

University of Birmingham

What makes the dynamic capacitated arc routing
problem hard to solve
Tong, Hao; Minku, Leandro; Menzel, Stefan; Senhoff, Bernhard; Yao, Xin

DOI:
10.1145/3512290.3528756

Document Version
Peer reviewed version

Citation for published version (Harvard):
Tong, H, Minku, L, Menzel, S, Senhoff, B & Yao, X 2022, What makes the dynamic capacitated arc routing
problem hard to solve: insights from fitness landscape analysis. in JE Fieldsend (ed.), GECCO '22: Proceedings
of the Genetic and Evolutionary Computation Conference. GECCO: Genetic and Evolutionary Computation
Conference, Association for Computing Machinery (ACM), New York, pp. 305-313, GECCO '22: Genetic and
Evolutionary Computation Conference, Boston, Massachusetts, United States, 9/07/22.
https://doi.org/10.1145/3512290.3528756

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1145/3512290.3528756
https://doi.org/10.1145/3512290.3528756
https://birmingham.elsevierpure.com/en/publications/148b7bdc-d9b8-46ff-aa92-cf15f2f39e25

Algorithm 1: VND-CARP
1 Generate tour by Frederickson heuristic.
2 Apply SHORTEN and CUT to obtain an initial solution.
3 while True do
4 Set i = D/Q, sbest = s;
5 while True do
6 Set number of neighbours: c = 1.
7 Set best value of a neighbour: fbest = f(s).
8 while c ≤Mi do
9 Select i routes in s, merge them into a giant tour.

10 Apply SWITCH and then CUT on this tour.
11 Apply SHORTEN on each new tour.
12 New resulting solution: s′;
13 if f(s′

) < fbest then
14 Set bests = s

′;
15 Set fbest = f(s

′
) ;

16 c = c + 1;

17 if fbest < f(s) then
18 Set s = bests;

19 else
20 i = i - 1

21 if i ≥ 1 then
22 break;

23 if f(s) ≥ f(sbest) then
24 break;

1

Algorithm 2: ILMA
1 Initialization: nc− 3 chromosomes;
2 Add one chromosome by Path Scanning;
3 Add one chromosome by Augmnt-Merge;
4 Add one chromosome by Ulusoy’s split;
5 while Stop criterion is not met do
6 Select two chromosomes P1 and P2 by binary tournament selection;
7 Apply ordered crossover operator to P1 and P2 to generate Ox;
8 Set O = Ox;
9 if rand() < Pls then

10 apply local search to Ox to generate Om;
11 if Om is not existed in pop then
12 O = Om;

13 Evaluate O to get f(O);
14 if f(O) == f(P1) then
15 Replace P1 by O;
16 else if f(O) == f(P2) then
17 Replace P2 by O;
18 else if f(O) == f(P)&&P ! = P1&&P ! = P2 then
19 Discard O;
20 else if f(O) is not used in current pop then
21 Randomly choose a P from [nc/2, nc];
22 Replace P with O ;
23 Resort Population;
24 if Replacement criteria are met then
25 replace nrep chromosomes with randomly generated chromosomes;

2

Algorithm 3: The pseudo code of Simulation System
Input: Executable solution s, Time of change: t, Previous graph G

1 Set Events probability: {p1, p2, p3, p4, p5};
2 Set probability for broke down roads recovering: pbdrr;
3 Set probability for congest roads recovering and becoming better: pcrr, pcrbb;

4 Determine the stopping point for each vehicles according to s, t, G;
5 Update graph, and remove all served tasks.
6 Randomly select p1 × 100% vehicles to break down (Event 1).
7 Update the graph.
8 /**** Cost Impact ****/
9 for each edge ei do

10 if e.change == 0 then
11 r2 = rand(), r3 = rand()
12 if r2 < p2 and r3 < p3 then
13 Event 2 happens: ei.cost = Inf , ei.change == 2 ;

14 if r2 < p2 and r3 > p3 then
15 Event 3 happens: Increase cost of ei, ei.change == 3 ;

16 else if ei.change == 2 and rand() < precover then
17 Recover edge ei, ei.change == 0 ;
18 else if e.change == 3 then
19 if rand() < pcongestion recover then
20 Recover edge ei, ei.change == 0 ;
21 else if rand() < pcongestion better then
22 Decrease cost of ei
23 else
24 Increase cost of ei

25 else
26 continue;

27 /**** Demand Impact ****/
28 for each edge ei do
29 if e.change = 1 then
30 continue;

31 else
32 r4 = rand(), r5 = rand();
33 if Edge.demand > 0 and r4 < p4 then
34 Event 4 happens: ei.change = 4;

35 if Edge.demand == 0 and r5 < p5 then
36 Event 5 happens: ei.change = 5;

Output: The new graph G1

3

Algorithm 4: Build auxiliary graph for DCARP
Input: Individual : I = {t1, t2, ..., tN}

1 Stop points for outside vehicles: V = {v1, v2, ..., vK}
2 Remain capacity for outside vehicles: CP = {cp1, cp2, ..., cpK}

3 Generate N + 1 Nodes (Index from 0 to N) for the auxiliary graph G∗.
4 for each outside vehicle k do
5 for each node pair: Nodei and Nodej do
6 Use vehicle k to serve {ti+1, ti+2, ..., tj};
7 Sub-route: rijk = {vk → ti+1 → ti+2,→ ...,→ tj → depot};
8 Calculate the total demand dijk of rijk;
9 if dijk > cpk then

10 continue;

11 else
12 Calculate the cost of rijk: cijk;
13 Assign an edge eijk between Nodei and Nodej with weight equal to cijk;

Output: An auxiliary graph G∗

4

Algorithm 5: A* based optimal split scheme
Input: Individual : I = {t1, t2, ..., tN}

1 Build an auxiliary graph G∗ for DCARP;
2 expandNode = Node0; openNodeSet = {}; pathSet = {};
3 while True do
4 if expandNode == target then
5 Shortest path P : path correspond to expandNode;
6 Minimal cost C: fexpandNode correspond to expandNode;
7 break;

8 Select rootPath (i.e. path from Node0 to expandNode) from pathSet;
9 for each successor of expandNode do

10 newPath = rootPath + expandNode→ successor;
11 Remove all edges correspond to vehicles being used in newPath for successor;
12 Calculate the hsucc and gsucc;
13 Set fsucc = hsucc + gsucc;
14 if successor == target then
15 Repair fsucc;

16 Add the successor into openNodeSet;
17 Add the path correspond to successor into pathSet;

18 Remove the expandNode from openNodeSet, and the rootPath from pathSet;
19 Select the node in openNodeSet with minimal f as expandNode;

20 The shortest path from Node0 to target in G∗: P = {p1, p2, ..., pM};
21 Each pm represents an edge eijk, which denotes a sub-route rijk;
22 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rM}, Minimal cost: C

5

Algorithm 6: Greedy split scheme
Input: Individual : I = {t1, t2, ..., tN}

1 Build an auxiliary graph G∗ for DCARP;
2 for each edge eijk in G∗ do
3 Calculate the UDC: UDCijk;

4 expandNode = Node0; newPath = Node0
5 while True do
6 if expandNode == target then
7 Greedy path: newPath, P = {p1, p2, ..., pM};
8 Calculate the greedy cost of greedy path: C;
9 break;

10 rootPath← newPath;
11 Select the NodeX with minimal UDC from all successors for expandNode;
12 newPath = rootPath + expandNode→ NodeX ;
13 Remove all edges correspond to vehicles being used in newPath;
14 expandNode← NodeX ;

15 Each pm represents an edge eijk, which denotes a sub-route rijk;
16 Obtain the solution S by splitting the I by P .

Output: Solution S = {r1, r2, ..., rm}, Greedy cost: C

6

Algorithm 7: The hybrid local search framework
Input: The update Map (update graph data)

Dynamic State:
1). Stop locations of outside vehicles;
2). Remaining capacities of outside vehicles;
3). Remaining tasks.

1 Initialize the solution archive SA← ∅;
2 Re-construct the solution S0 with explicit routes;
3 Add initial solution into archive SA = SA ∪ S0;
4 Set global best solution Sgb = S0 for each solution Si in SA do
5 Local best solution Slb = Si;
6 while true do

// The following loop (line7-line10) run in parallel
7 for each neighborhood move Movej do
8 Solution Smj = Movej(Slb)
9 if improved AND archive is not full then

10 Add Smi into archive: SA = SA ∪ Smi;

11 Update best solution Slb from Smj;
12 if No improved move OR exceed time limitation then
13 break;

14 if Slb.cost < Sgb.cost then
15 Sgb ← Slb;

16 if exceed time limitation then
17 break;

Output: The global best solution Sgb

7

Algorithm 8: Pseudo code of the instance generator.
Input: Static instance, initial solution;

The full capacity of vehicles: Q;
A configuration of dynamic event: CEvent;
Configurations of state factors: COV , CRQ;

Output: A DCARP instance

1 if CEvent == ND then
2 if ND-N == few then
3 p = 20%

4 else
5 p = 80%

6 Uniformly random select p of tasks in the remaining tasks and save them into a set
SetND.

7 if ND-V == small then
8 dm = Q

|SetND|

9 else
10 dm = 4Q

|SetND|

11 Add demand dm to each task in SetND.

12 if CEvent == NT then
13 Save all available edges (not task) in a list ListNT ;
14 if NT-P == close then
15 Sort ListNT in ascending order according to the max distance of two nodes to the

depot.
16 else
17 Sort ListNT in descending order according to the max distance of two nodes to the

depot.
18 if NT-N == few then
19 p = 20%

20 else
21 p = 80%

22 Select the front p of edges from ListNT as the new tasks and save into SetNT .
23 if NT-V == small then
24 dm = Q

|SetND|

25 else
26 dm = 4Q

|SetND|

27 Add demand dm to each task in SetNT .

8

