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Simulation of interacting elastic sheets in shear flow

Simulation of interacting elastic sheets in shear flow: insights into

buckling, sliding and reassembly of graphene nanosheets in sheared liquids
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1)Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Valdivia, Chile
2)Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge,

United Kingdom
3)Department of Mechanical Engineering, University of Birmingham, Birmingham, United Kingdom
4)Department of Civil and Structural Engineering, University of Trento, Trento, Italy
5)Process and Energy Department, Delft University of Technology, Delft, the Netherlands

(Dated: 19 April 2022)

In liquid-based materials processing, hydrodynamic forces are known to produce severe bending deformations of two-
dimensional (2D) materials such as graphene. The non-linear rotational and deformation dynamics of these atomically-
thin sheets is extremely sensitive to hydrodynamic particle-particle interactions. To investigate this problem, we de-
veloped a computational model of the flow dynamics of elastic sheets suspended in a linear shear flow, solving the
full fluid-solid coupling problem in the two-dimensional, slender-body, Stokes flow regime. Both single and pairs of
sheets in close proximity are analysed. Despite the model being two-dimensional, the critical non-dimensional shear
rate yielding single-particle buckling is comparable in order of magnitude to that reported for fully three-dimensional,
disk-like sheets. For pairs of interacting sheets, hydrodynamic interactions lead either to parallel sliding or bending,
depending on the value of an elasto-viscous number based on particle length. For sufficiently low bending rigidity or
large shear rates, large deformations of initially stacked sheets lead to sheet reattachment after separation, unlike for
the rigid case. A peeling-like dynamics where lubrication provides a viscous bonding force is observed for sheet pairs
when one of the two sheets is more rigid than the other. Practical implications for graphene processing and exfoliation
are discussed.

INTRODUCTION

FIG. 1: Transmission Electron Microscopy images of folded
graphene sheets following liquid-phase exfoliation of

graphite in a Taylor-Couette apparatus (solvent: NMP;
average shear rate 〈γ̇〉= 3.2×104 s−1).

Applications of graphene and other two-dimensional (2D)
materials suspended in shear liquids pose new scientific ques-
tions for the fluid dynamics and non-linear mechanics of thin
structures1234. Two-dimensional nanomaterials are sheet-like
crystals of atomic thickness which often take the form of col-
loidal particles. In this form, they are most often processed in

a)Also at School of Engineering and Materials Science, Queen Mary Univer-
sity of London, London, United Kingdom
b)Corresponding author; email: nicola.pugno@unitn.it
c)Corresponding author; email: l.botto@tudelft.nl

the liquid state (e.g. in inks5–7, coatings8,9, polymer nanocom-
posite processing10,11 and in liquid-phase exfoliation12,13).
During processing, sufficently energetic motion of the fluid
can deform these highly deformable nanostructures: 2D ma-
terial particles can bend, fold and buckle under sufficiently
large viscous shear and pressure forces. In this article we use
numerical simulations to get insights into the relation between
shear rate, bending rigidity, particle length and inter-particle
separation for sheet-like particles that are nearly touching, to
extend recent work on single deformable sheets2,14–18. 2D
nanosheets are prone to stacking in liquids, and therefore the
study of elastic sheets at close proximity is relevant to the
many situations in which the solid-liquid dispersion is not
very dilute and hydrodynamic interactions are thus important.

Two-dimensional materials have sub-nanometric thickness,
so atomistic methods seem an obvious choice for their sim-
ulation. However, in tackling flexibility there is a problem
of scales. Atomistic simulation techniques such as Molecular
Dynamics allow only relatively short sheets to be simulated
(typically, a few nanometers). For a sheet of length L and
bending rigidity D, suspended in a fluid of viscosity µ and
subject to a uniform applied shear rate γ̇ , the ratio of viscous
to bending forces can be estimated as

"viscous forces"
"bending forces"

∼
γ̇µL3

D
. (1)

Large deformations are expected when this ratio is sufficiently
large in comparison to a threshold value (which might depend
weakly on the aspect ratio19). From this expression it can be
seen that the dependence on L of the non-dimensional bending
rigidity is strong: a sheet of L = 10nm is predicted to be 106

times less deformable, for a given γ̇ , than a sheet with L =
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1 µm . In atomistic simulations, the sheets have L in the range
of a few nanometers and therefore behave typically as nearly
rigid sheets despite the large shear rates that are inherent in
atomistic simulation approaches. Capturing the dynamics of
relatively large sheets - the lateral size of graphene colloids
can be several microns - requires mesoscopic or continuum
simulation methods.

In the current work, we simulate the elastic sheets using
a line-integral approach for Stokes. The formulation can be
seen as a leading-order approximation to the Boundary Inte-
gral equations of Stokes flow for an elastic sheet in the limit
of neglible sheet thickness. The formulation is described in
detail, including formulation steps that are often superficially
discussed in the literature. From the point of view of the
discussion of the physics emerging from the simulations, the
novelty of the work is twofold. First of all, we consider im-
plications of our work for graphene dispersions, for ranges of
parameters relevant to this application area. There are sev-
eral publications on fluid-structure interaction with thin bod-
ies (typically fibers) in the fluid mechanics literature, but these
are typically motivated by understanding the mechanics of
biological structures20,21, and it is not clear how the results
could be applied to 2D nanomaterials. Secondly, we use the
code to explore a range of dynamic morphologies that emerge
when two sheets at close distance are exposed to a simple
shear flow (i.e. a velocity field that varies linearly in one
of the co-ordinate direction and contains a rotational compo-
nent). The case of two particles at close distance is particu-
larly relevant to the dynamics of liquid-phase exfoliation and
flow-induced deaggregation post stacking, and has not been
considered in the fluid dynamics literature (previous work on
parallel elastic fibres is relevant, but the range of distances
considered is much larger than in the current work22).

Very recent simulations of single sheets in simple shear
flow represents single sheets as a collection of beads, with
hydrodynamic interactions based on Rotne-Prager-Yamakawa
approximation accounting for the long-range hydrodynamic
interactions between different elements of the sheet14. The
line integral formulation of our method is based on discretis-
ing a boundary integral equation, and includes both long-
range and short-range interactions. Furthermore, our simu-
lations are 2D while those in Ref.14are 3D. Relevant is also
recent simulation work on elastic sheets in planar or biaxial
extensional flows15. The main focus of that work was under-
standing the limit in which a sheet stretches without bound at
a critical rate of extension. Besides the marked differences
between particle dynamics in extensional and simple shear,
stretching deformations are important for two-dimensional
polymers, but only marginally for graphene and other 2D crys-
tals due the very high tensile modulus these nanostructures
display.

The current investigation has a practical motivation. The
challenge of observing dynamic changes in the morphology
of 2D nano-sheets experimentally is remarkable. We are not
aware of a single main-stream experimental technique that
allows to access the deformation dynamics of single sheets
in shear flow. Static techniques, such as Transmission Elec-
tron Microscope (TEM) and Scanning Electron Microscopy

(SEM), are often used to characterise the morphology of
2D nanosheets23,24 (in Fig. 1 we show highly-deformed
nanosheets from TEM images obtained by one of the authors
with the experimental procedure described in Ref.25). These
techniques, however, provide only static information, and do
not help explaining how complex nanosheet morphologies are
obtained. We hope that our simulations will give insights use-
ful for interpreting these experimental observations.

I. NUMERICAL MODEL

The simulations consider elastic sheets of length L and
thickness h ≪ L, immersed in an incompressible, unbounded
fluid of viscosity µ . The model is two-dimensional, i.e., we
represent each sheet by considering the dynamics of its cross-
section in the x−y (flow) plane. The undisturbed velocity field
is denoted as u∞ = γ̇yex, where ex is the unit vector along the
x-coordinate parallel to the undisturbed flow. We neglect the
inertia of each sheet and assume that the flow around each
sheet is governed by the incompressible Stokes flow equa-
tions. These two assumptions hold well for small colloidal
particles. The no-slip condition is assumed to hold at the
solid-liquid boundary. The no-slip condition is often not sat-
isfied by 2D nanomaterials26, but we make this assumption
here for simplicity and as a model for all the cases in which
the hydrodynamic slip length is smaller than the particle thick-
ness (for a discussion of the limitations of this assumption for
graphene and other 2D nanomaterials, see Refs.2,16,27 ). At
the start of the simulation the sheet centres are located at (in
the single-sheet case) or near (in the two-sheet case) the origin
x = 0,y = 0.

A. Line integral formulation

Our numerical solution to the fluid structure interaction
problem is based on a regularised Stokeslet approach whereby
the regularised Stokeslet is applied at the centreline of the
elastic body. This is an approximate model that has been
employed with success in a variety of fluid-structure inter-
action problems20,21,28–30. The centreline approximation of
the disturbance velocity produced by each sheet represents the
leading-order approximation in a multipole expansion of the
flow produced by the sheet, and is conceptually similar to the
approximation used, for example, in the slender body theory
for rods31. We describe the formulation for a single body, de-
tailing assumptions. The boundary integral representation of
the Stokes equation for a body bounded by a line contour C

is32

u(x, t) = u∞(x)−
1

4πµ

∫

C
G(x,x0) · f(x0)dℓ(x0) (2)

+
1

4π

∫

C
u(x0) ·T(x,x0) ·n(x0)dℓ(x0).

Here, t is time, n is the unit normal to C pointing towards the
interior of the body, u is the fluid velocity, u∞ is the undis-
turbed fluid velocity (simple shear in our case), f = σ · n is
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the hydrodynamic traction, and G and T are the Oseen ten-
sors associated to the velocity and stress fields, respectively.
The position vectors x0 and x0 are evaluated on the contour
C and in the fluid region, respectively. The time dependence
originates from the dependence of the domain of integration
C on time.

Because we neglect the sheet’s inertia, an exact balance
holds between the total hydrodynamic traction on each small
element of the sheet (including both sides of the sheet) and
the internal elastic forces acting on that element. These latter
are only a function of the configuration of the elastic body. If
the second integral on the right-hand side (the double layer

integral) was zero, one could update equation (2) in a step-by-
step manner: calculate the sheet configuration, from the con-
figuration calculate the traction, and from the boundary veloc-
ity calculate the new configuration. For a general deformable
body, the double layer integral on the right-hand side of Eq.
(2) is not zero. However, when the body is thin and inexten-
sible, changes in thickness are negligible and one can assume∫

C u(x0) · n(x0)dℓ(x0) ≃ 030. Under this approximation, Eq.
(2) simplifies to32:

u(x, t) = u∞(x)−
1

4πµ

∫

C
G(x,x0) · f(x0)dℓ(x0) (3)

In the classical boundary integral method, evaluation of this
equation in the limit x → x0 together with the use of the no-
slip boundary condition on C leads to an integral equation for
f. This approach requires the analytical integration of the sin-
gular kernel G over the discretisation element32. While this
is doable in 2D, it is much more cumbersome in 3D. As we
seek an approach that could eventually be extended to com-
plex and potentially multiparticle three-dimensional simula-
tions, we discretise Eq. (3) by using a non-singular kernel
Gε , parameterised on a regularisation length ε29,33. The ad-
vantage of adopting a regularised Green’s function is that the
integral involving a non-singular kernel can be discretised us-
ing standard formulas. We adopt a second-order mid-point
approximation whether the point x0 coincides with x or not.
The smoothing intrinsic in the adoption of a regularised ker-
nel has also advantages in terms of numerical stability of the
resulting code. In our implementation, we adopt the following
regularised Green’s function29:

Gε
jm = δ jm

(
log(R0 + ε)−

ε(R0 +2ε)

R0(R0 + ε)

)
−

x̂ j x̂m(R0 +2ε)

R0(R0 + ε)2

(4)
where we have used index notation for the Green function ten-
sor and the position vectors; x̂ j = x j − x0 j is the j-th compo-
nent of x−x0 and R0 =

√
|x−x0|2 + ε2. In the limit ε → 0,

Eq. (4) recovers the (singular) 2D Green’s function of Stokes
flow.

We adopt a leading-order approximation for the line inte-
gral (3), in which the non-singular kernel is evaluated at the
centerline of the body. To see how the method works, con-
sider the case illustrated in Fig. 2. In this example the body’s
centerline is straight. Evaluating the integral (3 on the upper
surface C+ = {(s,h(s)/2)} of the body gives

FIG. 2: Parameterisation of the integral for a straight body of
thickness h. The domain of integration C is composed of an

upper surface C+ and a lower surface C−, located
symmetrically about the centerline position X(s).

u(s,h/2, t)−u∞(s,h/2, t) =

(5)

−
1

4πµ

∫ s′=L

s′=0
Gε(s,h(s)/2;s′,h(s′)/2) · f(s′,h(s′)/2)dl

−
1

4πµ

∫ s′=L

s′=0
Gε(s,h(s)/2;s′,−h(s′)/2) · f(s′,−h(s′)/2)dl

where s and s′ are curvilinear coordinates along the centerline,
the function h(s) describes the thickness of the body and dl is
an infinitesimal element of length. Because h is small, with
an O(h) error, we can approximate the Green’s function as
follows:

Gε(s,h(s)/2;s′,h(s′)/2)≃ Gε(s,0;s′,0) (6)

Gε(s,h(s)/2;s′,−h(s′)/2)≃ Gε(s,0;s′,0) (7)

Inserting these approximate expressions into (5) yields

u(s,0, t)−u∞(s,0, t) = −
1

4πµ

∫ s′=L

s′=0
Gε(s,0;s′0) ·∆f(s′)ds′

(8)
where ∆f(s′) = f(s′,h(s′)/2)+ f(s′,−h(s′)/2) is the total force
on the body (per unit length) on an element centered at s′; the
fluid velocity has been evaluated, also with an O(h) error, at
the body’s centerline. Also, to leading order dℓ = ds′ away
from the edges. For a generally curved body, the procedure is
the same, leading to

∂X

∂ t
= u∞(X)−

1
4πµ

∫

C0

Gε(X(s),X(s′)) ·∆f(s′)ds′, (9)

where C0 denotes the body’s centerline. In this equation, we
have used the no-slip condition to write ∂X(s,t)

∂ t
= X((s), t). If

the force density ∆f can be expressed in terms of the centerline
shape X(s, t), Eq. (9) can be marched numerically in time to
find the centerline position at each time step.

The regularised Stokes approach with a centreline approx-
imation has been shown to lead to accurate 3D solutions of
a sheet moving according to an assigned kinematics30. Here
instead the motion of the centreline is not assigned, but is gov-
erned by the system of forces acting on the elastic body. Eq.
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(9) is valid provided that h is much smaller than the mini-
mum radius of curvature of the centerline. Higher-order ap-
proximations are possible retaining more terms in the Taylor
expansion for the Green’s function.

B. Closure between hydrodynamic and elastic forces

To update Eq. (9), it is necessary to relate ∆f to the con-
figuration of the sheet. A thin flexible sheet in a shear flow
is subject to a normal hydrodynamic traction from the fluid
“pushing” onto the slender surface of the sheet. Since these
stresses act in the normal direction to the surface, they can
be assumed to be independent of the thickness h of the sheet.
The nanosheet will also experience tangential traction over its
boundary, that scale with the thickness of the sheet34. There
will be two components due to the tangential traction. One
is a shearing component which translates into a line distribu-
tion of couples on the sheet. This term is proportional to h34.
The second component instead produces an axial force on the
sheet. This term is independent of h in the limit h/L → 0. For
thin sheets the axial and normal forces are much greater than
the tangential force and any contribution from the hydrody-
namic force on the edges provided that the sheet is not flat and
perfectly aligned with the flow34. In our model, since we are
interested in understanding the dynamics when the sheet de-
formations are large, then the tangential and edge forces will
be neglected (a study of edge and tangential shearing effects
is presented in Ref.2; for the effect of edges on hydrodynamic
peeling and sliding of graphene sheets, see Refs.35,36). Given
the elastic energy of the body at a certain time, E (X, t), the
force exerted by the body on the fluid can be calculated. Re-
taining only the normal total traction and the axial force we
can derive from the bending and tension of the central line
according to

F =−
∂E

∂X
. (10)

where F = ∆fwds is the total hydrodynamic force on an el-
ement of length ds and width w (this last quantity will drop
out from the calculations, but we retain it to avoid confusion
regarding the meaning of “force per unit length”). The elas-
tic energy can be decomposed into a tensile component and a
bending component as E = ES +EB. The tensile (stretching)
and bending components are given, respectively, by20,29,37

ES =
1
2

Kw

∫

L

(∣∣∣∂X

∂ s

∣∣∣−1
)2

ds, (11)

EB =
1
2

Dw

∫

L
(κ(s))2 ds, (12)

where κ(s) is the curvature of each sheet and s is the curvilin-
ear coordinate. The parameters K (Nm−1) and D (Nm) are the
tensile and bending rigidities of the sheet, respectively.

C. Implementation and validation

Each sheet is discretised into N points of coordinates Xi(t).
The nodes are connected by springs with spring constant kS

that resist compression and extension of the sheet. Bending
forces are accounted for by implementing rotational springs
on each node, with spring constant kB

20,37.
The discretised stretching energy at a fixed time is given by

ES ≃
1
2

N−1

∑
i=1

kS(|Xi+1 −Xi|− l0)
2, (13)

where l0 is the length of the springs at rest. The corresponding
bending energy is

EB ≃
1
2

N−2

∑
i=1

kB(|Xi+1 −Xi||Xi −Xi−1|sinθi)
2, (14)

where θi is the angle between two consecutive segments. For
(13) and (14) to recover equations (11) and (12) in the contin-
uum limit l0/L → 0, kS and kB are given by kS = Kwl−1

0 and
kB = Dwl−5

0
20. The discretised traction ∆f = F/(l0w), cal-

culated by taking the derivative of the discretised energies, is
inserted into equation (9) to obtain

∂Xi

∂ t
= u∞(Xi)+ (15)

1
4πµ

∫

L
dℓGε ·

[
K

2l2
0

∂

∂Xi

(

∑
j

(
|X j+1 −X j|− l0

)2

)]
+

1
4πµ

∫

L
dℓGε ·

[
D

2l6
0

∂

∂Xi

(

∑
j

(
|X j+1 −X j||X j −X j−1|sinθ j

)2

)]
.

This equation is marched in time with an explicit Euler
method to find the new sheet configuration.

The accuracy of the code has been verified by considering
the relaxation of a sheet presenting an initial sinusoidal per-
turbation in the absence of an external flow . Consider a sheet
initially oriented in the x direction, immersed in a fluid at rest.
If a small initial perturbation in the y direction is considered,
the displacement of the plate can be parametrised by a func-
tion ξ (x). For |∇ξ | ≪ 1, the traction forces are directed in the
y-direction and are given by fy(x) = D∂ 4ξ/∂x4. For small
vertical displacements, the 2D Green’s function can be ap-
proximated as

G =

(
− ln |x− x0|+1 0

0 − ln |x− x0|

)
. (16)

Thus, equation (9) reduces to

∂ξ (x0)

∂ t
=

1
4πµ

∫

L
ln |x− x0|D

∂ 4ξ

∂x4 dx. (17)

This equation can be readily solved by Fourier transform in
the limit L → ∞ to obtain a differential equation for each
Fourier component ξ̂ (k):

∂ ξ̂ (k)

∂ t
=−

Dk3

4µ
ξ̂ (k). (18)
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(The Fourier transform gives also delta function term, but this
is zero on account of the fact that the total force on the sheet
is zero for a non-inertial particle not acted upon by external
forces38.) Thus, a sinusoidal deformation should decay ex-
ponentially with a decay constant Tk = 4µ/(Dk3). Fig. 3
compares simulation results for an initial sinusoidal perturba-
tion of wavenumber k = 2π and amplitude A0/L = 0.01 with
the analytical solution, for different numbers of discretisation
points N. As shown in Fig. 3(a), the numerical results ap-
proach the analytical solution as N increases. In our simula-
tions we use N = 51 as a good compromise between accuracy
and speed of the code.

0 0.005 0.01 0.015 0.02

t=Tk

0

0.002

0.004

0.006

0.008

0.01

A
/L

N=11
N=51
N=101
analytical solution

(a)

0 0.005 0.01

t=Tk

0

0.005

0.01

A
=L

0 = 10!2

0 = 10!5

0 = 10!6

0 = 10!7

(b)

FIG. 3: (a) Relaxation of the displacement amplitude A(t) for
different discretisation point numbers N. The numerical

results approach the analytical solution as N increases. (b)

Relaxation of the displacement amplitude A(t) for different
values of the regularisation parameter ε .

The parameter ε in the regularised Stokeslet is usually cho-
sen to be of the order of the radius of the rod (for 1D bodies
such as flagella29) or the thickness of the sheet in the case of
2D particles30. This choice has been applied in particular for
bodies with moderately small aspect ratio (ε ∼ 10−1 −10−2).
In our test for extremely thin particles such as nanosheets for
which a typical value is ε ∼ 10−3, the regularisation param-
eter does not influence the relaxation dynamics, as shown in
Fig. 3(b). The code sensitivity test to the parameter ε has
been performed with the same initial configuration used in
the code validation paragraph: a sinusoidal displacement with
A0/L = 10−2 and k = 2π is applied to a sheet immersed in a

-5 0 5 10 15 20 25 30 35 40
-p/2

-p/4

0

p/4

p/2

q

 N = 11
 N = 51
 N = 101
 arctan(gt)

q

t
(a)

-5 0 5 10 15 20 25 30 35 40
-p/2

-p/4

0

p/4

p/2

t

  = 10-2

  = 10-5

  = 10-6

  = 10-7

 arctan(gt)q

(b)

FIG. 4: Rotational dynamics of a rigid sheet in a shear flow
compared to the analytical solution of Jeffery’s orbit for an
initial angle different from zero: (a) different numbers of

discretisation points N, and (b) different values of the
parameter ε . Note that the origin of the horizontal axis is

chosen so that θ = 0 (particle oriented perpendicular to the
flow) when t = 0.

quiescent fluid with Tk = 1/(20π3). As shown in Fig. 3(b)
the exponential relaxation does not show a significant depen-
dency on ε . In the simulations presented in the results section
the value ε = 10−6 was used.

To further validate our code, the rotational dynamics of a
rigid sheet initially oriented at an angle of 6◦ with respect to
the undisturbed flow direction (θ = −84◦ with respect to the
flow normal, see inset of Fig.4(a)) is compared against Jef-
fery’s analytical solution. The rigidity constraint is obtained
by setting the non-dimensional tensile and bending rigidity
parameters to large values. Parameters that are varied are the
number of discretisation points N (Fig. 4(a)) and the value of
the regularisation parameter ε (Fig. 4(b)). The comparison
with Jeffery’s solution θ(t) = arctan(γ̇t)39, valid for h/L → 0,
is excellent for the values of N and ε considered.

RESULTS

In the following section we analyse simulations considering
either a single sheet or two sheets initially parallel at close
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(a)

(b)

FIG. 5: (a) A simple shear flow can be decomposed into a
purely rotational flow and an extensional flow with

extensional and compressional axes oriented as in the figure.
(b) Background velocity u∞, disturbance velocity uD and

total velocity uS = u∞ +uD along an initially straight sheet.
The velocities are plotted every 10 discretisation points.

separation d0. The dimensional parameters appearing in Eq.
(9) with the closure given by Eq. (10) are γ̇ , D, K, µ and L,
the latter variable appearing in the domain of integration. The
initial condition in the two-sheet simulation also introduces
the extra length scale d0. With these, we can construct three
non-dimensional parameters governing the dynamics of the
sheets: the ratio of viscous and bending forces,

̂̇γL =
µγ̇L3

D
, (19)

the ratio of viscous and tensile forces,

K̂ =
µγ̇L

K
, (20)

and d0/L. Graphene and other 2D nanomaterials have very
large in-layer strength (of the order of ∼ 100 GPa and more40),
hence typically K̂ is so small to be unimportant in controlling
the rotational and deformation dynamics15. In all our simula-
tions we therefore set K̂ = 10−3. Thus, the important param-
eters are the elasto-viscous number ̂̇γL and d0/L, the single-
particle dynamics corresponding to d0/L → ∞.

We prescribe an initial shape perturbation, which can
be either sinusoidal (odd perturbation of the form ξ =
a0/Lsin(2πx/L) with 0 ≤ x ≤ L) or following a cosine func-
tion (even perturbation of the form ξ = −a0/Lcos(2πx/L)).
The use of such perturbation was found necessary both in both

tγ̇ = 2 tγ̇ = 6

tγ̇ = 7 tγ̇ = 8

tγ̇ = 9 tγ̇ = 10

(a)

tγ̇ = 0 tγ̇ = 5

tγ̇ = 6 tγ̇ = 7

tγ̇ = 9 tγ̇ = 11

(b)

FIG. 6: (a) Single sheet dynamics for ̂̇γL = 100 and an initial
sinusoidal perturbation with a0/L = 10−3. (b) Shapes of
identical sheets subject to different initial perturbations:

a0/L = 10−2 for the black line and a0/L = 10−3 for the red
line.

the single- and two-particles simulations (this feature is in-
trinsic in methods that neglect the thickness and the accompa-
nying tangential and edge forces14), and characterises many
published simulations of fibers, see Ref.41 for example. In sin-
gle particle simulations, an initial inclination angle was also
found necessary to observe a rotational dynamics. This be-
haviour can be understood from the following considerations.
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tγ̇ = 5 tγ̇ = 7

tγ̇ = 8 tγ̇ = 9

tγ̇ = 11 tγ̇ = 13

(a)

tγ̇ = 40 tγ̇ = 50

tγ̇ = 55 tγ̇ = 60

tγ̇ = 65 tγ̇ = 70

(b)

FIG. 7: (a) Single sheet dynamics. Deformation mode with
more than two changes in curvature along the length of the
sheet for ̂̇γL = 2000. (b) “C” shape deformation of a sheet

with an initial even perturbation and ̂̇γL = 2000. For a video
of the simulations, see Supporting Information.

A simple shear flow can be decomposed into a pure rotation
and a bi-axial extensional flow. The latter is characterised by
a compressional and extensional axis, which for our case are
oriented as in Fig. 5(a). If a straight sheet is considered, the
second integral in equation (15), which represents the veloc-
ity perturbation by bending forces, is exactly zero. In this case
the sheet velocity is given by the sum of the background ve-

locity and the velocity due to the tensile traction forces. For a
straight sheet oriented along the undisturbed flow, the tensile
forces are also parallel to the undisturbed flow, hence the sheet
does not rotate. This occurs because of the assumption of no
tangential and edge forces. If an inclined but initially straight
sheet is considered, the integral associated with the bending
force is zero, and again only the tensile traction forces act on
the sheet tangentially. The background flow is parallel to the
undisturbed flow and, combined with the tangential tractions,
causes a convective velocity always perpendicular to the sheet
and varying linearly along the sheet length (see Fig. 5(b)).
The resulting motion is therefore a pure rotation without bend-
ing. Finally, if a shape perturbation is prescribed without an
initial inclination, the perturbation decays before the sheet be-
gins the rotational dynamics, and again the sheet rotates as a
perfectly straight sheet.

We first consider a single sheet initially oriented at a small
angle, π/30, for ̂̇γL = 100. The initial deformation is sinu-
soidal with amplitude a0/L = 10−3. As can be seen in Fig.
6(a), the body deforms into an “S” shape when approaching
the compressional axis of the flow. The sheet continues to
rotate, reaching a maximum deformation when the average
sheet orientation is roughly along the direction perpendicular
to the flow, where the hydrodynamic force normal to the sheet
is greatest. As the sheet crosses the extensional axis of the
flow, it relaxes to a straight shape.

In figure 6(b) we compare the shape evolution of two sheets
being characterised by two different perturbation amplitudes
a0/L = 10−2 (black line) and a0/L = 10−3 (red line). We
fix ̂̇γL to a relatively large value, ̂̇γL = 1000, to make the dif-
ference between the two cases more evident in the figures.
The sheet with larger initial perturbation (black line) deforms
faster than the red sheet and bends into an “S” shape (Fig.
6(b), t γ̇ = 5). This shape is maintained by the black sheet
at all times, while the red sheet shows signature of a large-
deformation mode whereby the curvature of the sheet changes
more than two times along the length of the sheet (see e.g. the
red sheet in the panel corresponding to t γ̇ = 7). As the sheets
approach the extensional axes of the flow, the shapes of the
two sheets become practically identical near the midpoint of
the sheets. Interestingly, when the black sheet is aligned along
the compressional axis it temporarily deforms without rotat-
ing. This feature occurs also for the red sheet, but the effect is
less evident in this case.

In figure 7 (a) we consider the case ̂̇γL = 2000 and an initial
orientation closer to the compressional axis of the shear flow.
Because γ̇L is larger than in Fig. 4b, the amplitude of the sheet
deformation is significantly more pronounced, particularly in
the first part of the rotation. When the sheet orientation ap-
proaches the extensional axis, the sheet again relaxes to an
“S” shape. Importantly for our later discussion on the pos-
sibility of self-adhesion, the minimum radius of curvature is
seen to be smaller in Fig. 7(a) than in Fig. 6(b).

Figure 7(b) considers an even (cosinusoidal) initial pertur-
bation while the non-dimensional shear rate is the same as in
Fig. 7(a) (̂̇γL = 2000). With a cosine perturbation and at this
non-dimensional shear rate, the sheet rolls onto itself, produc-
ing a characteristic “C” shape. The minimum distance be-
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tween different parts of the sheet is smaller than in Fig. 7(a),
despite the identical value of ̂̇γL. If a lower non-dimensional
shear rate is considered, the sheet dynamics is similar to Fig.
7(b), except that the “C” is less flattened (i.e., the radius of
curvature of the fold is larger).

The simulations illustrate that the single-sheet dynamics
is essentially characterised by three recurring deformation
modes : the “S” shape, the “C” shape and a deformation mode
with more than two changes in curvature along the length of
the sheet. Depending on the initial perturbation and on the
flexural rigidity of the sheet, the sheet assumes one of these
shapes while rotating. These deformation modes have been
observed in experiments42 and simulations22,37,41,43 of flexi-
ble fibres.

It is of interest to compare the critical shear rate for flow-
induced shape instability of rods and sheets (here we use the
name “sheets” as a shorthand for plates, flakes or any disk-
shaped particle). For both shapes, the axial compressive force
produced by the fluid when the particle is oriented along the
compressional axis is ∼ µa2c, where a = L/2 is the semi-
length of the body and c is at most a weak function of the
aspect ratio (for rods, c depends logarithmically on the as-
pect ratio41,44; for thin oblate spheroids, an approximate ex-
pression for the critical buckling threshold derived by Lingard
and Whitmore44 assuming a purely axial hydrodynamic load
model is consistent with c = ( 3

π )10.36(1− 3π
4 α), where α is

the small aspect ratio). When this axial hydrodynamic force
becomes equal to a structural instability threshold of the order
of ∼ B/a2 a (large-deformation) shape instability sets in42,45.
These estimates demonstrate that for both sheets and disks the
critical shear rate to observe large deformations (deformation
amplitude comparable to L) is

γ̇critical ∼
B

a4

c

µ
(21)

For sheets, B ∝ Eab3, where E is the Young modulus and b

the half-thickness, thus γ̇critical has the same scaling with L as
in Eq. (19). For rods, B is instead proportional to Eb4 (e.g.,
for a rod of circular cross-section of radius b, B = E π

4 b4).
Thus, for a given aspect ratio, and neglecting the weak depen-
dence on c, the critical shear rate for a sheet is approximately
O(a/b) larger than the critical shear rate for a rod. The higher
likelyhood of observing fibre bending due to lower thresholds
may be one of the explanations for why bending of fibers has
been studied more extensively than bending of disks or other
plate-like particles.

We now turn to two particle ("two-sheet") simulations. In
our investigation we have explored a range of initial distances:
d0/L = 0.1, 0.05 and 0.01. We here report some of the most
representative results. Unless specified, the sheet pairs are
initially aligned with the flow and an initial shape perturbation
is applied.

Figure 8 (a) shows the pair dynamics in the case ̂̇γL = 10.
The initial sinusoidal sheet perturbation (we use a0/L = 0.05)
quickly relaxes and the sheets become practically flat already
at t γ̇ = 5. The subsequent motion consists essentially of a
rigid rotation of the pair, until both sheets align in the flow
direction. At this orientation the sheets slide with respect to

tγ̇ = 5 tγ̇ = 10

tγ̇ = 12 tγ̇ = 14

tγ̇ = 16 tγ̇ = 20

(a)

tγ̇ = 2 tγ̇ = 5

tγ̇ = 9 tγ̇ = 12

tγ̇ = 16 tγ̇ = 25

(b)

FIG. 8: (a) Dynamics of twp moderately rigid sheets
(̂̇γ = 10) for d0/L = 0.05, showing a rotational motion and a
sliding detachment without strong bending of the sheets. The

initial perturbation is sinusoidal with a0/L = 0.05. (b)

Deformation of and hydrodynamic interaction between two
sheets with an initial odd perturbation (a0/L = 0.005), initial

distance d0/L = 0.1 and ̂̇γL = 100.

each other without bending, maintaining an orientation nearly
parallel to the undisturbed streamlines.

One might wonder why for ̂̇γL = 10, which is significantly
larger than 1, the sheets still behave as rigid elements. This
apparent inconsistency can be explained by considering a bet-
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ter approximation of the respective orders of magnitude of the
viscous and bending forces, obtained by using the semi-length
a = L/2 instead of L. A non-dimensional shear rate of 10
based on L corresponds to a non-dimensional shear rate based
on a of 10/8 = 1.25, which is O(1) as expected. Of course,
whether the length or the semi-length is chosen is unimpor-
tant, as long as it is understood that a value of ̂̇γL = 10 is not
large as far as flexibility is concerned.

In figure 8(b) we consider two sheets for ̂̇γL = 100. The
sheets are initially parallel and separated by a distance d0/L =
0.1. A sinusoidal perturbation of amplitude a0/L = 0.05 is
imposed. After an initial sliding motion, the sheets deform
into mirror-symmetric“C” shapes (the sheets deform into a
“C” shape even if their initial shape is sinusoidal, unlike for
the single-sheet case). During the deformation, the minimum
separation first increases and then decreases. For t γ̇ = 25 the
sheets have reached approximately the initial separation. We
call this dynamics “sheet reassembly”.

If the non-dimensional shear rate is increased to ̂̇γL = 1000,
the sheet dynamics becomes more complex, with different
bending modes occurring at different times (Fig. 9) (a). At
the initial stages of the dynamics, the particles assume an “S”
shape. Afterwards they display deformation with more than
2 curvature changes (t γ̇ = 6.5) along the length of the sheet.
Later they assume a “C” shape (t γ̇ = 10), before finally relax-
ing to a straight shape (t γ̇ = 15). Although the initial inter-
particle distance and the initial perturbations are the same as
in Fig. 8(b), in Fig. 9(a) the minimum distance between the
sheets remain roughly comparable to the initial distance at all
times ( in Fig. 8 the minimum distance increases significantly
at intermediate times).

If smaller initial distances are considered, d0/L = 0.01,
the lubrication forces between shape-conforming sheets keep
the sheets adhered to each other for relatively long times
(Fig. 9)(b). Normal lubrication forces between two two-
dimensional parallel sheets of finite length L located at a

distance d scale as Flub ∼ µL4

d3 ḋ, where ḋ is the separation
velocity46. Because d/L ≪ 1, this scaling corresponds to
small normal velocities of the order of ∼ d3

L2 γ̇ when the outer
portion of the sheet pair is subject to a force ∼ µγ̇Lw.

In Fig. 9(b) we show the dynamics of two sheets for
̂̇γL = 2000 and an even initial perturbation. The initial sep-
aration is d0/L = 0.01, one tenth of that in Fig. 9(a). When
the sheets are approximately straight (t γ̇ ≤ 25), the overlap
between the sheets decreases in time as the two sheets slide
past each other. However, for t γ̇ = 35 the end of one of the
two sheets curves following the vorticity of the undisturbed
flow, forming a fold that “shields” the other sheet from the
influence of the external flow. The second sheet thus experi-
ences a weaker interaction with the external flow than in the
initial stages of the dynamics, and its motion can be plausibly
considered to be mainly controlled by the close-ranged hydro-
dynamic interaction with the first sheet.

In liquid-phase exfoliation for the production of graphene
from graphite particles, the microscopic exfoliation is thought
to be caused in part by the “peeling” of single or few-layer
graphene sheets from a relatively rigid mother particle12,35.

tγ̇ = 2.5 tγ̇ = 6.5

tγ̇ = 8 tγ̇ = 10

tγ̇ = 13 tγ̇ = 15

(a)

tγ̇ = 10 tγ̇ = 25

tγ̇ = 35 tγ̇ = 40

tγ̇ = 50 tγ̇ = 60

(b)

FIG. 9: (a) Interaction between two sheets for an initial odd
perturbation (a0/L = 0.05), initial distance d0/L = 0.1 and
̂̇γL = 1000. (b) Initial even perturbation (a0/L = 0.05), initial

distance d0/L = 0.01 and ̂̇γL = 2000. For a video of the
simulations, see Supporting Info.

To model this situation, in Fig. 10(a) we prescribe an initial
shape resembling a lifted flap to one of the sheets (the “upper”
sheet) , as done in Ref.35. Furthermore, to model the larger
rigidity of a mother particle, we prescribe for the upper sheet
a value of γ̇L ten times larger than that of the lower sheet.

In Fig. 10(a) the presence of the flap favours a dynamics
in which the upper sheet bends while the lower sheet barely
deforms initially. The dynamics resembles, qualitatively, that
of classical peeling, well studied in solid mechanics, which
is based on a competition between bending forces and short-
range adhesion forces (due, e.g., to van der Waals interac-
tions). Normal lubrication forces depend on separatation dis-
tance (d(t)) and relative velocity of separation (ḋ) between ad-
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jacent surfaces. Conservative adhesion forces depend only on
relative distance. However, the two forces can lead to qualita-
tively similar dynamics if the external force causing peeling is
applied on a relatively fast time scale. Consider, for example,
two initially bonded sheets, completely immersed in a liquid
(a configuration examined experimentally in Ref.46). An edge
force is applied to one of the edges of the upper sheet while
the lower sheet is stationary . Assume that lubrication forces
are the only resistive forces acting on the top sheet. If the
external edge force is applied quasi-statically, or very slowly,
the shape of the upper sheet has time to relax to a straight
shape. However, if the edge force was applied on a short time
scale, the edge would peel off first, bending the sheet, while a
portion of the deformable sheet would be kept “glued” to the
stationary sheet by lubrication forces. This example suggests
a qualitative analogy between peeling with lubrication forces
and peeling with conservative adhesion forces depending on a
suitably defined elasto-viscous response time46. In our case,
the time-scale of the external forces is likely to be γ̇−1, as this
is the time that defines the external flow field.

Finally, figure 10(b) illustrates the dynamics of two ex-
tremely flexible sheets (̂̇γ = 2000) for d0/L= 0.01 and an even
initial perturbation. For this small separation, the hydrody-
namic interaction between the sheets forces the two particle
to move almost as a single, compound body. The hydrody-
namic interaction change the tendency of the sheets to bend
in an even or odd mode. Indeed, the initial even perturbation
evolves into a complex deformation mode with more than 2
change in curvature and then into an (odd) “S” shape.

II. DISCUSSION

The single-sheet simulations result indicate a strong depen-
dence of the deformation and rotational dynamics on the ini-
tial conditions: small changes in the initial shape of the sheets
can lead to significantly different time evolutions (Fig. 6). The
sensitivity to the initial conditions makes it difficult to define
precise ranges of ̂̇γL corresponding to different dynamical be-
haviours. In our simulations marked deformations with evi-
dent “S”, “C” or complex buckling shapes with a characteris-
tic curvature ∼ 1/L become apparent for a critical value of the
elasto-viscous number ̂̇γL ≃ 100. Growing curvatures ≪ 1/L

are already noticeable for ̂̇γL ∼ 10. For comparison, the buck-
ling threshold for rods is γL = 153.48

8π c, where c = − ln(α2e)

with e the Euler constant and α the aspect ratio47; this ex-
pression gives γ̇L = 78.0 and γ̇L = 163.4 for α = 10−3 and
α = 10−6, respectively. Our line integral formulation with the
2D regularised Green’s function is not identical to the formu-
lation for 3D rods, but we observe that a threshold of γ̇ ∼ 100
is not incompatible with the prediction for rods having an as-
pect ratio of the order of the regularisation parameter used in
the current work (ε = 10−6).

The buckling dynamics in a simple shear flow of a hexag-
onal disk modelled as a collection of beads interacting
via long-range hydrodynamic interactions has been recently
simulated14. In that work, a prediction of the critical shear

tγ̇ = 2 tγ̇ = 10

tγ̇ = 15 tγ̇ = 25

tγ̇ = 30 tγ̇ = 35

(a)

tγ̇ = 1 tγ̇ = 2

tγ̇ = 3 tγ̇ = 4

tγ̇ = 5 tγ̇ = 6

(b)

FIG. 10: (a) Peeling-like dynamics of two sheets with
different bending stiffness (̂̇γL = 1000 for the upper sheet;
̂̇γL = 102 for the lower sheet). The initial minimum distance

between the sheets is d0/L = 0.01. (b) Flexible sheets
(̂̇γ = 2000) with an even initial configuration.

rate for buckling based on a linear stability analysis of an Eu-
ler beam model was developed. In the model, the true hy-
drodynamic stress on the structure was approximated with the
undisturbed hydrodynamic stress. Despite its simplicity, the
model showed a good agreement with the simulation. It pre-
dicted a first buckling mode for a non-dimensional number
S = κ/(πµγ̇R3) of about 5× 10−3, where κ = Eh3/(12(1−
ν2)), E is the effective Young modulus of the material, ν is
the Poisson ratio, and R is the circumradius of the hexago-
nal sheet. To compare their 3D results to our 2D model, we

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
8
7
1
9
2



Accepted to Phys. Fluids 10.1063/5.0087192

Simulation of interacting elastic sheets in shear flow 11

need to translate the bending rigidity parameter from 3D to
2D. To do so, we use the relation B = 2RD = E 1

6 Rh3 obtained
assuming that the cross section of the sheet is a rectangle of
width equal to the diameter 2R and height h. With this re-
lation, S ≈ 5× 10−3 corresponds to γ̇L ≃ 500, slightly larger
than what we observe but of the same order of magnitude (for
this calculation we have assumed an incompressible material,
for which ν2 ≪ 1). A semi-analytical results for the buckling
threshold of disks was derived by Lingard and Whitmore44 to
model the buckling of red blood cells in shear flows. In this
work, the exact hydrodynamic surface stress on an ellipsoid
was used to estimate the hydrodynamic load on the disk. For
slender disks , this analysis predicts µγ̇ ≃ 10.36 4

π E h3

L3 . Us-

ing for D the expression mentioned above, we get ˆ̇γL ≃ 158,
very close to our numerical prediction. While we are not
aware of direct experimental measurements of buckling of
very thin, flexible plate-like particles, in rheological exper-
iments with plate-like nanocrystals suspended in a Newto-
nian epoxy, White et al.45 noticed a weak maximum in the
flow curve relating viscosity and shear rate. The maximum
in the flow curve corresponded to shear rates comparable to
those predicted by the semi-analytical expression of Lingard
& Whitmore. This induced the authors to argue that flow-
induced buckling played a role in increasing the viscosity, al-
though the exact mechanism were only speculated about. In
summary, all analytical and simulation data published so far,
as well as our data and scaling estimates, and one recent rhe-
ological measurement, seem to point to a buckling threshold
governed by expression (21) with c a constant of order 1. In-
cidentally, this demonstrates that for plate-like particles using
the plate radius (and not the diameter) in scaling arguments to
estimate viscous and bending forces gives predictions that are
remarkably close to those obtained from more accurate calcu-
lations based on linear stability analysis.

The severe bending of the sheet in flattened “S” shapes
(Fig. 7)(a) or “C” shapes (Fig. 7)(b) suggests the possibil-
ity of flow-induced self-adhesion. The “S” shape suggests the
formation of folded geometries, as in Fig. 1 (top-right panel).
The “C” shape may indicate the formation of rolled up con-
figurations, potentially leading to nanoscrolls48 (as in Fig. 1,
bottom-right panel). It has been suggested that graphene can
self-scroll if the radius is above a threshold of ≈ 10 Å49. From
Fig. 7(b) it seems that the sheet rolls up, but then re-extends,
suggesting that rolled up configurations may be achieved for
̂̇γL larger than 2000.

The two-sheets simulation results show a range of be-
haviours, from simple “sliding” detachment (Fig. 8(a)), to
“scrolling” (Fig. 9(b)) and “peeling” (Fig. 10(a)). Sliding has
been reported as a dominant deformation mode in Refs.13,50.
Peeling has been investigated numerically in35,51,52 and ob-
served in experiments25,53. Whether sliding or peeling is a
dominant mode is still an open question25,36,53.

In simulations of sheet pairs, the initial configuration does
affect the time evolution of the shape as for the single-sheet
case, but the hydrodynamic interaction between the sheets can
change the tendency of a sheet to deform into an even or odd
mode. For example, in Figure 8(b) and Figure 9(a) the sheets
are initially perturbed with an odd shape, and show a “C”

bending. In the single-particle case, the “C” shape is instead
characteristic of an even perturbation (Fig. 7(b)).

In the experimental results of Ref.25, the characteristic time
for exfoliation was found to scale with the inverse shear rate,
implying that exfoliation takes a fixed number of rotation cy-
cles . The simulations indeed confirm that detachment re-
quires several rotation cycles (see e.g. Fig. 8). We can de-
velop a simple model of pure sliding detachment by assuming
that the flow profile in between the sheets is approximately a
Couette flow. If the relative velocity is vr, the viscous force
resisting sliding is ∼ µ vr

d
Lo, where Lo is the overlap length.

Balancing the force (per unit width) driving sliding, µγ̇L, to
the resistive viscous force gives vr ∼

L
Lo

dγ̇ . With vr ∼ L/T ,

the characteristic scale for sliding is thus T ∼ L
d

γ̇−1. With
d/L = 0.05, this model predict complete sliding over a time
scale of 20γ̇−1. Despite its simplicity, this model is able to
predict the exfoliation time of Fig. 8(a).

Modelling peeling detachment is more complex than mod-
elling sliding, because in peeling the motion of the peeling
front is essentially controlled by the viscous dissipation at
the wedge region region where the curved flap encounters
the flat sheet53. This process has been studied in the frac-
ture/nanomechanics literature but only for simple (typically
constant) loads. In these studies adhesion is assumed to be a
requisite for peeling. Fig. 9(b) illustrate that in fact a peeling-
like dynamics does not require adhesion forces to be present.
Sheets that are sufficiently close can be essentially “glued”
together by the strong normal lubrication forces. This effect
may be particularly important for exfoliation and dispersion
in high-viscosity fluids54.

The results in Figure 8(b) indicate that an important role is
played, in the microscopic particle-exfoliation processes, by
particle reattachment. If ˆ̇γL is sufficiently large the sheets can
reassemble after separating from each other. In an experiment
in uniform shear, the microscopic exfoliation dynamics may
thus be characterised by a cycling attachment-detachment,
with no substantial pair-separation in time. For a fixed bend-
ing rigidity of the particles, increasing γ̇ may thus not lead
to an increase in the average particle-particle separation, as
expected. This results illustrates that to obtain good disper-
sion of graphene in a viscous fluid (e.g. graphene sheets in a
polymer nanocomposite) , high shear rates do not necessarily
result in good microscale dispersion, as typically assumed.

Although our work does not give a complete picture of the
dynamics for the full range of parameters possible, it provides
some typical shapes and recurring patterns, and is therefore a
starting point for those who would like to better understand the
fluid dynamics of 2D nanomaterials. Despite their simplicity,
2D models are also useful for validation. Sheets that are con-
strained to move with their normal in the flow-gradient plane
are easier to observe in experiments than sheets that complete
complex 3D rotational trajectories while also deforming in
three-dimensions. In future work, we will take advantage of
this feature to carry out an experimental verification of the dy-
namics illustrated in the current paper.
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Practical implications

The simulation results here presented may give useful in-
sights into several applications where liquid processing of
graphene or other 2D nanomaterials is used:

Electronics: The computed transient shapes illustrate how
hydrodynamic interactions can create conditions for bending,
folding and scrolling of 2D nanosheets to proceed. An abil-
ity to understand and control nanosheet topology is highly
desirable as it influences material properties (e.g. electron
mobility, band gap), and has been used to tune their perfor-
mance in application areas such as energy storage, electronics
and optoelectronics55. For example, by changing the topol-
ogy from planar nanosheets to nanoscrolls, the capacity per-
formance of graphene supercapacitors increases by 50%56.

Soft robotics and wearable sensing: The application of a
linear shear flow to nanosheet dispersions has practical sig-
nificance for the fabrication of functional devices. Recently,
a mass production method was developed to create graphene
oxide (GO) mesotubes for soft robotics and e-skins by placing
nanosheet dispersions under linear shear flow conditions57.
This process resulted in flow-induced self-organization of GO
nanosheets into scrolled structures with significantly lower
band gap. These structures demonstrated sensitivity to vi-
bration, temperature and human artery pulse pressure. In the
absence of shear flow, scrolling of sheets into tubes was not
possible.

Material production: Scrolling of nanosheets has been ob-
served during liquid exfoliation of graphene (Fig. 1) and other
2D materials. During continuous flow shear exfoliation of
hexagonal boron nitride using a vortex fluidic device, the oc-
currence of nanoscrolling was found to be sensitive to flow
rate, presenting an opportunity to control nanosheet topol-
ogy by adjusting process parameters that alter hydrodynamic
conditions58. The underlying mechanisms behind such selec-
tive material synthesis remain poorly understood, restricting
the use of the findings to the specific production technique.
Our modelling framework provides a first step to understand
the origins of these shapes in shear flows more broadly.

A non-dimensional shear rate of 100 corresponds to a shear
rate γ̇ ∼ 104 s−1 if a single-layer graphene particle of length
L ∼ 0.1 µm, in a solvent of viscosity µ ∼ 1 Pa s is consid-
ered. This indicates that with a shear rate of 104 − 105 s−1,
the bending of a single sheet of graphene might be quite sig-
nificant. The dynamics at these strain rates are particularly
relevant to the production of defect-free 2D materials using
shear exfoliation. Experimental evidence indicates that shear
rates above ∼ 104 s−1 are necessary for effective exfoliation
of graphene and other 2D materials such as MoS2 and WS2

59.
The fact that the threshold for buckling and the threshold for
exfoliation have similar magnitudes may suggest that severe
bending is a prerequisite for high-yield exfoliation of larger
sheets (which could bend at accessible shear rates, see discus-
sion in Ref.36).

Material quality assurance: The sensitive structure-
property relationship of 2D materials highlights the impor-
tance of performing minimally invasive material characteri-
sation for quality assurance of production batches. The prepa-

ration of samples for microscopy (e.g. TEM, AFM, SEM)
and spectroscopy (e.g. Raman, UV-Vis-nIR) techniques nat-
urally require handling of nanomaterial dispersions. Pipet-
ting is the main technique used to extract samples from pro-
duction processes and to transfer samples to characterisation
suites for analysis. In biological sciences, excessive shear
stress caused by pipet triturations can adversely affect biolog-
ical material60. For nanosheet dispersions, an unforced, stan-
dard pipetting approach would typically result in an elasto-
viscous number ∼ 0.1. This implies the nanosheet structure
is unlikely to be altered by mild pipetting actions. However,
vigorous pipetting or triturations to re-disperse partially ag-
glomerated nanosheets could promote morphology changes.
This is quantifiable using the findings in this study, enabling
the development of sampling protocols for minimally invasive
material characterisation in laboratories and industry alike.

Functional composites and inks: The possibility of parti-
cle bending is quite realistic in these high-fluid-stress appli-
cations, either because of the large fluid viscosity (e.g. in
polymer nanocomposites), or because of the large shear rates
(e.g. in ink-jet printing or high-speed coating). In nanocom-
posites, the threshold shear rate for buckling should ideally
not be reached, as the best performance is obtained when the
graphene nanofillers are extended and not crumpled. In print-
ing, avoiding clogging is paramount, so a fundamental un-
derstanding of particle-particle hydrodynamic interactions is
crucial. The simulations in this paper not only give a quan-
tification of the non-dimensional shear rate for which highly
curved morphology are obtained, potentially leading to self-
adhesion, but also illustrate the effect of a small inter-particle
separation. It is expected that changes in shape at a critical
buckling threshold will have signatures in the rheological re-
sponse of composite and inks with suspended sheet like parti-
cles, as already demonstrated in dilute suspensions of fibers or
stiff polymers61. Our results indicate that deformation modes
of two particles in close proximity may be very different from
those of isolated particles.

Other considerations on liquid-phase exfoliation: Regard-
ing liquid-phase exfoliation, one might wonder whether the
unbounded, steady, simple shear flow configuration consid-
ered in this paper is a good model for the flow in an actual
exfoliation process, and whether computed transient shapes
in our simulations could give insights into the final shape of
the sheets in actual experiments. Regarding the first ques-
tion, admittedly a simple shear flow is a crude representa-
tion of a realistic flow, such as the flow in a high-speed ho-
mogeniser. However, exfoliation experiments conducted with
a Couette device at a controlled mean shear rate, and with
a homogeniser producing the same average shear rate as in
the Couette device, have produced very similar exfoliation
outcomes13. This suggesting that the mean shear is the key
controlling variable, thus justifying the study of a steady, lam-
inar flow. The assumption of an unbounded system is not very
restrictive given the extremely small length of 2D nanosheets
(∼ 1µm) compared to even the smallest gap sizes present
in mixers/homogeniser (∼ 1mm). The second question is
more delicate. In real systems, such as liquid exfoliation and
processing of functional inks, the stability of the nanosheet
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shapes depends on non-hydrodynamic factors including adhe-
sion, electrostatic repulsion, capillary forces following drying,
and steric exclusion effects62,63. While these additional fac-
tors are necessary to maintain stable nanosheet morphologies,
the emergence of different shapes arises with external forcing,
e.g. mixing and shear57,58,62. If suitable care is taken in the
material preparation and characterisation steps (see “Material
quality assurance”), the formation of these shapes can be at-
tributed to the mixing or other high shear processes. Indeed
the dominance of shear exfoliation on the final shapes has
been demonstrated indirectly by previous work on hexagonal
boron nitride nanosheets58. Adjusting processing parameters
changed the product from nanosheets to nanoscrolls. These
differences in final shape can be attributed to the shear exfoli-
ation conditions as the authors used identical post-production
and material characterisation steps on all samples produced.
The permanence of flow-induced shapes is also critically im-
portant in the processing of graphene nanocomposites, in
which the fast solidification of the polymer melt following,
e.g., extrusion, “freezes” the morphology induced by shear
forces almost instantaneously64. In these applications the vis-
cosity of the fluid is high (the shear viscosity in polymer mix-
ing typically ranges from 0.01Pa · s to 10Pa · s65, and higher
viscosity values of thousands of Pa · s have been measured in
specialized applications64), and thus lubrication interactions
between particles will be important. In view of this applica-
tion area, the study of close range hydrodynamic interactions
similar to those investigated in the current study can help un-
derstanding the conditions under which particle-particle deag-
glomeration can be obtained.

CONCLUSIONS

We have carried out simulations of isolated or interacting
elastic sheets in simple steady shear flow to get insights into
the type of morphology one might obtain when subjecting
graphene or other 2D materials to shearing flows. Our work
provides insights into the flow micro-physics, typical flow-
induced morphologies, and recurring dynamic patterns, and
is therefore a starting point for those who would like to bet-
ter understand the fluid dynamics of graphene and other 2D
nanomaterials. Rather than limiting ourselves to describe the
physics, we attempt to translate the observations into practical
recommendations, which are given in the “Discussion” sec-
tion.

In the simulations we have neglected non-hydrodynamic
interparticle interactions, such as van der Waals forces or
electrostatic forces. In the context of 2D materials, elec-
trostatic forces are predominantly repulsive and of varying
range, while van der Waals forces are attractive and short-
ranged. Sufficiently strong electrostatic forces would lead
to an increase in inter-particle separation (in the two-particle
case) and would limit the occurrence of high curvatures in
each sheet’s shape (due to self-repulsion). Attractive van der
Waals would act in the opposite direction. Attractive forces
are particularly important at small surface-to-surface separa-
tions, thus competing with lubrication forces and potentially

making the transient, highly curved C-shaped configuration,
such as those in Fig. (7), permanent via self-adhesion; an out-
come, this latter, which could change effectively the shape
of the particles and therefore the rheological response of a
suspension61. In a previous study66 we have implemented a
simple linearised model of van der Waals interactions in our
code. In that case, we did not use the line integral approach,
but simplified the fluid-structure interaction using a local drag
model. A similar adhesive force can be easily implemented in
the method described in the current paper.

Future work should consider more complex particle ge-
ometries and full three-dimensional simulations. The simu-
lation model we consider is essentially two dimensional, as
the rotation of the particles is constrained to be in the flow-
gradient plane, so future work should consider interacting
three-dimensional sheets moving in three dimensions. The
consideration of 2D simulations however has a key advan-
tage. Despite their simplicity, 2D models are useful for exper-
imental validation. Sheets that are constrained to move with
their normal in the flow-gradient plane are easier to observe
in experiments than sheets that complete complex 3D rota-
tional trajectories while also deforming in three-dimensions.
In future work, we will take advantage of this feature to carry
out an experimental verification of the dynamics illustrated
in the current paper. Another aspect to consider is the effect
of hydrodynamic slip. We have assumed no-slip boundary
conditions, which is a good model for heavily functionalised
or oxidised graphene27, but graphene has a rather large slip
length, and this can affect the dynamics of pristine graphene
sheets2,16,26,36. How slip affects the dynamics of interacting,
deformable sheets is an open question.
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