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Abstract 

Neural representation of lexico-semantics in speech processing has been revealed in recent years. 

However, to date, how the brain makes sense of the higher-level semantic gist (topic keywords) of a 

continuous speech remains mysterious. Capitalizing on a generative probabilistic topic modelling 

algorithm on speech materials to which participants listened while their brain activities were recorded 

by Magnetoencephalography (MEG), here we show spatio-temporal neural representation of topic 

keywords in a multi-speaker environment where task-relevant (attended) and -irrelevant (unattended) 

speech co-exits. We report the difference of neural representation between salient and less salient 

semantic gist of both attended and unattended speech. Moreover, we show that greater sensitivity to 

semantically salient unattended speech in the left auditory and motor cortices negatively mediates 

attended speech comprehension. 
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Introduction 

Humans have the remarkable ability to get the gist of the story. Imagine that you are listening to a talk 

without any prior information about the topic of the talk. As the talk unfolds, you will identify keywords 

that will enable you to infer the topic of the talk. How does the human brain extract topic keywords from 

the story, and how does the brain distinguish critical, relevant words (i.e., keywords) from less critical, 

irrelevant words? What are the spatio-temporal characteristics in brain activity that reflect the 

identification and processing of topic keywords, particularly in the context of effortful listening, for 

instance, at a cocktail party?  

An increasing number of studies has demonstrated that neural representations of acoustic (Park et al., 

2015; Park et al., 2016; Hauswald et al., 2018; Park et al., 2018b; Park et al., 2018a; Biau et al., 2021; 

Haider et al., 2022) and linguistic, e.g., semantic features (Kutas and Federmeier, 2011; Strauss et al., 

2014; Huth et al., 2016; Wang et al., 2018; Broderick et al., 2019; Kaufeld et al., 2020) of naturalistic 

auditory or audiovisual speech are quantifiable in Magnetoencephalography (MEG) or 

Electroencephalography (EEG) recordings based on frequency-domain synchronization analysis or 

time-domain regression analysis. Furthermore, recent developments of natural language processing 

(NLP) models based on machine learning algorithms, such as word vectors (Mikolov et al., 2013), have 

brought breakthroughs not only to the area of artificial intelligence (AI), for example, speech/text 

recognition, machine translations (e.g., speech-to-text), but also to the neuroscientific study of rich, 

naturalistic speech stimuli (Broderick et al., 2018; Pereira et al., 2018) or movie (Nishida et al., 2021). 

For example, Broderick et al. (2018) has shown that using a trained computational language model, 

semantic vectors for content words of the continuous stimuli, which were given to participants during 

EEG recordings, can be used to identify semantic neural correlates.  

Traditionally, neural semantic processing has been studied through semantic violations (Kutas and 

Federmeier, 2011). More recently, semantic analysis has been extended to word-level prediction (Wang 

et al., 2018) and even to the processing of continuous speech (Broderick et al., 2018; Broderick et al., 

2019; Koskinen et al., 2020). However, the field still lacks the quantification of neural processes involved 

in higher-level semantic processing, such as investigating how the brain understands the topic of the 

story (main idea, keywords, semantic core). Comprehension of sentences in continuous speech 

requires multiple levels of hierarchical processing. One of the key components in this processing is the 
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understanding of word meanings, i.e., lexico-semantic processing, which is a critical building block 

supporting the construction of a semantic core of the story. However, the understanding of latent 

meanings in idiomatic expressions, for example, cannot be attained through word-level processing. The 

comprehension rather builds upon complex contextual information. The neural mechanism underlying 

such processing remains unclear. As such, in the current study, we aim to investigate how the brain 

extracts the main topic in a continuous speech and how this process is implemented in multi-speaker 

environment where task-relevant (attended) and -irrelevant (unattended) stimuli co-exist.  

To investigate brain responses engaging in the understanding of the main topic of the story, we first 

identified topic keywords in the spoken speech materials delivered to the participants during MEG 

measurement. Here we used a topic model algorithm, Latent Dirichlet Allocation (LDA), a text mining 

technique that has been developed to delineate short descriptions of the collection of text corpora (Blei 

et al., 2003) on speech chunks segmented in a perceptually relevant manner. LDA analysis results in 

sets of topic keywords and the probability of the words belonging to the topic. Thus, LDA enables 

identifying the topic probability for each speech chunk. For characterizing the brain representations of 

the topic keywords, the segmented speech chunks were sorted according to topic probability and 

divided into two conditions (high vs. low topic probability condition). Speech envelope in each condition 

and corresponding brain activities were used to fit encoding and decoding models of the multivariate 

temporal response function (mTRF).  

Results from the decoding model prediction accuracy show that speech chunks with high topic 

probability are better reconstructed when compared to speech chunks with low topic probability within 

the attended and unattended talk. Strikingly, this was evident between speech chunks with high topic 

probability from the unattended talk and speech chunks with low topic probability from the attended talk. 

Moreover, we provide evidence that the processing of unattended speech chunks with semantic gist in 

the left frontal, auditory and motor areas negatively mediates attended speech comprehension. We 

show, for the first time to our knowledge, how the brain processes topic keywords in a continuous story 

in a challenging listening situation in a behaviourally relevant manner.  
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Results 

 

Speech data processing and computational topic modelling 

Segmentation of natural speech. Embedded linguistic units (e.g., embedded phrases or conjoined 

sentences) in natural speech and its temporal complexity with varying lengths of phrases and sentences 

have made it difficult to study high-level semantic processing beyond word-level during natural speech 

perception. Those time-varying semantic chunks are often marked by intermittent pauses (i.e., silences) 

from the speaker before moving to the next phrases or sentences. In order to derive topic keywords 

from a talk via a computational modelling algorithm, we first segmented each talk into phrases or 

sentences based on these acoustic properties. Using the library Syllable Nuclei (de Jong and Wempe, 

2009) in Praat software (Boersma and Weenink, 2018), we obtained acoustic chunks with parameters 

of 0.25 s minimum pause (silence) durations, -25 dB silence threshold, and 1 s minimum duration of 

each speech chunk (Fig. 1a). We detected 129 speech chunks on average with a mean duration of 3.37 

s from the seven talks used in the current study. We calculated speech rates by the number of syllables 

divided by the duration of the talk. For detecting peak intensity, 2 dB above the median was used as a 

threshold (the minimum dip between peaks). The profiles of the talks – for example, the number of 

syllables, speech rate, articulation rate (the number of syllables divided by phonation (speaking) time), 

the number of speech chunks for each talk – are reported in Supplementary Table 1.  

Text preprocessing. Transcriptions of TED talks for video filmings were double-checked after the 

recordings by a professional speaker for a possible difference between transcriptions and actual speech 

during the filmings. Different parts were updated, and these finalized transcriptions were used for the 

annotations of the segmented speech chunks derived by the Syllable Nuclei (see the first column in Fig. 

1b). Preprocessing of text materials was performed using a python library, spaCy (Honnibal and 

Montani, 2017), an open-source software library for advanced natural language processing (NLP), 

which is similar to NLTK (Natural Language Toolkit) – a popular open-source library released in 2001 

(Bird et al., 2009). The preprocessing can be summarized into the following three steps (the middle 

column in Fig. 1b) – 1) tokenization, 2) lemmatization, and 3) removal of stop words, described below 

in more detail.  
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Figure 1. Segmentation of speech and topic modelling application. a, Perceptually driven segmentation of 
speech. A continuous speech was segmented into phrases or sentences in a perceptually relevant manner. Using 
the library Syllable Nuclei in Praat, we obtained acoustic speech chunks by the following thresholding parameters: 
pause (silence) duration (minimum 0.25 s long), loudness (-25 dB silence), and the length of speech chunks 
(minimum 1 s long). We detected 129 speech chunks on average with a mean duration of 3.37 s for seven 
continuous talks used in the study (also see Supplementary Table 1). A snapshot from one example talk is shown 
in the figure. Each row depicts a raw speech signal, spectrogram with intensity (in yellow) and pitch (in blue), the 
number of syllables, and annotations. b, Text preprocessing and topic modelling. Left column: An example of 
segmented speech chunks from a representative talk is shown. In this talk, 135 speech chunks were obtained. 
Middle column: Preprocessing of annotations of spoken speech materials was performed using a python library, 
spaCy, through the following three steps: tokenization, lemmatization and removal of stop words. Right column: 
Schematic illustration of topic modelling algorithm, Latent Dirichlet Allocation (LDA), is displayed. A fixed number 
of topics was specified in advance (4 in the current study), and bi-gram model was used in the topic model to 
optimally capture topic messages. c, Extracted topic keywords. Out of the LDA model, documents (referred to as 
speech chunks in the current study) assigned to topic t and words with high probability for topic t are obtained as 
outputs (document-topic matrix). The most common words with the highest probability are shown for each topic. d, 
Distribution of topic probability across speech chunks in a representative talk. Vectors of topic probabilities 
for each speech chunk were depicted using a stacked bar chart (topic mixture) where x- and y-axes depict topic 
probability and the identity of speech chunks, respectively. Color-coded bars in each row represent the probability 
distribution across 4 topics in a given speech chunk. In this sample talk, topic 3 has the highest probability across 
all speech chunks, which indicates the representative topic keywords for this talk. e, t-SNE visualization of topics 
colored and sized by topic probability. The document-topic matrix from the LDA model was subjected to t-SNE 
dimensionality reduction model, which was then fitted to be visualized in 2-d embedded space scatterpie chart. 
Each data point as a scatterpie chart represents each speech chunk which is clustered into a certain topic according 
to the highest probability for the topic. The scatterpie chart also shows the probability distribution over topics. f, 
Speech chunks sorted according to the topic probability of the representative topic (topic 3 in this example 
talk). The speech chunks shown in b were sorted from highest to lowest topic probability as to topic 3. To investigate 
the neural processing of topic representation, we split these speech chunks into high vs. low topic probability 
conditions. g, Segmentation and allocation of the MEG and speech signals into topic probability conditions. 
Corresponding brain data at sensor and source level and auditory speech envelope were split into high vs. low topic 
probability conditions as well, resulting in trial-based epochs.  

 

Using an English language model - OntoNotes 5 (Weischedel et al., 2013) by Linguistic Data 

Consortium (LDC), trained on a large corpus comprising various genres of text (news, conversational 

telephone speech, weblogs, usenet newsgroups, broadcast, talk shows) - embedded in spaCy, raw 

texts were tokenized into component pieces, e.g., prefix, suffix, infix and other exceptions. Next, these 

basic building blocks of document objects (tokens) were lemmatized, which is similar to stemming (word 

reduction, e.g., “boat” for “boats”, “boating”, “boater”) in other libraries, which works well, but with some 

issues given numerous exceptions in English (e.g., irregular verbs such as begin-began-begun). 

Lemmatization implements beyond the stemming (word reduction) and considers a language’s full 

vocabulary to apply a morphological analysis to words. For instance, the lemma of ‘was’ is ‘be’, and the 

lemma of ‘mice’ is ‘mouse’. In some cases, the lemma of ‘meeting’ might be ‘meet’ or ‘meeting’ 

depending on the context (e.g., “I’m meeting my boss tomorrow at the meeting.”). Lemmatization in 

spaCy is assumed to provide correct lemmas even in such cases by considering surrounding texts to 

determine a word’s part of speech, which has motivated our use of the spaCy library in the 
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preprocessing steps for the subsequent topic model analysis. Then, stop words, which are presumed 

to be semantically uninformative in representing a content of a text, such as “a/an”, “the”, be-verbs, 

“and”, “with”, “seems”, “also” etc. were filtered out from the text. We used a ~300 stop words list built in 

a machine learning python library, scikit-learn (Pedregosa et al., 2011) feature extraction module for 

texts (sklearn.feature_extraction.text). Furthermore, to rule out the possibility of emotional valence 

driven topic keywords representation in the brain, we confirmed that all the speech materials used in 

the study are with neutral sentiment by sentiment analysis (see Supplementary Table 2 for more details). 

Topic modelling. Topic models are collective algorithms that try to uncover the hidden thematic 

structure in document collections (Blei, 2012). Recent advances in state-of-the-art machine learning 

algorithms and the era of big data enable the developments of the subfield of Natural Language 

Processing (NLP) at different levels, such as syntactic, lexical semantics, or discourse. The current 

study aims to map spatiotemporal neural representation of topic processing during natural speech 

perception, so we used one of the widely-used topic modelling algorithms, Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003) in order to extract topic keywords in a talk. Latent Semantic Analysis (LSA) 

(Landauer and Dumais, 1997) is another widely used topic model (Hoffman, 2019). LDA and LSA are 

conceptually similar and allow us to efficiently analyze a large volume of text data by clustering 

documents into a certain number of topics. They are unsupervised learning algorithms as the text data 

is unlabelled. The assumption behind the topic modelling is that documents with similar topics use 

similar groups of words, so latent topics can be detected by the frequent co-occurrence of groups of 

words in documents across the corpus. Both LDA and LSA algorithms operate on word-document co-

occurrence matrices in a low-dimensional space so that the occurrence of sets of words in multiple 

documents can be computed. LSA uses singular value decomposition (SVD) that the created singular 

vector of the co-occurrence assumed to be orthogonal. LDA is a generative probabilistic model as its 

name based off (Dirichlet distribution) that produces probabilities that a word derived from the 

distribution for a particular topic. More detailed differences between LSA and LDA are discussed in the 

previous literature (Griffiths et al., 2007; Pereira et al., 2011).  

Latent Dirichlet Allocation (LDA) analysis. LDA topic model analysis was performed using the scikit-

learn (Pedregosa et al., 2011) (class: sklearn.decomposition.LatentDirichletAllocation), following the 

preprocessing of texts described above. First, the preprocessed text documents are converted to a 

matrix of token counts (i.e., a sparse representation of token counts, also known as document-term 
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matrix via scikit-learn class, sklearn.feature_extraction.text.CountVectorizer), then the LDA model is 

fitted to the document-term matrix.  

LDA (Blei; Chen; Blei et al., 2003; Blei, 2012) is a generative probabilistic model for collections of texts 

implementing a three-level hierarchical Bayesian model. In the model, each item of a collection is 

modelled as a mixture over an underlying set of topics, in which each topic is modelled as a mixture 

over an underlying set of topic probabilities. These probabilities provide an explicit representation of a 

document. The algorithm is typically used to extract topics over different documents to classify the 

documents according to their topics. Here we used the LDA to derive topic keywords that best represent 

the main idea of each talk across the segmented speech chunks described above. Also, the main idea 

of a talk is better represented in a phrase, not a single word, for example, “save energy” rather than 

“save” or “energy”, so we used bi-gram (two words) model in the algorithm to identify topic keywords. 

For fitting the model, a fixed number of topics should be specified in advance, and we set 4 in the 

current study.  

LDA model represents documents as mixtures of topics with certain probabilities. The assumption of 

the model posits that documents (speech chunks in the current study) are probability distributions over 

latent topics (top figure in the third column in Fig. 1b), and topics are probability distributions over words 

(bi-grams in the current study) in a given corpus (bottom figure in the third column in Fig. 1b). In the 

model, it is assumed that documents have been produced as follows: First, the number of words in the 

document is decided; second, a topic mixture is chosen for the document according to a probability 

distribution over a fixed set of k number of topics which has been set in advance (k=4), for example, 

60% of “machine age”, 20% of “industrial revolution”, 10% of “race (with the) machine(s)”, 10% of 

“productivity time”; third, each word is generated in the document by choosing a topic according to the 

multinomial distribution in the previous step and using the topic to generate the word based on the 

topic’s multinomial distribution. This way, the LDA model learns the topic representation of each 

document and the words associated with each topic. While going through each document, the model 

randomly assigns each word in the document to one of the k topics. This process results in topic 

representations of all the documents and word distributions of all topics, albeit initial topics are likely to 

be inadequate. This step is iterated over every word in every document to improve the model 

performance.  
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For every word (bi-gram in the current study) in every document (speech chunk in the current study) 

and for each topic: 

p (topic t | document d) = the proportion of words in document d assigned to topic t 

p (word w | topic t) = the proportion of assignments to topic t over all documents from the word w 

Then the model reassigns w a new topic where topic t with probability: 

p (topic t | document d) * p (word w | topic t) 

that represents the probability that topic t generated word w. 

 

Following the process above, documents assigned to topic t and words with a high probability for topic 

t are obtained as outputs (document-topic matrix). Here, the most common words (bi-grams in the 

current study) with the highest probability for topic t can be obtained, as shown in Fig. 1c. Also, vectors 

of topic probabilities for each document (speech chunk in the current study) were depicted using a 

stacked bar chart (topic mixture), as shown in Fig. 1d. 

T-SNE representation of LDA result. In addition to a figure for topic mixture showing the probability 

distribution of each speech chunk over topics, the outputs from the LDA topic model were analyzed 

using the t-SNE (t-distributed Stochastic Neighbor Embedding) technique (van der Maaten and Hinton, 

2008) via scikit-learn (class: sklearn.manifold.TSNE). T-SNE is an unsupervised, nonlinear 

dimensionality reduction algorithm and is used as a tool for visualizing high-dimensional data by 

converting pairwise similarities (Euclidean distance as a metric) between data points to joint 

probabilities by minimizing the Kullback-Leibler divergence (Kullback and Leibler, 1951) between the 

joint probabilities of the low-dimensional embedding and the original high-dimensional data. Student t-

distribution is used for the creation of low-dimensional space instead of a Gaussian distribution for better 

modelling of distances since t-distribution is heavier-tailed than the Gaussian distribution. Returning 

values are embeddings of the training data in low-dimensional (2-d) space represented (t-SNE 

dimensions 1 and 2). The document-topic matrix from LDA topic model analysis was subjected to t-

SNE dimensionality reduction model which was then fitted to be visualized in 2-d embedded space. The 

output from t-SNE technique was visualized using scatterpie chart (Yu, 2020) via ggplot2 (Wickham, 

2016) in R (2020), as shown in Fig. 1e. Each data point as a scatterpie chart represents each speech 
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chunk that is clustered into a certain topic t according to the topic’s highest probability. In addition, the 

scatterpie chart shows the probability distribution over topics in a given speech chunk. 

 

Analysis of neural processing of topic keywords 

Selection of representative topic keywords. Topic probabilities for each speech chunk were 

averaged across all speech chunks in a talk in order to identify the representative topic keywords (bi-

gram in the current study). For instance, averaging topic probabilities across speech chunks for each 

topic 1-4 (Fig. 1d) produced topic keywords with the highest topic probability (e.g., topic 3 in this sample 

talk (see Fig. 1c), “The key to growth? Race with the machines” by Erik Brynjolfsson). Next, the speech 

chunks were sorted from highest to lowest topic probability as to this topic 3. In order to investigate the 

neural processing of topic representation, we split these speech chunks into high and low topic 

probability conditions (Fig. 1f). Corresponding brain data both at sensor and source level were split to 

high and low topic probability conditions as well, resulting in trial-based epochs, as shown in Fig. 1g. 

Topic keywords processing of attended vs. unattended talk. The current study aims to identify how 

the brain processes topic keywords not only in an attended talk, but also in an unattended talk. In the 

context of natural speech with competing speakers, highly semantic words and sentences in unattended 

talks can interfere with focused attention to attended talks due to intermittent silences and pauses and 

semantically less important contents in attended talks, which enables shifting attention to unattended 

talks. In order to identify the effect of highly semantic speech chunks in unattended talks on the attended 

speech processing, we performed the same analysis described above for unattended talks as well.  

 

Global brain activity reflects topic probability in speech chunks 

Mean-field power analysis at sensor level. Speech chunks with high and low topic probability in both 

attended and unattended talks were first yielded to mean-field power analysis at the sensor level for a 

sanity check. The averaged power across left auditory sensors (inset) was depicted in Fig. 2, and effects 

are shown for each condition (high and low topic probability) for attended and unattended, as well as 

combined effects for topic probability (regardless of attention) and attention (regardless of topic 

probability).  
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Figure 2. Mean-field power analysis at sensor level. a, Mean-field power from 0.25 s to 0.5 s time-locked to the 
onset of speech chunks over left auditory sensors (inset) were averaged and compared between all combinations 
of topic probability (high, low) and attention (attended, unattended) as follows via paired t-test: attended, high vs. 
attended, low: t43 = 2.21, p = 0.03; attended, high vs. unattended, high: t43 = 3.21, p = 0.002; attended, high vs. 
unattended, low: t43 = 4.35, p < 0.0001; attended, low vs. unattended, high: t43 = 1.51, p = 0.14; attended, low vs. 
unattended, low: t43 = 2.91, p = 0.005; unattended, high vs. unattended, low: t43 = 1.44, p = 0.16; attended vs. 
unattended talk pooling across high and low topic probability: t43 = 4.17, p = 0.0001; high vs. low pooling across 
attended and unattended: t43 = 2.62, p = 0.01). b-d, Temporally unfolded mean-field power by root mean square 
averaged over the same left auditory sensors during -0.05 s to 1 s time-locked to the speech chunk onset are 
displayed for all individual conditions (b) and combined effects for topic probability (c) and attention (d). 

 

First, we averaged mean-field power from 0.25 s to 0.5 s time-locked to the onset of speech chunks 

over left auditory sensors and then statistically compared all combinations of topic probability (high, low) 

and attention (attended, unattended) (Fig. 2a, paired t-test; attended, high vs. attended, low: t43 = 2.21, 

p = 0.03; attended, high vs. unattended, high: t43 = 3.21, p = 0.002; attended, high vs. unattended, low: 

t43 = 4.35, p < 0.0001; attended, low vs. unattended, high: t43 = 1.51, p = 0.14; attended, low vs. 

unattended, low: t43 = 2.91, p = 0.005; unattended, high vs. unattended, low: t43 = 1.44, p = 0.16). In 

addition, speech chunks from the attended and unattended talk comprising high and low topic 
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probability, i.e., regardless of topic probability, were compared (attended vs. unattended: t43 = 4.17, p = 

0.0001). Speech chunks from high and low topic probability comprising attended and unattended talk, 

i.e., regardless of attention, were compared as well (high vs. low topic probability: t43 = 2.62, p = 0.01). 

To elaborate this, we show mean-field power by root mean square in Fig. 2b-d averaged over the same 

left auditory sensors during -0.05 s to 1 s for each condition (b) and combined effects for topic probability 

(c) and attention (d).  

Speech chunks with high probability from attended talks show the strongest field power. Across both 

levels of topic probability, attended talk shows stronger field power than unattended talk (Fig. 2c). 

Across both levels of attention, speech chunks with high topic probability show stronger mean field 

power than speech chunks with low topic probability (Fig. 2d). The peak around 0.4 s in Fig. 2b-d is 

likely to reflect meaning processing in the brain (Kutas and Federmeier, 2011).  

 

Receptive field model estimation for neural topic keywords processing 

We next implemented a receptive field model, also known as a multivariate temporal response function 

(mTRF) (Crosse et al., 2016), which can be interpreted as a linear filter in the brain processing a 

stimulus feature (speech envelope S(t)) mapped onto the continuous neural responses (MEG response 

over time, r(t)). The approach has been used in recent studies to study the mapping between brain 

responses and naturalistic speech feature representations (Broderick et al., 2018; Teng et al., 2021; 

Haider et al., 2022). The schematic flowchart for our analysis is shown in Fig. 2a, which was adapted 

from Fig. 1 in Crosse et al. (2016).  

The stimulus feature-neural response mapping can be modelled bidirectionally (forward and backward 

modelling). In the encoding (forward: stimulus to brain) model, the model function mathematically 

describes how the speech amplitude envelope is encoded in MEG responses which can be interpreted 

as underlying neural generators (Crosse et al., 2016). To derive the encoding model estimation, a time-

lagged (-0.2 s to 0.8 s in steps of 8 ms) speech envelope from each epoch in each condition (high, low 

topic probability in each attended and unattended talk) was used as an input feature to predict 

corresponding neural responses (248 sensor MEG response).  

w = (STS + λM)−1STr 
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The fitting of the encoding model implemented the ridge regression (also known as Tikhonov 

regularization), where the loss function is the linear least-squares function and regularization (ridge 

parameter λ) is given by the L2-norm. The estimate is improved by using quadratic penalization (M) of 

the difference between two neighbouring terms of w (Lalor et al., 2006). The K-fold (k=3) cross-

validation was used to split data into train and test sets (5:5), and fitting the model was iterated through 

the subset. This computation was performed via MNE-Python (Gramfort et al., 2013) class 

mne.decoding.ReceptiveField and separately for each condition (attended, high; attended, low; 

unattended, high; unattended, low). Model coefficients maps (weight vectors from the model estimation; 

TRF w, number of cross-validation x number of sensors x number of time delays: 3 x 248 x 126) were 

obtained and averaged over cross-validation splits. The prediction score (derived as the correlation 

coefficient, r) between predicted and original neural responses was also computed (number of cross-

validation x number of sensors) and averaged across cross-validation splits.  

We performed the decoding model (backward: brain to stimulus; speech reconstruction) estimation as 

well (see for more details in Supplementary Figure 2) and investigated model coefficients map and 

prediction scores between conditions of combinations of attention (attended, unattended) and topic 

probability (high, low). The prediction score (derived as the correlation coefficient, r) between the 

reconstructed and original speech envelope was computed and averaged across cross-validation splits, 

as shown in Fig. 3b. One representative result for the reconstructed speech envelope is shown on the 

left bottom in Fig 3a. 

For the investigation of model coefficients map at the source level, dynamic statistical parametric 

mapping (dSPM) (Dale et al., 2000; Gramfort et al., 2014) was applied as an inverse solution. The 

computation was performed separately for each condition, and the statistical significance maps 

between the conditions were derived. The results from the encoding model map, as summary clusters, 

are shown in Fig. 4, and the results for significant temporal clusters from the encoding model can be 

found in Supplementary Figure 1. Decoding model weights are not interpretable in a neurophysiological 

sense due to potential spurious observations; however, inverse-transformed decoder weights, i.e., 

transforming the backward model into the forward model via pseudo-inverse, can provide 

physiologically interpretable information (Haufe et al., 2014). For this work, please see Supplementary 

Figure 2.  
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Figure 3. Receptive field model estimation analysis for topic probability and attention effects. a, Schematic 
flowchart for the model estimation. The stimulus feature-neural response mapping was modelled bidirectionally 
using encoding and decoding models (also known as forward and backward models). Encoding and decoding 
model analyses were performed separately for high and low topic probability conditions as well as for attended and 
unattended talks. Figure adapted from Crosse et al. (2016). b, Decoding model performance. Model prediction 
accuracy to reconstruct speech envelope for each condition was obtained by correlation coefficient score (r-value) 
between original and reconstructed speech, which were then compared between high and low topic probability 
conditions separately for each attended and unattended talk. The prediction accuracy was significantly stronger for 
speech with high than low topic probability in both attended (between 1st and 2nd columns: attended, high vs. 
attended, low; t43 = 11.43, p = 1.27e-14) and unattended talk (between 3rd and 4th columns: unattended, high vs. 
unattended, low; t43 = 29.98, p = 1.88e-30) with a greater difference for unattended than attended talk. Interestingly, 
the prediction accuracy was stronger for the high topic probability condition in unattended talk than the low topic 
probability condition in attended talk (between 2nd and 3rd columns: unattended, high vs. attended, low; t43 = 9.62, 
p = 2.74e-12). However, no significant difference was observed between high topic probability conditions (between 
1st and 3rd columns: attended, high vs. unattended, high; t43 = 0.80, p = 0.43). All statistical comparisons were 
performed via two-tailed paired t-test. Dots and lines represent individual results. 
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Stronger speech reconstruction accuracy for speech chunks with high than low topic probability 

The decoder model can provide a complementary view on the interpretation of the stimulus feature-

neural response relationship as follows. First, the decoder can be used to reconstruct stimulus features 

from the neural responses. In the current study, a trained decoder was used to reconstruct the speech 

envelope. The prediction accuracy to reconstruct speech, defined as correlation coefficient score (r) 

between original and reconstructed speech envelope, was significantly stronger for speech with high 

than low topic probability in both attended (attended, high vs. attended, low: paired t-test; t43 = 11.43, p 

= 1.27e-14; between 1st and 2nd columns in Fig. 3b) and unattended talk (unattended, high vs. 

unattended, low: paired t-test; t43 = 29.98, p = 1.88e-30; between 3rd and 4th columns in Fig. 3b). The 

difference between high and low topic probability speech is greater for speech chunks derived from 

unattended talk when compared to attended talk. Furthermore, speech reconstruction performance is 

stronger for high topic probability condition in unattended talk than low topic probability condition in 

attended talk (unattended, high vs. attended, low: paired t-test; t43 = 9.62, p = 2.74e-12; between 2nd 

and 3rd columns in Fig. 3b). This implies that topic keywords in unattended talks are still captured and 

are processed to the same degree as those in attended talks. No significant difference was observed 

between high topic probability conditions (attended, high vs. unattended, high: paired t-test; t43 = 0.80, 

p = 0.43; between 1st and 3rd columns in Fig. 3b). All other paired t-test results between conditions are 

as follows: attended, high vs. unattended, low: t43 = 22.61, p = 1.71e-25; between 1st and 4th columns 

and attended, low vs. unattended, low: t43 = 11.79, p = 4.62e-15; between 2nd and 4th columns in Fig. 

3b).  

Next, we investigated the spatial representations of topic keywords processing between high and low 

topic probability condition pairs that showed significant prediction performance above (attended, high 

vs. attended, low; unattended, high vs. unattended, low; unattended, high vs. attended, low). The 

encoding model coefficients for each condition were mapped on the brain surface using the dynamic 

statistical parametric mapping (dSPM) source localization method. The statistical difference was 

derived via two-tailed cluster-level spatio-temporal permutation t-test (p < 0.05; 1024 permutations) for 

0 to 0.5 s with respect to the speech chunk onset in steps of 0.008 s in MNE-Python (function: 

mne.stats.spatio_temporal_cluster_1samp_test). Here we show summary clusters, i.e., all significant 

clusters pooled across the temporal clusters. For temporally unfolded clusters, including before speech 

onset (-0.2 to 0 s), please see Supplementary Figure 1.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.05.490770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490770
http://creativecommons.org/licenses/by/4.0/


18 
 

For attended speech (Fig. 4a), the difference between high and low topic probability was observed in 

the left inferior frontal (BA 44, 45), somatosensory areas, as well as primary motor (BA 4), premotor 

(BA 6) cortices and right supramarginal, angular and posterior superior temporal gyri. For unattended 

speech (Fig. 4b), the difference between high and low topic probability was observed in the right inferior 

frontal areas, insula and temporal areas and left frontal, posterior temporal and visual cortex. We further 

performed the same statistical test between unattended high vs. attended low topic probability 

conditions where significant speech reconstruction performance was observed. The result (Fig. 4c) 

showed similar brain regions as to attended high vs. attended low (Fig. 4a), though to a lesser extent, 

suggesting speech chunks with high topic probability in unattended talks are processed to a similar 

degree as those in attended talks.  

 

Figure 4. Encoding model weights mapped onto source space. Encoding model coefficients were mapped 
onto source space via dSPM method and statistically compared between high and low topic probability conditions 
using cluster-level spatio-temporal permutation test (p < 0.05; two-tailed; 1024 permutations). Summary clusters 
(averaged across all significant temporal clusters) are shown. a, attended, high vs. attended, low. b, unattended, 
high vs. unattended low. c, unattended, high vs. attended, low. T-values in significant clusters are scaled 
corresponding to the duration spanned by the cluster (for more details, see Statistical test in Materials and Methods).  
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Semantically salient speech in unattended talk causally mediates attended speech 

comprehension 

As shown above, the statistical difference between high and low topic probability was greater for 

unattended talks than for attended talks. Furthermore, the difference was evident for unattended but 

with high topic probability speech chunks when compared to attended but with low topic probability 

condition. These findings suggest that distracting speech chunks are still processed when they contain 

semantic gist. This has led us to hypothesize that attention to semantically salient unattended speech 

negatively mediates (i.e., suppresses) attended speech comprehension. We employed the mediation 

analysis (Baron and Kenny, 1986) to inspect the relationship between unattended speech and attended 

speech comprehension. Encoding model coefficients for 0.5 s after the onset of speech chunks were 

averaged within each parcellation of the PALS-B12-Brodmann atlas (Van Essen, 2005) within each 

individual subject. The PALS-B12-Brodmann atlas parcellation has 82 cortical structures with 41 

structures for each hemisphere. In the mediation model, encoding model coefficients of attended 

speech chunks with high topic probability, encoding model coefficients of unattended speech chunks 

with high topic probability, and speech comprehension accuracy for attended speech were used as 

predictor (X, independent), mediator (M), and target (Y, dependent) variables, respectively.  

We found significant negative indirect effects for 4 out of 82 cortical regions: BA41 (primary auditory 

cortex), BA4 (primary motor cortex), BA6 (premotor cortex) in the left hemisphere and BA9 (dorsolateral 

prefrontal cortex) in the right hemisphere (Left BA41: path ab β = -2.03, p = 0.03, 95% CI = -5.53, -0.29; 

Left BA4: path ab β = -3.82, p = 0.02, 95% CI = -11.12, -0.71; Left BA6: path ab β = -3.51, p = 0.009, 

95% CI = -10.84, -0.93; Right BA9: path ab; β = -6.43, p = 0.03, 95% CI = -13.44, -0.95; 5000 bootstrap 

iterations performed; Fig. 5a). There were no significant direct effects. As such, the findings support the 

complete (full) mediation effects (also referred to as causal mediation effect), indicating the increased 

activities in these brain regions to unattended (to-be-ignored) speech suppress attention to attended 

(to-be-attended) speech leading to poor speech comprehension performance. The encoding model 

coefficients in these regions for all conditions including low conditions are shown in Supplementary 

Figure 3. 

To substantiate this modulatory effect, we tested if increased sensitivity to attended speech in these 

regions is associated with better speech comprehension. For this, we made a sensitivity index using 
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the difference between Z-transformed coefficients of attended speech with high topic probability and 

unattended speech with high topic probability (Z (attended, high) – Z (unattended, high)), analogous to 

the d-prime (i.e., sensitivity index, also known as discriminability or detectability). Then, the sensitivity 

index values were averaged across the four brain regions and correlated with speech comprehension 

accuracy using Spearman rank correlation over participants (r = 0.47, p = 0.001 in Fig. 5b). The result 

supports that participants with increased sensitivity to attended (to-be-attended) talks with high topic 

probability in these brain regions indeed show better speech comprehension.  

 

 

Figure 5. Causal relationship between attended and unattended speech on speech comprehension. a, 
Salient unattended speech negatively mediates attended speech comprehension. Mediation analysis was 
performed to test the hypothesis that attention to semantically salient unattended speech negatively mediates (i.e., 
suppresses) attended speech comprehension. In the mediation model, encoding model coefficients of attended 
speech chunks with high topic probability, encoding model coefficients of unattended speech chunks with high topic 
probability, and speech comprehension accuracy for attended speech were used as predictor (X, independent), 
mediator (M), and target (Y, dependent) variables, respectively. The encoding model coefficients during 0 - 0.5 s 
with respect to the speech chunk onset were averaged within each region in PALS-B12-Brodmann atlas in MNE-
Python within each individual. Significant negative indirect effects were identified for left BA41 (path ab β = -2.03, 
p = 0.03, 95% CI = -5.53, -0.29), left BA4 (path ab β = -3.82, p = 0.02, 95% CI = -11.12, -0.71), left BA6 (path ab β 
= -3.51, p = 0.009, 95% CI = -10.84, -0.93) and right BA9: path ab; β = -6.43, p = 0.03, 95% CI = -13.44, -0.95) 
with 5000 bootstrap iterations. b, Increased sensitivity to attended speech in the regions enhances speech 
comprehension. Sensitivity index, analogous to d-prime, defined by the difference between Z-transformed model 
coefficients of attended speech with high topic probability and unattended speech with high topic probability (Z 
(attended high) – Z (unattended high)) was created for each of 4 regions and averaged. The sensitivity index was 
significantly correlated with speech comprehension accuracy across participants (Spearman rank correlation: r = 
0.47, p = 0.001), supporting the hypothesis that participants with increased sensitivity to semantically salient 
attended speech in these regions show better speech comprehension. 
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Materials and Methods 

 

Participants 

Forty-six native English speakers participated in the study. All participants reported normal hearing 

(confirmed by two hearing tests using research applications on an iPad: uHear (Unitron Hearing Limited) 

and Hearing-Check (RNID)) as well as normal or corrected-to-normal vision. They all had no history of 

neurological, developmental, or psychological disorders and were all right-handed, confirmed by the 

Edinburgh Handedness Inventory (Oldfield, 1971). Data from 44 subjects were analyzed (26 females; 

age range: 18–30 y; mean age: 20.54 ± 2.58 y) after two subjects were excluded since one subject fell 

asleep and one had excessive signal noise). Other analyses of these data were presented in previous 

reports (Park et al., 2016; Park et al., 2018b). All subjects provided informed written consent before the 

experiment and received monetary compensation for their participation. The study was approved by the 

local ethics committee (CSE01321; College of Science and Engineering, University of Glasgow) and 

undertaken in accordance with the ethical guidelines in the Declaration of Helsinki.  

 

Stimuli and Experiment 

Natural speech materials. Each auditory speech presented to the participants during MEG recordings 

was about a certain coherent topic, and the materials we presented to the participants were originally 

taken from TED talks (www.ted.com/talks/) and modified to be appropriate for our own filming (e.g., 

“The key to growth? Race with the machines” by Erik Brynjolfsson. Transcription for each talk was 

downloaded and edited to be appropriate for our own filming by editing words such as referring to visual 

materials, the gender of the speaker etc. The talks address a specific topic belonging to informative, 

persuasive, inspiring categories on the website. Please note that they no longer provide these 

categories explicitly. We additionally validated the speech materials in a separate behavioural study (33 

participants with 19 females; aged 18–31 years; mean age: 22.27 ± 2.64 years), where participants 

rated the talks in terms of arousal, familiarity, valence, complexity, significance (informativeness), 

agreement (persuasiveness), concreteness, self-relatedness, and level of understanding using Likert 

scale (Likert, 1932) 1 to 5 (for an example of concreteness, 1: very abstract, 2: abstract, 3: neither 
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abstract nor concrete, 4: concrete, 5: very concrete). Talks with excessive mean scores (below 1 and 

over 4) were excluded, and eight out of eleven videos were selected for the experiment, and selected 

talks were used in different experimental conditions, which were also used in our previous study (Park 

et al., 2016). High-quality audiovisual video clips were filmed by a professional filming company while 

a professional male speaker was talking continuously. The duration of talks is 7 to 9 minutes with a 

sampling rate of 48 kHz for audio and 25 frames per second (fps) for video in 1,920 × 1,080 pixels. 

Filmed videos were edited for experimental manipulations (i.e., recombinations of auditory and visual 

speech stimuli) using Final Pro Cut X (Apple, Cupertino, CA).  

Experimental condition. We employed four experimental conditions as described in our previous 

study (Park et al., 2016). In the current study, we focused on the “AV congruent” condition where two 

different talks are delivered to the left and right ear with one auditory speech matching the visual lip 

movement, and the speech presented to the other ear serves as a distractor. Participants were 

instructed to pay attention to the talk that matches visual lip movement. The side of attention was 

counterbalanced, resulting in half of the participants (N = 22) paying attention to the left-ear talk, 

whereas the other half (N = 22) paying attention to the right-ear talk. Participants were instructed to 

fixate on the visual information, i.e., the speaker’s lip movement and subjects’ eye movements were 

monitored using an eye tracker (EyeLink 1000, SR Research). To assist this, a fixation cross color-

coded either yellow or blue was overlaid on the speaker’s lip, and the color of the fixation cross indicated 

the side of attention. During the experiment, the audiovisual stimuli were presented via Psychtoolbox 

(Brainard, 1997) in MATLAB (MATLAB, R2019b). Auditory stimuli were delivered at a 48 kHz sampling 

rate via a sound pressure transducer through 2 five-meter-long plastic tubes terminating in plastic insert 

earpieces, and visual stimuli were presented with a resolution of 1,280 × 720 pixels at 25 fps (mp4 

format).  

Behavioural performance. In order to assess the level of comprehension of the talk, a questionnaire 

for speech comprehension was administered after the talk. The questionnaire consists of 10 questions 

about the attended talk, such as “What is the speaker’s job?” and “What would be the best title of this 

talk?”. The questionnaire itself was validated in a separate behavioural study (16 subjects; 13 females; 

aged 18–23 y; mean age: 19.88 ± 1.71 y) in terms of accuracy (the same level of difficulty), response 

time, and the length (word count). The comprehension scores for left- and right-ear attention group did 

not differ (two-sample t-test for “attended to left” vs. “attended to right” group, t42 = -0.13, p = 0.90). In 
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this study, we pooled across both groups in all data analyses so that attentional effects for a particular 

side (e.g., left or right) are expected to cancel out. 

 

MEG and MRI (T1) data processing 

Data acquisition. Neuromagnetic signals were measured using a 248 magnetometers whole-head 

MEG system (MAGNES 3600 WH, 4-D Neuroimaging) in a magnetically shielded room with a sampling 

rate of 1,017 Hz. The signals were resampled to 250 Hz and denoised with information from the 

reference sensors using the denoise_pca function in the FieldTrip toolbox (Oostenveld et al., 2011). 

Bad MEG sensors were excluded by visual inspection, and electrooculographic (EOG) and 

electrocardiographic (ECG) artefacts were rejected using independent component analysis (ICA). In 

order to map MEG data onto cortical source space, structural T1-weighted MRIs of each participant 

were acquired at 3 T Siemens Trio Tim scanner (Siemens, Erlangen, Germany) with the following 

parameters: 1.0 × 1.0 × 1.0 mm3 voxels; 192 sagittal slices; field of view (FOV): 256 × 256 matrix. 

Coregistration between MRI and MEG data. Structural T1 MR images recorded from each participant 

were coregistered to the MEG coordinate system via a semiautomatic procedure. Anatomical fiduciary 

landmarks such as nasion and bilateral preauricular points were identified before the MEG recording 

and also manually identified in the individual’s MR images. Based on these landmarks, both MEG and 

MRI coordinate systems were initially aligned, followed by numerical optimization achieved by using the 

ICP algorithm (Besl and McKay, 1992). 

Source localization. Reported results in the current study were analyzed in both Fieldtrip (Oostenveld 

et al., 2011) and MNE-Python (Gramfort et al., 2014), so workflow for inverse solution followed the 

standard procedure in each software. In Fieldtrip, a head model was created for each individual from 

their structural MRI using normalization and segmentation routines in FieldTrip and SPM8. For the 

calculation of the leadfield, we used a single-shell volume conductor model (Nolte, 2003) employing an 

8 mm grid defined on the template brain provided by MNI (Montreal Neurological Institute). The template 

grid was linearly transformed into individual headspace for spatial normalization. In MNE-Python, 

construction of the forward model solution and MRI segmentation are performed in the FreeSurfer 

package (Dale et al., 1999). The Boundary Element Model (BEM) of individual MRI was created using 

the FreeSurfer watershed algorithm, and surface-based source space with a 4.9 mm source spacing 
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resolution was computed. Then individual source map was morphed to the template MRI (fsaverage) 

to compare output activities across subjects in common source space.  

 

Audiovisual speech signal processing  

Auditory speech signal. The amplitude envelope of sound signals was computed following the 

approach introduced in Chandrasekaran et al. (2009). We first constructed eight frequency bands in the 

range of 100–10,000 Hz to be equidistant on the cochlear map (Smith et al., 2002). Then the auditory 

sound speech signals were band-pass filtered in these bands using a fourth-order forward and reverse 

Butterworth filter followed by Hilbert transform to obtain amplitude envelopes for each band of the signal. 

These signals were then averaged across bands resulting in a wideband amplitude envelope. Signals 

were downsampled to 250 Hz for further analysis to match the sampling rate of preprocessed MEG 

data.  

Visual speech signal. A lip movement signal was computed using an in-house MATLAB script as in 

our previous report (Park et al., 2016), which demonstrated oscillatory brain activities entrained by visual 

speech. We first extracted the outline lip contour of the speaker for each frame of the video stimuli. 

From the lip contour outline, we computed the frame-by-frame lip area (area within lip contour). This 

signal was resampled at 250 Hz to match the sampling rate of the preprocessed MEG signal and 

auditory sound envelope signal.  

 

Mediation analysis 

We used mediation analysis (Baron and Kenny, 1986) to test our hypothesis that attention to 

semantically salient unattended speech negatively mediates (i.e., suppresses) attended speech 

comprehension using mediation_analysis module in Pingouin package (Vallat, 2018). Here we used 

predefined cortical parcellation, the PALS-B12-Brodmann atlas (Van Essen, 2005). The parcellation 

provides 82 cortical surface structures (41 in each hemisphere). Encoding model coefficients (TRF) is 

averaged across 0 s to 0.5 s after the onset of speech chunks within all the areas in the PALS-B12-

Brodmann parcellation for each subject. In the mediation model, these values of attended speech 

chunks with high topic probability and unattended speech chunks with high topic probability were used 
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as predictor (X, independent) and mediator (M) variables, respectively. For the dependent variable (Y), 

speech comprehension accuracy for attended speech was used. Five thousand bootstrap iterations 

were performed for confidence intervals and p-values estimation. To confirm the mediation effects, we 

performed correlational analysis between the sensitivity index, defined by the difference between z 

transformed attended high (analogous to hit) and unattended high (analogous to false alarm) conditions, 

and speech comprehension accuracy.  

 

Statistical test 

All the analyses described in the Methods section were performed individually and then yielded to 

group-level statistical tests on the data of all 44 participants.  

For receptive field model estimation (mTRF), the non-parametric cluster-level paired permutation test 

based on a t-statistic (Maris and Oostenveld, 2007) was performed at the spatio-temporal level (function: 

mne.stats.spatio_temporal_cluster_1samp_test) between high vs. low topic probability conditions after 

morphing into common cortical space (fsaverage) in MNE-Python (Gramfort et al., 2013). The function 

detects significant clusters at both spatial and temporal regions. A spatial adjacency matrix was used 

for clustering in source space, and 1024 permutations were computed. T-values in significant clusters 

are scaled corresponding to the duration spanned by the cluster (shown as “t-value (scaled)” in figures) 

in which the scaling factors are the significance of the t-value and the unit of time step between samples 

(e.g., 0.008 s) in the data. In more detail, the significance of t-values at a given time point (1 if significant, 

0 if not) is scaled by the unit of the duration (e.g., significance (1 or 0) x 0.008 s). These values are 

summed up across significant time points. Each temporal cluster from the encoding model statistics is 

shown in Supplementary Figure 1.  
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Discussion 

In the current study, we used computational topic modelling to investigate how the brain processes 

high-level semantics in naturalistic speech. Topic modelling techniques, such as Latent Dirichlet 

Allocation (LDA), have broad application not only to text materials but to other domains, for example, 

content-based images (Blei et al., 2003). The LDA technique provides scalable and quantifiable 

measures in identifying topics using a generative probabilistic approach. To date, studies of neural 

mechanisms underlying semantic processing during natural speech perception have largely relied on 

the word level violations or predictions (Kutas and Federmeier, 2011; Wang et al., 2018; Broderick et 

al., 2019; Koskinen et al., 2020). Investigating the neural representation of latent word meanings, such 

as arising from idiomaticity, or semantic gist (i.e., topic keywords) across supporting contextual 

information in a connected speech, requires moving beyond inspecting lexico-semantic level processing; 

however, it has been challenged due to the lack of appropriate quantifiable approaches. Here we 

harness the state-of-the-art machine learning-based natural language processing (NLP) algorithm to 

delineate the neural signatures in topic keywords processing. To our knowledge, this is the first study 

that investigates neural signatures of high-level semantics processing beyond lexico-semantics in 

continuous speech.  

By applying the topic model to speech chunks that were driven in a perceptually relevant manner by 

acoustic silences in natural speaking, we were able to extract representative topic keywords of a certain 

story. Subsequently, speech chunks were split into two statistical conditions according to the probability 

of the main topic keywords. Corresponding epochs of brain activities were grouped to the conditions. 

Here we focused our analysis on the topic keywords processing in the context of the multi-speaker 

environment where the attention to a particular talk is manipulated. Brain responses and stimulus 

feature (speech envelope) were used to fit the encoding and decoding model to investigate the neural 

map of semantic gist throughout the speech.  

Our finding showing stronger brain activity for attended speech than unattended speech (Fig. 2) is 

consistent with other findings that showed brain responses to unattended speech is attenuated (Kong 

et al., 2014). However, strikingly, the difference in reconstruction of speech envelope from neural 

activities between high and low topic probability conditions in unattended speech is greater when 

compared to the same difference in attended speech. The finding is even striking for the significant 
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difference between unattended high vs. attended low condition. This result supports the notion that 

unattended (i.e., task-irrelevant) speech is still processed in the brain due to the failure of selective 

attention to fully suppress distracting sensory input (Har-Shai Yahav and Zion Golumbic, 2021). Despite 

decades of debate (Bronkhorst, 2015), a recent study by Har-Shai Yahav and Zion Golumbic (2021) 

has shown that the phrasal structure of structured task-irrelevant stimuli was represented in the neural 

responses and competed with task-relevant (attended) speech. Our finding extends this significantly by 

showing that this is even the case for higher-level semantic processing, indicating that the human brain 

can capture the semantic gist of the task-irrelevant speech in a multi-speaker context.  

We report source mapping using encoding model coefficients via the dSPM source reconstruction 

method. For attended speech (Fig. 4a), the patterns of the difference between high vs. low topic 

probability conditions are mapped onto the left inferior frontal, dorsolateral prefrontal and extensive 

temporal areas corresponding to the language network. For the unattended speech (Fig. 4b), the 

difference was mapped onto the right inferior frontal/insular areas and the left superior/dorsolateral 

prefrontal areas. The prominent involvement of the right inferior frontal and insular cortex might suggest 

lower-level processing of incoming but task-irrelevant speech. While the left hemisphere is actively 

engaging in semantic processing of goal-directed attended speech, the right hemisphere processes 

perceptual features such as pitch contours of unattended speech consistent with the notion of the 

division of labour between hemispheres (Flinker et al., 2019). In Flinker et al. (2019), the authors 

suggest differential hemispheric contributions in auditory processing in which right lateralization for 

spectral modulation, such as gender identification, while left lateralization for intelligibility task (Fig. 5 in 

Flinker et al. (2019)). As such, we suggest that this finding might reflect processing towards a more 

perceptual level, e.g., pitch contours, with a potential shift of attentional state leading to shallow level 

semantic processing given the complex nature of dichotic listening (multi-speaker) environment.  

Our mediation analysis allows us to further investigate the causal relationship between attended and 

unattended speech on speech comprehension. The negative full mediation effect (Fig. 5a) indicates 

that the failure to suppress salient distractors of unattended speech leads to poor speech 

comprehension of attended speech. Interestingly this effect was observed in the left BA41 (primary 

auditory cortex), BA4 (primary motor cortex), BA6 (premotor cortex) and right BA9 (dorsolateral 

prefrontal cortex), which are sub-regions of the speech processing network. Particularly, intrinsic 

coupling between the auditory and motor system has been previously reported (Assaneo and Poeppel, 
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2018). However, the role of motor and premotor cortices in speech perception is controversial (Meister 

et al., 2007; Hickok, 2010; Skipper et al., 2017), and the contribution to the processing of high-level 

semantics is not well-known. In our previous results using the same dataset, however, the motor cortex 

was involved in conveying greater information than the linear summation of individual auditory and 

visual perceptual information (i.e., synergistic information processing) and supported behavioural 

performance (Park et al., 2018b). Given additional manipulations for high-level semantic processing 

and attention in the current study, we interpret the motor and premotor cortex might support top-down 

modulated active sensing (Morillon et al., 2015; Park et al., 2015) for semantic gist in temporally rapidly 

changing and dynamically evolving naturalistic speech perception in multi-speaker environment. 

Shifting between task-relevant and -irrelevant semantic gist is suggested to be modulated by these 

regions, as shown in the result that subjects with increased sensitivity to semantic gist of goal-directed 

attended speech exhibit better behavioural performance (Fig 5b).   

Further investigation will be required to gain deeper insights into high-level semantic processing by fully 

characterizing the difference from the neural mechanisms underlying other speech features, including 

lexico-semantic processing, which is expected to provide a direct computational link between our high-

level semantic approach and previous work focused on word similarity using other NLP algorithms such 

as word2vec (Mikolov et al., 2013) as used in Broderick et al. (2018), or semantic neural representation 

shown in Huth et al. (2016). Furthermore, future studies should be able to provide evidence of how the 

brain builds up the semantic core with time as the supporting building blocks of different levels of 

semantic features are accumulated.  

In summary, we provide evidence that temporal and spatial neural signatures for high-level semantic 

gist (i.e., topic keywords) processing in the context of multi-speaker environment and how the semantic 

gist in unattended speech affects attended speech comprehension.  
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