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ABSTRACT
The Capacitated Arc Routing Problem (CARP) aims at assigning
vehicles to serve tasks which are located at different arcs in a
graph. However, the originally planned routes are easily affected
by different dynamic events like newly added tasks. This gives rise
to Dynamic CARP (DCARP) instances, which need to be efficiently
optimized for new high-quality service plans in a short time.
However, it is unknown which dynamic events make DCARP
instances especially hard to solve. Therefore, in this paper, we
provide an investigation of the influence of different dynamic
events on DCARP instances from the perspective of fitness
landscape analysis based on a recently proposed hybrid local
search (HyLS) algorithm. We generate a large set of DCARP
instances based on a variety of dynamic events and analyze the
fitness landscape of these instances using several different
measures such as fitness correlation length. From the empirical
results we conclude that cost-related events have no significant
impact on the difficulty of DCARP instances, but instances which
require more new vehicles to serve the remaining tasks are harder
to solve. These insights improve our understanding of the DCARP
instances and pave the way for future work on improving the
performance of DCARP algorithms.
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1 INTRODUCTION
The Capacitated Arc Routing Problem (CARP) is a traditional
combinatorial problem from real-world applications that aims at
allocating a number of vehicles with limited capacity to serve a set
of tasks in a graph [1, 10]. However, the service processes of the
vehicles are likely to be influenced by dynamic events. For
example, road congestion is likely to deteriorate the quality of the
original plan. Or, newly added tasks which are not in the original
plan may be required to be served, such that the current service
plan is no longer suitable for new tasks. Therefore, it is essential to
consider the Dynamic CARP (DCARP) optimization in an
uncertain environment.

In the literature, researchers proposed many algorithms for
DCARP optimization considering different dynamic events,
including cost change of roads, failure of vehicles, and newly
added tasks. DCARP was first investigated by Handa et al. [3],
considering dynamic changes of tasks in the salt-gritting scenario.
Then, Tagmouti et al. [15] considered time-dependent service costs
also in winter gritting scenarios. Monroy et al. [9] proposed
rescheduling algorithms to deal with the failure of vehicles.
Padungwech et al. [13] investigated the effect of update
frequencies in DCARP scenarios with newly added tasks. They
concluded that the ratio of the number of newly added tasks to the
number of all tasks would significantly influence the effect of
update frequencies. Liu et al. [6] and Tong et al. [22] considered
both, cost-related and task-related dynamic events. Tong et al. [22]
proposed an efficient framework to deal with general DCARP
scenarios, enabling static algorithms to be used for DCARP
optimization. Besides, Tong et al. [21] also proposed a Hybrid
Local Search algorithm (HyLS) to provide better rescheduling
within a short time, satisfying the requirement of quick
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rescheduling usually posed by dynamic scenarios in real-world
applications.

Even though there are powerful algorithms for solving general
DCARP instances, existing literature lacks information about
which dynamic factors are likely to cause DCARP instances to be
harder to solve. This seriously hinders the ability to improve the
performance of DCARP algorithms. Therefore, in this paper, we
focus on investigating the effect of different dynamic factors on
the characteristics of DCARP instances by fitness landscape
analysis. Our main goal is to analyze the basic fitness landscape of
a DCARP instance and compare the landscape’s features between
different DCARP instances produced by various dynamic factors.
We provide the following novel contributions:
• The first systematic fitness landscape analysis for DCARP is
performed in this paper, including several local and global
optima related features. The analysis is based on the hybrid local
search algorithm (HyLS) [21]. Multiple landscape properties are
compared between instances generated with different dynamic
events to investigate what factors make DCARP instances easier
or harder to solve.
• We show that new tasks are the main factor influencing the
difficulty of the instances, and instances requiring additional
vehicles for the remaining tasks are harder to solve than instances
with other features. These insights on the fitness landscape can
potentially contribute towards improving the performance of
algorithms in future.
The remainder of this paper is organized as follows. Section 2

introduces the related work on DCARP and the background on
fitness landscape analysis. Section 3 provides details on the local
search algorithm used in our analysis, here, HyLS. Section 4 presents
the empirical results and the analysis of fitness landscape from
several different perspectives. Section 5 concludes the paper and
points out future work.

2 BACKGROUND AND RELATEDWORK
2.1 Dynamic capacitated arc routing problem
Dynamic capacitated arc routing problems (DCARPs) aim to
update the service schedule when the quality of the original
schedule deteriorates due to some dynamic events in an uncertain
environment. When dynamic events occur, the remaining tasks,
the map’s information, and the status of all service vehicles at that
time compose a DCARP instance. DCARP optimization is mainly
targeted to re-optimize the DCARP instance and obtain an updated
schedule for the new environment. When dynamic events happen,
vehicles are usually located in different points and have served
different tasks resulting in different remaining capacities.
Therefore, besides CARP requiring the total demand being served
by a vehicle not to exceed a vehicle’s capacity, a DCARP instance
has two additional constraints, i.e., (1) some vehicles are outside
and have to start from these outside positions and (2) the
remaining capacities of these outside vehicles are different from
those of vehicles in the depot.

Suppose a new DCARP instance at time point 𝑡𝑚 with 𝑁𝑇 tasks
in total, including the previous unserved tasks as well as
potentially newly added tasks. Assume there are 𝑁𝑜𝑣 outside
vehicles when the DCARP instance is generated. The stop

locations and the remaining capacities of these outside vehicles are
represented as {𝑣1, 𝑣2, ..., 𝑣𝑁𝑜𝑣 } and {𝑞1, 𝑞2, ..., 𝑞𝑁𝑜𝑣 }, respectively.
The depot is denoted as 𝑣0. The maximum number of vehicles and
the capacity of each vehicle are denoted as 𝑁𝑣𝑒ℎ and 𝑄 ,
respectively. A DCARP solution can be represented as
𝑆 = {𝑅1, 𝑅2, ..., 𝑅𝑁𝑜𝑣 , ..., 𝑅𝑁𝐾 } containing 𝐾 routes, where 𝑅1 to
𝑅𝑁𝑜𝑣 denote routes corresponding to outside vehicles and the
remaining routes denote the newly deployed vehicles from the
depot. Assume the 𝑖𝑡ℎ task in 𝑘𝑡ℎ route is 𝑡𝑘,𝑖 and the demand of a
task 𝑡𝑘,𝑖 is 𝑑𝑚(𝑡𝑘,𝑖 ). A route 𝑅𝑘 can be represented as
𝑅𝑘 = (𝑣𝑘 , 𝑡𝑘,1, 𝑡𝑘,2, ..., 𝑡𝑘,𝑙𝑘 , 𝑣0), where 𝑙𝑘 denotes the number of
tasks in the 𝑘𝑡ℎ route and 𝑣𝑘 is the starting point of the route 𝑅𝑘 .
Therefore, the objective function and constraints for DCARP can
be formulated by the following equations [22]:

Min 𝑇𝐶 (𝑆) =
𝐾∑︁
𝑘=1

𝑅𝐶𝑅𝑘

s.t.
𝐾∑︁
𝑘=1

𝑙𝑘 = 𝑁𝑇

𝑡𝑘1,𝑖1 ≠ 𝑡𝑘2,𝑖2 , for all (𝑘1, 𝑖1) ≠ (𝑘2, 𝑖2)
𝑙𝑘∑︁
𝑖=1

𝑑𝑚 (𝑡𝑘,𝑖 ) ≤ 𝑞𝑘 , ∀𝑘 ∈ {1, 2, ...𝑁𝑜𝑣 }

𝑙𝑘∑︁
𝑖=1

𝑑𝑚 (𝑡𝑘,𝑖 ) ≤ 𝑄, ∀𝑘 ∈ {𝑁𝑜𝑣 + 1, ..., 𝐾 }

(1)

where 𝑅𝐶𝑅𝑘 is the total cost of route 𝑅𝑘 which is calculated by
Equation (2):

𝑅𝐶𝑅𝑘 =𝑚𝑐 (𝑣𝑘 , 𝑡𝑎𝑖𝑙𝑡𝑘,1 ) +𝑚𝑐 (ℎ𝑒𝑎𝑑𝑡𝑘,𝑙𝑘 , 𝑣0)+
𝑙𝑘−1∑︁
𝑖=1

𝑚𝑐 (ℎ𝑒𝑎𝑑𝑡𝑘,𝑖 , 𝑡𝑎𝑖𝑙𝑡𝑘,𝑖+1 ) +
𝑙𝑘∑︁
𝑖=1

𝑠𝑐 (𝑡𝑘,𝑖 )
(2)

The ℎ𝑒𝑎𝑑𝑡𝑘,𝑖 , 𝑡𝑎𝑖𝑙𝑡𝑘,𝑖 denote the task’s head and tail vertices. The
minimal total deadheading cost traversing from node 𝑣𝑖 to node
𝑣 𝑗 is denoted as𝑚𝑐 (𝑣𝑖 , 𝑣 𝑗 ), and 𝑠𝑐 (𝑡𝑘,𝑖 ) denotes the serving cost of
task 𝑡𝑘,𝑖 . The first two constraints in Eq. (1) guarantee that all tasks
are served only once and the other two constraints are formulated
to satisfy the vehicles’ capacity constraint.

In the above formulation, factors including the number of tasks,
the demand of tasks, and the deadheading/serving cost of arcs will
influence the objective function. These factors are all easily
affected by the dynamic environment. For example, the cost of arcs
will change if a road occurs to be congested, and new tasks are also
probably added after the service starts. Therefore, we will
investigate the influence of these dynamic factors on the
characteristics of DCARP instances in this paper. More details are
introduced in Section 4.

2.2 Fitness landscape analysis
Fitness landscape analysis is a popular approach for a better
understanding of the characteristics of problem instances and an
improved selection of suitable algorithms for the specific problem
[8]. A fitness landscape is defined by three elements, including a
solution set 𝑋 , a neighborhood structure 𝑉 , and a fitness function
𝑓 . A fitness landscape (𝑋,𝑉 , 𝑓 ) is determined by the fitness of the
solutions and their corresponding neighbors [4].
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Fitness landscape analysis targets to investigate features of
optimization problems, such as the fitness distribution in the
search space and the structure of optima [8]. In the literature, there
are two kinds of empirical techniques proposed for the
characterization of these features, namely the random sampling
based technique [7, 8] and the local optimal network (LON) based
technique [12]. The random sampling based technique performs a
search on random solutions to obtain a set of representative
solutions, such as potential local optima, in the search space. Then,
analysis metrics are computed based on the representative
solutions to characterize the target problem. The LON technique
usually enumerates all solutions in small problems and formulates
the fitness landscape as a network [11]. Each node represents a
local optimum in the landscape, and each edge represents the
basin-transition [24] or escape edges [23] between two local
optima. Then, the properties of LON can directly reflect some
characteristics of the problem, such as the number of vertices and
density of edges in LON. Moreover, network analysis and
visualization tools can also be used to analyze the fitness landscape
[12], helping people to better understand the connectivity between
local optima.

The above two kinds of fitness landscape analysis techniques
have been successfully applied to some combinatorial problems.
Tayarani-N et al. [17, 18] carried out fitness landscape analysis on
four combinatorial optimization problems, based on randomly
sampled solutions from the search space and analyzed their local
optima-related features and global optima-related features. The
LON technique was also widely used for analyzing the
characteristics of combinatorial problems, such as the flow-shop
problem [2], quadratic assignment problem [19] and traveling thief
problem [26]. Some studies also proposed sampled LON
algorithms, such as Markov-Chain sampling and snowball
sampling [19], enabling LON to be adopted for larger problems.

In this work, we focused on sampling-based techniques to
analyze DCARP instances, as they are simple yet effective
techniques to conduct fitness landscape analysis [18].

3 HYBRID LOCAL SEARCH ALGORITHM
The fitness landscape is defined specifically for a neighborhood
structure such that one problem instance can have different fitness
landscapes for different neighborhood structures. In this paper, we
focused on a hybrid local search algorithm (HyLS) proposed in
[21], which was the best dynamic optimization algorithm for real-
word like scenarios. Therefore, we used it to find the local optimum
for each sample in the landscape, and neighborhood moves in the
HyLS represent neighborhood functions. The pseudo-code of HyLS
is presented in Algorithm 1. The𝑂𝑛𝑒𝑆𝑡𝑒𝑝𝑀𝑜𝑣𝑒 (·) in Line 7 applies
one neighborhood move, such as single insertion, to a solution and
obtains the best neighbor solution. More details are provided in [21].
The archive’s size in this paper is set to 400, which is determined
by our preliminary investigations on tested instances.

4 FITNESS LANDSCAPE ANALYSIS
4.1 Dynamic factors and instance generation
The deployed CARP solution is likely to be affected by a series of
dynamic events, and these dynamic events will generate DCARP

Algorithm 1: The hybrid local search algorithm [21]
Input: An initial solution 𝑆0

1 Initialize the solution archive (set) 𝑆𝐴 = {𝑆0};
2 Set local optimal as 𝐿𝑂 ← 𝑆0;
3 for each solution 𝑆𝑖 in 𝑆𝐴 do
4 Step best solution 𝑆𝑠𝑏 ← 𝑆𝑖 ;
5 while true do
6 for each neighborhood move𝑀𝑜𝑣𝑒 𝑗 do
7 𝑆𝑚𝑗 = 𝑂𝑛𝑒𝑆𝑡𝑒𝑝𝑀𝑜𝑣𝑒 𝑗 (𝑆𝑠𝑏 );
8 if improve and 𝑆𝐴 is not full then
9 𝑆𝐴← 𝑆𝐴 ∪ 𝑆𝑚𝑗 ;

10 Update step best solution 𝑆𝑠𝑏 based on 𝑆𝑚𝑗 ;
11 if not improve then
12 break;

13 if 𝑆𝑠𝑏 .𝑐𝑜𝑠𝑡 < 𝐿𝑂.𝑐𝑜𝑠𝑡 then
14 𝐿𝑂 ← 𝑆𝑠𝑏 ;

Output: A local optimum 𝐿𝑂

instances with different characteristics. To compare the influence
of different dynamic events, all DCARP instances are generated
from the same initial static CARP instance and the same
corresponding initial solution obtained by using a powerful
meta-heuristic algorithm [16]. The egl-E2-A instance was selected
as the basic static instance because it is the easiest instance among
all static instances in the 𝑒𝑔𝑙 dataset, which has more tasks than
other datasets [16]. An easier initial instance is likely to make the
effect of different settings of dynamic events more obvious.

Four dynamic events which potentially affect the current CARP
solution’s quality are considered in this paper including cost
increase(CI), cost decrease(CD), new demand(ND) and new
tasks(NT). The influence of these dynamic events on the CARP
solution is as follows:
• Cost increase: The cost of arcs belonging to the solution’s
path increases deteriorating the current solution.
• Cost decrease: The current solution’s quality can potentially
be improved when the cost of arcs which are not in the
solution’s path decreases.
• New demand: New demand in the current tasks potentially
makes the current solution infeasible due to limited vehicles’
capacities.
• New tasks: When there are new tasks, the current plan needs
to be rescheduled to accommodate the new tasks.

Each dynamic event corresponds to one or multiple factors. We
investigated two levels for each factor in this paper, which are
presented in Table 1. When a dynamic event happens, a few outside
vehicles are located at various positions with different remaining
capacities. Thus, each DCARP instance will have two state factors,
namely number of outside vehicles and value of remaining
capacities for each outside vehicle, which are also investigated
in this paper. Their levels are presented at the bottom of Table 1.

For cost increase/decrease events, the two levels denote that we
increase/decrease the costs of 20% (few) and 80% (many) of arcs
in/not in the solution’s path change. The arcs to suffer the change
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Table 1: Dynamic factors and state factors investigated in
this paper

Dynamic Events Factors Acronyms Levels #Settings

Cost Increase Number of arcs CI-N [few, many] 2

Cost Decrease Number of arcs CD-N [few, many] 2

New Demand Number of changed tasks ND-N [few, many] 4Value of new demand ND-V [small, large]

New Tasks
Postion of new tasks NT-P [close, far]

8Number of new tasks NT-N [few, many]
Demand of new tasks NT-D [small, large]

State Factors Acronyms Levels #Settings

Number of outside vehicles OV [few, many] 4Value of remaining capacities RQ [small, large]

are selected uniformly at random and their cost is doubled/halved.
In the new demand event, we selected uniformly at random 20%
(few) and 80% (many) tasks among all remaining tasks to be changed.
For the new task event, we also selected uniformly at random
20% (few) and 80% (many) of all available arcs which are not the
remaining tasks as the new tasks. The value of new demand and
the demand of new tasks are determined by the number of new
vehicles required. If the value of new demand is set as small/large,
we set that the total demands added to this instance one/four times
of the vehicle’s full capacity, with the new demand added to each
task being split equally among all tasks. For new task events, the
positions of new tasks are also considered including far from and
close to the depot. In the following subsections, we will use ‘0’ and
‘1’ to represent the first and second level for each factor.

For simplicity, each dynamic event was investigated
independently in our experiment. Each DCARP instance was
generated based on one dynamic event. Given a dynamic event, a
DCARP instance configuration was created for each possible
combination of levels for that dynamic event and levels for the
state factors. Due to the page limitation, we put the pseudo-code of
the instance generator in the supplementary file. The column
“#Settings” in Table 1 presents the number of settings. Therefore,
we generated DCARP instances with 64 (i.e., (2 + 2 + 4 + 8) ∗ 4)
different configurations of dynamic events and state factors.
Moreover, 10 different DCARP instances were generated for each
configuration in our experiment. The generated instances and the
source code of the presented work is available at Github1.

4.2 Auto-correlation
The auto-correlation measures the local ruggedness of the fitness
landscape based on random-walk sampling [25]. It calculates the
expected correlation between the first 𝑇 − 𝜏 and last 𝑇 − 𝜏
subsequences of a fitness sequence {𝑐1, 𝑐2, ..., 𝑐𝑇 } corresponding to
the solutions obtained by the random walk. The auto-correlation is
estimated according to:

𝑅(𝜏) =
∑𝑇−𝜏
𝑡=1 (𝑐𝑡 − 𝑐) (𝑐𝑡+𝜏 − 𝑐)∑𝑇

𝑡=1 (𝑐𝑡 − 𝑐)
1https://github.com/HawkTom/DCARP-FLA/tree/main

where 𝑐 is the mean fitness of the whole sequence. The correlation
length 𝑙 is a single value reflecting the ruggedness of the fitness
landscape measuring the auto-correlation when 𝜏 = 1 [14] and is
calculated by:

𝑙 = − 1
𝑙𝑛𝑅(1)

Due to space limits, here, we present the average correlation length
over 10 DCARP instances for each setting (Figure 1), where a smaller
value indicates a much more rugged landscape. We performed 10e9
steps of random walk on each instance in our experiment.

Figure 1: Average correlation length over 10DCARP instances
for each of 64 settings.

Figure 2: Correlation between correlation length and the
number of tasks.

From Figure 1, for state factors, instances with more outside
vehicles and fewer remaining capacities (OV1-RQ0) have the
smallest correlation length, while the other three have similar
correlation lengths to each other. For dynamic events, instances
with new tasks have a larger correlation length, especially for
settings with more new tasks (NT:P*-N1-V*), while the other three
events have similar correlation lengths to each other. The main
reason is the number of tasks in each instance. States with more
outside vehicles and fewer remaining capacities indicate that many
tasks have been served and only a few tasks remain to be served.
In contrast, new task events obviously will cause the instance to
have a large number of tasks. For instances with more tasks, the
total cost is a relatively large value so that the cost change of
one-step random walk has less effect on the cost of solutions. Thus,
instances with more tasks will have a large correlation length. To
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further confirm the relationship between correlation length and
number of tasks, we plot the correlation length and the number of
tasks of all instances in Figure 2 and applied linear regression. It
clearly demonstrates that they are approximately linearly
correlated. Therefore, the conclusion motivates us that the
algorithm designed for DCARP should focus much more on the
number of tasks in the DCARP instances.

It is worth noting that even though the landscape becomes
smoother for instances with more tasks, there is no indication that
these instances are much easier because the ruggedness measured
here just reflects the relative fitness of neighbors. Therefore, an
instance with smoother landscape at solution level may also be
hard to solve. For example, although an instance has a smooth
landscape, it may have some attractive local optimum in the search
space causing the instance to become difficult. Therefore, more
analysis for DCARP instances are presented in the following
subsections.

4.3 Local Optima
In this subsection, we randomly sampled 100,000 solutions for
each DCARP instance and performed the HyLS on each sampled
solution to reach a local optimum. The cost and the solution of all
local optima were recorded. The analysis for these local optima is
presented in the following.

4.3.1 Number of Local Optima.
Larger numbers of local optima can make the combinatorial
optimization problem difficult because the optimization algorithm
may be easily trapped in local optima [18]. Thus, we calculate the
average number of local optima for each setting (Figure 3).

Figure 3: Number of local optima over 10 DCARP instances
for each of 64 settings.

From Figure 3, instances with new tasks (NT) have more local
optima than the other three dynamic events. In addition, the
influence of the state factors is highlighted when the number of
tasks becomes smaller as shown in instances without new tasks
(CI, CD, ND) in the Figure 3 (𝑁𝑇 < 70 in our results). Instances
with many outside vehicles and lower remaining capacities
(OV1-RQ0) have the fewest local optima, indicating that the basin
size of these instances might become large. In Figure 3, instances
that only add demand to many existing tasks when there are many
outside vehicles and lower remaining capacities (ND:N1-V*,
OV1-RQ0) have a significantly smaller number of local optima.

Therefore, from the perspective of the number of local optima, the
new tasks are also the main factor which make instances much
harder to solve. If there is no new task, the adding demand event
can make an instance even easier to solve.

4.3.2 Time to reach the local optimum.
The time for a solution to reach the local optimum reflects the depth
of basin of attraction2 of the corresponding local optimum. If the
solution takes a long time to reach the local optimum, it indicates
that this local optimum has a deep basin of attraction. A deep
basin of attraction usually makes the optimization problem more
difficult because the algorithm will take more time to reach the
local optimum. Therefore, we recorded the average time to reach
the local optimum by HyLS for all 100,000 solutions. The mean
results over 10 DCARP instances for each setting are presented in
Figure 4.

Figure 4: Average time over all 100000 solutions to reach the
corresponding local optima (unit: 𝑠). The presented result
for each configuration is the mean result over 10 DCARP
instances.

Instances with a much deeper basin of attraction require
algorithms to spend more computational resources for exploitation.
For these instances, the number of local optima searched within
limited computational resources will be very small, as the
algorithm is likely to take a longer time to exploit one local
optimum. Therefore, such problem instances are more likely hard
to solve. From Figure 4, the new task event is still the main event
that influences the difficulty of the problem. Specifically, instances
with more new tasks take a longer time to reach the local optima.
The positions and demand value of new tasks have no significant
influence on the results.

4.3.3 Cost distribution.
For an easy problem instance, the cost distribution will be more
biased to a high fitness so that the probability of finding a high-
quality local optimum will be much higher. Therefore, we analyzed
the cost distribution based on all recorded local optima. For a much
fairer comparison, we normalized the cost of each DCARP instance
by its expected cost, which is estimated by sampling a large number
of random solutions from the search space.

2The basin of a local optimum corresponds to the set of solutions from which the local
optimum can be attained using basic moves/local search techniques.
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Two statistical measures are applied to compare the cost
distribution between DCARP instances with different
configurations, including the mean cost and skewness. The mean
cost reflects the expected quality of a local optimum obtained by
HyLS, and the skewness reflects the shape of the distribution
compared with a normal distribution. A lower mean cost and a
higher skewness indicates that the probability of finding a
high-quality local optimum is higher. The average values of these
two statistics over 10 DCARP instances for each of the 64 settings
are presented in Figure 5 and Figure 6.

Figure 5: Averaged mean value of all reached local optima
for each DCARP setting over 10 DCARP instances.

Figure 6: Averaged skewness value of all reached local optima
for each DCARP setting over 10 DCARP instances.

From Figure 5, the values in the left two columns are larger than
the ones in the right two columns. We conclude that instances
with more outside vehicles (OV1) are much easier to solve. For the
same dynamic event, instances with many outside vehicles and
small remaining capacities (OV1-RQ0) are the easiest because the
number of tasks is the smallest. Moreover, for the same state factor,
adding new tasks makes instances harder than the other three
events. The events of cost increase and decrease are similar to each
other indicating that instances with only these two events will not
become very difficult. The skewness presented in Figure 6 is able to
reflect the probability of finding a local optimum in an instance. A
much larger value indicates that it has a high probability for finding
a high-quality solution. From Figure 6, almost all instances have a
positive skewness value, indicating that the quality of most reached

local optima is much better than a random solution. This is also
helpful for the effectiveness of HyLS. Specifically, the distribution
of instances only with cost change events is more biased to the area
with high-quality solutions meaning that an algorithm may find a
good solution with fewer computing resources.

In summary, according to the mean cost and the skewness of cost
distribution, we can conclude that cost change events will not make
DCARP instances are harder to solve compared with new demand
and new tasks events. A higher number of outside vehicles will
also result in a higher mean quality of local optima to the DCARP
instances.

4.3.4 Distance between local optima.
The distance between local optima is also an important property of
the fitness landscape. If a local optimum with a low cost is far from
other local optima, it will be hard for the algorithm to explore from
a local optimum to a much better local optimum which makes the
problem hard to optimize. Therefore, we analyzed the following
two distance properties:

(1) The distance between local optima versus expected distance
between two random solutions.

(2) The correlation between the cost of local optima and their
distance.

Hamming distance is used to measure the distance between
two CARP solutions. Suppose 𝑉𝑅 is a set of vertices including the
depot and all vertices incident with at least one task, a complete
graph 𝐺𝑅 = (𝑉𝑅, 𝐴𝑅) can be constructed, where 𝐴𝑅 is the set of
arcs between each pair of vertices in 𝑉𝑅 . If one vertex 𝑖 incidents
with 𝑑 (𝑖) tasks (𝑑 (𝑖) > 0), we will duplicate 𝑑 (𝑖) copies of this
vertex in 𝑉𝑅 and assign a unique id to each copy. The cost of an
arc in 𝐴𝑅 depends on the original (D)CARP instance. Therefore, all
traversed paths in a CARP solution are arcs in 𝐺𝑅 , and no arc in
𝐺𝑅 will be used twice in a CARP solution. Consequently, a CARP
solution can be represented by a binary vector in the space of arcs
in𝐺𝑅 , where each bit denotes one arc in𝐺𝑅 and “1” denotes that the
corresponding arc is used in the CARP solution. Thus, solutions will
be converted to the binary representation first before calculating
the Hamming distance.

The ratios of the expected distance between two local optima
to that of two random solutions for all 64 settings are presented in
Figure 7, where each result is the averaged value over 10 DCARP
instances. A negative value indicates that the distance between
two local optima is smaller than two random solutions. In Figure 7,
almost all ratios are very close to 0, reflecting that local optima in all
DCARP instances are uniformly distributed instead of gathering in
a specific area or far from each other. We conclude that all dynamic
factors will not impact the distribution of the local optima, not
further influencing the difficulty of each instance.

The correlation between the cost of local optima and their
distance for all 64 settings are presented in Figure 8, where each
result is also the averaged value over 10 DCARP instances. From
Figure 8, almost all correlations between the cost of local optima
and their distance are close to 1. This indicates that better local
optima are much closer to each other than the less fit local optima,
which is beneficial to the optimization. Moreover, instances with
more outside vehicles (OV1) have larger correlation values
according to Figure 8 whereas the correlations for different
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Figure 7: Ratio of the expected distance between two local
optima to that of two random solutions. The presented result
for each configuration is the averaged value over 10 DCARP
instances.

Figure 8: Correlation between the cost of local optima and
their distance. The presented results for each configuration
are the averaged values over 10 DCARP instances.

dynamic factors under the same state factor are similar to each
other. Therefore, instances with more outside vehicles might be
slightly easier for optimization. Instances with adding demands to
many tasks (ND:N1-V*) have the smallest correlation. This
indicates that the distribution of local optima is not clustered
based on their cost. Thus, the algorithm might require a bigger
step for the exploration.

4.4 Approximate Global Optimum
In this subsection, we focus on the properties of the global
optimum of the problem instance. We applied a powerful
meta-heuristic, i.e., Memetic Algorithm with Extended
Neighborhood Search (MAENS) [16, 20], to optimize all DCARP
instances with sufficient computational resources, i.e., with the
same maximum iteration number as used in the static optimization
[16]. The obtained best solution is then considered as the
approximate global optimum because the real global optimum is
unknown.

4.4.1 Fitness Distance Correlation.
Fitness Distance Correlation (FDC) measures the correlation of a
solution’s fitness and its distance to a global optimum [4, 5]. In
minimization problems, a positive correlation indicates that the

closer a solution distance is to the global optimum, the higher
quality (i.e., lower cost) the solution has. The algorithm can benefit
from such a fitness landscape and be more easily guided to the
global optimum. In contrast, an instance with a negative
correlation will potentially guide the algorithm towards the
opposite direction of the global optimum. For DCARP instances,
suppose 𝐹 = {𝑐1, 𝑐2, ..., 𝑐𝑛} and 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑛} are the fitnesses
of 𝑛 solutions and the distances to the global optimum of these
solutions. FDC is calculated by the following equation [4]:

𝐹𝐷𝐶 =

1
𝑛

∑𝑛
𝑖=1 (𝑐𝑖 − 𝑐) (𝑑𝑖 − 𝑑)

𝜎𝐹𝜎𝐷

where 𝜎𝐹 , 𝜎𝐷 , 𝑐, 𝑑 represent the standard deviations and means of
𝐹 and 𝐷 . The distance between two solutions are also measured
by the Hamming distance as introduced in Section 4.3.4. The mean
FDCs over 10 DCARP of each configuration is presented in Figure
9. For each instance, all found local optima were used to calculate
the FDC in our analysis.

Figure 9: Fitness distance correlation of global optimum for
all 64 settings. The presented result for each configuration is
the mean result over 10 DCARP instances.

A high value in Figure 9 indicates that local optima that are
closer to the global optima have higher qualities, meaning that the
instance is potentially easier to solve. In Figure 9, instances with
new tasks (NT) have a relatively small FDC value comparedwith the
other three events. For state factors, FDC values of instances with
fewer outside vehicles (OV0) are also smaller than those with many
outside vehicles (OV1). We also observe that instances with adding
demand to many tasks (ND:N1-V*) also have small FDC values.
These instances all require more vehicles to serve the remaining
tasks. Therefore, a potential conclusion is that when remaining
tasks require more new vehicles, the instance will have a smaller
FDC value, and the problem instance might become harder to solve.

4.4.2 Return Probability.
The return probability empirically measures the basin of attraction
of the global optimum by calculating the probability of returning to
the global optimum starting from a solution with a fixed distance
to it [18]. If the global optimum has a high return probability even
though the starting solution is far from the global optimum, it may
be easier for the algorithm to find the global optimum.

In our experiment, the return probability is measured by
starting from solutions which are obtained by applying a given
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number of Single Insertion (SI) operations. It is the most basic move
for the CARP solution that move one task from one route to
another position of this or another route in the solution. The
return probability is estimated by starting from 1000 solutions
generated by applying the same number of steps of SI from the
global optimum. From our results, the return probability in all
DCARP instances drops to 0 after about 6 steps of SI. For simplicity,
we only present the return probability of the global optimum after
one random step of SI averaged over 10 instances in Figure 10.

Figure 10: Return probability of global optimum with one
random step of Single Insertion.

From Figure 10, the return probability for one-step neighborhood
move was very small for all DCARP instances, which indicates
that the global optimum’s basin size is very small for the DCARP
problem. Therefore, the DCARP instances are hard to solve, and
a good algorithm should have a good exploration ability to find a
high-quality solution. In addition, the bottom right part of Figure
10 has a relatively smaller return probability compared with other
parts. In this area, instances have more remaining demands to be
served and many outside vehicles. Therefore, the dynamic events
causing more demands and the state with more outside vehicles
are likely more challenging to solve.

4.5 Summary of Fitness Landscape Analysis
In this section, we provided our results and insights from fitness
landscape analysis, which we performed on a set of DCARP
instances with different settings of dynamic events and state
factors. A list of valuable conclusions obtained from the empirical
analysis are summarized as follows:
• DCARP instances with many remaining tasks and new tasks
caused by the new task event had a smoother fitness landscape
at solution level.
• The task’s number was also the main factor affecting the
number of local optima and the averaged time to reach the local
optima. Instances with more tasks caused more local optima and
consequently a longer time to reach the local optima.
• The local optimum’s mean cost of DCARP instances was mainly
affected by the number of outside vehicles and the number of
tasks. Instances with more outside vehicles and fewer tasks had
a relatively lower mean cost.
• The local optima in all DCARP instances were almost uniformly
distributed. Their distances were similar to that of two random
solutions.

• Local optima with higher quality were closer to each other than
to less fit local optima for all DCARP instances.
• In terms of the global optimum, instances which require more
vehicles for the remaining tasks had a smaller fitness distance
correlation as well as a smaller return probability.

According to our insights on the fitness landscape analysis for
DCARP instances, a potential direction about designing more
effective algorithms for optimizing DCARP is to pay more
attention to the new tasks and the total remaining demands. For
example, for a new DCARP instance, we can focus on designing
strategies to allocate new tasks.

5 CONCLUSION
In this paper, we focused on Dynamic Capacitated Arc Routing
Problems (DCARP) and investigated which factor(s) potentially
make the DCARP instances hard to solve. We considered four
common dynamic events: cost increase, cost decrease, new
demand, and new tasks as well as two inherent state factors of the
DCARP instance, i.e., the number of outside vehicles and the
remaining capacities. Fitness landscape analysis techniques based
on a local search algorithm, i.e., HyLS, were performed on a set of
generated DCARP instances according to different configurations
of dynamic and state factors. We investigated the correlation
length, the number of local optima, the time to reach a local
optimum, the mean cost of the local optima, the distance
properties of local optima, the fitness distance correlation, and the
return probability on all generated DCARP instances.

Based on our empirical results from the fitness landscape
analysis, we found that the new task event had much more
influence on the difficulty of the DCARP instances than the other
three dynamic events. The number of remaining tasks was the
main factor making DCARP instances hard to solve, with a larger
number being harder. There was no evidence that the cost increase
and cost decrease significantly impacted the characteristics of the
DCARP instances. In addition, our fitness distance correlation
analysis found that instances requiring more new vehicles are
likely more difficult.

In this paper, we considered each dynamic factor independently
and interactions between different factors probably have a
different influence on the problems’ characteristics which needs to
be investigated in future work. Since new task events and
requirements for new vehicles make DCARP instances potentially
harder to solve, we conclude that future DCARP algorithm design
should focus on both of these key factors.
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