UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

What makes the dynamic capacitated arc routing problem hard to solve

Tong, Hao; Minku, Leandro; Menzel, Stefan; Senhoff, Bernhard; Yao, Xin

DOI:
10.1145/3512290.3528756

Document Version

Peer reviewed version
Citation for published version (Harvard):
Tong, H, Minku, L, Menzel, S, Senhoff, B \& Yao, X 2022, What makes the dynamic capacitated arc routing problem hard to solve: insights from fitness landscape analysis. in JE Fieldsend (ed.), GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO: Genetic and Evolutionary Computation Conference, Association for Computing Machinery (ACM), New York, pp. 305-313, GECCO '22: Genetic and Evolutionary Computation Conference, Boston, Massachusetts, United States, 9/07/22.
https://doi.org/10.1145/3512290.3528756

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\bullet User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

```
Algorithm 1: VND-CARP
    Generate tour by Frederickson heuristic.
    Apply SHORTEN and CUT to obtain an initial solution.
    while True do
        Set \(i=D / Q, s_{\text {best }}=s\);
        while True do
            Set number of neighbours: \(c=1\).
            Set best value of a neighbour: \(f_{\text {best }}=f(s)\).
            while \(c \leq M_{i}\) do
            Select \(i\) routes in \(s\), merge them into a giant tour.
            Apply SWITCH and then CUT on this tour.
            Apply SHORTEN on each new tour.
            New resulting solution: \(s^{\prime}\);
            if \(f\left(s^{\prime}\right)<f_{\text {best }}\) then
                Set best \(=s^{\prime}\);
                Set \(f_{\text {best }}=f\left(s^{\prime}\right) ;\)
            \(\mathrm{c}=\mathrm{c}+1\);
        if \(f_{\text {best }}<f(s)\) then
            Set \(s=\) best \(_{s}\);
        else
            \(\mathrm{i}=\mathrm{i}-1\)
        if \(i \geq 1\) then
            break;
        if \(f(s) \geq f\left(s_{\text {best }}\right)\) then
            break;
```

```
Algorithm 2: ILMA
    Initialization: \(n c-3\) chromosomes;
    Add one chromosome by Path Scanning;
    Add one chromosome by Augmnt-Merge;
    Add one chromosome by Ulusoy's split;
    while Stop criterion is not met do
        Select two chromosomes \(P_{1}\) and \(P_{2}\) by binary tournament selection;
        Apply ordered crossover operator to \(P_{1}\) and \(P_{2}\) to generate \(O_{x}\);
        Set \(O=O_{x}\);
        if \(\operatorname{rand}()<P_{l s}\) then
        apply local search to \(O_{x}\) to generate \(O_{m}\);
        if \(O_{m}\) is not existed in pop then
                \(O=O_{m} ;\)
        Evaluate \(O\) to get \(f(O)\);
        if \(f(O)==f\left(P_{1}\right)\) then
            Replace \(P_{1}\) by \(O\);
        else if \(f(O)==f\left(P_{2}\right)\) then
            Replace \(P_{2}\) by \(O\);
        else if \(f(O)==f(P) \& \& P!=P_{1} \& \& P!=P_{2}\) then
            Discard \(O\);
        else if \(f(O)\) is not used in current pop then
            Randomly choose a \(P\) from \([n c / 2, n c]\);
            Replace \(P\) with \(O\);
        Resort Population;
        if Replacement criteria are met then
            replace \(n\) rep chromosomes with randomly generated chromosomes;
```

```
Algorithm 3: The pseudo code of Simulation System
    Input: Executable solution \(s\), Time of change: \(t\), Previous graph \(G\)
    Set Events probability: \(\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}\);
    Set probability for broke down roads recovering: \(p_{b d r r}\);
    Set probability for congest roads recovering and becoming better: \(p_{c r r}, p_{c r b b}\);
    Determine the stopping point for each vehicles according to \(s, t, G\);
    Update graph, and remove all served tasks.
    Randomly select \(p_{1} \times 100 \%\) vehicles to break down (Event 1).
    Update the graph.
    /**** Cost Impact ****/
    for each edge \(e_{i}\) do
        if e.change \(==0\) then
            \(r_{2}=\operatorname{rand}(), r_{3}=\operatorname{rand}()\)
            if \(r_{2}<p_{2}\) and \(r_{3}<p_{3}\) then
                    Event 2 happens: \(e_{i} \cdot\) cost \(=\operatorname{Inf}, e_{i} \cdot\) change \(=2\);
                if \(r_{2}<p_{2}\) and \(r_{3}>p_{3}\) then
                    Event 3 happens: Increase cost of \(e_{i}, e_{i}\).change \(==3\);
        else if \(e_{i}\).change \(=2\) and \(\operatorname{rand}()<p_{\text {recover }}\) then
            Recover edge \(e_{i}, e_{i}\).change \(=0\);
        else if \(e\).change \(==3\) then
            if rand ()\(<p_{\text {congestion_recover }}\) then
            Recover edge \(e_{i}, e_{i}\).change \(=0\);
        else if \(\operatorname{rand}()<p_{\text {congestion_better }}\) then
                    Decrease cost of \(e_{i}\)
        else
            Increase cost of \(e_{i}\)
        else
        continue;
    /**** Demand Impact ****/
    for each edge \(e_{i}\) do
        if e.change \(=1\) then
            continue;
        else
            \(r_{4}=\operatorname{rand}(), r_{5}=\operatorname{rand}() ;\)
            if Edge.demand \(>0\) and \(r_{4}<p_{4}\) then
                    Event 4 happens: \(e_{i}\).change \(=4\);
            if Edge.demand \(==0\) and \(r_{5}<p_{5}\) then
                    Event 5 happens: \(e_{i}\).change \(=5\);
    Output: The new graph \(G_{1}\)
```

```
Algorithm 4: Build auxiliary graph for DCARP
    Input: Individual : \(I=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}\)
        Stop points for outside vehicles: \(V=\left\{v_{1}, v_{2}, \ldots, v_{K}\right\}\)
        Remain capacity for outside vehicles: \(C P=\left\{c p_{1}, c p_{2}, \ldots, c p_{K}\right\}\)
    Generate \(N+1\) Nodes (Index from 0 to \(N\) ) for the auxiliary graph \(G^{*}\).
    for each outside vehicle \(k\) do
        for each node pair: \(\mathrm{Node}_{i}\) and \(\mathrm{Node}_{j}\) do
            Use vehicle \(k\) to serve \(\left\{t_{i+1}, t_{i+2}, \ldots, t_{j}\right\}\);
            Sub-route: \(r_{i j k}=\left\{v_{k} \rightarrow t_{i+1} \rightarrow t_{i+2}, \rightarrow \ldots, \rightarrow t_{j} \rightarrow\right.\) depot \(\} ;\)
            Calculate the total demand \(d_{i j k}\) of \(r_{i j k}\);
            if \(d_{i j k}>c p_{k}\) then
                continue;
            else
                Calculate the cost of \(r_{i j k}: c_{i j k}\);
                Assign an edge \(e_{i j k}\) between \(N_{o d e}\) and \(N_{o d e}\) with weight equal to \(c_{i j k}\);
```

Output: An auxiliary graph G^{*}

```
Algorithm 5: \(A^{*}\) based optimal split scheme
    Input: Individual : \(I=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}\)
    Build an auxiliary graph \(G^{*}\) for DCARP;
    expandNode \(=\) Node \(_{0} ;\) openNodeSet \(=\{ \} ;\) pathSet \(=\{ \} ;\)
    while True do
        if expandNode \(==\) target then
            Shortest path \(P\) : path correspond to expandNode;
            Minimal cost \(C\) : \(f_{\text {expandNode }}\) correspond to expandNode;
            break;
        Select rootPath (i.e. path from \(N o d e_{0}\) to expandNode) from pathSet;
        for each successor of expandNode do
            newPath \(=\) rootPath + expandNode \(\rightarrow\) successor;
            Remove all edges correspond to vehicles being used in newPath for successor;
            Calculate the \(h_{\text {succ }}\) and \(g_{\text {succ }}\);
            Set \(f_{\text {succ }}=h_{\text {succ }}+g_{\text {succ }}\);
            if successor \(==\) target then
                    Repair \(f_{\text {succ }}\);
            Add the successor into openNodeSet;
            Add the path correspond to successor into pathSet;
        Remove the expandNode from openNodeSet, and the rootPath from pathSet;
        Select the node in openNodeSet with minimal \(f\) as expandNode;
    The shortest path from Node \(_{0}\) to target in \(G^{*}: P=\left\{p_{1}, p_{2}, \ldots, p_{M}\right\}\);
    Each \(p_{m}\) represents an edge \(e_{i j k}\), which denotes a sub-route \(r_{i j k}\);
    Obtain the solution \(S\) by splitting the \(I\) by \(P\).
    Output: Solution \(S=\left\{r_{1}, r_{2}, \ldots, r_{M}\right\}\), Minimal cost: \(C\)
```

```
Algorithm 6: Greedy split scheme
    Input: Individual : \(I=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}\)
    Build an auxiliary graph \(G^{*}\) for DCARP;
    for each edge \(e_{i j k}\) in \(G^{*}\) do
        Calculate the UDC: \(U D C_{i j k}\);
    expandNode \(=\) Node \(_{0} ;\) newPath \(=\) Node \(_{0}\)
    while True do
        if \(\operatorname{expandNode}==\) target then
            Greedy path: newPath, \(P=\left\{p_{1}, p_{2}, \ldots, p_{M}\right\}\);
            Calculate the greedy cost of greedy path: \(C\);
            break;
        rootPath \(\leftarrow\) newPath;
        Select the \(N_{\text {ode }}^{X}\) with minimal \(U D C\) from all successors for expandNode;
        newPath \(=\) rootPath + expandNode \(\rightarrow\) Node \(_{X}\);
        Remove all edges correspond to vehicles being used in newPath;
        expandNode \(\leftarrow\) Node \(_{X}\);
    Each \(p_{m}\) represents an edge \(e_{i j k}\), which denotes a sub-route \(r_{i j k}\);
    Obtain the solution \(S\) by splitting the \(I\) by \(P\).
    Output: Solution \(S=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}\), Greedy cost: \(C\)
```

```
Algorithm 7: The hybrid local search framework
    Input: The update Map (update graph data)
            Dynamic State:
            1). Stop locations of outside vehicles;
                    2). Remaining capacities of outside vehicles;
                    3). Remaining tasks.
    Initialize the solution archive SA}\leftarrow\varnothing\mathrm{ ;
    Re-construct the solution S0 with explicit routes;
    Add initial solution into archive SA=SA\cupS
    4 Set global best solution S}\mp@subsup{S}{gb}{}=\mp@subsup{S}{0}{}\mathrm{ for each solution S}\mp@subsup{S}{i}{}\mathrm{ in }SA\mathrm{ do
    | Local best solution Slb}=\mp@subsup{S}{i}{}\mathrm{ ;
    while true do
            // The following loop (line7-line10) run in parallel
            for each neighborhood move Move j}\mathrm{ do
                Solution S Sj = Move }\mp@subsup{\mp@code{j}}{(Slb}{\prime}
                if improved AND archive is not full then
                    Add S Si into archive: SA=SA\cupS Smi
            Update best solution S}\mp@subsup{S}{lb}{}\mathrm{ from S Sm;
            if No improved move OR exceed time limitation then
                break;
            if S}\mp@subsup{S}{lb}{}\mathrm{ .cost < S Sgb.cost then
            Sgb}\leftarrow\mp@subsup{S}{lb}{}
        if exceed time limitation then
            break;
```

Output: The global best solution $S_{g b}$

```
Algorithm 8: Pseudo code of the instance generator.
    Input: Static instance, initial solution;
            The full capacity of vehicles: \(Q\);
            A configuration of dynamic event: \(C_{\text {Event }}\);
            Configurations of state factors: \(C_{O V}, C_{R Q}\);
    Output: A DCARP instance
    if \(C_{\text {Event }}==N D\) then
    if \(N D-N==\) few then
        \(p=20 \%\)
    else
        \(p=80 \%\)
        Uniformly random select \(p\) of tasks in the remaining tasks and save them into a set
        \(S^{\prime} t_{N D}\).
        if \(N D-V==\) small then
            \(d m=\frac{Q}{\left|S e t_{N D}\right|}\)
        else
            \(d m=\frac{4 Q}{\left|S e t_{N D}\right|}\)
        Add demand \(d m\) to each task in \(\operatorname{Set}_{N D}\).
    if \(C_{\text {Event }}==N T\) then
    Save all available edges (not task) in a list \(L_{i s t}{ }_{N T}\);
    if \(N T-P==\) close then
        Sort List \(_{N T}\) in ascending order according to the max distance of two nodes to the
            depot.
    else
            Sort List \(_{N T}\) in descending order according to the max distance of two nodes to the
                depot.
    if \(N T-N==\) few then
        \(p=20 \%\)
        else
            \(p=80 \%\)
        Select the front \(p\) of edges from List \(_{N T}\) as the new tasks and save into \(\operatorname{Set}_{N T}\).
        if \(N T-V==\) small then
            \(d m=\frac{Q}{\left|\operatorname{Set}_{N D}\right|}\)
    else
        \(d m=\frac{4 Q}{\left|S e t_{N D}\right|}\)
    Add demand \(d m\) to each task in \(\operatorname{Set}_{N T}\).
```

