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Abstract

Introduction: Primary blast lung injury (PBLI) is the most common and fatal of all primary blast injuries. The majority of
those with PBLI will require early intubation and mechanical ventilation, and thus, ventilation strategy forms a crucial part of
any management plan.

Methods: A comprehensive, but not systematic, PubMed and Google Scholar database search identified articles that
contribute to our current understanding of ventilation strategies in PBLI for a narrative educational review.

Results: A PBLI ventilation strategy must strive to minimise all four of ventilator-associated lung injury (VALI), volutrauma,
barotrauma and biotrauma. The three main ventilation strategies available are conventional low tidal volume (LTV)
ventilation, airway pressure release ventilation (APRV) and high frequency oscillatory ventilation (HFOV). Conventional
LTV ventilation together with a variable positive end-expiratory pressure (PEEP) and permissive hypercapnia has dem-
onstrated reduced inflammation and mortality with a greater number of ventilator-free days. APRV has the potential to
reduce dynamic strain, PaO,/FiO, ratios, levels of applied mechanical power and extravascular lung water while en-
couraging spontaneous breathing. HFOV is able to effectively avoid VALI while curbing inflammation and histological lung
injury, though not necessarily mortality.

Conclusions: Presently, PBLI should largely be managed with conventional LTV ventilation alongside a variable PEEP and
permissive hypercapnia with APRV and HFOV reserved as rescue strategies for where conventional LTV ventilation fails.
Clinicians should additionally consider supplementing their strategy with adjunctive therapies such as prone positioning,
inhaled nitric oxide and extracorporeal membrane oxygenation that may further reduce mortality and combat severe
respiratory and/or cardiac failure.

Keywords
primary blast lung injury, low tidal volume ventilation, airway pressure release ventilation, high frequency oscillatory
ventilation
Background defined as an ‘acute lung injury within 12 h of blast ex-

posure, which is not due to penetrating or blunt injury’.*

Overall, 76% of those with PBLI will require early in-
tubation and mechanical ventilation; thus, ventilation
strategy forms a crucial part of any management plan.’®
Though the concept of a ‘lung-protective ventilation’

The multi-system life-threatening injury patterns that ensue
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strategy has been coined, discussions over how best to
achieve this evolve as new technologies and considerations
emerge. This narrative review aims to explore the venti-
lation strategies available for PBLI and provide an edu-
cational resource for clinicians managing this injury.

Methods

A literature search was conducted on the 4™ May 2021
across PubMed and Google Scholar databases in order to
identify articles that contribute to our current understanding
of ventilation strategies in PBLI. The search terms used
were as follows: ‘Primary blast lung injury” AND (‘Low
tidal volume ventilation” OR ‘airway pressure release
ventilation” OR ‘High frequency oscillatory ventilation’).
No publication date limitations were set. Titles and abstracts
were screened, followed by a thorough assessment of full-
text articles for inclusion. Included articles had their ref-
erence lists screened for additional articles of relevance to
our aim. This enabled the identification of widely accepted
and recurring theories that were collated and discussed in
this narrative review, producing an overview of PBLI and
the ventilation strategies that modern clinicians may wish to
consider.

The blast lung

An appreciation of PBLI pathophysiology is crucial to
understanding the goals of any ventilation strategy. Pre-
vailing consensus is that the high-order explosive over-
pressure blast wave is dissipated within the lungs via low
velocity shear and supersonic stress waves, resulting in low
and high frequency responses of the torso, respectively.””
The overpressure blast wave itself constitutes a shock wave
(extremely high pressures in surrounding air supersonically
radiating away from the source) and blast wind (a body of
gas discharging away from the source at high velocity).”
The low frequency response of the torso sees inertial tearing
damage of the lung parenchyma as tissues of various
densities move erratically about fixed points.” The high
frequency response of the torso sees stress waves un-
dergoing spallation to cause diffuse implosive damage,
alveolar over-distension and rupture as trapped air bubbles
rapidly compress and expand.”™'' This damage is amplified
as stress waves meet at the mediastinum and again as they
are reflected back to form tension waves, exerting additional
stretching forces.” This results in a combination of surface
haemorrhage on tissue facing the explosion and an array of
pathological air-filled spaces throughout the parenchyma,
pleural space and vasculature.’ Alveolar-venous fistulae and
their resulting localised haemorrhages are of particular
concern as macroscopic bleeding into airways and rapid
respiratory compromise can follow.” Extravasated blood
can also precipitate perivascular oedema as a cascade of
free-radical mediated inflammatory processes is prompted,

evolving over the first 24—56 h post-PBLIL.’ The size, nature
of and proximity to the explosive as well as whether it was
detonated in an enclosed space will all influence the in-
cidence and severity of PBLI.®’ Clinically, patients present
with a characteristic ‘blast triad’ of bradycardia and apnoea
following the immediate vago-vagal reflex but also hypo-
tension from a reduction in cardiac output, myocardial
impairment and nitric oxide (NO) release.>'? Respiratory
distress, hypoxia and ‘butterfly’ pulmonary infiltrates will
classically give the blast lung syndrome diagnosis.® The
extent of PBLI can be examined in further detail with
computerised tomography.” These sequelae can be long-
lasting and will significantly influence resuscitation.”
Ventilation strategy must strive to minimise all four of
ventilator-associated lung injury (VALI), volutrauma, bar-
otrauma and biotrauma.”

Conventional low tidal volume ventilation

Following a landmark study by the Acute Respiratory
Distress Syndrome (ARDS) Network, a lung-protective
ventilation strategy using a conventional ventilator set to
volume-assist-control mode with a low tidal volume (LTV)
is currently the most widely advocated.>>'® It should be
noted that whilst the civilian and military incidence of post-
traumatic ARDS in victims of explosions is unclear, they are
believed to be a high-risk group owing to the associations
with injury severity and blood products.’ The ARDS
Network study demonstrated that a reduced mortality and
greater number of ventilator-free days could be achieved in
patients with acute lung injury and ARDS by following this
strategy.'® These results could be a reflection of both re-
duced lung inflammation and a dampened systemic in-
flammatory response as the lungs are more protected from
excessive stretch than with traditional tidal volumes.'*'*
This is further supported by a greater observed reduction in
levels of plasma interleukin-6 with LTV compared to tra-
ditional tidal volumes."> A significant fall in lung com-
pliance is generally required for stretch-induced lung injury
to occur, yet these LTV benefits appear to be independent of
lung compliance.'® To prevent oxygen toxicity, the lowest
tolerable fraction of inspired oxygen (FiO,) should be
used.'® However, it should be noted that delivering a higher
oxygen concentration (=80%) for the first 24 h may have
arole in dissolving gas emboli.'> Another variable that must
be adjusted in accordance with FiO, and maintenance of
oxygenation is the positive end-expiratory pressure
(PEEP).>"* PEEP may need to be increased in order to
maintain adequate oxygenation, though this does oppose the
logic of limiting PEEP when pneumatoceles and broncho-
pleural fistulae are present in order to avoid precipitating air
emboli.” A higher PEEP may nonetheless limit the cyclic
opening and closing of minor airways and undue stress
where aerated and atelectatic parenchyma meet.'® Finally,
while hypoventilation and subsequent respiratory acidosis
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Figure I. Graphical illustration comparing the ‘safe window’ exploited by both high frequency oscillatory ventilation and airway
pressure release ventilation on a pressure-volume curve, avoiding volutrauma and atelectrauma. Figure adapted from Ref. 20.

are probable, a permissive hypercapnia should be employed
when required, prioritising the prevention of pulmonary
over-distention.>>'” This LTV approach in combination
with a relatively high but variable PEEP and permissive
hypercapnia has become globally recognised for its ability
to minimise mechanical volutrauma and atelectasis.'® Tt
therefore remains the first-choice ventilation strategy for the
majority of PBLI patients.*”"’

Airway pressure release ventilation

Though a universal definition of airway pressure release
ventilation (APRV) has not been devised, its utility in PBLI
is promising.'™'? APRV is an alternative, pressure-
controlled mode available on most conventional mechan-
ical ventilators that aims to reduce dynamic strain by op-
erating within a ‘safe window’, avoiding the zones of injury
that would otherwise be exacerbated by the fluctuations of
conventional ventilation (Figure 1)."*2° It achieves ‘open-
lung’ ventilation without the need to determine optimal
PEEP by applying a nearly continuous, positive airway
pressure interspersed with scheduled low-pressure releases
and spontaneous breaths.'® ?° This improves oxygenation
by maximising recruitment of lung tissue while encouraging
both carbon dioxide clearance and spontaneous breath-
ing.'®'” APRV should therefore be considered in PBLI
patients when conventional LTV fails and parameters de-
teriorate.'® Though they both strive for homogenous lung
inflation, an advantage of APRV over high frequency os-
cillatory ventilation (HFOV) is the spontaneous breathing of
the patient, acting to assist gas exchange, augment lung
tissue recruitment, facilitate venous return and mitigate
respiratory muscle wasting.'” This may also lessen some of
the classical negative cardiovascular effects of mechanical
ventilation as sedative and vasoactive drug doses can be
lowered, improving overall haemodynamic state.”'**

However, some argue spontaneous breathing poses addi-
tional risks of ‘patient self-inflicted lung injury’ at T-high
(time spent at highest pressure) by inducing raised local
transpulmonary pressures and tachypnoea.'® Others believe
that APRV should be used with restraint and that the im-
proved oxygenation is a trade-off for increased air trapping
and alveolar over-distension.’ Predicting the cardiovascular
response to APRV in a patient can prove difficult due to
these complex interactions.'® Authors have subsequently
identified seven contraindications and hazards to the use of
APRV." Unfortunately, an overall lack of high quality
human randomised controlled trials and inconsistent ap-
plication of APRV has rendered this technique controver-
sial, despite increasing in popularity in the UK.'>?' Yet,
failures to consider APRV may mean PBLI patients miss out
on significant mortality-related benefits such as reduced
Pa0,/FiO, ratios, reduced levels of applied mechanical
power (a useful index for risk of VALI) and less extra-
vascular lung water.'®

High frequency oscillatory ventilation

A more novel lung-protective strategy is high frequency
oscillatory ventilation (HFOV). Though also an LTV
technique, HFOV utilises a sinusoidal flow oscillation to
deliver enhanced oxygenation, digressing from the trau-
matic ‘inflate-deflate’ cycle by providing a more constant
airway pressure for alveolar inflation.>* This mitigates VALI
by again homogenously aerating the lungs within a ‘safe
window’ (Figure 1).2** This does however require more
specific types of ventilators, such as the Drager Babylog
VN500, Care Fusion Oscillator 3100A or 3100B.** It may
also lead to longer hospital stays for the patient due to
a requirement for more sedation and neuromuscular
blockade.” In practice, authors have identified 15 possible
contraindications and hazards to the use of HFOV.?
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Nevertheless, a 2009 study concluded that HFOV achieves
reduced inflammation, histological lung injury and mor-
tality.> Therefore, when conventional ventilation fails for
a minority of PBLI patients, many clinicians propose that
HFOV should be indicated as a rescue strategy within four
hours of refractory hypoxaemia.”*® A permissive hyper-
capnia should again be used and challenges of raised CO,
can largely be managed with active cooling.?® The efficacy
of HFOV can be maintained despite regular patient transfers
and when combined with continuous intracranial pressure
monitoring it can even be used in traumatic brain injury.’
Yet, its efficacy is limited in patients with diseases of in-
creased airway resistance where it can result in air trapping,
hyperinflation and barotrauma.** It may additionally reduce
venous return and cardiac output while increasing in-
trathoracic pressures and risks of intraventricular haemor-
rhage.”* Interestingly, a recent paper documenting the UK
military experience of PBLI noted no requirement for
HFOV across even the most severe cases, though the sample
size was admittedly small.* The aforementioned 2009 study
has since been superseded by the 2013 OSCAR and OS-
CILLATE trials, respectively.’”*® Their new evidence
suggests that mortality for mechanically ventilated ARDS
patients may be unaffected or even increased by HFOV
compared with conventional ventilation, rendering this
a controversial routine ventilation strategy.”’-*® Still, HFOV
may offer utility as a rescue strategy in the small proportion
of cases where conventional LTV ventilation fails or ap-
proaches harmful parameters.?-*>°

Additional considerations

A central decision between conventional LTV, APRV and
HFOV is necessary, yet there are some additional adjunctive
components to ventilation that warrant consideration. While
patients are typically ventilated in a semi-upright position,
prone positioning is a well-established alternative utilised to
improve oxygenation and reduce VALI.* Long sessions of
prone positioning have been shown to substantially reduce
mortality when applied early in severe ARDS and enhanced
gas exchange has been noted with PBLI patients.*** Some
believe that all ARDS patients with a PaO,/FiO, ra-
tio <150mmHg should undergo prone positioning as
standard, before commencing alternative strategies such as
APRV." Proper execution of prone positioning does
however require an experienced, coordinated team to
overcome the technical challenges of turning critically ill
patients.”” Another adjunctive therapy to maximise the
effectiveness of a strategy is NO. This vasodilatory gas acts
locally within the pulmonary circulation and is able to tackle
aspects of ARDS such as ventilation perfusion mismatch,
arterial hypoxaemia and pulmonary hypertension.*® Inhaled
NO has therefore been advocated alongside HFOV as
a method of managing early and severe hypoxaemic re-
spiratory failure in PBLI and should be considered once

PEEP levels exceed 15 cm H,O, provided there are means
for delivery.”® Overproduction of endogenous NO can also
be monitored on exhalation and may be a useful tool in both
PBLI diagnosis and early disease monitoring.*'** Lastly,
extracorporeal membrane oxygenation (ECMO) has the
potential to form a component of your strategy. This
functions to temporarily support the cardiopulmonary
system with gas exchange and perfusion in cases of re-
fractory cardiac and/or pulmonary failure.>> ECMO can
therefore be used to supplement HFOV in severe PBLI,
though it may be complicated by persistent pulmonary
haemorrhage.”**** A study looking at University Hospital
Birmingham’s blast lung combat casualties concluded that
while ECMO was not required across their case series, it
should form a part of any contingency plans to counter
challenges of hypercapnia.*®

Limitations

It could be argued that the narrative nature of this review
lacks the methodological robustness that could be expected
of a systematic review. However, this review intended to
provide a broad overview of a topic area for educational
purposes and it was felt that a narrative style allowed greater
methodological flexibility to achieve this with more po-
tential for individual insight.

This review also applies some evidence from non-
traumatic ARDS studies to explore the viability of venti-
lation strategies in PBLI. Non-traumatic systemic causes
such as sepsis typically result in more widespread, severe
pathology than that seen in PBLI-induced ARDS.** Fur-
thermore, PBLI-induced ARDS most often afflicts young
otherwise healthy individuals in military conflict whereby
expectant recovery may be greater simply by virtue of
milder lung pathology.* Conclusions regarding the viability
of any one strategy in this review may therefore be limited.
Nevertheless, consideration of such evidence was deemed
necessary owing to the difficulties associated with and
distinct lack of PBLI research.

Conclusion

While invasive mechanical ventilation is a necessity for the
majority of PBLI patients, the optimal strategy remains
somewhat elusive. Clinicians must contend with complex
pathophysiology involving haemorrhage, air-filled spaces
and inflammation amid the ‘blast triad’ presentation of
bradycardia, apnoea and hypotension. Ultimately, any
strategy must address VALI, volutrauma, barotrauma and
biotrauma. PBLI worldwide is principally managed with
conventional LTV ventilation in light of the ARDS Net-
work’s findings. This approach alongside a variable PEEP
and permissive hypercapnia protects the lungs from ex-
cessive stretch and has demonstrated reduced inflammation
and mortality with a greater number of ventilator-free days.
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Where conventional LTV ventilation fails or parameters
deteriorate, clinicians may resort to APRV or HFOV as
alternative rescue strategies. APRV can be achieved on most
conventional ventilators with the potential to reduce dy-
namic strain, PaO,/FiO, ratios, levels of applied mechanical
power and extravascular lung water while encouraging
spontaneous breathing. HFOV relies on more specialised
equipment but is able to effectively avoid VALI while
curbing inflammation and histological lung injury, though
not necessarily mortality. Clinicians should additionally
consider adjunctive therapies such as prone positioning,
inhaled NO and ECMO that may further reduce mortality
and combat more severe respiratory and/or cardiac failure.
Though far from comprehensive, this review has high-
lighted some of the key options available to the clinician
faced with ventilating the blast lung.
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