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Lower Network Degrees Promote Cooperation in
the Prisoner’s Dilemma with Environmental

Feedback
Leonardo Stella, Wouter Baar and Dario Bauso

Abstract— Cooperation is a fundamental aspect in na-
ture, as it determines many levels of biological organization.
Examples include single cells, but also social insects, such
as ants and honeybees, and groups of animals, such as
vampire bats and bird flocks. In unstructured populations,
where individuals interact with each other with equal proba-
bility, the dynamics have been thoroughly investigated and
results indicate that the predominant strategy to be favored
by natural selection is defection. The focus of this research
is to study these evolutionary dynamics in structured popu-
lation, where the structure is captured by a regular graph.
A recent line of research investigated the impact of the
population dynamics onto an environmental resource and
the mutual effects that the changes in the quantity of this
resource have on the game dynamics. In this framework the
impact takes the form of game-environment feedback on the
population dynamics. The contributions of this paper are
as in the following. Firstly, we study the impact of a regular
network in the prisoner’s dilemma (PD) game and provide a
threshold on the degree of the network below which coop-
eration is favored. Secondly, we derive the corresponding
structured model with environmental feedback. Lastly, we
carry out the stability analysis of this system and discuss
the impact of the network on the environmental resource.

Index Terms— Game Theory, Networked Control Sys-
tems, Prisoner’s Dilemma, Feedback-Evolving Games.

I. INTRODUCTION

EVOLUTIONARY game theory investigates the evolution
of strategic interactions in a population of rational de-

cision makers. Each decision obtains an incentive based on
strategy-dependent payoffs [1], [2]. The frequencies of the
strategies are influenced by the payoffs associated with each
strategy, thus resulting in selfish behaviors. One of the most
popular game where this happens is the well-known prisoner’s
dilemma (PD), in which the dominant strategy is defection [3].
In the setting of finite games, many evolutionary dynamics
have been used, including payoff comparison dynamics [4]
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and replicator dynamics. The latter are recognised to be the
ones that are most widely used [5]. However, one of the
main limitations of the traditional PD game is the assumption
that the population is well-mixed. This limitation does not
consider the role of a structured population in affecting the
game dynamics and therefore the frequency of the strategies
in the population.

The study of evolutionary dynamics on structured popula-
tions was initially introduced by Lieberman et al. [6]. The
main difference with the classical formulation of the game
dynamics is that players are represented as nodes of a network
and they play with their neighbors. The player with the highest
fitness among the neighbors replaces the one with the lowest
fitness, as this aims to capture the evolutionary aspects of
the framework. This approach was extensively used to study
cooperation in structured populations, where analytical expres-
sions are derived for three update rules: Birth-Death (BD),
Death-Birth (DB) and Imitation (IM) [7], [8]. A recent work
has extended the replicator equation to regular communities,
namely introducing heterogeneity in the game dynamics [9],
and providing numerical results in terms of stability.

A prominent line of research, initiated in the work by Weitz
et al. [10], has gained increasing popularity over the past
years because of its original approach in which one considers
a bi-directional dependence between the frequencies of the
strategies and an environmental resource. This approach takes
into account enhancement and degradation effects on this
resource. The main contribution of this research consists in
system dynamics characterized by oscillatory behaviours and
equilibria on the boundary of the phase space. The resulting
oscillations correspond to closed periodic orbits. Limit cycles
have also been observed when a time-scale difference between
the game and the environment dynamics is considered [11].

The key point of this feedback mechanism is its ability to
explain the complexity of real-world systems [11]. Interactions
of this kind can be found in a wide range of disciplines,
such as sociology, economics and animal behavior [12]–[15],
including social insects. Indeed, in [16], the authors discuss
the impact of game-environment feedback in the context of
the collective decision-making process originating in honeybee
swarms through the parameters of the model. Recently, the col-
lective decision-making process in honeybees has been studied
through the development of the optimal control problem, where
the parameters of the corresponding mean-field game model



act as an implicit environmental feedback [17].
Highlights of contributions. Motivated by our initial work

on the impact of irrational behaviors induced by different
game dynamics [4], the contribution of this paper focuses
on the interplay between the level of cooperation and the
node degree in a network and is threefold. First, we introduce
the networked PD over a regular network with given node
degree. We study the stability of the networked system under
three main update rules, Birth-Death (BD), Death-Birth (DB)
and Imitation (IM). Second, we extend the game-environment
framework to account for a structured population. This system
is obtained by the replicator equation resulting from pair
approximation and weak selection over a regular network.
Lastly, we carry out the stability analysis of the proposed
model and discuss the main differences with the traditional
framework involving game-environment feedback.

This paper is organized as follows. In Section II, we
introduce the model for the structured PD game resulting
from replicator dynamics where the structure is captured by
a regular graph with given node degree. We carry out the
stability analysis of this model and discuss the impact of
the connectivity. In Section III, we introduce the game with
environmental feedback. In this framework the frequencies of
the strategies depend on the state of an environmental resource.
Players interact by means of a regular network, which is novel
in our formulation of the model. Finally, in Section IV, we
draw conclusions and present our future research directions.

II. NETWORKED PD GAME MODEL

In this section, we present the formulation of the PD
game with environmental feedback resulting from replicator
dynamics. First, we introduce the model where players interact
by means of a regular network. Second, we study the stability
of the system equilibria and provide a discussion on the impact
of the introduced structure.

A. Networked Model
We consider the traditional formulation of the PD where

the two available strategies are cooperate (C) or defect (D),
henceforth referred to as strategy 1 and strategy 2, respectively.
The corresponding payoff matrix is:

A =

[
R S
T P

]
. (1)

In the above, R is the reward for cooperating, S is the sucker’s
payoff, T is the payoff associated with the temptation to
cheat and P is the punishment for cheating as in the classical
formulation of the game. Furthermore, it is assumed that
T > R > P > S, resulting in mutual defection being the only
stable Nash equilibrium for this game. We define the fitness
of strategy 1 as f1(x) and the fitness of strategy 2 as f2(x) in
the following [5]:

f1(x) =
∑
j

a1jxj = (Ax)1 = Rx+ S(1− x), (2)

f2(x) =
∑
j

a2jxj = (Ax)2 = Tx+ P (1− x), (3)

where the frequencies of strategies x1 and x2 have been re-
placed by x and 1−x, respectively, because of the conservation
of mass law, namely, x1+x2 = 1. For the sake of brevity, the
dependence on time is omitted throughout the paper, i.e., we
use x in place of x(t). The average fitness of the population
is defined as φ =

∑
i xifi, leading to the replicator equation:

ẋ = x(f1(x)− φ)
= x(1− x)(f1(x)− f2(x)).

(4)

We can now specialize the above equation to the case of the
PD. Indeed, the model resulting from replicator dynamics for
the PD is [4]:

ẋ = x(1− x)((δPS − δTR)x− δPS), (5)

where δTR = T −R and δPS = P − S.

The above model assumes well-mixed populations without
any structure. We can now introduce a structure in the form of a
regular network. To this end, let us consider a regular network
of degree k. By regular networks, we mean networks where
all nodes have the same number of neighbors, or same node
degree. Under weak selection, the replicator equation obtained
with pair approximation (see [7], [20]) is given by [8]:

ẋi = xi

[ n∑
j=1

(aij + bij(k,A))− φ
]
, (6)

where the parameter bij(k,A) depends on the degree of the
network k and the payoff matrix A. In simple terms, the
evolutionary game dynamics on a regular graph of degree k
can be described by the following transformation of the payoff
matrix A: [aij ]→ [aij+bij ]. Furthermore, parameter bij(k,A)
depends on the update rule chosen. In [7], the authors derive
three update rules (see also [18]):

• In the Birth-Death (BD) rule, a node is selected with a
probability proportional to its fitness and one of its k
neighbors at random is replaced by the offspring:

bij(k,A) =
aii + aij − aji − ajj

k − 2
.

• In the Death-Birth (DB) rule, a node is randomly selected
and one of its k neighbors replaces it with its offspring
with a probability proportional to their fitness:

bij(k,A) =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)
.

• The Imitation (IM) rule is similar to the DB rule, but
the difference is that a node is randomly chosen to
update its strategy by imitating one of its k neighbours
proportionally to their fitness:

bij(k,A) =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
.

Note that regardless of the update rule chosen, bii = 0. The
replicator equation on regular graph with degree k for the PD
is given by:

ẋ = x(1− x)(f1(x, k)− f2(x, k))
= x(1− x)((δPS − δTR)x− δPS + b12(k,A)),

(7)

where fi(x, k) =
∑

j xj(aij + bij(k,A)) is the equivalent of
the fitness over a regular network.



B. Stability Analysis
Now, we carry out the stability analysis of system (7). In

general, the PD game resulting from the replicator dynamics
has been extensively studied in the case where the payoff
matrix is of the form [8]:

A =

[
b− c −c
b 0

]
.

In the above, a player choosing to cooperate pays a cost c
and receives a benefit b, and it is assumed that b > c. In the
case of the PD game on regular networks, it is shown that
when b/c > k, then cooperators win over defectors [8]. Our
contribution in this section is to provide the corresponding
threshold on k for the general payoff matrix (1).

Lemma 1: Consider system (7). This system has two bound-
ary fixed points, namely x∗ = 0 and x∗ = 1, and an internal
fixed point x∗ = −(b12(k,A)− δPS)/(δPS − δTR).

Proof: The existence of the equilibria for system (7) can
be proved by setting ẋ = 0. Trivially, we obtain x∗ = 0,
x∗ = 1 and x∗ = −(b12(k,A)− δPS)/(δPS − δTR).

Remark. It is worth noting that the internal fixed point exists
only if 0 ≤ −(b12(k,A)− δPS)/(δPS − δTR) ≤ 1. When this
condition is not satisfied, the only equilibria that the system
admits are the boundary fixed points.

In the following theorem, we carry out the stability analysis
of the system equilibria via the formulation of the threshold for
the three update rules discussed in the previous section when
the payoff matrix is (1). To this end, let the threshold for the
BD, DB and IM rules be, respectively:

µBD:=1− δTR/δPS , (8)

µDB :=
R− S +

√
(S −R)2 − 4(δPS)(δTR − δPS)

2δPS
, (9)

µIM :=
−(δPS + P −R) +

√
β

2δPS
, (10)

where β = (δPS + P −R)2 − 12δPS(δTR − δPS).
We are now in a position to carry out the stability analysis

of the equilibrium points of system (7) and use the above
thresholds to analyze the change in stability properties.

Theorem 1: Consider system (7) and µBD, µDB and µIM

as in (8)-(10). Depending on the update rule, the following
stability properties hold:

• For the BD update rule, the only stable equilibrium point
is x∗ = 0, regardless of the network degree k.

• For the DB update rule, the equilibrium point x∗ = 0
is asymptotically stable when µDB < k. When µDB >
k, the equilibrium point x∗ = 0 becomes unstable and
the trajectories converge to the interior fixed point x∗ =
−(b12(k,A)− δPS)/(δPS − δTR).

• For the IM update rule, the equilibrium point x∗ = 0
is asymptotically stable when µIM < k. When µDB >
k, the equilibrium point x∗ = 0 becomes unstable and
the trajectories converge to the interior fixed point x∗ =
−(b12(k,A)− δPS)/(δPS − δTR).
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Fig. 1. Time evolution of system (7) over a regular network with degree
k = 3 and k = 9. The first plot (top) shows the evolution of the
cooperation strategy for Example 1, while the second one (bottom) for
Example 2.

Proof: To prove the stability of the system, we take the
partial derivative w.r.t. x of the right-hand side of (7) and
linearize in x∗ = 0, yielding −δPS + b12.

• For the BD updating, the threshold defined in equation (8)
is obtained by substituting the value of b12 into the
above equation. In particular, the fixed point x∗ = 0 is
asymptotically stable when:

−kδPS + δPS − δTR < 0,

k − 1 + δTR/δPS > 0,

k > 1− δTR/δPS = µBD,

which is always true for k ≥ 2 since T > R > P > S
holds in a PD game.

• DB update rule: asymptotic stability is ensured when
µDB > k. This is obtained from

−δPS(k
2 − k − 2) + (R− P )k − δTR − δPS < 0,

δPSk
2 + (S −R)k + δTR − δPS > 0,

which can be solved to obtain equation (9), and the
solution with the minus sign is either negative or less
than 2.

• Similar to the previous case, for the IM update rule,
asymptotic stability of x∗ = 0 is ensured when µIM > k.
The calculation is the following:

−δPS(k
2 + k − 6) + (R− P )(k + 3) + 3(S − T ) < 0,

δPSk
2 + (δPS + P −R)k + 3δTR − 3δPS > 0,

which can be solved to obtain equation (10), and com-
ments similar to the DB updating apply.

This concludes the proof.

Remark. The above theorem provides the conditions for
stability of the equilibrium point x∗ = 0. It is worth noting



that the other boundary equilibrium point, namely x∗ = 1, is
always unstable, regardless of the network degree k.

Example 1. Consider the following payoff matrix

A =

[
5 0
8 1

]
.

For the sake of this example and the following one, among the
three update rules described in the previous section, we con-
sider the DB update rule to show some interesting phenomena.
The fitness of strategy 1 and the fitness of strategy 2 of the
PD game over a regular network with degree k = 3 resulting
from equation (7) can be calculated as:

f1(x, k) = 5x+ 2(1− x) = 3x+ 2,

f2(x, k) = 6x+ 1− x = 5x+ 1,

and the resulting model via replicator dynamics is

ẋ = x(1− x)(−2x+ 1).

In accordance with Theorem 1, the internal fixed point is
asymptotically stable as µDB = 4 > k = 3. We now
study the impact of the network degree on the evolution of
the cooperators in the PD game with same payoff matrix.
To this end, let us consider a higher network degree, e.g.,
k = 9. The corresponding model can be obtained by analogous
calculations (omitted for brevity) as:

ẋ = x(1− x)
(
− 2x− 19

35

)
.

It is important to note that the internal fixed point is not
within the feasible set in the state space and therefore the
system has only the two boundary equilibria. Therefore, the
system converges to the stable equilibrium x∗ = 0. This shows
that smaller connectivity promotes cooperation as clustering is
easier. The trajectories corresponding to the time evolution of
the system for k = 3 and k = 9 with initial condition x0 = 0.8
for this example are depicted in Fig. 1 (top).

Example 2. In this example, we consider the case where the
same update rule and network degrees are used, namely the
DB rule and k = 3 and k = 9, respectively, but the payoff
matrix is different

A =

[
3 0
5 1

]
.

The model resulting from the replicator dynamics over a
network with degree k = 3 is

ẋ = x(1− x)
(
− x− 5

8

)
,

while the model over a network with degree k = 9 is

ẋ = x(1− x)
(
− x− 11

14

)
.

Differently from the previous example, in this example the
internal equilibrium point is outside the state space and there-
fore the only stable equilibrium point is x∗ = 0 in either
case, meaning that defection is the only stable strategy. Larger
connectivity speeds up the convergence to the equilibrium

ṅ
Game-environment feedback

A(n)
Payoff matrix

ẋk
Structured population dynamics

Fig. 2. Diagram representation of the evolutionary game dynamics
with environmental feedback. The corresponding structured population
dynamics are determined by the payoff matrix A(n) and by the in-
teractions among the players in the population. We study the case
on a regular network with node degree k. Finally, there is a mutual
dependence between the environmental resource and the frequencies
of the strategy through the game-environment feedback.

point, namely the transient response is faster (similar to what
happens in a similar case where the structure is captured by a
complex network [19]). The dynamics for this example with
starting condition x0 = 0.8 are depicted in Fig. 1 (bottom).

III. NETWORKED PD WITH GAME-ENVIRONMENT
FEEDBACK

In this section, we extend the previous model by considering
the game dynamics with environmental feedback. In this
framework, the evolution of the frequencies of the strategies xi
for all i are dependent on an environmental resource n and vice
versa. This mutual dependence is captured by the dependence
of the payoff matrix A(n) on the environmental resource n.
Figure 2 shows the diagram representation of the structured
framework with game-environment feedback.

A. Networked Model

Because of the interest that feedback-evolving games have
sparked in the research community, we extend the framework
proposed by Weitz et al. [10] to structured populations. In this
framework, the payoff matrix depends on an environmental
resource n which in turns has an impact on the frequencies
of the strategies. To calculate the game-environment feedback
dynamics, let the environment-dependent payoff matrix be
defined as:

A(n) = (1− n)
[
T P
R S

]
+ n

[
R S
T P

]
=

[
T − nδTR P − nδPS

R+ nδTR S + nδPS

]
.

(11)

The model resulting from replicator dynamics can be obtained
via:

εẋ = x(1− x)[f1(x, k, (A(n))− f2(x, k, (A(n))],
ṅ = n(1− n)[(1 + λ)x− 1],

(12)

where the term n(1−n) is used to ensure that the state of the
environment is within the domain [0, 1] and the rate at which
the population dynamics change the environment is denoted by



ε. Parameter λ > 0 represents the ratio between the enhance-
ment and degradation effects, resulting from cooperation and
defection, respectively. When λ < 1, the degradation effect is
stronger than the enhancement effect; when λ = 1, the two
effects are in balance; when λ > 1 the enhancement effect
is stronger than the degradation effect. As before, the fitness
of a strategy i depends on the interactions of the players in
the population but now parameters bij(k,A(n)) depend on the
environmental resource n as well. Therefore, the structured
population dynamics for the PD game with environmental
feedback are:

εẋ = x(1− x)[(δPS + (δTR − δPS)x)(1− 2n) + b12],
ṅ = n(1− n)[(1 + λ)x− 1],

(13)
where b12 has been used in place of b12(k,A(n)) for brevity.

B. Stability Analysis

The focus of this section is to study the stability of the
networked system with environmental feedback. Specifically,
in the next lemma we prove the existence of the fixed points
of system (13) and later we study their stability properties in
relation to the network degree k.

Lemma 2: Consider system (13). This system has 7 fixed
points, as listed in Table I. The first four represent boundary
fixed points, namely (x∗, n∗) = (0, 0) defectors in a depleted
environment, (1, 0) cooperators in a depleted environment,
(0, 1) defectors in a replete environment, and (1, 1) cooperators
in a replete environment. The fifth and sixth fixed points
represent a mixed population in a depleted and replete envi-
ronment, respectively. Finally, the last one is the only internal
fixed point, namely a mixed population in an intermediate
environment.

Proof: To prove the existence of the equilibria listed in
Table I, we set ẋ = 0, ṅ = 0. The four boundary fixed points
can be trivially calculated when the outer products are set to
zero, while the fifth and sixth fixed points by setting the content
of the square bracket in the first equation to zero:

(δPS + (δTR − δPS)x)(1− 2n) + b12 = 0,

and substituting n∗ = 0 and n∗ = 1, respectively. Finally, the
internal fixed point can be calculated by setting to zero the
content of the square bracket in the second equation as

(1 + λ)x− 1 = 0,

and then substituting the value x∗ = 1/(λ + 1) into the first
equation.

Now, we turn our attention to the stability of the fixed point
stated in the above lemma. We consider the impact of the
connectivity onto the stability properties of the system.

Theorem 2: Consider system (13). The only stable equi-
librium point is the internal fixed point (x∗, n∗) = 1/(λ +
1), (b12+δTR+b12λ+δPSλ)/2(δTR−δPSλ). With increasing
connectivity k, the internal fixed point turns neutrally stable
and the system exhibits an oscillatory behavior.

Proof: To study the stability of this system, we derive
the Jacobian:

J(x, n) =

[
J11 J12
J21 J22

]
, (14)

where J11 = (1 − x)[(δPS + (δTR − δPS)x)(1 − 2n) + b12],
J12 = −2x(1−x)[δPS+(δTR−δPS)x], J21 = n(1−n)(1+λ)
and J22 = (1−n)[(1+λ)x−1]. The above Jacobian, linearized
about the first of the boundary fixed points yields:

J(x, n) =

[
δPS + b12 0

0 −1

]
,

which is asymptotically stable when δPS + b12 < 0 and unsta-
ble otherwise as one of the two eigenvalues would be positive.
A similar calculation can be done for all the other fixed points,
except for the internal one, which is asymptotically stable.
With increasing connectivity, applying the separability of the
factors for the internal fixed point yields a constant of motion,
meaning that the internal fixed point exhibits periodic closed
orbits [4].

Example 3 and 4. Given the payoff matrix in (11), consider
system (13) under the DB update rule with the following
parameters:

ε = 0.3, λ = 2,
R = 3, S = 0, T = 5, P = 1.

For the sake of this example, we consider a node degree k = 3,
first. The corresponding model is:

0.3ẋ = x(1− x)[(1− 2n)(1 + x) + b12],
n = n(1− n)[3x− 1].

Among the seven fixed points, the only stable equilibrium
point is the internal fixed point (x∗, n∗) = (0.33, 0.91), in
accordance with Theorem 2. With increasing connectivity, e.g.,
k = 9, the interior fixed point turns neutrally stable, since
the corresponding Jacobian matrix has both eigenvalues with
purely imaginary components. Differently from the results with
mixed populations, introducing a structure in the form of a
regular network into the game dynamics changes the behavior
of the dynamical system by turning the oscillating tragedy of
the commons into a situation where cooperation is favored.
However, increasing the connectivity brings the system back
to period orbits. Figures 3-4 show the time evolution and phase
plane dynamics for these examples.

IV. CONCLUSIONS

In this work, we have studied the impact of a structured
population onto the prisoner’s dilemma game resulting from
replicator dynamics. We have modeled the structure via a
regular network with given node degree and have carried
out the stability analysis for three update rules. Motivated by
the recent interest towards feedback-evolving games, we have
extended our results to this framework. We have discussed
the differences between our model and prior works and,
interestingly, the behaviour of these two systems under game-
environment feedback is notably different. Future directions
of research will focus on the characterization of the threshold



TABLE I
LIST OF ALL THE FIXED POINTS FOR SYSTEM (13).

# x n

1 0 0
2 1 0
3 0 1
4 1 1
5 (b12 + δPS)/(δPS − δTR) 0
6 −(b12 + δPS)/(δPS − δTR) 1
7 1/(λ+ 1) (b12 + δTR + b12λ+ δPSλ)/2(δTR − δPSλ)
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Fig. 3. Feedback-evolving game model with k = 3 (Example 3). The
first plot (left) shows the evolution of cooperators and the environment
over time. The second plot (right) shows the phase plane dynamics in
the x-n plane for system (13): the blue arrows indicate the direction of
dynamics while the red dot denotes the interior fixed point.
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Fig. 4. Feedback-evolving game model with k = 9 (Example 4). The
first plot (left) shows the evolution of cooperators and the environment
over time. The second plot (right) shows the phase plane dynamics in
the x-n plane for system (13): the blue arrows indicate the direction of
dynamics while the red dot denotes the interior fixed point.

for the network degree in terms of the change of stability
from periodic orbits and of the relative speed of environmental
versus strategic change.
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