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Over the past decade, there has been a significant development in wearable health

technologies for diagnosis and monitoring, including application to stress monitoring.

Most of the wearable stress monitoring systems are built on a supervised learning

classification algorithm. These systems rely on the collection of sensor and reference

data during the development phase. One of the most challenging tasks in physiological

or pathological stress monitoring is the labeling of the physiological signals collected

during an experiment. Commonly, different types of self-reporting questionnaires are

used to label the perceived stress instances. These questionnaires only capture

stress levels at a specific point in time. Moreover, self-reporting is subjective and

prone to inaccuracies. This paper explores the potential feasibility of unsupervised

learning clustering classifiers such as Affinity Propagation, Balanced Iterative Reducing

and Clustering using Hierarchies (BIRCH), K-mean, Mini-Batch K-mean, Mean Shift,

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Ordering

Points To Identify the Clustering Structure (OPTICS) for implementation in stress

monitoring wearable devices. Traditional supervised machine learning (linear, ensembles,

trees, and neighboring models) classifiers require hand-crafted features and labels

while on the other hand, the unsupervised classifier does not require any labels of

perceived stress levels and performs classification based on clustering algorithms. The

classification results of unsupervised machine learning classifiers are found comparable

to supervisedmachine learning classifiers on two publicly available datasets. The analysis

and results of this comparative study demonstrate the potential of unsupervised learning

for the development of non-invasive, continuous, and robust detection and monitoring

of physiological and pathological stress.

Keywords: machine learning, stress monitoring, physiological signals, heart rate, respiratory rate, unsupervised

and supervised learning

INTRODUCTION

There has been a notable increase in depression, anxiety, stress and other stress-related diseases,
worldwide (1–3). Stress deteriorates the physical and mental well-being of a human. Particularly,
chronic stress leads to a weakened immune system, substance addiction, diabetes, cancer,
stroke, and cardiovascular disease (4). Thus, it is of utmost importance to develop robust
techniques that can detect and monitor stress continuously, in real-time. The concept of
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detecting stress is quite complex, as stress has physiological
as well as psychological aspects to it. Furthermore, both these
aspects are triggered by multiple factors and are difficult
to capture (5). The recent development of wearable sensor
technology has made it easier to collect different physiological
parameters of stress in daily-life.

The use of psychological assessment questionnaires, filled out
on different instances in a day, is the most common technique
to determine human stress. These questionnaires are limited to
capturing stress at a particular time and do not allow continuous
as well as real-time stress monitoring (6). The time-bound
nature of these questionnaire-based assessments unveils a major
problem for the validation of new stress monitoring systems as
there is no precise recording of which task or activity caused
the participants’ stress. To develop an acceptable standard for
continuous stress monitoring, Hovsepian et al. (7) used wearable
devices and proposed a data-driven stress assessment model,
called the cstress model. To collect the data in this study, the
participants were asked to fill out an Ecological Momentary
Assessment (EMA) questionnaire 15 times a day, at random
hours. The collected EMA self-report acted as the reference
value for stress validation. The cstress model compensated for
the unpredictable lag that occurred between the stressor and its
logging in EMA self-report.

In the literature, several supervised learning algorithms have
been utilized for the detection and classification of stress (8–10).
These machine learning algorithms include logistic regression,
Gaussian Naive Bayes, Decision Tree, Random Forest, AdaBoost,
K-Nearest Neighbors, andmany others (4). Dalmeida andMasala
(11) investigated the role of electrocardiograph (ECG) features
derived from heart rate variation (HRV) for the assessment of
stress of drivers. A set of different supervised machine learning
algorithms were implemented, and the best recall score achieved
was 80%. Similarly,Wang and Guo (12) combined the supervised
ensemble classifier with an unsupervised learning classifier and
used driver’s galvanic skin response (GSR) data to detect stress.
Their proposed model was able to detect stress with an accuracy
of 90.1%.

The physiological parameters that are frequently used for
stress analysis are respiratory rate, heart rate, skin conductance,
skin temperature, and galvanic skin response (13). As supervised
learning requires training labels for training the classifier, in
most cases, either the labels are unavailable or inaccurate, in the
real-time data collection (14). Several studies have reported the
challenges of labeling the stress states and the importance of
addressing these issues for the further development of sensor-
based stress monitoring systems (15–17). The challenges of poor-
quality reference data and human bias encourage the exploration
of unsupervised machine learning algorithms for stress detection
and monitoring, as the unsupervised algorithms do not require
reference data.

RELATED WORK; UNSUPERVISED
LEARNING CLASSIFICATION

Throughout the literature, most authors are dedicated to the use
of techniques based on supervised learning classification while

the use of unsupervised learning methods is relatively new in
the stress monitoring field. Rescio et al. (18) implemented the
k-means clustering algorithm for stress classification using heart
rate (HR), galvanic skin response (EDA) and electrooculogram
(EOG) signals of 11 volunteers. To induce stress, the participants
were asked to perform a mental arithmetic task and complex
LEGO assembly without instruction. Authors have reported the
classification accuracy of 70.6% with heart rate, 74.6% with EDA
and 63.7% with EOG used as a single variable unsupervised
classification model. Huysmans et al. (5) proposed a Self-
Organizing Maps (SOM) based mental stress detection model
that uses skin conductance (SC) and the electrocardiogram
(ECG) of the test subjects. The authors recruited a group of
12 subjects and asked them to complete three stress-related
tasks (each of 2min). The first task was the Stroop Word Color
test, in which subjects had to select the color of the word
rather than the written word. The second task was the mental
arithmetic task, in which the subjects had to count backwards
from 1,081 with the difference of 7. The final task was to talk
about a common stressful event that ever happened to them.
The authors reported the average test accuracy of 79.0% using
the proposed SOM based classifier. Ramos et al. (19) used Naïve
Bayes and logistic regression models to classify the stress outside
the laboratory settings. They collected the heart rate, breathing
rate, skin temperature and acceleration data from 20 volunteers
while they were performing physical activity (such as walking,
cycling, or sitting). To induce stress, the authors used random
noises, verbal mathematical questions, and a cold-water test. The
activity data was ignored and an accuracy of 65% was achieved
by the authors. Maaoui et al. (17) investigated the use of three
unsupervised learning classification methods [K-mean, Gaussian
Mixture Model (GMM), and SOM] to determine the stress
levels using a low-cost webcam. Along with the webcam, the
authors also collected the heart rate (extracted seven attributes)
of 12 students volunteers. The authors reported the classification
error rate of the three algorithms as 13.05% (K-means),
44.04% (GMM) and 36.57% (SOM) classifier. Similarly, Fiorini
et al. (20) compared the performance of three unsupervised
classification techniques (K-means, K-medoids, and SOM) with
three supervised learning techniques [Support Vector Machine
(SVM), Decision Tree (DT), and K-nearest neighbors (K-NN)].
They collected ECG, EDA, and electric brain activity signals of
15 healthy individuals. The authors designed the study to induce
three different emotional states (i.e., relax, positive, and negative)
by the means of social interaction. The reported classification
accuracy for the best-performing unsupervised classifier (K-
means) was 77% while for the same model the best-performing
supervised classifier (K-NN) was 85%.

This paper explores the possible use of unsupervised
classification methods for physiological stress detection.
To perform a comparative analysis of the performance of
unsupervised learning algorithms against supervised learning
algorithms, two publicly available datasets were used. A total
of seven most common supervised and seven unsupervised
learning algorithms were implemented in Python Programming
Language. The implemented unsupervised algorithms are
Affinity Propagation (21), Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) (22), K-Mean, Mini-Batch
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K-Mean (23), Mean Shift, Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) (24) and Ordering Points
To Identify the Clustering Structure (OPTICS) (25). For
comparison, supervised learning algorithms such as logistic
regression, Gaussian naïve Bayes, decision tree, random forest,
AdaBoost and K-nearest neighbors, are implemented.

MATERIALS AND METHODS

To address the challenge of manual annotation and labeling of
the physiological signal as stress or non-stress in a supervised
learning setup, we investigated the efficiency of the commonly
used unsupervised machine learning algorithms, illustrated in
the literature. For assessment of the efficiency of these methods
and comparative analysis, two publicly available datasets were
downloaded. The first dataset is provided by the Massachusetts
Institute of Technology (MIT), named Stress Recognition in
Automobile Drivers byHealey (26), and is available on Physionet,
while the second dataset is called the SWELL-KW dataset,
available on Kaggle (27). Both the datasets contain heart
rate variation features and provide labeled heart rate and
respiratory rate parameters. The efficiencies of the supervised and
unsupervised learning algorithms were benchmarked and are
provided using standard measures of accuracy, precision, recall,
and F1-score matrices of each classifier.

Performance Assessment Matrices
The performance of the classifier is assessed using the
following metrics:

• The accuracy of a classifier is defined as the percentage
of total correctly predicted labels in the test dataset, given
mathematically as (equation 1):

Accuracy=
true positive labels+ true negative labels

total readings
(1)

• The precision and recall are calculated using equations 2 and 3:

Precision=
true positive labels

true positive labels+ false positive labels
(2)

Recall=
true positive labels

true positive labels+ false negative labels
(3)

• The F1-score of a classifier is the harmonic mean of its
precision and recall. Equation 4 shows how F1-score is
calculated, mathematically:

F1− Score= 2 ∗
Precision ∗Recall

Precision+ Recall
(4)

Data Collection
To explore the usability of unsupervised machine learning
classifiers in stress monitoring and comparison with supervised
learning methods, two publicly available datasets were
downloaded. Details of both datasets are described below.

Stress Recognition in Automobile Drivers Dataset
The dataset is developed by Healey (28, 29) during her PhD
program at MIT. The dataset consists of the electrocardiogram
(ECG), galvanic skin response (GSR), electromyogram (EMG),
respiratory rate, and heart rate measured using wearable sensors
along with stress/non-stress labels generated from a combination
of questionnaires and captured videos of the drivers. A total
of 18 young drivers were asked to drive in different stress-
inducing scenarios, such as at highways, rush hours and red
lights, as well as a non-stress scenario (marked as non-stress or
baseline readings). To rate the driver’s stress levels, three different
methods were used. These methods included self-reporting
questionnaires, experimental design and metrics defined by
independent annotators based on the video recording of the
drivers. The dataset has baseline reading along with three
different stress level readings (low, medium, and high stress).

SWELL-KW Dataset
The SWELL-Knowledge Work (SWELL-KW) dataset (27)
provides heart rate variability (HRV) indices from sensor data for
stress monitoring in an office work environment. The experiment
was conducted on 25 subjects, performing typical office work
such as preparing presentations, reading emails, and preparing
work reports. Three different working conditions were defined
by the authors:

• Neutral/no-stress: the subjects were allowed to complete the
given task with no time boundary.

• Time pressure (a stress condition): the time to complete the
given task was reduced to 2/3 of the time the subject took in
the neutral condition.

• Interruption (a stress condition): during this time, subjects
received 8 different emails. Some of the emails were related to
their task and were asked to take specific action while some
emails were not related to their task.

The experiment recorded data of facial expression, computer
logging, skin conductance and ECG signal. For labeling, Rating
Scale Mental Effort (RSME) (30) and Self-Assessment-Manikin
Scale (SAMS) (31) were used. Moreover, all subjects were also
asked to report their perceived stress on a 10-point scale (from
not-stressed to very stressed) using a visual analog scale.

Unsupervised Classification Algorithms
Most of the unsupervised classification algorithms are based
on clustering algorithms. Clustering algorithms find best suited
natural groups within the given feature space. In this study, the
sensor data for stress and non-stress states of the participants
are considered as the feature vector. The most widely used
unsupervised classifiers implemented in this study are introduced
in the following subsections.

Affinity Propagation
Affinity propagation takes the input data points as a measure
of similarity between two data points. Each data point
within the dataset sends a message to all other data points
about the target relative attractiveness. Once the sender
is associated with its target (stress/no-stress), the target
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becomes an exemplar. All the points with similar exemplars
are combined to form one cluster. The classifier finds a
set of different exemplars (representative points of each
cluster) that best summarizes the data points within the
dataset (21).

BIRCH Classifier
Balanced Iterative Reducing and Clustering using Hierarchies
(BIRCH) classifier constructs tree structure from which
classification cluster centroids are obtained. The BIRCH
classification algorithm utilizes the tree structure to cluster the
input data. The tree structure is called a clustering feature tree
(CF Tree). Each node of the tree is made of a clustering feature
(CF). The BIRCH clusters multi-dimensional input data entities
to produce the best number of clusters with the available memory
and time constraints. The algorithm typically finds good clusters
within a single scan but can improve the quality with some
additional scans (22).

K-Mean Classifier
The K-mean classifier is one of the most frequently used,
unsupervised learning classifiers. The algorithm assigns
the group label to each data point to minimize the overall
variance of each cluster (23). The algorithm starts with
a random group of centroids, considering each centroid
as a cluster, and performs repetitive calculations to
adjust the position of centroids. The algorithm stops the
optimization of clusters when the centroids are stable (no
change in their values) or a defined number of iterations
is achieved.

Mini-Batch K-Mean Classifier
Mini-Batch K-mean classifier is amodified version of the K-mean
classifier. The classifier clusters the dataset using mini-batches of
the data points rather than using whole data. This classifier is also
robust to statistical noise and performs the classification of a large
dataset more quickly (23).

TABLE 1 | Hyper-parameters settings and python library used for implementation.

Algorithm type Classifiers Train-test

split

Hyper-parameters Python library

S
u
p
e
rv
is
e
d
m
a
c
h
in
e
le
a
rn
in
g
a
lg
o
rit
h
m Logistics regression • Solver = “lbfgs”

• Penalty = “l2”

sklearn.linear_model

Gaussian Naïve Bayes • Variance smooting = 1e-09 sklearn.naive_bayes

Decision tree • Quality of split criterion = “gini”

• Value of max_depth was varied between range (1-11 with increment of 1)

• Maximum number of features to consider = “auto”

sklearn.tree

Random forest • Quality of split criterion = “gini”

• Maximum depth of trees = 11

• Maximum number of features to consider = “auto”

• Number of trees in the forest = 10

sklearn.ensemble

AdaBoost • Learning rate was varied between range (0.01-1.1 with increment of 0.01)

• Maximum number of estimators at which boosting is terminated was varied

between range (50-200 with increment of 10)

• Algorithm = “SAMME.R”

sklearn.ensemble

K-nearest neighbors • Number of neighbors required was set to 2 sklearn.neighbors

K-nearest neighbors 70-30%

and

10-fold cross

validation

• Number of neighbors required set at 5 sklearn.neighbors

U
n
su

p
e
rv
is
e
d
m
a
c
h
in
e
le
a
rn
in
g
a
lg
o
rit
h
m Affinity propagation • Damping factor was set at 0.8 to maintain current value relative to incoming

value (weight 1-damping)

• Maximum iteration = 200

• Maximum number of iterations with no change in number of estimated

clusters = 15

sklearn.cluster

BIRCH • Threshold from which the radius of subcluster should be lesser = 0.5

• Number of clusters = length of unique ids in training set (default = 2)

sklearn.cluster

DBSCAN • Maximum distance between two samples for consideration as neighbors

(eps) = 0.50

• Minimum samples in neighborhood of a point to consider it as core point = 9

• Distance calculation method = “eulidean”

sklearn.cluster

K-mean • Number of neighbors required was set to 2 sklearn.cluster

Mini-batch K-mean • Number of neighbors required was set to 2 sklearn.cluster

Mean shift • Number of clusters = length of unique ids in training set (default = 2) sklearn.cluster

OPTICS • Maximum distance between two samples for consideration as neighbors (eps)

= 0.80

• Minimum samples in neighborhood of a point to consider it as core point = 10

sklearn.cluster

Frontiers in Medical Technology | www.frontiersin.org 4 March 2022 | Volume 4 | Article 782756

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Iqbal et al. Unsupervised Classification for Stress Detection

Mean Shift Classifier
The mean shift classifier finds the underlying density function
and classifies the data based on the density distribution of the
data points in feature space (32). The mean shift classification
algorithm tries to discover different blobs within a smooth
density of the given dataset. The algorithm updates the
candidates for centroids that are then considered as the mean of
the points with the given region. These candidates are filtered
to eliminate near-duplicate centroids to form the final set of
centroids, that form the clusters.

DBSCAN Classifier
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) finds the highest density areas in the given
feature domain and expands those areas, forming clusters
of feature space (stress/non-stress) (24). The DBSCAN finds
neighborhoods of a data point exceeding a specified density
threshold. This threshold is defined by the minimum number
of data points required within a radius of the neighborhood
(minPts) and the radius of the neighborhood (eps). Both the
parameters are initialized manually at the start of the algorithm.

OPTICS Classifier
Ordering Points To Identify the Clustering Structure (OPTICS)
is derived from the DBSCAN classifier, where a minimum of
samples are required as a hyper-parameter to classify the data as
a cluster (feature) (25).

Supervised Classification Algorithms
This study also implemented supervised classifiers, logistic
regression, Gaussian naïve Bayes, decision tree, random forest,

AdaBoost and K-nearest neighbors for comparison of results
with the unsupervised classifiers. All these algorithms are briefly
defined below. Interested readers are referred to Chaitra and
Kumar (33) for details.

Logistic Regression Classifier
Logistic Regression is one of the simplest machine learning
algorithms mostly used for binary classification problems.
Logistic regression estimates and classifies based on the
relationship between independent and dependent binary features
within a dataset.

Gaussian Naïve Bayes Classifier
The Naive Bayesian classifier is a probabilistic classifier. Naive
Bayesian (NB) has only one parent node in its Directed acyclic
graphs (DAGs), which is an unobserved node, and have many
children nodes, representing observed nodes. NB works with a
strong assumption that all the child nodes are independent of
their parent node and thus, one may say that Naïve Bayesian
classifier is a type of estimator.

Decision Tree Classifier
The Decision tree classifies by sorting input instances based on
feature values. Each node of the decision tree shows a classified
feature from an input instance while each branch shows an
assumed nodal value. Classification of instances starting from the
root and is sorted depending upon their feature values.

Random Forest Classifier
The Random Forest is a supervised machine learning algorithm.
This algorithm creates random trees (forest) that are somewhat

FIGURE 1 | Block diagram of the implemented classification methods illustrating pre-processing, classification, and post-processing stages.
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TABLE 2A | Results of supervised learning algorithms on stress recognition in automobile drivers dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score

Stress recognition in

automobile drivers dataset

Logistic regression Heart rate and

respiratory rate

59.3% 0.59 0.59 0.59

Gaussian Naive Bayes 56.5% 0.60 0.59 0.59

Decision tree 63.4% 0.64 0.64 0.63

Random forest 65.0% 0.65 0.66 0.65

AdaBoost 66.8% 0.67 0.66 0.65

KNN = 5 63.7% 0.63 0.63 0.63

KNN = 2 58.1% 0.60 0.57 0.56

Stress recognition in

automobile drivers dataset

Logistic regression Heart rate 58.4% 0.59 0.58 0.58

Gaussian Naive Bayes 56.0% 0.59 0.56 0.55

Decision tree 61.9% 0.66 0.062 0.57

Random forest 70-30 % 56.2% 0.56 0.56 0.56

AdaBoost 61.5% 0.61 0.61 0.60

KNN = 5 54.4% 0.54 0.54 0.54

KNN = 2 51.7% 0.55 0.52 0.50

Stress recognition in

automobile drivers dataset

Logistic regression Respiratory

rate

63.2% 0.70 0.63 0.55

Gaussian Naive Bayes 63.4% 0.72 0.63 0.55

Decision tree 62.4% 0.64 0.62 0.63

Random forest 56.9% 0.57 0.57 0.57

AdaBoost 66.8% 0.66 0.67 0.67

KNN = 5 59.5% 0.59 0.60 0.59

KNN = 2 54.0% 0.58 0.54 0.53

TABLE 2B | Results of supervised learning algorithms on Stress recognition in automobile drivers dataset (K-fold cross validation).

Datasets Classifiers Feature Test-train

split

Classification accuracy Standard deviation Confidence limits

Lower Upper

Stress recognition in

automobile drivers dataset

Logistic regression Heart rate and

respiratory rate

61.5% 0.038 58.8% 64.2%

Gaussian Naive Bayes 61.6% 0.022 58.9% 64.3%

Decision tree 64.1% 0.047 61.5% 66.8%

Random forest 64.0% 0.029 61.3% 66.6%

AdaBoost 65.6% 0.036 62.9% 68.2%

KNN = 2 54.9% 0.051 52.2% 57.6%

KNN = 5 58.6% 0.034 55.9% 61.3%

Stress recognition in

automobile drivers dataset

Logistic regression Heart rate 58.7% 0.20 57.2% 60.2%

Gaussian Naive Bayes 56.4% 0.024 54.9% 57.9%

Decision tree 59.9% 0.019 58.4% 61.4%

Random forest 10-fold cross

validation

57.5% 0.027 56.0% 59.0%

AdaBoost 59.9% 0.016 58.4% 61.4%

KNN = 5 52.0% 0.023 50.4% 53.5%

KNN = 5 56.1% 0.024 54.6% 57.6%

Stress recognition in

automobile drivers dataset

Logistic regression Respiratory

rate

58.3% 0.037 55.6% 61.0%

Gaussian Naive Bayes 58.7% 0.038 56.0% 61.4%

Decision tree 61.4% 0.053 58.7% 64.0%

Random forest 59.4% 0.50 56.7% 62.1%

AdaBoost 63.9% 0.036 61.2% 66.5%

KNN = 2 54.6% 0.039 51.9% 57.4%

KNN = 5 59.0% 0.052 56.3% 61.7%
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like decision trees and the training method selected is always
begging, as in begging learning models are linearly combined to
increase the overall accuracy. While growing new trees, random
forest adds more randomness to the existing model. Instead of
finding the most important target feature for node splitting, this
algorithm searches for the best feature in the random subset of
target features. In this way, we get wide diversity which in-return
results in a better model. So, as random forest only considers a
random subset of features for splitting a node, we can make the
trees of the model more random by using random thresholding
of every feature rather than looking for the best threshold value.

AdaBoost Classifier
The boosting refers to a group of techniques that creates a
strong classifier using many weak classifiers. To find a weak
classifier, different machine learning-based algorithm having
varied distribution is used. Each learning algorithm generates a
new weak classification rule. This process is iterated many times
and at the end, a boosting algorithm is formed by combining all
newly generated weak classifiers rules to make a strong rule for
prediction. A few steps should be followed for the selection of the
right distribution:

• Step 1: Give all the distributions to the base learner and assign
equal weights to every observation.

• Step 2: If the first base learner gives any prediction error, then
pay more attention to observations causing this prediction
error. Then, apply a new base learner.

• Step 3: Until the base learning limit is reached, or the desired
accuracy is achieved, keep repeating Step 2.

K-Nearest Neighbors Classifier
The k-Nearest Neighbor (kNN) is one of the simplest instance-
based learning algorithms. Working of kNN is as follows. It
classifies all the proximity instances, in a database, into a single
group and then when a new instance (feature) comes, the
classifier observes the properties of the instance and places it
into the closest matched group (nearest neighbor). For accurate
classification, initializing a value to k is the most critical step in
the kNN classifier.

RESULTS AND DISCUSSIONS

All the algorithms are implemented in python using the
scikit learn library. Table 1 shows the hyper-parameter settings
of all the classifiers discussed above. Figure 1 demonstrates
the overall steps involved in the implementation of the
supervised and unsupervised classifiers. In the pre-processing
stage, the heart rate, respiratory rate, and stress/non-stress
label data are accumulated from the dataset. In the second
step, the collected data is split into 70-30% or k-folds
to have the training and testing sets. In the classification
stage, the supervised learning classifiers are trained and
tested to classify the input data into stress/non-stress using
boundary fitting while in the case of unsupervised learning
classifiers, clustering is performed on the input data and
two clusters are formed corresponding to stress and non-
stress data. In the final stage (post-processing), different
performance evaluation metrics (accuracy, recall, precision,

TABLE 3 | Results of unsupervised learning algorithms on stress recognition in automobile drivers dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score

Stress recognition in

automobile drivers dataset

Affinity propagation Heart rate and

respiratory rate

63.8% 0.65 0.64 0.62

BIRCH 54.9% 0.62 0.57 0.50

DBSCAN 53.8% 0.56 0.54 0.41

K-mean 55.7% 0.62 0.56 0.52

Mini-batch K-mean 53.0% 0.28 0.53 0.37

Mean shift 53.0% 0.28 0.53 0.37

OPTICS 54.1% 0.54 0.54 0.53

Stress recognition in

automobile drivers dataset

Affinity propagation Heart rate 59.7% 0.60 0.82 0.69

BIRCH 49.1% 0.66 0.49 0.38

DBSCAN 54.7% 0.30 0.55 0.39

K-mean 70-30 % 55.5% 0.61 0.55 0.53

Mini-batch K-mean 54.8% 0.61 0.55 0.52

Mean shift 54.7% 0.30 0.55 0.39

OPTICS 51.6% 0.51 0.52 0.51

Stress recognition in

automobile drivers dataset

Affinity propagation Respiratory rate 65.0% 0.77 0.65 0.57

BIRCH 57.4% 0.33 0.57 0.42

DBSCAN 60.6% 0.62 0.61 0.53

K-mean 59.8% 0.63 0.60 0.60

Mini-batch K-mean 60.3% 0.6 0.60 0.60

Mean shift 57.4% 0.33 0.57 0.42

OPTICS 54.6% 0.49 0.55 0.46
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TABLE 4A | Results of supervised learning algorithms on SWELL-KW dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score

SWELL-KW dataset Logistic regression Heart rate 70-30 % 70.2% 0.70 0.70 0.64

Gaussian naive bayes 70.3% 0.70 0.70 0.64

Decision tree 74.8% 0.74 0.75 0.73

Random forest 74.8% 0.74 0.75 0.73

AdaBoost 74.6% 0.75 0.75 0.71

KNN = 5 71.8% 0.71 0.72 0.71

KNN = 2 62.7% 0.68 0.63 0.64

TABLE 4B | Results of supervised learning algorithms on SWELL-KW dataset (K-fold cross validation).

Datasets Classifiers Feature Test-train split Classification

accuracy

Standard

deviation

Confidence limits

Lower Upper

SWELL-KW

dataset

Logistic regression Heart rate 10-fold cross

validation

70.2% 0.002 70.0% 70.4%

Gaussian Naive Bayes 70.3% 0.002 70.4% 70.5%

Decision tree 74.8% 0.002 74.6% 75.0%

Random forest 75.0% 0.003 74.8% 75.2%

AdaBoost 74.6% 0.003 74.4% 74.8%

KNN = 2 62.8% 0.002 62.6% 63.0%

KNN = 5 72.0% 0.003 71.8% 72.2%

f1-score, standard deviation, and 95% confidence intervals) are
calculated and reported.

The performance of unsupervised and supervised learning
algorithms was tested on the two datasets. The Stress Recognition
in Automobile Drivers Dataset was a smaller dataset with 4,129
data points for each feature, i.e., heart rate and respiratory
rate, along with stress/non-stress labels. The SWELL-KW dataset
was a relatively larger dataset with a total of 204,885 data
points for the heart rate feature along with stress/non-stress
conditions. Each data point is considered as a separate sample
and is selected randomly for test and train sets, for supervised
learning classifiers.

In real-time, the unsupervised classifier is fed with control
data and asked to classify the data into stress and non-stress
condition. Then new data point is passed to the classifier
and based on the centroids calculated using the control data,
the new data point is placed in a specific cluster. For the
comparison, a set of different supervised learning classifiers
were also implemented, and the performance of the classifiers
was evaluated using classification accuracies, precision, recall,
and F1-scoring matrices. The results of the classifiers are
discussed below.

Stress Recognition in Automobile Drivers
Dataset
It is a well-known fact that all the traditional machine
learning classifiers are data-hungry. As the Stress Recognition
in Automobile Drivers dataset is a smaller dataset, the highest
classification accuracy achieved (with 70-30% train-test split)

using combined heart rate and respiratory rate along with
supervised learning algorithm is 66.8% (AdaBoost classifier)
while for single feature model, i.e., heart rate and respiratory rate
separately, the highest classification accuracy is 61.9% (Decision
Tree classifier) and 66.8% (AdaBoost classifier), respectively.
These results are better than previously reported accuracy values
(52.6 and 62.2% for heart rate and respiratory rate models)
(26). Similarly, when combined heart rate and respiratory
rate is used along with unsupervised learning classification,
the highest classification accuracy achieved is 63.8% (Affinity
Propagation classifier). If a single feature model is used, the
highest accuracy for the heart rate feature model becomes
59.7% while for the respiratory rate feature model, it is 65%
using the Affinity Propagation classifier. K-fold cross-validation
(with k = 10) was also performed using supervised learning
models. The highest achieved accuracies for a single feature
model are 59.9% for heart rate and 63.9% for respiratory
rate while two feature models (heart rate and respiratory rate
combined) gave an accuracy of 65.6%. Detailed analyses of
different supervised and unsupervised learning algorithms are
illustrated in Tables 2A,B, 3.

SWELL-KW Dataset
The results of different supervised and unsupervised learning
algorithms using the SWELL-KW dataset are illustrated in
Tables 4A,B, 5. The highest classification accuracy achieved (with
70-30% train-test split) using a supervised learning algorithm
is 74.8% (Decision Tree/Random Forest classifier), which is
better than previously reported results for one physiological
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TABLE 5 | Results of unsupervised learning algorithms on SWELL-KW dataset.

Datasets Classifiers Feature Test-train split Classification accuracy Precision Recall F1-score

SWELL-KW dataset Affinity propagation Heart rate 70-30 % 66.5% 0.44 0.67 0.53

BIRCH 68.1% 0.66 0.68 0.60

K-mean 66.7% 0.45 0.67 0.53

Mini-batch K-mean 66.7% 0.45 0.67 0.53

Mean shift 68.3% 0.69 0.68 0.60

DBSCAN 66.7% 0.45 0.67 0.53

OPTICS 66.7% 0.45 0.67 0.53

TABLE 6 | Results comparison of supervised learning algorithms on datasets with previously reported work.

Datasets Classifier

type

Ref Feature Highest reported

classification

accuracy

Highest achieved

classification accuracy

[this study] with 70-30%

split

Highest achieved

classification accuracy

[this study] with K-fold

validation

Stress recognition in

automobile drivers dataset

Table 5.8 of

(23)

Respiratory rate 62.2% 66.8% 63.9%

Supervised

learning

algorithms

Heart rate 52.6% 61.9% 59.9%

SWELL-KW dataset Table 4 of (31) Heart rate 64.1% 74.8% 75.0%

modality (accuracy = 64.1%) in (34) while for unsupervised
learning is 68.3% (Mean shift classifier). The overall classification
accuracies of the supervised classifiers do not change significantly
with k-fold cross-validation applied to the data. The highest
classification accuracy achieved using 10-fold validation is 75.0%.

The other performance matrices, precision, recall, F1-score,
of both the datasets follow similar performance trends as the
accuracy for comparison of algorithms.

Summary
The results of the supervised learning classification algorithm
are better than the previously reported results (26, 34) using
the same datasets, see Table 6. As both datasets have real-
time physiological signals, there are some outliers and noisy
signals within the signal. Thus, intense pre-processing and outlier
detection was performed to cleanse the dataset for better training
of the classification algorithm. The achievement of better results
than the previously published results reflects that our performed
pre-processing step (thresholding and filtering) does help in
developing a better classification model.

The authors acknowledge that these accuracies are not
indicative of good performance but motivate the researchers
to propose better supervised as well as unsupervised learning
classification models for improved stress monitoring. Figure 2
shows the bar plot of classification accuracies of supervised and
unsupervised classification algorithms using Stress Recognition
in Automobile Drivers Dataset (Figure 2A) and SWELL-KW
Dataset (Figure 2B). The use of an unsupervised classifier
is important for the development of a non-invasive, robust,
and continuous stress monitoring device since labeling the

physiological signal in the ambulatory environment is a
difficult and inaccurate task. The results in Tables 2-5 show
the comparison of classification efficiencies of supervised
and unsupervised classification algorithms. The difference in
the highest classification accuracies is comparable, i.e., for
Stress Recognition in Automobile Drivers dataset is 1% for
respiratory rate-based model and 3% for two feature-based
models. While for the SWELL-KW dataset, the difference is
6.5%. The overall accuracies of the supervised classifiers are
better than the unsupervised classifier but as an unsupervised
machine learning classifier does not require any intense pre-
training as well as stress/non-stress labels, these results are
encouraging the researchers to use the unsupervised models in
stress monitoring wearable devices. Further improvements in
unsupervised algorithms to optimize use in stress monitoring can
potentially provide even better detection accuracies.

CONCLUSION

Stress detection in a real-world environment is a complex
task as labeling of the collected physiological signals is often
inaccurate or non-existing. The questionnaires and self-reports
are considered the only established way of getting the reference
state of the participant emotion. The supervised machine
learning classifiers have been able to accurately classify the stress
state from the non-stress state. The problem of stress level
labeling has already been reported in many studies but has rarely
been addressed.

One possible solution is the use of an unsupervised
machine learning classifier as such algorithms do not
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FIGURE 2 | Bar-plot of classification accuracies of supervised and unsupervised classification algorithms using (A) Stress Recognition in Automobile Drivers Dataset

and (B) SWELL-KW Dataset.

require labeled data. In this study, we have implemented
different unsupervised classification algorithms to explore the
feasibility of unsupervised stress detection and monitoring

in different stress monitoring scenarios. For comparison,
a set of different supervised learning algorithms was
also implemented.
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We have also performed an analysis to investigate the
significant difference in the model performance using the
standard deviations and confidence intervals. The performance
of some models differs significantly from others. For instance,
the performances of decision tree classifiers compared to k-
nearest neighbors (k = 2) on Stress Recognition in Automobile
Drivers dataset and random forest classifier compared to logistic
regression classifier on SWELL-KW dataset are quite different.
This leads us to the conclusion that a careful selection of
classification models is required when aiming to develop an
accurate stress detection system. The selection of the classifier is
dependent on the type and shape of the data. It also depends upon
the number of data points within the dataset.

The classification results indicate that unsupervised machine
learning classifiers can show good performance in terms of
classification accuracy, precision, recall and F1-score, without
any training phase which is usually time-consuming and
inaccurate. The findings enhance our understanding of the
feasibility of unsupervised learning classifiers in wearable
devices. Furthermore, these findings also may inform further
approaches for the detection and monitoring of stress in an
ambulatory environment.
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