools for 
assessing component degradation. However, they require expert 
knowledge for the development of engine performance models. With the 
advancement of computer technology, data-driven methods [21-24] 
have started to play an important role in fault diagnosis in recent years. 
However, the diagnostic performance relies heavily on available data 
and quality of training [25]. The hybrid methods [13] combine features 
from both model-based and data-driven methods to perform good 
diagnostic results [26]. It follows that there are various trade-offs be-
tween prediction accuracy and algorithm complexity [26]. There is no 
single method that can handle all the engine diagnostic challenges 
without any compromise. This study will focus on model-based 
methods, and those who are interested in data-driven and hybrid 
methods are prompted to [16,27,28] for more details. 

The phenomenon of “smearing effect” causes more challenges to 
diagnostic systems to correctly identify the true degraded components 
[28]. The smearing effect occurs due to insufficient and inaccurate gas 
path measurements [29]. Typically, there are two ways to resolve this 
issue. The first one is to install more sensors in the engine gas path in 
order to provide redundant gas path information, which can help to 
reduce ambiguity and filter incorrect solutions. Jasmani et al. (2011) 
[30] proposed a sensor selection technique by using the measurement 

subset concept for improving the precision of fault diagnostics. Chen 
et al. (2015) [31] implemented a sensor selection platform to incorpo-
rate the health parameter correlation analysis for fault diagnosis. Xu 
et al. (2015) [32] used an optimal sensor selection method by consid-
ering sensor cost and fault detection rate through multiple objective 
optimizations. Simon and Rinehart (2016) [15] suggested that the 
measurement choosing method could be applied to performance 
modelling and fault quantification by a Kalman filter and a maximum a- 
posteriori. Hu et al. (2019) [33] designed a sensor selection method 
based on machine learning which incorporated the actual and virtual 
sensor for fault detection. Hu et al. (2021) [34] suggested an optimi-
zation scheme for sensor selection by combining the nonlinear and 
linear engine models to increase the computation speed. However, the 
increasing number of sensors will cause sensor-related problems such as 
increasing the configuration complexity and operating costs [32], extra 
flow disturbances [29], and additional weight. Moreover, the appended 
sensors could be a good option for industrial engines, but it is not an 
attractive solution for aero engines that are in pursuit of high power to 
weight ratio. 

A second way to address insufficient gas path measurements is to use 
the measurements at multiple operation points. It follows that we can 
use multiple steady-state operating points and/or operating points 
under transient conditions. Several studies in the area of fault diagnosis 
utilize gas path measurements extracted from multiple operating points 
under steady-state conditions. Ogaji et al. (2002) [35] introduced an 
engine diagnostic method by multi-objective genetic algorithm, and 
each objective refers to the diagnostic error of every single operating 
point. Stamatis (2011) [36] suggested the multiple steady-state oper-
ating points should be combined with parameter selection to assure the 
effectiveness of diagnosis. Li and Ying (2018) [37] applied the multiple 
operating points analysis to overcome the lack of measurement param-
eters for gas turbine fault quantification. Chen et al. (2021) [29] pre-
sented a sequential model-based diagnostic method based on multiple 
operating points under steady-state conditions. However, gas path 
measurements from multiple steady-state operating points are not al-
ways available in practice [38,39]. Consequently, gas path analysis 
based on multiple steady-state operating points may not provide a high- 
quality insight into the engine condition when the majority of its oper-
ation might be under transient conditions or quasi-transient conditions. 
Therefore, another family of research works have focused on utilizing 
transient data for diagnostic purposes. Tsoutsanis et al. (2015) [40] 
performed diagnostics of engine faults by nonlinear adaption of 
component maps using transient gas path measurements with the ac-
curacy of fault diagnostic close to 99%. In 2016 and 2017, the dynamic 
fault diagnosis scheme is adapted and integrated with the regression 
method for fault prognosis based on local window-based segments 
[41,42]. Li and Ying (2020) [25] introduced a fault diagnosis scheme 
based on a steady-state model with dynamic measurements. Tsoutsanis 
et al. (2020) [19] introduced a real-time diagnosis method with multiple 
component faults simultaneously. The above studies highlighted that it 
is another effective alternative to incorporate gas path measurements at 
dynamic conditions in gas turbine diagnostics. However, the basic 
principle of fault diagnosis by multiple points at steady-state and tran-
sient conditions is the same in the sense that the main reason for using 
multiple operation points is to improve the accuracy of diagnosis. It is 
worth emphasizing that the smearing effect could not always be avoided 
by multiple operation points analysis [29]. Moreover, the aforemen-
tioned fault diagnostic methods have not taken into account the heat 
soakage effects during dynamic operation. Li et al. (2020) [43] high-
lighted that the heat soakage effect would delay the net thrust of a 
turbojet engine by 2.5% at the end of manoeuvre. Hence, it is more 
realistic to consider the heat soakage effect for fault diagnosis under 
transient conditions. 

It is evident from the brief literature review above that there has 
been a ubiquitous recognition of the problems associated with the 
“smearing effect” in fault diagnosis. A summary of previous research 

Table 1 
Overview of previous studies on gas turbine fault diagnosis when dealing with 
“smearing effect”.  

Research Operating 
conditions 

Research 
Object 

Remarks 

Jasmani et al. 
(2011) [30] 

Steady-state Industrial 
gas turbine 

Sensor selection technique by 
using the measurement subset 
concept 

Chen et al. 
(2015) [31] 

Steady-state Aero engine Sensor selection platform to 
incorporate the health 
parameter correlation analysis 

Xu et al. (2015)  
[32] 

Steady-state Aero engine Optimal sensor selection 
method by considering sensor 
cost and fault detection rate 

Simon and 
Rinehart 
(2016) [15] 

Steady-state Aero engine Measurement choosing based 
on Kalman filter and a 
maximum a-posteriori 

Hu et al. (2019) 
[33] 

Steady-state Chiller plant Sensor selection method based 
on machine learning 

Hu et al. (2021) 
[34] 

Steady-state Aero engine Sensor selection by combining 
the nonlinear and linear engine 
models 

Ogaji et al. 
(2002) [35] 

Steady-state Aero engine Fault diagnosis based on multi- 
objective genetic algorithm 

Stamatis (2011) 
[36] 

Steady-state Industrial 
gas turbine 

Multiple steady-state operating 
points should be combined 
with parameter selection 

Li and Ying 
(2018) [37] 

Steady-state Industrial 
gas turbine 

Multiple operating points 
analysis to overcome the lack 
of measurement parameters 

Chen et al. 
(2021) [29] 

Steady-state Industrial 
gas turbine 

Sequential model-based 
diagnostic method 

Tsoutsanis et al. 
(2015) [40] 

Dynamic Industrial 
gas turbine 

Nonlinear adaptation of 
component maps 

Tsoutsanis et al. 
(2016) [41] 

Dynamic Industrial 
gas turbine 

Sliding window component 
map optimization for transient 
diagnostics and prognostics 

Tsoutsanis et al. 
(2017) [42] 

Dynamic Industrial 
gas turbine 

Real time diagnosis method 
incorporated in prognostics by 
examining the acceleration of 
degradation 

Li and Ying 
(2020) [25] 

Dynamic Industrial 
gas turbine 

Fault diagnosis scheme based 
on a steady-state model with 
dynamic measurements 

Tsoutsanis et al. 
(2020) [19] 

Dynamic Industrial 
gas turbine 

Real-time diagnosis method by 
dynamic tuners  
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works is presented in Table 1. It is clear that the majority of the research 
studies has focused on steady-state conditions, with only a few studies 
dealing with dynamic operating conditions. 

To summarize, this study explores a more sophisticated and realistic 
approach by improving the sequential model-based method and 
applying it for a turbofan engine in order to demonstrate its advantages 
in handling fault diagnosis of the engine under transient conditions. In 
contrast to our earlier work [29], where the shaft power compatibility 
between turbine and compressor is necessary for the sequential method, 
this study proposes an advanced diagnostic method that is suitable for 
both steady-state and dynamic conditions. Moreover, our previously 
published study [29] is limited to single-pass flow engines such as in-
dustrial gas turbines, turbojets and turboprops. In this study, the 
sequential method is adapted to deal with double flow turbofan engines 
by assigning the bypass ratio according to the exhaust flow and fan inlet 
flow. Both steady-state and transient engine models are developed and 
validated with commercial software. In addition, the heat soakage is 
integrated with the developed engine performance model to make en-
gine dynamic conditions more realistic. This study aims to contribute to 
this growing area of research by exploring gas path analysis under 
transient conditions for a turbofan engine and the main contributions 
are listed as follows:  

1) The adapted method could extend the sequential model-based 
approach for the turbofan engine as the bypass ratio varies with 
operating conditions.  

2) Aside from the gas path analysis under steady-state conditions, the 
performance diagnosis under transient conditions is investigated, 
which could overcome the lack of steady-state operation points 
during flight trajectory. While our previous work [29] was applied 
for steady state conditions, this study addresses the applicability of 
the method for transient operating conditions.  

3) So far, existing fault diagnosis studies under transient conditions 
utilize multiple measurement sets during the dynamic trajectory. 
However, it has been shown that fault diagnosis using multiple 
points could not guarantee the mitigation of the smearing effect at all 
times. Hence, the sequential method is incorporated in this study, for 
the first time, to address the smearing effect by using dynamic 
measurements. This approach can resolve the issue of the lack of 
multiple steady-state operation points for aero engines.  

4) The increasing number of degraded components will increase the 
complexity and nonlinear performance diagnosis [28]. The proposed 
scheme of performance diagnostics can cope with simultaneous 
degradation of all five rotating components under steady-state and 
transient conditions and can also be used for real-time performance 
evaluation.  

5) The effect of engine degradation on the economic aspect is assessed 
through typical flight missions that are characterized by time 
evolving fault propagation. 

The remaining part of the paper is organized as follows. Section 2 
presents the methodology of the proposed approach. Section 3 of this 
paper examines and validates the developed gas turbine performance 
model. Section 4 presents the results and discussions of this research 
study according to the examined case studies before we draw some 
conclusions at the end of the paper. 

2. Methodology 

2.1. Assumptions 

The following assumptions were made to focus on testing the pro-
posed method’s effectiveness and capabilities in this study.  

• Measurement noise/bias is excluded in this study as the main focus is 
on enriching the fault diagnosis method rather than the sensor- 
related problems.  

• Simultaneous time-evolving soft degradation of all components is 
considered. Moreover, degradation development pattern follows an 
exponential tendency of health indexes with respect to time. 

Fig. 1. Configuration of turbofan engine in concern and its station numbering.  

Table 2 
Turbofan engine measurements on-wing [45].  

No Measurement Symbol 

1 Ambient pressure P1 

2 Ambient temperature T1 

3 Bypass inlet pressure P33 

4 Low-pressure compressor (LPC) exit pressure P4 

5 LPC exit temperature T4 

6 High-pressure compressor (HPC) exit pressure P5 

7 HPC exit temperature T5 

8 Low-pressure turbine (LPT) inlet pressure P9 

9 LPT inlet temperature T9 

10 LPT exit pressure P10 

11 LPT exit temperature T10 

12 Flight Mach Number MN 
13 LP shaft rotational speed NLP 

14 HP shaft rotational speed NHP 

15 Burner fuel flow rate WFuel  
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• The efficiency and mass flow capacity factors are used to represent 
component degradation. Additionally, the pressure ratio factor is 
assumed to have the same magnitude as the flow capacity factor, 
when considering compressor fouling and turbine erosion [44].  

• All the turbofan engines on-wing have the same fault development 
pattern for techno-economic evaluation purposes. 

2.2. Engine models 

A dual-shaft turbofan engine, similar to CFM56-7B installed on 
Boeing 737–800 aircraft as shown in Fig. 1 is used in this study. It in-
cludes a fan, two compressors, a combustor, and two turbines with 
separated exhaust nozzles. Table 2 [45] summarizes the CFM56-7B en-
gine measurements on-wing in Boeing 737–800 fleet. The turbofan en-
gine performance model is one of the key elements for model-based 
performance diagnostics [46]. A thermodynamic model for turbofan 
engine in concern has been developed in this study for both steady-state 
and transient conditions. The transient performance simulation model is 
based on constant mass flow method [43] with the consideration of heat 
soakage. The more details of performance simulation for the aero engine 
performance under steady-state and dynamic conditions are summa-
rized in Appendix A. The fuel flow is selected as the control input 
parameter, although other parameters such as shaft rotational speed, 
and turbine inlet temperature could be selected. 

2.3. Degradation modelling 

2.3.1. Degradation factor 
Generally, the turbofan engine’s actual performance depends on the 

performance of each component [42]. Hence, the degradation factor (X) 
is determined by Eq. (1) to represent the health state of each charac-
teristic parameter for different components [47]. When X equals to one, 
the real characteristic parameter has the same value as the characteristic 
parameter under a healthy state. Table 3 lists the degradation factors 
relevant to the aero engine examined in this study. 

X =
CPr

CPh
(1)  

where the subscript “r” and “h” represent the component characteristic 
under real/actual and clean/healthy conditions, respectively. 

2.3.2. Degradation propagation modelling 
The typical degradation level of turbofan engines at 6000 cycles is 

demonstrated in Table 4 [48] while all five rotating components are 
suffering from performance deterioration simultaneously. Hence, the 

Table 3 
Degradation factors regarding turbofan engine in concern.  

Component Symbol Health Parameter 

FAN XFAN XFAN,E Degradation factor of FAN efficiency 
XFAN,F Degradation factor of FAN flow capacity 

LPC XLPC XLPC,E Degradation factor of LPC efficiency 
XLPC,F Degradation factor of LPC flow capacity 

HPC XHPC XHPC,E Degradation factor of HPC efficiency 
XHPC,F Degradation factor of HPC flow capacity 

HPT XHPT XHPT,E Degradation factor of HPT efficiency 
XHPT,F Degradation factor of HPT flow capacity 

LPT XLPT XLPT,E Degradation factor of LPT efficiency 
XLPT,F Degradation factor of LPT flow capacity  

Table 4 
Fault propagation related coefficients [48].  

Component Health 
Parameter 

Degradation Range  
[48] 

Coefficient Value 

FAN XFAN,E 0 ~ -2.85 % a  0.01 
b  0.11878 

XFAN,F 0 ~ -3.65 % a  0.01 
b  0.14675 

LPC XLPC,E 0 ~ -2.61 % a  0.01 
b  0.1088 

XLPC,F 0 ~ -4.00 % a  0.01 
b  0.1571 

HPC XHPC,E 0 ~ -9.40 % a  0.01 
b  0.25236 

XHPC,F 0 ~ -14.06 % a  0.01 
b  0.29621 

HPT XHPT,E 0 ~ -3.81 % a  0.01 
b  0.1516 

XHPT,F 0 ~ +2.57 % a  0.01 
b  0.10705 

LPT XLPT,E 0 ~ -1.078 % a  0.01 
b  0.008 

XLPT,F 0 ~ +0.4226 % a  0.001 
b  0.16544  

Fig. 2. Flow chart of diagnostic tuner process.  
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number of cycles at failure is defined as 6000 cycles for the aero engine 
concerned in this study. In general, the exponential rate of change is one 
of the most widely used groups of degradation propagation models [49]. 
Moreover, the hypothesis of fault propagation and actual observation 
trends are consistent [47] and chosen in this study. 

The degradation propagation model could be defined by Eq. (2) [49], 
which assumes the exponential curve relationship between flight cycles 
and deterioration evolution. 

|ΔX| • X = |CPr − CPh| = 1 − exp(a • tb) (2)  

where a is the decay rate of health index, b is the exponential time- 
scaling coefficient, and t is the flight cycle. 

The coefficients a and b are derived in Table 4 to represent the fault 
propagation with the flight cycle. It is worth noting that ΔX in Eq. (2) is 
positive for turbine flow capacity representing erosion, where the rest is 
negative. Table 4 also presents the range of degradation factors for each 
rotating component regarding the efficiency and flow capacity. 

2.4. Techno-economic evaluation of gas path fault 

During the fault propagation, the fuel consumption will be increased 
to maintain the same thrust during each flight segment. Moreover, if 
constant take-off weight is assumed, the cargo weight needs to be 
decreased, corresponding to the additional fuel weight in aircraft. The 

 W4, T5

  XHPT 

 n×T10

 XLPT

XFAN

 n×(W4, T4, A35,DP)

 XLPC

WAR1, W4, T4, P4

WAR1, W52, 
T52, P52

WAR1, FAR7, T7, P7

WAR1, FAR8, T8, P8

 T9

 n×T10

 n×(W4, T4)

 n×W2,C

WAR1

WAR1, T3, P3

W7, T9

 W7

 W7

 XHPC

W4, T5

WAR1, W5, 
T5,  P5, W51, 

T51, P51

 W4

 n×(A35,loc)

 LPT Diagnostic (Step 1) 

 FAN & LPC Diagnostic (Step 2)

 HPC Diagnostic (Step 3)

 HPT Diagnostic (Step 4)

Data:
NHP, WFuel

Data:
WFuel

Burner & 
Mixture 
Model

Turbine Model 
(HPT)

Mixture 
Model

W7, T9

 compatibility?

Data:
T9

Compressor 
Model (HPC)

W4, T5
compatibility?

Data:
NHP, T3, P3, P4

Data:
T5

n×
(W4, T4 , A35)
 compatibility?

FAN Model 

Compressor 
(LPC), Duct & 
Nozzle Model

Data:
NLP, T2, P2, P33

Data:
NLP, P4

Data:
T4

Turbine Model 
(LPT)

 n×T10
compatibility?

Data:
WFuel, NLP, T9, 

P9, P10

Data:
n×T10

Fig. 3. Sequential diagnostic scheme of gas turbine.  
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extra fuel weight (EFW) consumed for each engine could be computed 
by the fuel flow rate (WFuel) during each flight segment multiplied by the 
corresponding operating time as follows: 

EFW =
∑n

i

[(
WFuel,i,r, − WFeul,i,h,

)
× OTi

]
(3)  

where OT is operating time, i is i-th flight segment, n is the number of 
flight segments to be considered, and the subscripts of “r” and “h” are 
described in Eq. (1). 

As the EFW is known, the extra fuel cost (EFC) for the entire airline 
fleet could be calculated by Eq. (4). 

EFC = EFW × UPFuel × NumE × NumA (4)  

where UPFuel is the unit price of fuel, NumE represents the number of 
engines per aircraft, NumA denotes the number of aircrafts of the same 
type in the airline fleet. 

Similarly, the loss of cargo revenue (LCR) for the airline fleet could 
be obtained by (5) which represents payload compensation. 

LCR = EFW × UPCargo × NumE × NumA (5)  

where UPC is the unit revenue of flight payload. 

2.5. Sequential diagnostic under steady-state condition 

The non-liner gas path analysis [19] could be represented by Eq. (6) 
where Z denotes gas path measurements and f(•) is the system function 
of the model in concern. In traditional gas path analysis method, f(•)
represents the gas turbine engine model. In the proposed sequential 
method, f(•) denotes the sub-models in concern in each sequential step. 
In the diagnosis process, X is iteratively evaluated by the Newton- 
Rapson method in order to match the targeted measurement (Z). 

Z = f (X) (6) 

The research flow chart is presented in Fig. 2 where the health pa-
rameters are iterated to satisfy the reference engine measurements. The 
structure of the sequential diagnostic method for the turbofan engine 
can be divided into four sequential steps, as shown in Fig. 3. The dotted 
lines indicate the information flow of target parameters obtained by 
actual gas path measurements or virtual measurements from the previ-
ous diagnostic steps. The first step in this process is to quantify the 
degradation of LPT and identify the core inlet mass flow rate of the 
engine. The second step will identify the degradation level involved in 
FAN and LPC. In the follow-up phase, fault detection of HPC will be 
conducted before conducting the HPT diagnostics. Rounded rectangles 

Fig. 4. Replay of flight SC8811 executed by a Boeing 737–800 powered by two CFM56-7B engines [50].  

Table 5 
Engine specification.  

Parameter Symbol Unit Value 

Flight Mach Number MN – 0.8 
Altitude ALT m 11,000 
Delta Pressure from ISA ΔP1 atm 0.0 
Delta Temperature from ISA ΔT1 Kelvin 0.0 
Ambient Relative Humidity RH1 % 0.0 
Inlet Airflow Rate W1 kg/s 221.865 
LP Rotational Speed NLP rpm 4000 
HP Rotational Speed NHP rpm 18,000 
Fuel Flow rate WFuel kg/s 0.1876 
Fuel Heating Value FHV MJ/kg 118.429 
Core Fan Pressure Ratio PRCore – 1.3000 
Bypass Fan Pressure Ratio PRBP – 1.7017 
Bypass Ratio BPR – 9.0000 
LPC Pressure Ratio PRLPC – 4.0000 
HPC Pressure Ratio PRHPC – 6.5000 
Power Offtake PWX kW 50.0  

Table 6 
Design point model validation [51].  

Symbol Units GasTurb [51] ThermoWorks Prediction Error [%] 

T1 Kelvin  216.65  216.65  0.000 
P1 atm  0.2234  0.2234  0.000 
T2 Kelvin  244.44  244.46  0.008 
P2 atm  0.3406  0.3405  0.029 
T3 Kelvin  266.35  266.36  0.004 
P3 atm  0.4428  0.4427  0.023 
T4 Kelvin  419.80  419.86  0.014 
P4 atm  1.7710  1.7708  0.011 
T5 Kelvin  751.64  751.59  0.007 
P5 atm  11.5116  11.5102  0.012 
T6 Kelvin  1600.00  1597.30  0.169 
P6 atm  10.9360  10.9347  0.012 
T7 Kelvin  1561.00  1559.01  0.127 
P7 atm  10.9360  10.9347  0.012 
T8 Kelvin  1280.00  1281.69  0.132 
P8 atm  4.0559  4.0617  0.143 
T9 Kelvin  1252.03  1253.72  0.135 
P9 atm  4.0559  4.0617  0.143 
T12 Kelvin  776.95  779.84  0.372 
P12 atm  0.4346  0.4368  0.506 
T33 Kelvin  290.18  290.19  0.003 
P33 atm  0.5796  0.5795  0.017 
T35 Kelvin  290.18  290.19  0.003 
P35 atm  0.5651  0.5650  0.018  
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represent the models required in each step, and snip same slide corner 
rectangle (most of them are in the first column) represents the available 
measurements on-wing. The arc with arrows illustrates the iterations, 
and the final hexagons trace the error between the to-be-adapted value 
and targeted value. The diagnostic scheme is shown in the following 
steps:  

• Step 1: Low-Pressure Turbine Fault Quantification 

The first step in this scheme is to quantify the XLPT (XLPT,E, XLPT,F) by 
adjusting the LPT component map through an iterative process to fulfil 
the matching of exhaust gas temperature (T10).  

• Step 2: Fan and Low-Pressure Compressor Fault Quantification 

Once the LPT diagnostic has been completed, the second step is to 
evaluate XFAN (XFAN,E, XFAN,F) and XLPC (XLPC,E, XLPC,F) by scaling the FAN 
and LPC maps according to LPC outlet mass flow rate (W4), LPC outlet 
temperature (T4), and required nozzle outlet area (A35).  

• Step 3: High-Pressure Compressor Fault Quantification 

Then, XHPC (XHPC,E, XHPC,F) are adjusted to scale the HPC component 
map on the basis of HPC inlet mass flow rate (W4) and HPC outlet 
temperature (T5).  

• Step 4: High-Pressure Turbine Fault Quantification 

Finally, XHPT (XHPT,E, XHPT,F) are tuned to scale the HPT component 
map based on HPT inlet mass flow rate (W7) and LPT inlet temperature 
(T9). 

The bypass ratio in Step 2 is decided by Eq. (A.7) in Appendix A, 
where the core mass flow is obtained from Step 1, and the fan inlet mass 
flow is calculated in the fan model by Eq. (A.2) in Appendix A. In 
addition, the required bypass nozzle area is employed as one of the 
convergence criteria to address unknown bypass mass flow rate in Step 
2. 

The term ‘n’ is used in this paper to refer to the number of operating 
points. It is necessary here to clarify that the first two steps need three 
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Fig. 5. Off-design model validation [51].  
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operation points, and the final two steps need only one operating point. 
It is a significant advantage of the sequential method that can tailor the 
operating point for different engine components to reduce the compu-
tation time. 

2.6. Sequential diagnostics under transient conditions 

As demonstrated in our earlier works [29], the sequential diagnostic 
could achieve high precision and fast computation even when all com-
ponents are concurrently degraded at steady-state conditions, for single- 
pass flow engines. However, the method requires multiple (three) 
operating points to diagnose the health condition of some components 
with limited gas path measurements. Moreover, the fault diagnosis 
scheme showed in Steps 1 and 2 of Section 2.5 also requires multiple 
operation points. Nevertheless, it may not be feasible to obtain enough 
operating points under steady-state conditions for a commercial engine 
during each flight cycle. In practice, the steady-state operating condition 
could frequently be available during the cruise phase of the flight 
envelope. 

Fig. 4 [50] demonstrates a typical flight trajectory of a commercial 
aircraft where the yellow, green and blue lines represent the ground 
speed, altitude and flight path, respectively. It is clear, from Fig. 4, that 
the altitude is changing all the time except at the cruising state, and 
steady-state conditions are mainly present at cruise conditions. 
Although several different ground speeds exist during the cruise con-
dition in Fig. 4, the engine operating states are very close to each other 
as the velocities present only small variations and are not suitable for 
fault diagnosis based on multiple operating points. In such conditions, a 
sequential diagnostic under transient condition is proposed that uses 
both steady-state and transient measurements to quantify the fault level 
of each component. For LPT, FAN and LPC diagnosis, the proposed 

method will be fed by the engine measurements from an initial steady- 
state point to a specified time of a transient manoeuvre. For HPC and 
HPT, the diagnostic method will only need the initial steady-state 
operation measurements. 

3. Engine model validation 

Fig. 1 demonstrates the schematic of the dual-shaft turbofan engine, 
which is similar to the CFM56-7B engine. The developed gas turbine 
thermodynamic model has been validated using a well-known com-
mercial software GasTurb [51], at both steady-state and transient con-
ditions. The design point specifications of the aero engine in concern are 
shown in Table 5. There is a growing body of literature that recognizes 
the importance of energy structure for the target of carbon neutrality. 
Moreover, hydrogen fuel will play a critical role in the potential carbon 
reduction around global aviation. In addition, it is worth noting that the 
first commercial aircraft powered by hydrogen has been launched suc-
cessfully in 2020 [52]. Hence, the hydrogen fuel is selected in this study. 

3.1. Steady-state model validation 

The steady-state model consists of two parts: design point algorithm 
and off-design algorithm. Table 6 presents the results obtained from the 
developed model (ThermoWorks) and GasTurb, where the maximum 
prediction error is under 0.51% for different engine stations in concern. 
It is evident from this table that the developed model achieved high 
precision at the design point. 

The aero engine operates in different working conditions during the 
flight envelope. Hence, it is necessary to conduct the steady-state off- 
design performance validation for the ThermoWorks engine model. Both 
GasTurb and ThermoWorks use the same component maps for model 
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Fig. 7. Engine model validation at transient manoeuvre [51].  
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validation. The fuel flow is the control input in ThermoWorks engine 
model to obtain the performance parameters and is obtained through 
GasTurb at different relative corrected fan rotational speed (CNFAN), 
varying from 80% to 100% with a step of 2.5%. A comparison is made 
between the GasTurb and the ThermoWorks that is shown in Fig. 5, 
including four performance parameters. More specifically, engine inlet 
airflow rate (W1), HPC outlet pressure (P5), core nozzle outlet temper-
ature (T12), fan rotational speed (NLP) are demonstrated with a variation 
of engine fuel flow rate. 

A comparison between GasTurb and ThermoWorks reveals high 

prediction precision for different steady-state working conditions. For a 
low power setting, the maximum relative error is raised slightly within 
reasonable bounds. This deviation is justified by the fact that different 
component map reading methods are involved in GasTurb and the 
developed model. The highest prediction error among each parameter is 
0.86% and is observed for P5 at 80.0% relative corrected fan rotational 
speed as shown in Fig. 5(b). The developed performance model main-
tains a sustained high degree of precision, despite the error increase at 
low operating conditions. Hence, the sequential diagnostic will be 
implemented on the developed model for fault detection, isolation, and 
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identification. 

3.2. Transient model validation 

Model validation at transient conditions is another prerequisite for 
carrying out diagnostics based on transient engine data. A 15 s accel-
eration manoeuvre is conducted with CNFAN increasing from 85% to 
100% firstly. Then, a 15 s deceleration manoeuvre is initiated with 
CNFAN decreasing from 100% to 85%. The fuel schedule is shown in 
Fig. 6 where a time step of 0.1 s is used in both GasTurb and the 
developed engine model. 

The four performance parameters obtained from GasTurb and the 
developed model are presented in Fig. 7. What stands out from Fig. 7 is 
that there is a good agreement between the GasTurb and ThermoWorks. 
The highest prediction error is less than 0.92% for all the performance 
parameters, which is the P5 at 0.2 s during the acceleration manoeuvre. 
Therefore, the developed model is sufficiently good as a baseline engine 
model for examining fault diagnosis at transient conditions. 

4. Application and analysis 

4.1. Case study description 

Three case studies are carried out in the following subsection in order 
to demonstrate the improvements in computational efficiency and 
diagnostic accuracy that the proposed method has in comparison with a 
well-used benchmark method published in 2020 [25]. The objective of 
the three case studies are as follows: 

Case 1. The objective of this study is to assess the diagnostic capability of 
the proposed method when applied to a turbofan engine with its bypass ratio 
varying with operating conditions under state-state condition. 

Case 2. This case study seeks to evaluate the computational performance 
and diagnostic prediction of the proposed method for fault diagnosis under 
dynamic conditions and compare it with a benchmark method [25] so as to 
demonstrate the advantages of the new method. 

Case 3. The objective of this case study is to evaluate the economic impact 
of our proposed method by testing it under a time evolving engine component 
fault propagation for a series of flight cycles. 

4.2. Case 1: Sequential diagnostic under steady-state condition 

The fault diagnosis is based on the scheme shown in Fig. 3 when the 
engine is experiencing simultaneous degradation in all five engine 
components. The LPT fault diagnosis is conducted first and followed by 
the combination of FAN and LPC diagnosis. In order to assess the pro-
posed sequential method, repeated diagnosis during degradation prop-
agation was conducted. Fig. 8 compares the diagnostic results of the ten 
health parameters among 6000 flight cycles. As it can be seen from the 
figure, it is apparent that the predicted degradation factors are 
extremely close to the actual implanted value, which shows the success 
of the diagnosis. 

If we now turn to the quantitative analysis of the diagnostic results 
under the steady-state condition, the average relative error of each 
degradation factor among 6000 flight cycles is summarized in Fig. 9. It is 
evident that the highest prediction error is less than 0.006% for all ten 
health parameters during the degradation process. Further statistical 
tests reveal the computation efficiency of the proposed sequential 
method in Table 7. What stands out from the table is that the average 
computation time is 0.014, 0.041, 0.015, and 0.011 s for four sequential 
steps, respectively. The ten health parameters corresponding to five 
simultaneously degraded engine components are computed in 0.081 s. 
The diagnosis process is computed via Visual Studio software on a per-
sonal computer with Intel(R) Core (TM) i7-4910MQ CPU @2.90 GHz 
and 16 GB RAM. Moreover, the operating points needed for each step are 
also shown in Table 7. Only the first two steps need three operating 
points, while the last two steps only need one operating point which has 
also mentioned in the methodology section. This is one of the primary 
benefits of the proposed sequential diagnosis method. 

In summary, these results show that the developed gas path analysis 
method could capture the degradation’s propagation accurately and 
robustly in a computationally efficient manner, even when the degra-
dation level changes with respect to flight cycles. 

4.3. Case 2: Sequential diagnostic under dynamic condition 

To distinguish transient performance with and without considering 
heat soakage, a comparison has been made during a 15 s acceleration 
with the same fuel schedule, as presented in Fig. 6. It is evident from 
Fig. 10 that the heat transfer between engine metal and gas flow will 
delay the transient response during the dynamic manoeuvre. Based on 
the given fuel schedule, the maximum delay of net thrust and LP shaft 
speed is 5.06% at 3.1 s and 0.85% at 3.3 s, respectively. However, the 
transient measurements from an actual engine are affected by the heat 
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Table 7 
Computational efficiency of the diagnostic model in Case 1.  

Parameter Symbol Unit Step 1 Step 2 Step 3 Step 4 

Run Time RT Second 0.014 0.041 0.015 0.011 
Operating Point n – 3 3 1 1  
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soakage and predicted engine health parameters would lead to incon-
sistent results, compensating for the delay in engine measurements. The 
delay caused by heat soakage will be considered as degradation in the 
diagnosis when heat soakage is ignored. 

As mentioned before, the acceleration manoeuvre is selected for the 
fault diagnosis. The fuel schedule between 0.0 and 15.0 s (15.1 s in total) 
in Fig. 6, is selected in this study to conduct the fault diagnosis during 
the fault propagation. The initial point at the 0.0 s time instant in Fig. 6 
is the beginning of the steady-state condition, and the remaining 15.0 s 
characterize the transient manoeuvre. The diagnostic process is based on 

Fig. 3, where the transient measurements will be used. 
Fig. 11 demonstrates the fault propagation of implanted fault, pre-

dicted fault by proposed method and predicted fault by benchmark 
method [25]. It is clear that the predicted fault by the proposed method 
is very close to the implanted fault. In contrast, the degradation factors 
predicted by the benchmark method [25] are not as accurate as our 
proposed method. Further analysis of the average relative error of the 
health parameters reveals the accuracy of the developed diagnosis 
scheme under dynamic conditions shown in Fig. 12. It is evident that the 
highest prediction error for the transient diagnosis by the proposed and 

Fig. 11. Implanted and predicted damage propagation with and without consideration of heat soakage.  
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the benchmark methods are below 0.017% and 6% for all ten health 
parameters during the fault propagation, respectively. 

Turning now to the computation efficiency on fault diagnosis, the 
average computation time and the number of operating points used 
along with the four sequential steps are shown in Table 8. For the pro-
posed method, the average calculation time is 0.185, 1.624, 0.017, 
0.013 s for four sequential steps, respectively. In Step 2, the prediction 
includes more variables, convergence criteria and sub-models than other 
steps, as shown in Fig. 3. Hence, the time consumption in Step 2 is 
significantly higher than the other steps. The mean computation time for 
fault diagnosis at each flight cycle is 1.839 s. Regarding the benchmark 
method [25], the average computation time for 6000 cycle during a 
15.1 s transient manoeuvre is 30.688 s. In addition, the number of 
operation points for the four steps is also demonstrated in Table 8. Steps 
1 and 2 use 151 operating points, where the first point is the steady-state 
operation point before the dynamic manoeuvre, and the remaining 
points are the measurements under the transient condition with heat 
soakage considered. 

From the diagnostic accuracy and computational efficiency per-
spectives, the comparison of these results reveals that the proposed 
method is superior to the benchmark method [25] in both diagnostic 
accuracy and computational efficiency. Regarding the model 
complexity, the proposed method requires expert knowledge in the 
performance modelling of aero engines, for effective utilization of the 
diagnosis, whereas in the benchmark method [25] the user does not 
need to know the detailed modelling information inside the compo-
nents. However, compared with existing model-based techniques [25], 
the significant improvement in accuracy and efficiency of this method 
offsets this limitation. 

4.4. Case 3: Impact of engine degradation on fuel consumption and 
payload 

The aircraft flight trajectory normally includes the following phases: 
takeoff, initial climb, climb, cruise, initial descent, descent, and landing. 
The majority of engine fuel is consumed during the takeoff, initial climb, 
climb, and cruise segments [53]. Hence, the fuel consumption during 
descent and landing is ignored in this study. Table 9 indicates a flight 
segment for estimating fuel consumption among flight trajectories dur-
ing fault propagation. The duration of each flight phase is captured from 
Fig. 4 based on a flight trajectory of Shandong Airlines. The cruise thrust 

of the CFM56-7B engine is used as a reference value, and the other 

values of the thrust are estimated based on the ratio of each flight 
segment to the cruise thrust [54]. 

The actual and predicted degradation factors in Case 2 are injected 
into the engine model to maintain the same thrust and determine the 
corresponding fuel consumption. Fig. 13 shows a representation of the 
extra fuel weight required to maintain the same thrust in Table 9, along 
with the fault propagation for each engine by Eq. (3). It is worth 
emphasizing that the extra fuel weight predicted by the proposed 
method will be considered as true value due to the low prediction error 
(Fig. 13). 

Fig. 12. Average prediction error of degradation factors in Case 2.  

Table 8 
Computational efficiency of the diagnostic model in Case 2.  

Parameter Symbol Unit Proposed Method Benchmark Method [25] 

Step 1 Step 2 Step 3 Step 4 

Run Time RT Second 0.185 1.624 0.017 0.013 30.688 
Operating Point n – 151 151 1 1 151  

Table 9 
Typical Flight Segment.  

Flight Segment Altitude [m] MN Duration (min) Net thrust [N] 

Takeoff 0  0.2 1 89,411 
Initial Climb 6100  0.57 16 43,200 
Climb 10,600  0.66 6 27,294 
Cruise 11,000  0.8 165 24,376  

Fig. 13. Extra Fuel weight needed along fault propagation for each engine.  
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If the same take-off weight of the aircraft is maintained, the payload 
weight needs to be decreased correspondingly to compensate for the 
extra fuel weight when the engine is degraded. After engine degrada-
tion, the extra fuel will not only increase the fuel cost during flight 
missions but also decrease the revenue of payload. The fuel cost of 
hydrogen and air freight rate of payload are 5.0 $/kg [55] and 12.66 
$/kg [56], respectively. 

Take the Shandong Airlines presented in Fig. 4 as an example, by Jan 
1, 2021, the Shandong Airlines depicted in Fig. 4 has 121 Boeing 
737–800 aircraft in the fleet [57] where aircraft is powered by two 
CFM56-7B turbofan engines. Fig. 14 presents the extra fuel cost and loss 
of cargo revenue along with the fault propagation for the entire fleet of 
121 aircraft that can be calculated by Eqs. (4)-(5) based on the health 
parameters obtained by the proposed method. It is clear from Fig. 14 
that the combined effect of multiple engine component degradation of 
the turbofan engines has a substantial impact on the economics of the 
airline fleet. The extra fuel cost starts at $65,423 and grows exponen-
tially to $198,920 after 6000 cycles for the entire fleet. A similar pattern 
is shown for the loss of revenue due to loss of payload, which starts from 
$165,651 to $503,665 along with fault propagation. Fig. 15 demon-
strates the relative error of the profit loss when compared to the pro-
posed method. The relative error will be decreased during the fault 
propagation as the ratio of fuel weight prediction error over actual extra 
fuel weight is decreased (Fig. 13). However, the prediction error is still 
larger by 15% and the incorrect fuel weight prediction can increase the 
probability for flight associated risks. 

Several attempts should be made to implement the proposed fault 
diagnosis method in real life applications from a practical perspective. 
Prior to analysing the characteristic performance data, the measurement 
noise filter and sensor validation should be checked for each sensor. 
There is no doubt that the performance model is critical for the model- 
based fault diagnosis. On completion of performance modelling, the 
process of components’ map adaptation is highly recommended to be 
carried out. Once any engine maintenance action is completed, it is 
necessary to employ the map adaptation for the purpose of refining the 
baseline performance for the engine. 

The findings of this study have a number of important implications 
for future practice in engine health management and mission analysis. 
Both of these trends could feed an optimization algorithm in order to 
improve the condition-based maintenance of the engines. Striking a 
balance between the cost of maintenance/downtime and restoring an 
engine’s performance to economically efficient levels is a challenging 
process that can be further improved by utilising the proposed method. 

Further investigation could focus on the schedule of condition-based 
maintenance and condition-based production to prolong the aero engine 
on-wing life, optimize flight mission profile, reduce maintenance cost, 
improve thermal efficiency, and promote aviation transport safety. 

5. Conclusions 

This paper describes the development of a sequential diagnostic 
method and its application to an aero engine with the primary aim of 
evaluating its accuracy and efficiency under steady-state and transient 
operating conditions. The results of this study demonstrate and illustrate 
that the sequential method could assess the fault state of multiple 
components that are degraded simultaneously when the bypass ratio 
changes with respect to the operating conditions. One of the advantages 
of this method is its ability to accurately diagnose all engine compo-
nents’ degradation level at transient conditions with high computational 
efficiency while considering heat soakage effects. Overall, this study 
amplifies the suitability of the sequential approach for effective and 
accurate turbofan engine fault diagnosis. 

The conclusions drawn from this study are as follows:  

• Firstly, this study focuses on determining the predictive validity of 
the developed engine performance model by comparing it with 
GasTurb and establishing a benchmark for fault diagnosis. The 
maximum relative error for the steady-state and transient conditions 
are less than 0.86% and 0.92%, respectively.  

• For the fault diagnosis under steady-state conditions, the maximum 
average relative error for five rotating components that experience 
degradation simultaneously during a 6000-flight cycle period is less 
than 0.006%, and the mean computation time for the diagnosis is 
0.081 s.  

• Regarding fault diagnosis at dynamic conditions, the maximum 
mean relative error for five simultaneously degraded components is 
less than 0.016%, while the average computation time is only 1.839 s 
for a 15.1 s manoeuvre.  

• The fault propagation will deteriorate the fuel consumption and 
cargo revenue. At 6000th flight cycle, the loss caused by gas path 
deterioration is 702,585 $ during a typical flight mission for an entire 
121 aircraft fleet. 

One of the proposed method’s major advantages is that it can 
accurately diagnose the fault level of gas turbine engines under both 
steady-state and transient operating conditions in real-time. Another 
advantage of the developed method is that the heat soakage is consid-
ered in the transient model, which is more grounded in reality for those 
gas turbines with large thermal inertia. The desirable feature of the 
proposed method motivates the inclusion of the effect of component 
volume and the delay of fuel pump actuator during dynamic operating 
conditions; tasks that the authors are currently engaged in. 

Overall, our study provides additional support for aero engine fault 
diagnosis and can potentially improve condition-based maintenance, 
which in turn will have a positive impact on the reliability, availability, 
efficiency, and cost reduction of gas turbines. In terms of future work, it 
would be interesting to explore the effects of fault propagation on hot 
section thermo-mechanical life for optimal condition-based production 
planning. 
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Appendix A 

A.1. Engine model 

A thermodynamic model for an industrial triple-shaft engine has been developed and validated in our previous work [29]. In this study, five 
additional elements (i.e., fan, exhaust nozzle, shaft, first-order lag, and heat soakage) are developed and integrated into the performance model of a 
turbofan engine for both steady-state and transient conditions.  

• Fan Model 

The corrected engine shaft rotational speed (CN) could be obtained by Eq. (A.1) [58] when the inlet condition and rotational speed (N) are both 
known. 

CN =
(N/

̅̅̅̅̅̅
Tin

√
)OD

(N/
̅̅̅̅̅̅
Tin

√
)DP

(A.1) 

The bypass pressure ratio (PRBP) is guessed during performance modelling, and the fan performance map is employed to find the component 
performance as follows: 

[CMin,Eff BP] = MAP(CN,PRBP) (A.2) 

Hence, the bypass pressure at the fan outlet could be calculated as [59,60]: 

Pout = Pin • PR (A.3) 

Then, the core pressure ratio (PRCore) is referred to Eq. (A.4) [61] as follows: 
(

PRCore − 1
PRBP − 1

)

OD
=

(
PRCore − 1
PRBP − 1

)

DP
(A.4) 

Compression efficiency of the fan at bypass flow (EffBP) could be determined by Eq. (A.2). Furthermore, the compression efficiency of the fan at 
core flow (EffCore) could be computed as follows [61]: 
(

Eff Core

Eff BP

)

OD
=

(
Eff Core

Eff BP

)

DP
(A.5) 

The corrected mass flow at the fan inlet (CMin) could also be obtained by fan map by Eq. (A.2), and the mass flow rate at fan inlet is given by Eq. 
(A.6) [62]. 

Win = CMin •
Pin/PSLS
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Tin/TSLS

√ (A.6) 

The mass flow rate of the core flow could be calculated by Eq. (A.7). 

WCore = Win/(1 + BPR) (A.7) 

The mass flow rate of the bypass flow could be obtained by Eq. (A.8). 

WBP = (Win • BPR)/(1 + BPR) (A.8) 

As the efficiency, pressure ratio, and mass flow rate of the core flow and the bypass flow are determined, the outlet condition of the core flow and 
the bypass flow could be computed easily and similar to the compressor model [29].  

• Exhaust Model 

The computational process of the nozzle model includes six parts. The analysis of the sonic condition is conducted first to check the state of flow 
when the Mach number (MN) is close to 1. Then, the critical nozzle area will be calculated to determine whether the flow is under super-critical or sub- 
critical conditions. Consequently, the nozzle area (Aloc) required to expand the flow could be calculated for the specified condition. Once the flow state 
in the nozzle is obtained, the gross thrust will be computed. The relative error between Aloc and nozzle area at design point (ADP, fixed nozzle area in 
this study) should be minimized with a pre-defined threshold after the iteration of engine performance simulation.  

• Sonic condition 

The sonic condition of the nozzle could be determined when the inlet condition is known. The detailed steps are explained as follows. Firstly, the 
temperature at sonic condition, tsn, is guessed in order to obtain the gas property under sonic condition by Eq. (A.9), where MN equals to one. The γsn in 
Eq. (A.9) could be initially guessed based on total temperature and total pressure provisionally and be updated when the static temperature and static 
entropy are known. 
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Fig. A1. Performance simulation process at steady-state conditions.  
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Fig. A2. Performance simulation process at dynamic conditions.  
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tsn =
Tout

1 + MN2 •
γsn − 1

2

(A.9) 

Then, the static gas properties could be obtained by Eq. (A.10) assuming an isentropic process is employed. 

[Rsn, γsn, hsn, psn, ρsn] = GasProp[S,T](ssn, tsn,FAR,WAR) (A.10) 

The gas velocity at sonic condition (Vsn) could be obtained as follows: 

Vsn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(Hin − hsn)

√
(A.11)  

where Hin is inlet total enthalpy. 
The MN under the specified static condition could be calculated as follows: 

MN = Vsn/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γsn • Rsn • tsn

√
(A.12) 

The MN should be close to 1 within a pre-defined threshold, the iterations of the tsn calculation will be terminated or the tsn will be updated by Eq. 
(A.10) to find the sonic condition.  

• Critical nozzle area 

Then, the critical nozzle area (Acrit) could be determined by Eq. (A.13). 

Acrit = Wout/(ρsn • Vsn) (A.13) 

If Aout,DP is less or equal to Acrit, the nozzle is working under super-critical condition and vice-versa.  

• Sub-critical condition 

Under sub-critical conditions, the outlet static pressure (pout) is equal to the ambient pressure (pamb). The remaining state parameters of the gas 
property could be computed by Eq. (A.14). 

[Vout, ρout, tout] = GasProp[S,P](sout, pout,FAR,WAR) (A.14) 

Hence, the required nozzle area could be obtained as follows: 

Aloc = Win/(ρout • Vout) (A.15)    

• Super-critical condition 

As the engine in concern is manufactured with a convergence nozzle, the maximum MN can only be equal to 1 for the super-critical condition. 
Hence, the nozzle outlet density (ρout), and velocity (Vout) is equal to ρsn, and Vsn in such a situation. The required nozzle area could be obtained by Eq. 
(A.15).  

• Net thrust 

Net thrust (NG) could be computed by Eq. (A.16). 

NG = Win • (Vout − V0) • CFG + 101325(pout − patm) • Aout (A.16) 

Where V0 is the flight velocity and CFG is nozzle coefficient from the component map.  

• Iteration error 

The residual error of the nozzle (ENZ) during engine performance calculation iterations could be obtained by Eq. (A.17) [63]. 

ENZ =
Aloc − ADP

ADP
(A.17)    

• Shaft Model 

The shaft torque balance among turbine work (TW), compressor work (CW) and auxiliary work (AW) is not satisfied during dynamic operations 
such as acceleration and deceleration. The surplus power (SP) of each shaft could be obtained based on the imbalance in torque calculated by Eq. 
(A.18) [64]. 

SP = TW − CW − AW =
4π2

3600
• I • N •

dN
dt

(A.18)  

where I is shaft inertia. 
The shaft speed for the next step is updated by the increment of rotation speed and shaft speed at the previous time step as follows: 
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N(t+Δt) = N(t)+
dN
dt

• Δt (A.19) 

where Δt is the time step.  

• First-order Lag 

The first-order lag is applied to represent the time delay phenomenon of the engine rotor under dynamic manoeuvring [65,66] as follows: 

Nout(s)
Nin(s)

=
1

τ • s + 1
(A.20)  

where τ is the time constant for the system, Nout(s) is the value of the input with defined input delay and Nin(s) is the input value without delay.  

• Heat Soakage Model 

The heat transfer between gas flow and engine metal is obtained by Eq. (A.21) with exponential decay [43]. 

Q = Uht • Aht(Tg − Tm) • (e− Δt/τ − 1) (A.21)  

where Q is heat energy, Uht is heat transfer coefficient, Aht is effective contact surface, Tg is gas temperature, Tm is metal temperature, Δt is time step, 
and τ is time constant. 

The heat transfer coefficient is determined by Eq. (A.22) [67]. 

Uht =
1

1
FC +

leff
km

(A.22) 

The time constant is calculated by Eq. (A.23) [67]. 

τ =
cm • Wm

Uht • Aht
(A.23)  

where Wm is effective mass, cm is the specific heat of the component’s material. 
The average material temperature (Tm) could be computed as follows [67]: 

dTm

dt
=

Q
cm • Wm

(A.24) 

The enthalpy drop of gas (ΔHg) could be determined by Eq. (A.25). Then, the gas temperature after heat transfer could be calculated as the gas 
pressure and enthalpy are known. 

ΔHg =
Q
Wg

(A.25)  

where Wg is mass flow rate of gas. 

A.2. Calculating process of aero engine thermodynamic model for CFM56-7B 

The aero engine thermodynamic model is based on the models described in the methodology part and our previous work [29], which is applicable 
for different types of gas turbine engines. The calculating process of steady-state performance simulation is shown in Fig. A1, where eight iteration 
variables are needed, which are BPR, NLP, PRFAN,BP, PRLPC, NHP, PRHPC, PRHPT, PRLPT. Correspondingly, eight balance equations that should be satisfied 
are listed in Fig. A1 by blue blocks. Likewise, the calculating process of dynamic performance of the turbofan in concern is demonstrated in Fig. A2, 
where six independent variables, i.e. BPR, PRFAN,BP, PRLPC, PRHPC, PRHPT , PRLPTare invloved. Six equations associated with the independent variables 
are illustrated in Fig. A2 by blue blocks. The two shaft rotational speeds are updated by the shaft model described in Appendix A.1. It is worth 
emphasizing that the heat soak is integrated into the component models. 
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