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Abstract. Ballastless tracks have been widely used for highspeed rail systems globally since 

their maintenance is relatively minimal. However, support deterioration right beneath the in-

between slabs’ connectors has been usually reported and quite well known in the industry.  Any 

water ingress can quickly undermine the condition of cement-stabilized soil that supports the 

track slabs. It is thus very crucial to very early detect the impaired condition of the slab supports 

since mudded support can result in poor ride quality and eventually endanger highspeed train 

operations. Therefore, the ability to predict the deterioration of track slab supports is highly 

beneficial to predictive and preventative maintenance in practice. In this study, track slab 

support stiffness is considered as a precursor to identify the severity of deterioration. The 

nonlinear FE models, which were validated by field measurements, have been used to populate 

data in order to develop machine learning models capable of evaluating the track support 

deterioration. Axle box accelerations are adopted in a form of datasets for machine learning 

models. Parametric studies have yielded a diverse range of datasets considering the train speed 

variations, train axle loads, and irregularities. The results demonstrate that the machine learning 

models can reasonably diagnose the condition of the track slab supports. The outcome reveals 

the potential of machine learning to evaluate ballastless track support deterioration in practice, 

which will be beneficial for railway maintenance.  

Keywords: Ballastless Track; Deterioration; Machine Learning; Finite Element Modeling; 

Condition Monitoring. 
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1. INTRODUCTION 

Ballastless tracks are popularly used in the high-speed rail industry due to their benefits such 

as lower maintenance requirements, relatively efficiency, and more stability. They are widely 

used in different countries such as Germany, China, Japan, and Korea (Park et al. 2020). 

However, common defects in ballastless tracks are settlements and cracks which affect the track 

stiffness. The deterioration is a result of high loads, vibrations, or water that accelerate the slab 

deterioration. This can lead to a more severe defect in the track structure in terms of track 

geometry, rail surface defects, and track infrastructure defects. Therefore, an ability to early 

evaluate the ballast track support deterioration is crucial in terms of predictive and preventive 

maintenances because required maintenances can be performed on time when the deterioration 

is not severe, the maintenance costs are not high, and the safety can be maintained in the 

standard criteria.  

In this study, track slab support stiffness is considered as the main precursor to identify the 

severity of ballast track deterioration. Data used in the study are generated using finite element 

(FE) models which are validated with field data measurement. Then, data are used to develop 

machine learning models to evaluate track stiffnesses. Axle box accelerations (ABA) are used 

to feed into machine learning models to make predictions. Different parameters are varied to 

create data variations such as train speed, axle loads, or track irregularities. A machine learning 

technique that is used to develop a predictive model is a convolutional neural network (CNN). 

Hyperparameter tuning is performed to ensure the performance of the machine learning model. 

more information is explained in Section 3.  

The expected benefits and contributions of the study are the developed machine learning 

model can be used to evaluate or estimate the slab track stiffness which will be beneficial to the 

maintenance planning. Train operators can be aware of slab track deterioration based on regular 

operations because ABA is mainly used to evaluate track stiffnesses. The stiffnesses are 

evaluated early and the maintenance can be performed in time when the deterioration is not 

severe. Therefore, the maintenance cost is not high compared to when the deterioration is 

severe, the operation is more smooth, the reliability of the system is higher, and passenger 

comfort is better because the track condition is always maintained in a good condition.  
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2. LITERATURE REVIEWS 

Desai (2016) studied different types of ballastless track defects. The causes of defects were 

analyzed using a developed equation. From that study, it was found that the most common 

defect in slab track was the deterioration of concrete slab. The study mentioned different causes 

of slab deterioration consisting of low-quality material, environmental factors, poor design, and 

poor construction. Moreover, slabs were cast-in-situ concrete which cracks were commonly 

found due to construction, application, and environment which also resulted in slab 

deterioration. These critically affected slab durability and operational safety. 

Guo and Zhai (2018) tried to predict long-term track geometry degradation in the ballastless 

track system used in the high speed railway industry. They considered different subgrade 

settlements as a precursor. They applied a numerical power model to study subgrade settlement 

affecting track geometry degradation.  

Li and Berggren (2010) studied the relationship between global track stiffness and track 

performances which were dynamic responses. They conducted static and dynamic methods to 

explore the relationships. They found that dynamic responses such as sleeper acceleration, 

wheel-rail forces, and rail moment were related to slab stiffnesses.  

From the literature reviews, it can be found that studies relevant to ballastless track support 

stiffness measurement and evaluation are limited. In addition, there have been no studies using 

machine learning to evaluate ballastless track support stiffness. Therefore, this study aims to 

apply machine learning to develop a predictive model to evaluate ballastless track support 

stiffness. 

3. METHODOLOGY 

3.1. FE model development and validation 

This study applies FE models for numerical simulation and generates numerical data. Then, 

results from FE simulations are used to develop the machine learning model. The FE model is 

developed based on Li et al. (2020). The FE model is shown in Figure 1. The FE model is a 3D 

vehicle-slab model. Rolling stock is modeled using the multi-body simulation (MBS) concept. 

The rolling stock comprises a car body, two bogies, four wheelsets, two primary suspensions, 
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and two secondary suspensions. The software used to develop the EF model is LS-DYNA 

which is a popular FE software. 

 

Figure 1. FE model 

For the ballasted track, the track structure is a concrete slab comprising two rails that are 

modeled as beams (206 GPa), rail pads that are modeled as a series of springs and dampers (160 

kN/mm), concrete slabs that are modeled as elastic objects (36 GPa), mortar layers (under the 

concrete slabs) that are models as elastic objects (0.3 GPa), and concrete bases that are models 

as elastic objects (32 GPa). The rails are developed using the Euler beam concepts supported 

by rail pads. Then, the loads are transferred to mortar layers and concrete based underneath the 

concrete slabs respectively which are modeled as elastic material for both of them. The detail 

of the ballastless track model is shown in Figure 2. The FE model is created using different 

keywords available in LS-DYNA. The main keyword used in the model is the keyword that is 

used for creating the interaction between wheels and rails which is *Rail_Track and 

*Rail_Train. *S01-SPRING_ELASTIC and *S02-DAMPER_VISCOUS keywords are used to 

model the stiffness and damping properties of rail pads as mentioned. To simulate the 

deterioration of ballastless track support, the stiffnesses of the concrete slabs are varied as the 

main precursors as mentioned. 
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Figure 2. Detailed ballastless track model 

Model validation is performed by comparing with the field measurement. The field 

measurement is conducted using the Suining-Chongqing railway as the benchmark. This 

railway line is originally constructed for test purposes. The rolling stock used in this line is 

Changbai Mountain. Therefore, the FE model is developed based on the rolling stock and 

railway line parameters. On-site, the operational speeds of the rolling stock range from 160 to 

220 km/h. track irregularities are also measured to imitate the real situation. Moreover, track 

irregularities are varied to create data variation. More detail about data variation will be 

presented in the next section. Wheel-rail contact forces, maximum displacements of rail, and 

maximum displacements of sleeper are used as criteria to validate the FE model. Referred to 

the field measurement (Kaewunruen et al. 2019), the comparison of each value is shown in 

Table 1. For the comparison, it can be seen that the differences are less than 7% so it can be 

concluded that the FE model provides acceptably accurate results compared to the field 

measurement and can be used further to generate numerical data. 

Table 1. The comparison between the field measurement and results from the FE model 



 6 

Parameters Field Measurement FE Model 

Wheel-rail contact force (kN) 100 98.4 

Rail displacement at rail seat (mm) 2.606 2.596 

Rail displacement at mid span (mm) 2.604 2.415 

Sleeper displacement at rail seat (mm) 2.576 2.522 

Sleeper displacement at mid span (mm) 2.511 2.352 

3.2. Data variation and preparation 

To create the data variation, different parameters in the FE models are varied. The data 

variation is shown in Table 2. The output from simulations used to develop the machine learning 

model is the vertical ABA of the front wheelset. The frequency of the simulation is 1,000 Hz. 

The total number of simulations is 1,458. The total length of the ballastless-track section is 15 

m approximately.  

Table 2. Data variation 

 

 

 

 

In this study, raw data are used to develop the machine learning model. The raw data of 

vertical ABA is used in form of time-series data. That is a reason why this study applied CNN 

to develop the machine learning model because the CNN model is suitable for dealing with this 

form of data. Because the frequency of outputs from the FE model is fixed, the size of the output 

is varied based on the speed of rolling stock. The faster-rolling stock provides a smaller size of 

the output. Therefore, the padding technique is used to make the size of the data equal. It can 

be simply done by adding zero to the data with a smaller size to make the size or shape the same 

as the data with the biggest shape. An example of ABA from simulations is shown in Figure 3. 

The figure demonstrates the ABA from a simulation with the following parameters; the speed 

of rolling stock is 150 km/h, the weight of rolling stock is 43.56 tons, the irregularity is original 

as shown in Figure 4, and the slab stiffness is 43.2 GPa.  

Parameters Range 

Slab stiffness (GPa) 28.8-43.2 

Speed of the rolling stock (km/h) 150-200 

Size of irregularity (%) 80-120 

Weight of rolling stock (tons) 35.64-43.56 
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Figure 3. Example of ABA output 

 

Figure 4. Original irregularity  

3.3. Machine learning model development  

This study applies CNN to develop the machine learning model. CNN is a powerful 

technique used to extract the pattern in the data. This is a benefit of the feature extraction part 

in the CNN architecture. Because this study uses the raw data to feed into the model, the feature 

extraction part is significantly useful for evaluating the slab stiffnesses. The developed model 

is a regression model. Outputs of the model are continuous values so the number of the output 

node is one. 

As mentioned in the previous section, the inputs of the machine learning model are time-

series ABA. The total number of samples is 1,458. 70% of data are used to train the machine 

learning model while another 30% are used to test the model.  

To ensure the performance of the model, hyperparameter tuning is conducted to test the 

models with different combinations of hyperparameters. Grid search is used for hyperparameter 

tuning. It is a technique used to test the performance of the model when hyperparameters are 

varied and when performances of every combination are recorded. Then, the model with the 

most suitable combination of hyperparameters is reported. The list of hyperparameters for 

hyperparameter tuning is shown in Table 3.  
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Criteria used to evaluate the model performance are mean absolute error (MAE), root mean 

square error (RMSE), mean percentage error (MPE), and R2. 

Table 3. Hyperparameter tuning list 

Model  Hyperparameters  

CNN Number of convolutional layers 

Filter 

Kernel size  

Number of pooling layers 

Pool size 

Activation function  

Batch size 

Optimizer  

Number of hidden layers 

Number of hidden nodes 

 

4. RESULTS AND DISCUSSION  

From the machine learning model development, the relationship between true values and 

prediction is shown in Figure 5. It can be seen that the prediction is significantly related to the 

true value. The R2 is 0.94 which demonstrates that the prediction can be used as representative 

of the true value. Other criteria are presented in Table 4. 

 

Figure 5. True value and prediction 
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From Table 4, it can be seen that the MAE and RMSE are 0.63 and 1.13 GPa respectively 

which are relatively low compared to the true value. The MPE is about 1.75% or the accuracy 

of the prediction is 98.25%. This indicates the developed machine learning model can be used 

to evaluate the ballastless track support stiffnesses with high accuracy and reliability. 

Table 4. Model performance   

Criteria Values 

MAE 0.63 GPa 

RMSE 1.13 GPa 

MPE 1.75% 

R2 0.94 

 

From hyperparameter tuning, the combination of hyperparameters that provides the best 

performance is shown in Table 5. 

Table 5. Tuned hyperparameters 

Model  Hyperparameters  Tuned values 

CNN Number of convolutional layers 2 

Filter 64 (conv1) and 32 (conv2) 

Kernel size  3 

Number of pooling layers 0 

Pool size N/A 

Activation function  Linear 

Batch size 8 

Optimizer  Adam 

Number of hidden layers 2 

Number of hidden nodes 100 

5. CONCLUSION 

This study aims to develop the machine learning model to evaluate the ballastless track 

support deterioration. The machine learning technique used in the study is CNN. Slab 

stiffnesses are used as the precursor to identify the ballastless track support deterioration. 
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Numerical data is used to develop the machine learning model. Validated FE models are used 

to generate the numerical data.  

From the study, the developed machine learning model can provide a good result. The 

accuracy is higher than 95% and the MAE is less than 1 GPa. This indicates that the developed 

model can evaluate the slab stiffnesses accurately. This study demonstrates the potential of 

machine learning in evaluating the slab stiffnesses which there have not been previous studies 

studying on this aspect.  

The contribution of this study is the developed model can be used with railway maintenance. 

The slab stiffnesses can be tracked in real-time with a regular operation because the inputs used 

to develop the machine learning model in this study is ABA which can be measured using an 

accelerometer attached to an axle box. Therefore, the evaluation can be conducted immediately 

and does not obstruct railway operations. Then, the evaluated stiffnesses can be used to plan 

the maintenance responses. Early notice of ballastless track support deterioration will be 

beneficial in terms of management, maintenance planning, and maintenance cost. The severity 

of deterioration will not be too high so the damage can be minimized and managed efficiently.  

A limitation of this study is data used are numerical data. Using field data can guarantee the 

finding of the study. Additional features can be added to the machine learning model to improve 

the accuracy of the evaluation as well as data variation to improve the comprehensiveness of 

the machine learning model. Different machine learning techniques can be tried to explore their 

potential on ballastless track support deterioration.  
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