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ABSTRACT
Theoretical evidence suggests that non-elitist evolutionary algo-
rithms (EAs) with non-linear selection mechanisms can efficiently
overcome broad classes of local optima where elitist EAs fail. How-
ever, the analysis assumes a weak selective pressure and mutation
rates carefully chosen close to the “error threshold”, above which
they cease to be efficient. On problems easier for hill-climbing, the
populations may slow down these algorithms, leading to worse
runtime compared with variants of the elitist (1+1) EA.

Here, we show that a non-elitist EA with power-law ranking
selection leads to fast runtime on easy benchmark problems, while
maintaining the capability of escaping certain local optima where
the elitist EAs spend exponential time in the expectation.

We derive a variant of the level-based theorem which accounts
for power-law distributions. For classical theoretical benchmarks,
the expected runtime is stated with small leading constants. For
complex, multi-modal fitness landscapes, we provide sufficient con-
ditions for polynomial optimisation, formulated in terms of decep-
tive regions sparsity and fitness valleys density. We derive the error
threshold and show extreme tolerance to high mutation rates. Ex-
periments on NK-Landscape functions, generated according to the
Kauffman’s model, show that the algorithm outperforms the (1+1)
EA and the univariate marginal distribution algorithm (UMDA).

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics.
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1 INTRODUCTION
Selection along with mutation are the key ingredients of evolu-
tion. Without selection, advantage features cannot be passed on
to the next generations, thus there will be no adaptation, and this
also holds true for evolutionary algorithms. Early evolutionary
algorithms (EAs) were formulated with fitness-proportionate (or
roulette-wheel) selection for reproduction [16]. The drawback of
such selection is the non-resilience to a scaling of fitness, thus small
but perhaps important advantages can be undetected in a large pop-
ulation. This drawback can be addressed with ranking selection
[2], where selection probabilities are assigned with respect to the
ranks of individuals sorted by fitness. This category includes (`, _)-
selection (or truncation selection), tournament selection, linear and
exponential ranking selections. Characteristics of these operators
in one generation was studied intensely in early EAs theory [4, 25].

In this paper, we introduce a new parent selection mechanism,
which is simple to describe in terms of cumulative selection proba-
bilities. That is the probability of selecting an individual at rank 𝑖
or better is (𝑖/_)𝑐 for a population of size _ and here 𝑐 ∈ (0, 1) is
the parameter of selection. We dub this new selection mechanism
the power-law ranking selection because from the view probability
mass function, the selection probability is a power-law function
of the rank. As far as we know, this mechanism has not been stud-
ied before, and as we will show that it exposes many interesting
properties. To see a flavour of these, one can consider 𝑐 = 1/2 and
observe that the best individual has

√
_ expected offspring in the

next generation, thus the replication rate of highly fit individuals
is extremely high. The cumulative selection function on the other
hand is non-linear and suits well to escape local optima [6, 7].

The mechanism also allows non-elitist populations to operate
with high mutation rates, and this can be beneficial in some settings.
In fact the tolerance limit of the mutation rate which is also known
as the error threshold [20, 27] can be scaled with the population
size. We will assert these properties by means of rigorous runtime
analysis and complement them with experiments on both bench-
mark functions and NK-Landscape functions, randomly generated
according to the Kauffman’s model [19].

Emerged in the early 2000s, runtime analysis [3] has been a
standard approach to study EAs from the theoretical perspective
[18]. Early research and also a large body of work in this area
has been focused on mutation while making simplifications about

https://doi.org/10.1145/3512290.3528873
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Algorithm 1 Non-elitist EA with unary variation operator [8]

Input: A mutation rate parameter 𝜒 ∈ [0, 𝑛]. A population size
_ ∈ N and an initial population 𝑃0 ∈ X_ where X = {0, 1}𝑛 .

1: for 𝑡 = 0, 1, 2, . . . until the termination condition is met do
2: for 𝑖 = 1 to _ do
3: Sample 𝐼𝑡 (𝑖) ∼ 𝑝sel (𝑃𝑡 ), and set 𝑥 := 𝑃𝑡 (𝐼𝑡 (𝑖)).
4: Sample 𝑥 ′ ∼ 𝑝mut (𝑥, 𝜒), and set 𝑃𝑡+1 (𝑖) := 𝑥 ′.
5: end for
6: end for

selection, i. e. using the so-called plus (or elitist) selection within
a small population, e. g. resulting in the (1+1) EA. The studies of
non-elitist populations are more scarce, however recently some
interesting results have been obtained. It has been shown in [11]
that asymptotically on Jump the (`, _)-selection cannot perform
better than the plus selection. In [6], Dang et al. identified the issue
as the linearity of the cumulative selection function (see the details
in Subsection 2.1), and derived a so-called Funnel function where
other non-elitist selection mechanisms like the tournament selec-
tion can be efficient. This is generalised to a large class (known as
SparseLocalOpt𝛼,Y ) in [7], where black-box EAs with plus selec-
tion require exponential expected runtime, while non-elitist EAs
with the right settings achieve polynomial performance. We will
consider these functions and show that the power-law ranking
achieves a better performance with a wider range of settings.

The level-based analysis from [21] and its later refinements in
[5, 8, 13] have become a general-purpose tool for runtime analysis
of non-elitist populations and complex EAs [9, 22, 24]. We will de-
rive a variant of the level-based theorem of [5], adapted to the rapid
replication of good individuals, which is observed in the new selec-
tion mechanism. The novelty here is that the derived tool allows to
derive the runtime bounds precisely up to the leading constants. As
we propose a new operator and hence new algorithms, our research
is aligned with the development of new theory-founded evolution-
ary algorithms, such as the (1+(_,_)) GA [12] or the fast genetic
algorithm using power-law mutation [14]. The most recent results
in this direction may be found in [1] and the references therein.

The rest of this paper is structured as follows. We will first pro-
vide some basic definitions, including the formal definition of the
power-law selection mechanism. The next section analyses the
performance of the new mechanism on the standard benchmark
functions, and introduces the new variant of the level-based the-
orem. We then discuss how to tune the algorithms to escape the
local optima of SparseLocalOpt𝛼,Y , and the error threshold that
the population can tolerate with the new selection. Our experimen-
tal section will demonstrate the performance of EAs with the new
operator compared with the existing ones on Funnel, and random
NK-Landscape functions. We conclude the paper with some final
remarks. Due to the space restriction, some proofs are omitted.

2 PRELIMINARIES
For any 𝑛 ∈ N, we define [𝑛] := {1, . . . , 𝑛}. The search space is

X := {0, 1}𝑛 . A population is a vector 𝑃 ∈ X_ , the 𝑖-th individual of
𝑃 is denoted 𝑃 (𝑖). For 𝐴 ⊆ X, we define |𝑃 ∩𝐴| := |{𝑖 | 𝑃 (𝑖) ∈ 𝐴}|.
For any logical predicate P, [P] denotes the Iverson-bracket which

Algorithm 2 Population-based algorithm [5].
Input: A finite state space X, and population size _ ∈ N,

a mapping 𝐷 from X_ to the space of probability distributions
over X, and an initial population 𝑃0 ∈ X_ .

1: for 𝑡 = 0, 1, 2, . . . until the termination condition is met do
2: for 𝑖 = 1 to _ do
3: Sample 𝑃𝑡+1 (𝑖) ∼ 𝐷 (𝑃𝑡 )
4: end for
5: end for

equals 1 if P holds and 0 otherwise. 𝐻 (𝑥,𝑦) is the Hamming-
distance between bitstrings 𝑥 and 𝑦. We consider non-elitist EAs
with the outline of Algorithm 1. Here, the population 𝑃𝑡+1 is gen-
erated by independently sampling _ individuals from population
𝑃𝑡 according to a probability distribution 𝑝sel (𝑃𝑡 ) on [_] (a selec-
tion operator), then by perturbing each of the selected individuals
using a unary variation (mutation) operator with a probability dis-
tribution 𝑝mut (𝑥, 𝜒) onX. The distribution 𝑝sel (𝑃𝑡 ) is parametrised
by population 𝑃𝑡 (and maybe some tunable selection parameter).
The distribution 𝑝mut (𝑥, 𝜒) is parametrised by the parent geno-
type 𝑥 and 𝜒 ∈ [0, 𝑛]. We consider the standard bitwise muta-
tion operator, such that for any pair of bitstrings 𝑥, 𝑥 ′ ∈ {0, 1}𝑛 ,
the probability of obtaining 𝑥 ′ from 𝑥 is Pr (𝑥 ′ = 𝑝mut (𝑥, 𝜒)) =

(𝜒/𝑛)H(𝑥,𝑥 ′) (1 − 𝜒/𝑛)𝑛−H(𝑥,𝑥 ′) . Algorithm 1 belongs to a more
general class of algorithms outlined by Algorithm 2 [5].

2.1 Power-law Ranking Selection
In ranking selection mechanisms, individuals are sorted according
to their fitness in the population, and the expected number of
offspring for each parent is defined by its position in this sorted
population [2]. In our paper, the EA outline requires independence
of all _ selection outcomes, given the current population 𝑃𝑡 , which
implies that instead of a more general concept of the expected
number of offspring, we will talk only about selection probability
𝑝sel ( 𝑗, 𝑃𝑡 ) of an individual 𝑃𝑡 ( 𝑗), 𝑗 ∈ [_] . An individual 𝑃𝑡 ( 𝑗) here
has the expected number of offspring _𝑝sel ( 𝑗, 𝑃𝑡 ). In case of equal
fitness values of some individuals, we assume that the sorting breaks
ties uniformly at random in each call to the selection operator.

We will say that an individual has a rank 𝛾 ∈ (1/_, 1], if its
position in the sorted population is 𝛾_, counting from the best
individual at position 1. Following [17], we can consider an as-
signment function 𝛼 : [0, 1] → [0, 1], such that 𝛼 (𝛾) ≥ 0 for all
𝛾 ∈ [0, 1] and

∫ 1
0 𝛼 (𝑥)𝑑𝑥 = 1. Then a ranking selection mechanism

may be defined by the probability 𝛽 (𝛾1, 𝛾2) :=
∫ 𝛾2
𝛾1

𝛼 (𝑥)𝑑𝑥 , and the
cumulative probability 𝛽 (𝛾) := 𝛽 (0, 𝛾) of selecting sufficiently fit
individuals with rank at most 𝛾 . (Note that in publications on the
power-law mutation, e.g. [14], symbol 𝛽 has a different meaning.)
By linearity of the cumulative selection function here and in [6, 7]
we mean that 𝛽 (𝛾) grows linearly in 𝛾 until 𝛽 (𝛾) reaches 1.

In practical implementations, we are interested only in _ values
{𝛽 (𝑖/_), 𝑖 ∈ [_]} so that for an individual 𝑃𝑡 ( 𝑗) of rank 𝑖/_ we have
𝑝sel ( 𝑗, 𝑃𝑡 ) = 𝛽 (𝑖/_) − 𝛽 ((𝑖 − 1)/_). This value can be computed and
stored before the main loop of the algorithm. Besides that, sorting
of the population may be performed in O(_ log _) time just once
at each iteration 𝑡 so that each subset of equally-fit individuals
is placed into the same slot. Then in each call to the selection
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operator, like in the proportionate selection (see e.g. [17]), it suffices
to perform a binary search and to choose a random element of the
located slot in case of a tie. The overall time complexity of selection
in each generation is O(_ log _). Alternatively, for mechanisms that
have an expression for 𝛽−1 (𝛾), the inverse transform sampling [10]
can be used without the need to compute 𝑝sel ( 𝑗, 𝑃𝑡 ) explicitly.

While in many publications, the ranking selection is defined by
the assignment function 𝛼 (𝑥), see e.g. [2, 17, 21], in the present
paper we consider the case of ranking selection defined by a func-
tion 𝛽 (𝛾) = 𝛾𝑐 of power-law type with parameter 𝑐 ∈ (0, 1). This
type of function assigns high probability mass near 0. Its shape may
be adjusted for specific problem instances, at the extreme cases
approaching the (1, _)-selection if 𝑐 → 0, or the uniform selection
if 𝑐 → 1. Usage of 𝑐 > 1 is not appropriate because it will favour
unfit individuals. We also note the inverse 𝛽−1 (𝛾) = 𝛾1/𝑐 .

3 POWER-LAW SELECTION IS FAST ON
LEADINGONES AND JUMP

We consider the following two standard benchmark functions (see
e.g. [15]). Let 𝑥 = (𝑥1𝑥2 . . . 𝑥𝑛) ∈ {0, 1}𝑛 , then LeadingOnes(𝑥)
equals to

∑𝑛
𝑖=1

∏𝑖
𝑗=1 𝑥 𝑗 , and Jump𝑟 (𝑥) is defined as 𝑟 + |𝑥 |1 − 1 if

|𝑥 |1 ≤ 𝑛 − 𝑟, or as 𝑛 − |𝑥 |1 − 1, if 𝑛 − 𝑟 < |𝑥 |1 < 𝑛, or set to 𝑛,
if |𝑥 |1 = 𝑛. For asymptotic results for power-law ranking, it is
straightforward to use the standard level-based theorem of [5] to
produce such results for all the benchmark functions. However, to
obtain precise upper bounds on the expected optimisation up to
the leading constants, we need the following variant which adapts
to the fast spreading at non-linear rate of good individuals.

Theorem 1. Given a partition (𝐴1, . . . , 𝐴𝑚) of X, define 𝑇 :=
min{𝑡_ | |𝑃𝑡 ∩𝐴𝑚 | > 0}, where for all 𝑡 ∈ N, 𝑃𝑡 ∈ X_ is the popu-
lation of Algorithm 2 in generation 𝑡 . If there exist 𝑧1, . . . , 𝑧𝑚−1, 𝑐 ∈
(0, 1], 𝑑,𝛾0 ∈ (0, 1), 𝛿 ∈ (0, 1/𝛾0 − 1], and 𝜙 > 0 such that condi-
tion (LB) holds:
(LB) if 𝑋 ∼ Bin(_, 𝑝) where 𝑝 ≥ (𝑖/_)𝑐 (1 + 𝛿)𝛾1−𝑐0 and 1 ≤ 𝑖 ≤ 𝛾0_

then 𝐸

[
ln

(
1+𝑋
1+𝑖

)]
≥ 𝜙,

and for any population 𝑃 ∈ X_ , conditions (G1)-(G3) hold:
(G1) for each level 𝑗 ∈ [𝑚 − 1], if |𝑃 ∩𝐴≥ 𝑗 | ≥ 𝛾0_, then

Pr
𝑦∼𝐷 (𝑃 )

(
𝑦 ∈ 𝐴≥ 𝑗+1

)
≥ 𝑧 𝑗 ,

(G2) for each level 𝑗 ∈ [𝑚 − 2], and all 𝛾 ∈ (0, 𝛾0]
if |𝑃 ∩𝐴≥ 𝑗 | ≥ 𝛾0_ and |𝑃 ∩𝐴≥ 𝑗+1 | ≥ 𝛾_, then

Pr
𝑦∼𝐷 (𝑃 )

(
𝑦 ∈ 𝐴≥ 𝑗+1

)
≥ (1 + 𝛿)𝛾1−𝑐0 𝛾𝑐 ,

(G3) and the population size _ ∈ N satisfies

_ ≥ 1
2𝛾20𝛿

2 ln

((
(1 + 𝛿)𝛾1−𝑐0

𝜙𝑐
+ 2

)
𝑚 − 1

𝑑 (1 − 𝑒−𝛿 )𝑧∗
+ 1
𝑑

)
where 𝑧∗ := min𝑗 ∈[𝑚−1] {𝑧 𝑗 },

then with 𝑟𝑖 :=
(

𝑧𝑖
(1+𝛿)𝛾1−𝑐

0

) 1
𝑐

and 𝑞𝑖 := 1 − (1 − 𝑧𝑖 )_ we have

𝐸 [𝑇 ] ≤ _

(1 − 𝑑) (1 − 𝑒−𝛿 )

𝑚−1∑
𝑖=1

(
1
𝜙
ln

(
1 + _

1 + _𝑟𝑖

)
+ 1
𝑞𝑖

)
.

The difference with the standard version of [5] is that we require
a stronger and non-linear lower bound in (G2). Condition (LB) is
introduced to allow the log-transform of the spreading process
to be analysed separately, thus we have a pluggable level-based
theorem. The drift (or speed) of this spreading is characterised by
parameter 𝜙 and it only impacts the first component of the expected
runtime. Parameter 𝑑 appears inside the natural log-factor of the
lower bound in (G3), and influences the overall expected runtime
when the population size is set close to that bound. The rest of
the parameters are analogous to the ones in [5], however note
that here we allow 𝛿 to be large (> 1) and this is crucial for our
applications. The proof of Theorem 1, which is omitted due to the
space restriction, follows the same steps of drift analysis as in the
proof of the standard level-based theorem in [5], however, it uses a
different distance function that is able to support large 𝛿 and 𝜙 .

Condition (LB) can be addressed with Lemma 2. The lemma
provides a lower bound on the expectation of a random variable
transformed by a concave function. It is significantly easier to derive
an upper bound for the same quantity, e.g., using Jensen’s inequality.

Lemma 2. Let 𝑋 ∼ Bin(_, 𝑝) for 𝑝 ≥ (𝑖/_)𝑐 (1 + 𝛿)𝛾1−𝑐0 for any
1 ≤ 𝑖 ≤ 𝛾0_ with 𝛾0 = 𝜔 (1/_) and any constants 𝑐 ∈ (0, 1) and
𝛿 > 0, it holds that

𝐸

[
ln

(
1 + 𝑋

1 + 𝑖

)]
≥ ln

(
1 + 𝑎𝑏𝛿

1 + 𝑏

)
− 𝑜 (1)

where 𝑎, 𝑏 are any constants in (0, 1) and (1, (𝛾0_)1−𝑐 ] respectively,
and the small-𝑜 and 𝜔-notation is with respect to the growth of _.

For the bitwise mutation with the standard parameter 𝜒 = 1, we
have the following result.

Theorem 3. Given any constants Y, 𝛿 > 0, 𝑐 ∈ (0, 1), let 𝐿(𝑐, 𝛿) :=(
𝑒
2−𝑐
1−𝑐 (1+𝛿)

𝑐
1−𝑐

1−𝑒−𝛿

)
. Algorithm 1 using the power-law ranking selection

mechanism with parameter 𝑐 , the standard bitwise mutation with
parameter 𝜒 = 1 has expected optimisation time no more than

(1 + Y)𝐿(𝑐, 𝛿)𝑛2 +𝑂 (𝑛_ ln _) on LeadingOnes
(1 + Y)𝐿(𝑐, 𝛿)𝑛𝑟 +𝑂 (𝑛_) on Jump𝑟 (𝑟 ≥ 2)

if the population satisfies _ ≥ 𝑎 ln𝑛, _ ln _ ∈ 𝑜 (𝑛) for LeadingOnes,
and _ ≥ 𝑎𝑟 ln𝑛, _ ∈ 𝑜 (𝑛) for Jump𝑟 , for the some constant 𝑎 that may
depend on Y, 𝛿 .

Proof. We consider the canonical partition (𝐴1, · · · , 𝐴𝑛+1) of
the search space, i. e. 𝐴 𝑗 := {𝑥 ∈ {0, 1}𝑛 | 𝑓 (𝑥) = 𝑗 − 1} and
apply Theorem 1, so here𝑚 := 𝑛 + 1. We first prove the result of
LeadingOnes, and then the proof for Jump𝑟 follows analogously.

We first show (G2), let 𝑝0 :=
(
1 − 1

𝑛

)𝑛
be the probability of not

flipping any bit in a mutation, we define 𝛾0 :=
(
𝑝0
1+𝛿

) 1
1−𝑐 for any

arbitrary constant 𝛿 > 0, and remark that 𝑝0𝛾𝑐0 = (1 + 𝛿)𝛾0. To
sample an individual in 𝐴≥ 𝑗+1, it suffices to select a parent already
in𝐴≥ 𝑗+1, this occurs with probability 𝛾𝑐 for the power-law ranking
selection, then to not flip any of its bits. The overall probability is
then at least 𝛾𝑐𝑝0 = (1 + 𝛿)𝛾1−𝑐0 𝛾𝑐 , thus (G2) holds.

Statement (LB) is satisfied by and Lemma 2 for the sampling
process described in (G2), i. e. 𝛾 = 𝑖/_. Here 𝜙 is an increasing
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function of 𝛿 , e. g. choosing 𝑎 = 3/4, 𝑏 = 2 for the lemma gives
𝜙 = ln(1 + 𝛿/2) − 𝑜 (1). This also implies if 𝛿 is a constant, so is 𝜙 .

Regarding (G1), starting from a parent in 𝐴 𝑗 , the probability
of creating the offspring in 𝐴≥ 𝑗+1 by mutation is bounded from
below by the probability of flipping exactly the 𝑗-th bit while keep-
ing the rest of the bits unchanged. The probability of the event is
1
𝑛

(
1 − 1

𝑛

)𝑛−1
≥ 1

𝑒𝑛 =: 𝑠 , and we define 𝑧 𝑗 := (1+𝛿)𝛾0𝑠 for all 𝑗 ≤ 𝑛.
This setting satisfies (G1) because the condition assumes that there
are at least 𝛾0 individual at level 𝐴≥ 𝑗 , thus with probability 𝛾𝑐0 one
is selected as parent and if the individual is already at level 𝐴≥ 𝑗+1
it suffices to keep the individual unchanged, i. e. with probability at
least 𝑝0, otherwise if the individual is at level 𝐴 𝑗 it suffices to up-
grade the individual, i. e. with probability 𝑠 𝑗 . Overall the probability
is at least 𝛾𝑐0 min{𝑝0, 𝑠} ≥ 𝛾𝑐0𝑝0𝑠 = (1 + 𝛿)𝛾0𝑠 which is exactly 𝑧 𝑗 .

It remains to show (G3). Note that 1
𝑒 ≥ 𝑝0 ≥

(
1 − 1

𝑛0

)
1
𝑒 thus(

1
(1+𝛿)𝑒

) 1
1−𝑐 ≥ 𝛾0 ≥

(
1−1/𝑛0
(1+𝛿)𝑒

) 1
1−𝑐 for any constant 𝑛0 ≥ 1 and all

𝑛 ≥ 𝑛0. All the parameters are bounded by constants, moreover
ln((𝑚−1)/𝑧∗) = 𝑂 (ln(𝑛)) as 𝑚−1

𝑧∗
≤ 𝑒𝑛2

(1+𝛿)𝛾0 = 𝑂 (𝑛2), thus for any
constant 𝑑 , there exists an 𝑎 such that (G3) holds for _ ≥ 𝑎 ln𝑛.

All the conditions of Theorem 1 are now satisfied, so the upper
bound on the expected optimisation time can be deduced. Remark
that with _ ln _ ∈ 𝑜 (𝑛) the first sum which contains ln-term is
dominated by the second sum which contains 𝑞𝑖 , because we can
bound the first sum with 𝑂 (𝑛 ln _) by ignoring the _𝑟𝑖 -part in the
denominator of the fraction inside the ln-term. Lemma 14 implies
1/𝑞𝑖 ≤ 1 + 1

_𝑧𝑖
, thus the second sum is bounded from above by

𝑛∑
𝑖=1

1
𝑞𝑖

≤ 𝑛 + 𝑛

_𝑧∗
≤ 𝑛 + 𝑒𝑛2

_(1 + 𝛿)𝛾0

≤ 𝑛 + 𝑒𝑛2

_(1 + 𝛿)
(
1−1/𝑛0
(1+𝛿)𝑒

) 1
1−𝑐

= 𝑛 + 𝑒
2−𝑐
1−𝑐 (1 + 𝛿)

𝑐
1−𝑐 𝑛2

_(1 − 1/𝑛0)
1

1−𝑐
.

Altogether the expected optimisation time is no more than

𝑒
2−𝑐
1−𝑐 (1 + 𝛿)

𝑐
1−𝑐 𝑛2

(1 − 𝑑) (1 − 1/𝑛0)
1

1−𝑐 (1 − 𝑒−𝛿 )
+𝑂 (𝑛_ ln _),

and the result follows by noting that the factor 1
(1−𝑑) (1−1/𝑛0)

1
1−𝑐

can be made less than 1 + Y for any Y > 0 by choosing 𝑛0.
To prove the result for Jump𝑟 , we use the same setting of the

analysis, e. g. 𝛾0 :=
(
𝑝0
1+𝛿

) 1
1−𝑐 . However, we define 𝑧 𝑗 := (1 + 𝛿)𝛾0𝑠 𝑗

where 𝑠 𝑗 := 𝑛−𝑗+1
𝑒𝑛 for the first 𝑛 − 1 levels, because this is a lower

bound on the probability
(𝑛−𝑗+1

1
) 1
𝑛

(
1 − 1

𝑛

)𝑛−1
of improving a solu-

tion from these levels, and 𝑠𝑛 := 1/𝑒𝑛𝑟 which is a lower bound on
the probability

(
1
𝑛

)𝑟 (
1 − 1

𝑛

)𝑛−𝑟
of jumping from a local optimum

in 𝐴𝑛 to the global optimum.
The conditions of Theorem 1 hold for the same reason of the

setting of the algorithm (but here we have _ ≥ 𝑎𝑟 ln𝑛), as in the
argument for LeadingOnes and it remains to estimate the upper
bound on the expected optimisation time. For the second sum, again

using Lemma 14 we get
𝑛∑
𝑖=1

1
𝑞𝑖

≤ 𝑛 + 1
_(1 + 𝛿)𝛾0

(
𝑒𝑛𝑟 +

𝑛−1∑
𝑖=1

𝑒𝑛

_𝑛 − 𝑖 + 1

)
= 𝑂

(
𝑛 + 𝑛 ln𝑛

_

)
+ 𝑒𝑛𝑟

_(1 + 𝛿)𝛾0

= 𝑂

(
𝑛 + 𝑛 ln _

_

)
+ 𝑒

2−𝑐
1−𝑐 (1 + 𝛿)

𝑐
1−𝑐 𝑛𝑟

_(1 − 1/𝑛0)
1

1−𝑐
.

We remark that 𝑟𝑖 =

(
𝑧𝑖

(1+𝛿)𝛾1−𝑐
0

) 1
𝑐

= 𝛾0𝑠
1/𝑐
𝑖

, thus for the first

sum, using Stirling’s formula gives
𝑛∑
𝑖=1

ln
(
1 + _

1 + _𝑟𝑖

)
=

𝑛∑
𝑖=1

ln
(
1/_ + 1
1/_ + 𝑟𝑖

)
≤ ln

(
𝑛∏
𝑖=1

2
𝑟𝑖

)
=

1
𝑐

(
ln

(
𝑛∏
𝑖=1

𝑒𝑛

𝑛 − 𝑖 + 1

)
+ ln

(
𝑒𝑛𝑟

))
+ 𝑛 ln

(
2
𝛾0

)
=

1
𝑐
ln

(
𝑒𝑛𝑛𝑛

𝑛!

)
+𝑂 (𝑛 + 𝑟 ln𝑛)

<
1
𝑐
ln

(
𝑒𝑛𝑛𝑛

√
2𝜋𝑛(𝑛𝑛/𝑒𝑛)𝑒

1
12𝑛+1

)
+𝑂 (𝑛 + _) = 𝑂 (𝑛)

The result follows by combining these two sums with their re-
spective factors, and we note that the dominating term is 𝑛𝑟 of the
second sum and that factors related to the free parameters 𝑑 and
𝑛0 are subsumed into (1 + Y). □

From the proof we notice that the parameter 𝛿 only impacts
logarithmic population sizes in a critical way, therefore if _ ∈
𝜔 (ln𝑛) ∩𝑜 (𝑛) the bound holds universally with 𝛿 > 0. Particularly,
when 𝑐 is reduced, the leading constant term 𝐿(𝑐, 𝛿) approaches 𝑒2.
Our approach also works for OneMax [15], however the leading
constant has a long expression thus we omitted that analysis.

We now show that on Jump𝑟 , it can be beneficial to have a muta-
tion parameter 𝜒 non-constant and greater than 1.

Theorem 4. There exists a constant 𝑐_ > 0 such that the expected
runtime of Algorithm 1 using power-law ranking selection with con-
stant parameter 𝑐 , mutation rate 𝜒 < 𝑛 (1−Y)/2, 𝜒 = Ω(1) for any
constant Y ∈ (0, 1), and population size _ where 𝑐_𝑒

2𝜒
1−𝑐 ln(𝑛) ≤ _, on

Jump𝑟 with 𝑟 ≥ 2 is𝑂
(
𝑒𝜒 (1+1/(1−𝑐)) (𝑛/𝜒)𝑟 + _(ln _ + 𝑛 ln(𝑛𝑒𝜒 ))

)
.

Proof. First note that the lower bound on _ implies

𝜒 ≤ ln
(

_

𝑐_ ln𝑛

)
1 − 𝑐

2
= 𝑜 (ln _) . (1)

We apply Theorem 1 with the same level-definition as in the

proof of Theorem 3, and use the same parameter 𝛾0 :=
(
𝑝0
1+𝛿

) 1
1−𝑐 ,

where 𝑝0 :=
(
1 − 𝜒

𝑛

)𝑛
> (1− 𝜒/𝑛)𝑛 ≥ 𝑒−𝜒 (1−𝑛−Y ) is the probabil-

ity of not mutating any bits (the last inequality follows by Lemma
13 and 𝜒 < 𝑛 (1/2) (1−Y) ), and 𝛿 is an arbitrary positive constant.
From the above, it also holds 𝛾0 = Ω(𝑒−𝜒/(1−𝑐) ). Eq. (1) implies

𝛾0 < 𝑒−
𝜒

1−𝑐 = 𝑒−𝑜 (ln_) = 𝜔 (1/_),
hence 𝛾0 satisfies the assumptions of Lemma 2.
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We first prove (G2) and statement (LB). To produce an individual
in the current level, it suffices to select one in the current level, and
not mutate any of its bits. The probability of this event is 𝛾𝑐𝑝0, thus

Pr𝑦∼𝐷 (𝑃 )
(
𝑦 ∈ 𝐴≥ 𝑗+1

)
𝛾1−𝑐0 𝛾𝑐

>
𝑝0

𝛾1−𝑐0
= 1 + 𝛿,

i.e., condition (G2) is satisfied. Then, similarly to the proof of Theo-
rem 3, statement (LB) holds by Lemma 2 with the same choices for
𝑎 and 𝑏, and here 𝜙 is a constant as far as 𝛿 is.

For any 𝑗 , 𝑞 𝑗 := 1 − (1 − 𝑧 𝑗 )_ ≥ 1 − 𝑒−_𝑧 𝑗 , 𝑧 𝑗 := (1 + 𝛿)𝛾0𝑠 𝑗 and

𝑠 𝑗 ≥
( 𝜒
𝑛

) (
1 − 𝜒

𝑛

)𝑛−1
>

𝜒

𝑛𝑒𝜒
(1 − 𝑛−Y ),

is a lower bound on the probability of mutating a search point in
any level 𝑗 ≤ 𝑛 − 1 into a higher level. We then have by Lemma 14∑𝑛−1
𝑖=1

1
𝑞𝑖

≤ 𝑛 − 1 + 𝑛−1
_𝑧∗

= 𝑂

(
𝑛 + 𝑛2𝑒𝜒

_𝜒𝛾0

)
.

For the final level, it is necessary to flip simultaneously 𝑟 0-bits,
which occurs with probability at least

𝑠𝑛 ≥
( 𝜒
𝑛

)𝑟 (
1 − 𝜒

𝑛

)𝑛−𝑟
>

( 𝜒
𝑛

)𝑟
𝑒−𝜒 (1 − 𝑛−Y ) .

This gives 1
𝑞𝑛

≤ 1 + 1
_𝑧𝑛

= 𝑂

(
𝑛𝑟𝑒𝜒

_𝜒𝑟𝛾0

)
= 𝑂

(
𝑛𝑟𝑒𝜒 (1+1/(1−𝑐 ) )

_𝜒𝑟

)
We remark that for 𝑖 < 𝑛,

𝑟𝑖 =

(
𝑧𝑖

(1 + 𝛿)𝛾1−𝑐0

) 1
𝑐

= 𝛾0𝑠
1/𝑐
𝑖

= Ω

((
1
𝑒𝜒

)1/(1−𝑐) ( 𝜒

𝑛𝑒𝜒

)1/𝑐 )
thus the sum

∑𝑛
𝑖=1 ln

(
1+_
1+_𝑟𝑖

)
is no more than

ln (1 + _) +
𝑛−1∑
𝑖=1

ln
(
1 + 1

𝑟𝑖

)
= 𝑂 (ln _ + 𝑛 ln(𝑛𝑒𝜒 )).

For condition (G3), note that 𝛾−20 = 𝑂 (exp( 2𝜒
1−𝑐 )) and that there

exists a constant 𝑐_ such that

1
2𝛾20𝛿

2 ln

((
(1 + 𝛿)𝛾1−𝑐0

𝜙𝑐
+ 2

)
𝑚 − 1

𝑑 (1 − 𝑒−𝛿 )𝑧∗
+ 1
𝑑

)
≤ 𝑐_𝑒

2𝜒
1−𝑐 ln(𝑛/𝑧∗) < 𝑐_𝑒

2𝜒
1−𝑐 ln

(
𝑛(𝑛 − 𝜒)𝑟𝑒𝜒 (1+1/(1−𝑐))

𝜒𝑟

)
< 𝑐_𝑒

2𝜒
1−𝑐 ((𝑟 + 1) ln(𝑛) + 𝜒) ≤ _.

All conditions of Theorem 1 are satisfied, and the theorem follows
by combining these sums with their respective factors, taking into
account that 𝑑, 𝑐, 𝛿 are constants. □

4 POWER-LAW SELECTION IS EFFICIENT IN
ESCAPING SPARSE LOCAL OPTIMA

The ability of non-elitist populations to escape local optima was
studied in [7, 11]. Particularly, [7] characterises the search space by
the densities of fitness valleys and of local optima, thus introduced
the function class SparseLocalOpt𝛼,Y , i. e. Definition 8. Note that
the larger the sparsity parameter Y is the denser the local optima
are allowed (see Definition 6), thus the harder it is to escape them.
Both elitist black-box EAs and non-elitist EAs with (`, _)-selection
were shown to be inefficient (in the sense of exponential versus
polynomial runtime) in escaping local optima even when Y is a

small constant. This is in contrast to the efficiency of tournament
and linear-ranking selections. We will show that the power-law
ranking selection can also escape sparse local optima efficiently.

Definition 5. For 𝛼 ∈ [0, 1], a subset 𝐶 ⊆ {0, 1}𝑛 is called 𝛼-
dense if ∀𝑥 ∈ 𝐶, |𝑆1 (𝑥) ∩𝐶 | ≥ 𝛼𝑛.

Definition 6. For Y ∈ [0, 1], a subset 𝐵 ⊆ {0, 1}𝑛 is Y-sparse if
(SP1) ∀𝑥 ∈ 𝐵,∀𝑟 ∈ [𝑛 − 1], |𝑆𝑟 (𝑥) ∩ 𝐵 | ≤ Y ·

(𝑛
𝑟

)
, and

(SP2) ∀𝑥 ∈ {0, 1}𝑛 \ 𝐵,∀𝑟 ∈ [𝑛 − 1], |𝑆𝑟 (𝑥) ∩ 𝐵 | = O
(
1
𝑛

(𝑛
𝑟

) )
.

Definition 7. Given a function 𝑓 : {0, 1}𝑛 → R and a partition
(𝐴1, . . . , 𝐴𝑚) of {0, 1}𝑛 , a pair (𝐴𝑖 , 𝐴 𝑗 ) is called 𝑓 -deceptive if 1 ≤ 𝑖 <

𝑗 ≤ 𝑚 and there are elements 𝑥 ∈ 𝐴𝑖 , 𝑦 ∈ 𝐴 𝑗 such that 𝑓 (𝑥) ≥ 𝑓 (𝑦).

Definition 8. An objective function 𝑓 : {0, 1}𝑛 → R belongs to
the problem class SparseLocalOpt𝛼,Y if there exists a partition of
{0, 1}𝑛 into𝑚 ∈ poly(𝑛), subsets (𝐴1, . . . , 𝐴𝑚) such that

• 𝐴𝑚 = {𝑥 ∈ {0, 1}𝑛 | ∀𝑦 ∈ {0, 1}𝑛, 𝑓 (𝑥) ≥ 𝑓 (𝑦)}
• ∀𝑗 ∈ [𝑚 − 1],∀𝑥 ∈ 𝐴 𝑗 , ∃𝑦 ∈ 𝐴≥ 𝑗+1 s.t. H(𝑥,𝑦) = 𝑂 (1),

and if (𝐴𝑖1 , 𝐴 𝑗𝑖 ), . . . , (𝐴𝑖𝑢 , 𝐴 𝑗𝑢 ) are 𝑓 -deceptive pairs then
• ∪𝑢

𝑣=1𝐴𝑖𝑣 is Y-sparse, and
• 𝐴≥ 𝑗𝑣 is 𝛼-dense for all 𝑣 ∈ [𝑢].

The following theorem provides the sufficient conditions for
which non-elitist EAs with bitwise mutation have expected polyno-
mial runtime on SparseLocalOpt𝛼,Y . It requires the non-linearity
of the cumulative probability function of the selection.

Theorem 9 (Theorem 12 in [7]). If there exist constants Y,𝜓0,𝛾0,𝛿 ,
𝛼 ∈ (0, 1) such that Algorithm 1 with the bitwise mutation operator
with rate 𝜒 , and selection mechanism with 𝛽 , and pop. size _ s.t.
(SM0) 𝛽 (0, 𝛾) ≤ 𝛾

Y
1−Y +(1− 𝜒

𝑛 )
𝑛 for all 𝛾 ∈ [𝜓0, 1],

(SM2a) 𝛽 (0, 𝛾) ≥ 𝛾 (1+𝛿)
(1− 𝜒

𝑛 )
𝑛 for all 𝛾 ∈ (0, 𝛾0],

(SM2b) 𝛽 (𝜓,𝜓 +𝛾) ≥ 𝛾 (1+𝛿)
(1− 𝜒

𝑛 )
𝑛 (1+𝛼𝜒) for all 𝛾 ∈ (0, 𝛾0],𝜓 ∈ [0,𝜓0],

(SM3) 𝐶 ln(𝑛) ≤ _ ∈ poly(𝑛) for a sufficiently large constant 𝐶 ,
then it has expected polynomial runtime on SparseLocalOpt𝛼,Y .

Wehave the following result for our selectionmechanism. Unlike
the results in [7], where the characteristic parameters of the search
space 𝛼, Y have to be specific, here we provide a range of choices
where the new selection can yield polynomial optimisation time.
Note also that the conditions of Theorem 9 can be formulated as
non-linear constraint satisfaction problem, thus this allows the
production of results similar to ours for other selections by mean
of numerical computation. Using this we will make the comparison
with our mechanism in the end of the section.

Theorem 10. For any constants 𝛼, Y, 𝜎, 𝑐 in (0, 1) and 𝜒 ≥ 1 such
that the following equation holds: Y = 𝜎 (𝑐 (1 + 𝛼𝜒) − 1) 𝑒−𝜒 then
Algorithm 1 using the power-law ranking selection mechanism with
parameter 𝑐 , bitwise mutation with parameter 𝜒 and population size
poly(𝑛) ∋ _ ≥ 𝑑 ln𝑛 for some sufficiently large constant 𝑑 > 0
optimises SparseLocalOpt𝛼, Y

1+Y
in expected polynomial time.

Proof. The selection mechanism satisfies 𝛽 (𝜓,𝜓 + 𝛾) = (𝜓 +
𝛾)𝑐 − 𝜓𝑐 , and we define: ℎ(𝜓,𝛾) := 𝛽 (𝜓,𝜓+𝛾 )

𝛾 =
(𝜓+𝛾 )𝑐−𝜓𝑐

𝛾 , and it
follows from Lemma 16 that ℎ(𝜓,𝛾) is decreasing in both directions
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of 𝜓 and 𝛾 , that is, given a fixed pair (𝜓,𝛾), for all 𝜓 ′ ≥ 𝜓 and all
𝛾 ′ ≥ 𝛾 , it holds that ℎ(𝛾 ′,𝜓 ′) ≤ ℎ(𝛾,𝜓 ).

The parameters of the analysis are set as𝜓0 := (Y + 𝑒−𝜒 )
1

1−𝑐 , 𝛾0 :=(
𝛿𝑒−𝜒

1+2𝛿

) 1
1−𝑐

, 𝛿 := min
{
𝜎, 1−𝜎

3
𝑐 (1+𝛼𝜒 )−1+2𝜎

}
, and let 𝑝0 :=

(
1 − 𝜒

𝑛

)𝑛
.

For 𝑛 ≥ 𝑛0 where 𝑛0 :=
𝜒

1−
(
1+𝛿
1+2𝛿

)1/𝜒 it holds that

𝑒−𝜒 > 𝑝0 =
(
1 − 𝜒

𝑛

) 𝜒+(𝑛/𝜒−1)𝜒
≥

(
1 − 𝜒

𝑛0

) 𝜒
𝑒−𝜒 =

1 + 𝛿

1 + 2𝛿
· 𝑒−𝜒 ,

and the last inequality uses (1 − 1/𝑟 )𝑟−1 ≥ 1/𝑒 with 𝑟 being 𝑛/𝜒 .
Note that 𝛼, Y, 𝜎 and 𝜒 are constant, so are the parameters and

particularly it holds that 𝛿,𝜓0 and 𝛾0 are in (0, 1). The reasons for 𝛿
and 𝛾0 are obvious. For𝜓0, we remark that 𝑒−𝜒 ≤ 1/𝑒 since 𝜒 ≥ 1.
Furthermore, the equation in the statement implies Y <

𝜒
𝑒𝜒 =:

𝑓 (𝜒), and 𝑓 (𝜒) reaches its maximum at 𝜒 = 1, so Y < 𝑓 (1) = 1/𝑒 .
Combining these gives Y + 𝑒−𝜒 < 2/𝑒 < 1, thus𝜓0 < 1.

We now verify the conditions of Theorem 9. The first condition
(SM0) is satisfied because for all 𝛾 ≥ 𝜓0:

ℎ(0, 𝛾) ≤ ℎ(0,𝜓0) =
1

𝜓1−𝑐
0

=
1

Y + 𝑒−𝜒
<

1
Y
1+Y

1− Y
1+Y

+ 𝑝0
.

We also have, for all 𝛾 ≤ 𝛾0:

ℎ(0, 𝛾) ≥ ℎ(0, 𝛾0) =
1

𝛾1−𝑐0
=

1 + 2𝛿
𝛿𝑒−𝜒

=
1 + 𝛿

𝛿 (1+𝛿)𝑒−𝜒
1+2𝛿

>
1 + 𝛿

𝑝0
,

therefore (SM2a) is satisfied.
To show (SM2b), we use Lemmas 16, 15, 17 and the equation in

the statement because then they imply,

ℎ(𝜓,𝛾) ≥ ℎ(𝜓0, 𝛾0) >
𝑐

(𝜓0 + 𝛾0)1−𝑐
>

𝑐

𝜓1−𝑐
0 + 𝛾1−𝑐0

=
1

1
𝑐

(
𝜎𝑐 (1 + 𝛼𝜒 − 1/𝑐)𝑒−𝜒 + 𝑒−𝜒 + 𝛿𝑒−𝜒

1+2𝛿

)
=

1 + 𝛿

(1+𝛿)𝑒−𝜒
1+2𝛿

(
𝜎 (1 + 2𝛿) (1 + 𝛼𝜒 − 1/𝑐) + 1+2𝛿

𝑐 + 𝛿
𝑐

)
≥ 1 + 𝛿

𝑝0
(
𝜎 (1 + 2𝛿) (1 + 𝛼𝜒 − 1/𝑐) + 1+3𝛿

𝑐

) .
We notice that the choice of 𝛿 implies 𝛿 ≤ 1−𝜎

3
𝑐 (1+𝛼𝜒 )−1+2𝜎

. This

means 1 − 𝜎 ≥ 3𝛿
𝑐 (1+𝛼𝜒)−1 + 2𝜎𝛿 , or equivalently 𝜎 (1 + 2𝛿) ≤

1 − 3𝛿
𝑐 (1+𝛼𝜒)−1 and therefore

𝜎 (1 + 2𝛿) (1 + 𝛼𝜒 − 1/𝑐) ≤
(
1 − 3𝛿

𝑐 (1 + 𝛼𝜒) − 1

)
(1 + 𝛼𝜒 − 1/𝑐)

= 1 + 𝛼𝜒 − 1/𝑐 − 3𝛿/𝑐.

Resuming our previous calculation givesℎ(𝜓,𝛾) > 1+𝛿
𝑝0 (1+𝛼𝜒) ,thus

(SM2b) is satisfied. We have (SM3) by the setting of the population
size _. Since all the conditions are satisfied, the result follows from
the statement of Theorem 9. □

Theorem 10 gives a sufficient condition that characterises the
subclass of SparseLocalOpt𝛼, Y

1+Y
in which the power-law ranking

selection can be efficient. The condition is essentially:

Y <
𝑐 (1 + 𝛼𝜒) − 1

𝑒𝜒
. (2)

The parameter 𝜎 was introduced to turn this inequality into an
equation so that the mutation parameter 𝜒 can be quantified. It
turns out, (2) is also the necessary condition to apply Theorem 9
for our selection mechanism and this is due to the following result.

Theorem 11. If inequality (2) does not hold for 𝛼, Y, 𝑐 in (0, 1) and
𝜒 > 0 then the conditions (SM0) and (SM2b) of Theorem 9 cannot be
satisfied simultaneously for Algorithm 1 using the power-law ranking
selection mechanism with parameter 𝑐 and bitwise mutation with
parameter 𝜒 , and running on SparseLocalOpt𝛼, Y

1+Y
.

Proof. To prove the result, it suffices to show that (2) is an
implication of the two conditions (SM0) and (SM2b). We use the
same notation as the one in the proof of Theorem 10.

Suppose we have found𝜓0, 𝛾0 and 𝛿 such that the two conditions
are both satisfied. Specificallywe haveℎ(0,𝜓0) ≤ 1/(Y+𝑝0) by (SM0)
and ℎ(𝜓0, 𝛾0) ≥ (1 + 𝛿)/(𝑝0 (1 + 𝛼𝜒)) by (SM2b). Furthermore, we
notice that ℎ(0,𝜓0) = 1

𝜓 1−𝑐
0

, and ℎ(𝜓0, 𝛾0) =
(𝜓0+𝛾0)𝑐−𝜓𝑐

0
𝛾0

< 𝑐

𝜓 1−𝑐
0

=

𝑐ℎ(0,𝜓0) where the inequality is due to Lemma 15. Therefore,

𝑐

Y + 𝑝0
≥ 𝑐ℎ(0,𝜓0) > ℎ(𝜓0, 𝛾0) >

1
𝑝0 (1 + 𝛼𝜒) ,

or equivalently 𝑝0𝑐 (1+𝛼𝜒−1/𝑐) > Y. Combining this with 𝑝0 ≤ 𝑒−𝜒

gives (2), which is now an implication of (SM0) and (SM2b). □

In view of Theorems 10 and 11, given specific values of 𝛼 and 𝑐,
we can find the maximal value for the sparsity parameter Y/(1 + Y)
to identify the widest class of landscapes that satisfy the conditions
of these theorems. First of all, note that Y/(1 + Y) is an increasing
function so it suffices to maximize the right-hand side of (2) w.r.t.
𝜒 ∈ (0,∞). By looking at the differentiation by 𝜒 of this right-hand
side, it is easy to see that the maximum is obtained at

𝜒 =
(𝛼 − 1) 𝑐 + 1

𝛼𝑐
, (3)

which will gives an explicit expression for the maximal Y/(1 + Y).
In order to compare the ranges of efficiency of the power-law se-

lection to those of the tournament selection, in Figure 1 we provide
the plots of the maximal values of Y that satisfy conditions of Theo-
rem 9 for the power-law selection and for the tournament selection
with different values of parameter 𝑐 and tournament size 𝑘 . The
values for tournament selection were found using the non-convex
optimisation solver BARON, ran in global optimisation mode. Fig-
ure 1 indicates that the tournament selection with 𝑘 = 2 or 4 can
handle larger Y given the same density 𝛼 , compared to the power-
law selection with 𝑐 = 0.5 or 0.3. However with 𝑐 = 0.9, which is
closer to the uniform selection, the tournament selection yields to
the power-law selection for most of the values of 𝛼 . Note that to
overcome a local optimum, the EA needs sufficiently “weak” muta-
tion pressure. The power law selection has an advantage that the
value of 𝑐 can be chosen arbitrary close to 1 (if small 𝛼 requires
that), while the tournament size can not be less than 2.
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Figure 1: Maximal values of Y within conditions of Theo-
rem 9 for the power-law and tournament selections.

5 ERROR THRESHOLDS
Error thresholds are essential when analysing the efficiency of
non-elitist evolutionary algorithms. In particular, non-elitist evolu-
tionary algorithms without crossover with reproductive rate1 𝛼0,
and mutation rate 𝜒/𝑛 ≥ (1 + 𝛿) ln(𝛼0)/𝑛 for any constant 𝛿 > 0
have exponential runtime with overwhelmingly high probability on
any fitness function having no more than a polynomial number of
optima [20]. At the same time, the runtime of non-elitist EAs often
turns from exponential to polynomial when the mutation rate is de-
creased below the error threshold [5]. In fact, it has been observed
that non-elitist EAs tend to perform well on hard problems when
the mutation rate is chosen slightly below the error threshold [7].

The probability that power-law selection chooses any individ-
ual is upper bounded by (1/_)𝑐 . Hence, the reproductive rate of
this selection mechanism is upper bounded by _1−𝑐 . However, the
negative drift theorem for populations as stated in [20] assumes a
population selection-variation algorithm (PSVA) with reproductive
rate bounded above by some constant 𝛼0. But by carefully inspect-
ing the proofs, Lemma 2 and Theorem 1 in that paper still hold if
for the constant 𝛿 in that theorem, the constraint on 𝛼0 is relaxed to
𝛼0 ≤ 𝛿

(2+𝛿) (1+𝛿) · 𝑑 (𝑛), where 𝑑 (𝑛) = 𝑏 (𝑛) − 𝑎(𝑛) is the “distance”
in the drift theorem. From these considerations, we derive Theorem
12, which is a special version of Theorem 4 in [20] tailored to EAs
using power-law ranking selection. The theorem implies that the
error threshold is exceeded for power-law ranking selection when
the mutation rate satisfies for an arbitrary constant 𝛿 ∈ (0, 1)

(1 + 𝛿) (1 − 𝑐) ln _ ≤ 𝜒 ≤ 𝑛/𝑏 (𝑛) . (4)

Here, 𝑐 refers to the parameter in the power-law distribution. The
upper bound 𝑛/𝑏 (𝑛) where 𝑏 (𝑛) = 𝜔 (ln𝑛) is a technical condition
whichwe conjecture is not needed. Interestingly, the error threshold
increases logarithmically with the population size _.

Theorem 12. Consider Algorithm 1 with power-law ranking se-
lection with parameter 𝑐 as 𝑝sel and bitwise mutation as 𝑝mut, and
let 𝑎(𝑛) and 𝑏 (𝑛) be positive integers such that 𝑏 (𝑛) ≤ 𝑛/𝜒 and
𝑑 (𝑛) := 𝑏 (𝑛) − 𝑎(𝑛) = 𝜔 (ln𝑛). For an 𝑥∗ ∈ {0, 1}𝑛 , define 𝑇 (𝑛) :=
min{𝑡 | min𝑗 ∈[_] 𝐻 (𝑃𝑡 ( 𝑗), 𝑥∗) ≤ 𝑎(𝑛)}. If there exist constants
𝛿, 𝛿 ′ ∈ (0, 1) such that

1) _ <

(
𝛿′𝑑 (𝑛)

(2+𝛿′) (1+𝛿′)

)1/(1−𝑐)
2) 𝜓 := (1 − 𝑐) ln _/𝜒 + 𝛿 < 1
3) 𝑏 (𝑛)

𝑛 < min{1/5, (1/2) (1 −
√
𝜓 (2 −𝜓 )}

then for some constant 𝐶 > 0, Pr
(
𝑇 (𝑛) ≤ 𝑒𝐶𝑑 (𝑛)

)
= 𝑒−Ω (𝑑 (𝑛)) .

1The proof of Theorem 12 provides a formal definition of the reproductive rate.
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Figure 2: Runtime (function evaluations) on OneMax (𝑛 =

100) as a function of population size _ and mutation rate 𝜒 .

Proof sketch. The theorem is a corollary to Theorem 4 in [20].
We therefore only provide a proof sketch.

Define the reproductive rate of individual 𝑖 at generation 𝑡 as
𝑅𝑡 (𝑖) :=

∑
𝑗 ∈[_] [𝐼𝑡 ( 𝑗) = 𝑖], i.e., the number of times individual 𝑖

is selected from the population 𝑃𝑡 . By the definition of power-law
ranking selection, no individual has selection probability higher
than (1/_)𝑐 . It follows by condition 1 that for all 𝑡 ∈ R and 𝑖 ∈ [_],

𝐸 [𝑅𝑡 (𝑖)] ≤ _1−𝑐 =: 𝛼0 <
𝛿 ′𝑑 (𝑛)

(2 + 𝛿 ′) (1 + 𝛿 ′) . (5)

So this 𝛼0 is valid for the generalised variant of Theorem 1 in [20].
Now condition 1 of Theorem 4 in [20] is therefore satisfied. Also,

condition 2 of Theorem 4 in [20] follows from condition 2 in this
theorem. Finally, conditions 3 are identical in the two theorems. So
all conditions of Theorem 4 in [20] hold, and the result follows. □

To illustrate the striking impact of error thresholds on the run-
time, Figure 2 shows the runtime of the algorithm on OneMax
(𝑛 = 100) for different mutation rates. For power law parameter
𝑐 = 1/2, the left plot shows for mutation rates 𝜒 ∈ {2.5, 2.6, . . . , 4.7}.
For the power-law parameter 𝑐 = 3/4, the right plot shows the out-
come for mutation rates 𝜒 ∈ {1.3, 1.4, . . . , 2.5}. Both plots show re-
sults for population sizes _ ∈ {250, 500, . . . , 10000}. The “heatmaps”
are produced by computing the median of 100 independent runs for
each value of 𝜒 and _. Runs were capped at 106 function evaluations.
The dashed lines indicate the error threshold predicted by Eq. (4).

6 EXPERIMENTS
In this section, we empirically analyse the performance of the non-
elitist EA with power-law ranking selection on Funnel function
and randomNK-Landscape functions, and compare it to other EAs.

The Funnel function [6], a multi-modal artificial function, be-
longs to the SparseLocalOpt problem class. The runtime analyses
show that elitist EAs and the (`, _) EA require exponential time to
discover the optimum with overwhelmingly high probability, while
the 3-tournament EA with a mutation rate close to the error thresh-
old, i.e., 𝜒/𝑛 = 1.09812/𝑛, can achieve the optimum in𝑂

(
𝑛2 log(𝑛)

)
[6]. (The leading constant of the runtime is unknown.)

Figure 3 shows a box plot of runtimes of 100 independent runs
of non-elitist EAs using population size _ = 10000 ln(𝑛) with tour-
nament and power-law ranking selections on the Funnel function
with 𝑢 = 0.5𝑛, 𝑣 = 0.6𝑛, 𝑤 = 0.7𝑛. We use mutation rates close to
error thresholds for tournament selection, i.e., 𝜒/𝑛 = 0.693/𝑛 and
1.09812/𝑛 for tournament sizes 𝑘 = 2 and 3, respectively [20]. For
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power-law ranking selection, we try selection parameters 𝑐 = 0.3
and 0.8, and using mutation rates 𝜒/𝑛 = 4.5/𝑛 and 1.2/𝑛, respec-
tively. Note that the runtimes are divided by 𝑛2 ln(𝑛), and the y-axis
uses a logarithmic scale. The results imply that the power-law rank-
ing EAs can outperform tournament EAs on the leading constant
of runtime on Funnel for the problem size from 100 to 190.
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Figure 3: Runtime on Funnel. The𝑦-axis is scaled by 𝑛2 ln(𝑛).

The NK-Landscape problem [19] is to maximise the function∑𝑛
𝑖=1 𝑓𝑖 (𝑥𝑖 , . . . , 𝑥 (𝑖+𝑘−1) mod 𝑛), where 𝑛, 𝑘 ∈ N satisfying 𝑘 ≤ 𝑛,

𝑖 ∈ [𝑛] and 𝑓𝑖 : {0, 1}𝑘 → R is a set of sub-functions. Usually
functions 𝑓𝑖 are given as lookup tables with 2𝑘+1 values from (0, 1).

We optimise 100 random NK-Landscape instances for 𝑛 = 100
and 𝑘 ∈ {5, 10, 15, 20, 25}. We first randomly sample 100 instances
for each 𝑘 . Then we run the algorithms on each instance, and record
the highest fitness values found in the fitness evaluation budget
108 . This performance measure was chosen because estimation
of the runtime would require practically unacceptable CPU time.
For power-law ranking selection, we set the selection parameter
𝑐 = 0.8, the mutation rate 𝜒/𝑛 = 1.2/𝑛. We run the (1 + 1) EA
with the standard mutation rate 1/𝑛, the (`, _) EA with _/` = 8
and mutation rate 2.07/𝑛 [20], the UMDA [26] with _/` = 8, the
3-tournament EA with mutation rate 1.09812/𝑛 (this theoretically
chosen mutation rate has shown good results in experiment [6, 7]).
We set population size _ = 20000 for all population-based EAs.

Figure 4 shows that the highest fitness values achieved in 108
evaluations by the power-law ranking EA are higher than those of
(1 + 1) EA and UMDA. The Wilcoxon rank-sum test indicates that
the difference is significant with level 0.05 for 𝑘 ∈ {10, 15, 20, 25}.
The fitness values achieved by the power-law ranking EA are lower
than those of other non-elitist EAs (significance level 0.05).
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Figure 4: The best found fitness on NK-Landscape instances.

7 CONCLUSION
Recent theoretical work shows that non-elitist population-based
EAs using tournament selection or linear ranking selection can
optimise multi-modal problems in the SparseLocalOpt𝛼,Y class
in expected polynomial time where elitist EAs need exponential
time [7]. However, the precise runtime for these non-elitist EAs
are not available for most problems (see [11] for an exception).
It is possible that due to the large population, and weak selective

pressure often assumed, the leading constants could be considerably
larger than those for single-individual elitist EAs. On the other hand,
(`, _)-selection which allows a higher selective pressure lacks the
non-linear properties suitable for SparseLocalOpt𝛼,Y [7].

This paper introduces power-law ranking selection to non-elitist
EAs. This selection mechanism places an extremely strong selective
pressure on the fittest individuals, while retaining the non-linear
properties required to optimise SparseLocalOpt𝛼,Y efficiently. No-
tably, with population size _, the mutation rate can be chosen
𝜒 ≤ 𝑐 ′ ln(_) when 𝑐 ′ is a sufficiently small constant. For the tradi-
tional benchmark problems LeadingOnes and Jump, the non-elitist
EA with power-law ranking selection is fast, with nearly the same
performance as hill-climber algorithms that do not use popula-
tions. This is significant, because previous non-tight analyses of
non-elitist EAs left the possibility open that in practice, using large
populations would slow down the algorithms intolerably.

With the strong selective pressure, the algorithm tolerates much
higher mutation rates, leading to better runtime on Jump𝑟 . Experi-
mental results show that the EA with power-law ranking selection
is significantly faster on the multi-modal Funnel problem than
non-elitist EAs with tournament selection. Furthermore, power-law
selection outperforms UMDA and the (1+1) EA in our experiments
on the NK-landscape problem, but yields to the (`, _)-selection and
3-tournament selection.

As a technical contribution, we introduced a new level-based
theorem that takes into account the strong selective pressure on
the fittest individuals. We also derived new sufficient conditions
for efficiency on the SparseLocalOpt𝛼,Y problem class.

Future work should provide more precise runtime bounds for
power-law selection on Jump and other functions, and characterise
for what fitness landscapes power-law selection outperforms tradi-
tional selection mechanisms.
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A VARIOUS RESULTS
Lemma 13 (Lemma 11 in [23]). For any 𝛿 ∈ (0, 1) and 𝜒 > 0, if

𝑛 ≥ (𝜒 + 𝛿) (𝜒/𝛿), then
(
1 − 𝜒

𝑛

)𝑛
≥ (1 − 𝛿)𝑒−𝜒 .

Lemma 14 (Lemma 31 in [8]). For 𝑛 ∈ N and 𝑥 ≥ 0, we have
1 − (1 − 𝑥)𝑛 ≥ 1 − 𝑒−𝑥𝑛 ≥ 𝑥𝑛

1+𝑥𝑛 .

Lemma 15. For any 𝑐 ∈ (0, 1) and any 𝑎, 𝑏 > 0 holds
𝑐

𝑎1−𝑐
>

(𝑎 + 𝑏)𝑐 − 𝑎𝑐

𝑏
>

𝑐

(𝑎 + 𝑏)1−𝑐
.

Lemma 16. If 𝑓 (𝑥,𝑦) := (𝑥+𝑦)𝑐−𝑥𝑐
𝑦 , 𝑐 ∈ (0, 1) then 𝜕𝑓

𝜕𝑥 (𝑥,𝑦) < 0

and 𝜕𝑓
𝜕𝑦 (𝑥,𝑦) < 0 for all 𝑥,𝑦 > 0.

Lemma 17. If 𝑎, 𝑏 ≥ 0, then (𝑎 + 𝑏)𝑐 ≤ 𝑎𝑐 + 𝑏𝑐 for any 𝑐 ∈ (0, 1).
Lemma 18 ([20]). If Algorithm 1 in [20], satisfies conditions 3-5

in Theorem 1 in [20], and conditions 1 and 2 in that theorem for a
parameter 𝛼0 (not necessarily constant) where 𝛼0 ≤ 𝑑 (𝑛)𝛿

(2+𝛿) (1+𝛿) then

the associated mean matrix𝑀 has the Perron root 𝜌 (𝑀) < 1
1+𝛿/2 .
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