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Abstract

To help understand how semantic information is represented in the human brain, a number of previous studies have
explored how a linear mapping from corpus derived semantic representations to corresponding patterns of fMRI brain
activations can be learned. They have demonstrated that such a mapping for concrete nouns is able to predict brain
activations with accuracy levels significantly above chance, but the more recent elaborations have achieved relatively little
performance improvement over the original study. In fact, the absolute accuracies of all these models are still currently
rather limited, and it is not clear which aspects of the approach need improving in order to achieve performance levels that
might lead to better accounts of human capabilities. This paper presents a systematic series of computational experiments
designed to identify the limiting factors of the approach. Two distinct series of artificial brain activation vectors with varying
levels of noise are introduced to characterize how the brain activation data restricts performance, and improved corpus
based semantic vectors are developed to determine how the word set and model inputs affect the results. These
experiments lead to the conclusion that the current state-of-the-art input semantic representations are already operating
nearly perfectly (at least for non-ambiguous concrete nouns), and that it is primarily the quality of the fMRI data that is
limiting what can be achieved with this approach. The results allow the study to end with empirically informed suggestions
about the best directions for future research in this area.
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Introduction

Knowledge of how brains encode and process information is of

practical importance for many fields, ranging from philosophy and

psychology to neuroscience and artificial intelligence. There have

already been many studies by neuroscientists that have sought to

explore how the brain represents semantics as patterns of neural

activity in different brain areas (e.g., [1–5]), and related work has

shown how high-level knowledge of visual objects can be reflected

in patterns of individual voxel activations (e.g., [6,7]). Recently,

Mitchell et al. [8] have suggested refining our understanding of

how the human brain encodes semantic knowledge by mapping

independent computational representations of lexical semantics for

particular concrete objects to corresponding patterns of brain

activation as measured by fMRI. In principle, any reliable

semantic representation could be used as the inputs for those

models, but computational linguists have already established that

surprisingly good representations of lexical semantics can be

generated from the word co-occurrence statistics of large text

corpora (e.g., [9–13]), so those are a natural choice. This led

Mitchell et al. to train linear regression models to predict brain

activations from corpus derived semantic representations for 60

concrete nouns (5 from each of 12 semantic categories such as

insects, tools, vegetables, vehicles), achieving generalization performance

levels significantly above chance [8].

That study has already been the subject of much further

investigation, and numerous variations of the original prediction

model have been suggested (e.g., [14–20]). Our own study [18]

used improved general purpose corpus-based semantic represen-

tations [12,21] with the original fMRI data to achieve the best

performance so far on the brain activation prediction task.

However, even the best of those results have only provided limited

improvement over the original study, the performance levels are

still not good enough for reliable conclusions to be deduced, and it

is not obvious what factors are limiting progress. Since the idea of

relating patterns of brain activation to representations of semantics

is becoming increasingly widespread [22], understanding what is

limiting progress in this area will be of considerable general

interest. This paper begins to explore whether the current poor

performance is due to noise or deficiencies in the fMRI brain

activation vectors, or in the semantic input vectors, or in the

learned mappings, or in some combination of all three. That is

done by first using an independent measure of semantic vector

quality to identify where the biggest problems may be, then testing

the linear mapping approach on a range of artificial brain

activation vectors that includes many which are much cleaner than

those feasible using existing brain imaging technology, and finally

exploring the effect of using improved semantic representations for

the inputs. It will test right up to the limiting cases, determining

how well the current brain activation vectors might perform given
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perfect corpus-based semantic representations, how well the

current corpus-based semantic representations might do given

perfect brain activation vectors, and how much training data is

required for the current linear model approach to work well given

highly consistent inputs and outputs. Of course, the model and

data interact, and the performance on the existing data could

potentially be improved by having a better model that can capture

more of the signal that might be present. The best we can do with

an empirical approach is study the best model we currently have,

but we do need to bear in mind that the limiting factors in the data

may well change if better models can be developed.

Methods and Results

The original Mitchell et al. study [8] involved eliciting brain

activations corresponding to each of 60 concrete nouns by asking a

series of healthy participants to mentally generate a set of

properties six times for each object when presented with previously

studied word-picture pair stimuli for those objects. Then data from

each individual participant for each of the 1770 combinations of

58 out of the full set of 60 words were used to fit a linear regression

model that maps the input corpus-derived semantic representa-

tions to the associated patterns of brain activation, and each model

was tested on its ability to generalize to predict the activations of

the two held-out words. In total, a set of 1770 prediction models

was created for each of nine participants, and the average

prediction performance was computed. Performance in the

current study is measured using exactly the same leave-two-out

brain activation prediction task. Our previous systematic study

[18] has shown that, in addition to using improved input semantic

representations, better results can also be obtained by including a

standard (ridge regression type) regularization in the linear model,

with the regularization parameter and number of output voxels

optimized for each type of input and output representation. If, for

each word i, the vector of input features is fi, the vector of brain

activations is ai, and the vector of model outputs is mi, the models’

computations can conveniently be expressed as the minimization

of the sum-squared output error E of the model over the set of

training items i with regularization parameter l:

mi~Wfi , E~
X

i

mi{aij j2zl Wk k2

and the matrix W of model weights/coefficients can easily be

computed using standard matrix pseudo-inversion techniques.

That approach will be adopted without variation as the standard

prediction task model throughout this study.

In the original Mitchell et al. study [8], a model was deemed to

have made a correct prediction if the sum of the cosine distances

between the predicted and measured brain activation patterns for

the two withheld words was smaller than that with the two words’

predictions switched. The fraction of correct predictions in that

sense will here be called the pair performance PairPerf. As noted

previously [18], computing and comparing each of the individual

cosine distances, rather than the sum of the pair, gives a better

cross-validated estimate of the average probability that the model’s

output for a given word is closer to the correct word target output

than that of any other word. The fraction of correct predictions in

that sense will be called the performance Perf. To facilitate

comparisons with other studies, results for both performance

measures will be presented throughout this paper. For both

measures, chance performance is 0.5 and perfect performance is

1.0, but PairPerf is generally higher than Perf at intermediate levels.

Empirical permutation tests show that the 0.05 statistical

significance level falls at 0.58 for Perf and 0.62 for PairPerf. The

relative reliability of these two measures will be considered in more

detail later, once we have concrete results to analyse.

It is worth noting at this point that any set of words could be

used for this kind of prediction task, and that the semantic category

structure of the chosen 60 words is not crucial for it. Human

cognition is highly capable of operating in a noisy world where

category boundaries are much more imprecise and shifting, and

we know that the representations that brains use are far more

subtle than what is captured by the simple category structure used

here. This is one of the reasons why we believe that lexical co-

occurrence statistics provide a particularly useful basis for models

of conceptual structure, because, whether or not semantic memory

is learned directly from language exposure, these statistics reflect

the real-world linguistic usage of concrete concepts, and may thus

be able to capture some of the complexity of the semantic structure

inherent in cortical semantic representations. For the purposes of

the models studied in this paper, however, the chosen simplified

category structure is useful in that it provides a straightforward

indicator of the difficulty of the task for particular withheld word

pairs – words from different semantic categories will naturally be

easier to distinguish than words from within the same category. It

also enables the definition of a simple independent measure of the

reliability of the associated semantic representations.

A standard approach for measuring the quality of semantic

representations involves applying a general-purpose clustering

algorithm to the semantic vectors for a particular set of n words,

and computing the purity of the resulting clusters using the known

semantic categories for each word [21]. The purity Pr of a given

cluster r is the fraction of its members that belong to the most

represented category within that cluster, and the overall purity P of

clustering is the weighted average of all the individual cluster

purities Pr. So,

P~
Xk

r~1

nr

n
Pr , Pr~

1

nr

max
c

nc
r

� �

where nr and nr
c are the numbers of words in the relevant

clusters and categories, with r labelling the k clusters and c labelling

the categories [23]. Obviously, this is a rather coarse indicator of

semantic representation quality, that will depend on the precise

clustering algorithm used, but if the vectors for a given set of words

do not even cluster according to their known broad semantic

categories, there is little hope of them exhibiting appropriate finer

grained structure. The correlation of this simple purity measure

with performance on the brain activity prediction task will become

increasingly clear as this study progresses.

Having defined the main task and performance measures, the

remainder of this section presents a systematic series of compu-

tational experiments designed to explore the various components

of the brain activation prediction task. The first sub-section uses

artificially created vectors to explore how the quality of the brain

activation vectors (mapping outputs) affect the brain activation

prediction results, and the sub-section following that studies the

effect of the quality of the semantic representations (mapping

inputs). Some further experiments are then presented to clarify the

earlier results, and the penultimate sub-section introduces another,

even less brain-like, series of artificial brain activation vectors

designed to establish what the approach might achieve with more

consistent inputs and outputs. The final sub-section considers the

Predicting Brain Activity
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relative reliability of the performance measures in the context of

the results presented in the earlier sub-sections.

Artificial Brain Activation Vectors
We have previously shown [18], using the CLUTO Clustering

Toolkit [24] with default parameters and cosine distance measure,

that the clustering purity of the fMRI brain activation vectors used

in this study [8] is low (mean 0.43, standard deviation 0.06, over

nine participants). The first aim of the current study is to explore

the likely effect of the fMRI vectors’ poor semantic representation

quality (as indicated by that low clustering purity) on the brain

activation prediction task, by generating a series of artificial brain

activation vectors covering a range of known clustering qualities

and measuring their performance as a function of purity. Of

course, generating good semantic representations is difficult

[12,13,21], even without the requirement for them to mimic

patterns of brain activation of varying quality. Consequently,

rather than attempting to create a complete representation of

semantics on which to base the artificial brain activations, we

begin by adopting the simplest possible approach that suffices for

current purposes. Later, we shall return to this issue and look at

another approach for generating artificial brain activations that

leads to a better representation of semantics, at the expense of

introducing potential confounding factors.

The simplification that makes this approach feasible is to not

attempt to introduce any realistic semantic relations within each

category, or between categories, but only require that the

categories themselves are clearly defined. Thus the minimal

requirement is to have a set of notional voxels for each semantic

category whose members tend to have high activation for words

within that category, with variation in their activations across

different words in that category, and then everything else can be

represented by randomly generated activations. That still leaves

room for numerous variations, but, fortunately, the general pattern

of results does not seem to depend strongly on the details. The

simple implementation adopted for the study presented here

begins with 4000 artificial voxels in total, each with a baseline

activation chosen randomly from the uniform range [0,1]. Then a

distinct set of 100 of those voxels is associated with each of the 12

semantic categories, and for each of the 5 words corresponding to

each category, a different 80 of the 100 voxels associated with that

category have an additional activation x. Following the real

participants in the Mitchell et al. study [8], nine artificial

participants were created, with voxel activation patterns generated

for each of the 60 words for each of six ‘‘data collection

repetitions’’, and those activations were normalized, averaged and

sorted with respect to stability in exactly the same way as the real

data.

The stability of each voxel for each participant is simply defined

as the mean correlation of the vectors of activations for the 60

words over all 15 pairs of data collection repetitions [8]. The

voxels that have the most stable activations over the six

measurements are deemed to provide the most reliable represen-

tation of semantics, and it is those that are used in the linear

mappings of the prediction task. Figure 1 plots the mean stability

and mean clustering purity over the most stable 1000 artificial

voxels as a function of the signal parameter x. As the value of x

increases from zero, the semantic signal increasingly stands out

from the noise, the stability increases, and the clustering purity

increases. Perfect clustering purity is achieved for x as low as 0.2, at

which point the stability has only reached 0.07. It is reassuring for

the whole approach that an effective signal still shows through

even with such low voxel stabilities. The stabilities required for

good clustering here are rather low compared to the correspond-

ing mean stability of 0.15 for the real fMRI activation vectors [8].

This is probably because the non-signal activations in the six

artificial data repetitions are independent of each other, while the

real fMRI data will doubtless involve more systematic effects that

are unlikely to be adequately approximated by the distribution of

random artificial activations. It would be interesting to know the

effect of improving the approximations in this respect, as it would

be to improve the model in a great many other ways, such as

introducing realistic location-specific haemodynamic response

functions and other neurobiological constraints. However, the

development of such a degree of biological realism would greatly

increase the complexity of our models, and require a considerable

amount of extra work to justify and validate the biological

assumptions and setting of parameters, so that will have to be left

for a later study. A related issue is that the real data may well also

be subject to a drop-off in quality for later repetitions that we have

not attempted to simulate. The effect of both of these simplifica-

tions will be elucidated later when we explore how the results

depend on the number of data collection repetitions used.

The artificial brain activation vectors can be used in the

Mitchell et al. model [8] in exactly the same way as the real fMRI

vectors. However, here it proves informative to present the results

in more detail. The brain activity prediction task involves a new

linear mapping being learned 1770 times corresponding to the

1770 possible pairs of withheld words from the full set of 60 words.

Of those pairs, 120 will have both words coming from the same

semantic category, and 1650 will have the two words coming from

different categories. Here, the results for the 120 harder-to-

distinguish within-category pairs (denoted ‘‘Within’’) and the 1650

easier cross-category withheld word pairs (denoted ‘‘Cross’’) will be

presented separately. The overall performance on the original

Mitchell et al. brain activation prediction task [8] is simply the

weighted average of those two results.

The models were initially tested using two different sources for

the inputs. First, the semantic feature inputs used in the original

Mitchell et al. study [8] (and here denoted ‘‘M et al.’’), based on

simple normalized word co-occurrence counts with 25 carefully

chosen context verbs derived from the trillion word Google corpus

[25]. Second, the improved (and currently best performing)

general-purpose semantic representation [12,21] inputs used in

Figure 1. Stability and purity of the artificial brain activations.
The stability of the simulated voxel activations over repeated
measurements, and their clustering purity based on the associated
semantic categories. Both measures increase as a function of the
semantic signal level parameter x.
doi:10.1371/journal.pone.0057191.g001
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the Levy & Bullinaria study [18] based on word co-occurrence

counts derived from the two billion word web-crawled ukWaC

corpus [26]. In this case, for each target word t, the conditional

probability p(c|t) of each context word c occurring within in a

window of a certain number of words around it is computed.

These are then compared with the associated expected probabil-

ities p(c), that would occur if all the words were distributed

randomly in the corpus, to give the Pointwise Mutual Information

(PMI) I(c;t) = log(p(c|t)/p(c)). For low frequency context and/or

target words, the observed p(c|t) in the corpus are statistically

unreliable, and often become zero leading to negative infinite

PMI, which is problematic for most distance measures [27]. Data

smoothing or low-frequency cut-off approaches can be used to

deal with this issue, but the study of Bullinaria & Levy [12] showed

that simply setting all the negative PMI values to zero, leaving

vectors of Positive Pointwise Mutual Information (PPMI), reliably

resulted in the best performing semantic representations across all

the semantic tasks considered, as long as the smallest possible

window size (of just one context word to each side of the target)

and the standard cosine distance measure were used. Using such

vectors based on the 10,000 highest frequency context words

generally comes close to optimal for most applications [13,21], so

those are used for the remainder of this study (and here denoted

‘‘B&L’’).

The graphs in Figure 2 show the results for both feature types

using the two performance measures. As expected, the within-

category performance is at chance level for all the artificial

activations, since the only within-category structure built into them

is random, and hence there is no non-random way for the model

to choose one word over another in the same category. The cross-

category performances all increase with semantic signal x,

confirming that the models are learning the semantic category

structure and the artificial brain activation vectors are performing

in the required manner. (The lines denoted ‘‘New’’ are discussed

in the next section.)

For comparison, the corresponding models based on the real

fMRI activation vectors achieve Perf performance of 0.73 (Cross)

and 0.57 (Within) using the Mitchell et al. input features [8], and

0.78 (Cross) and 0.55 (Within) using B&L input vectors [18], and

the corresponding PairPerf results are 0.81, 0.60, 0.86 and 0.62

respectively. So, the cross-category model performances using the

real brain activations are worse than those using the artificial

activation outputs with semantic signals x$0.15, which indicates

that the quality of the measured brain activations is at least one of

the serious limiting factors for the linear mapping approach.

It is natural to ask what might be done to improve the real brain

activation vectors. From a noisy data collection perspective, one

would expect a cleaner signal to emerge by averaging and

determining stability over more measurements for each word.

Figure 3 shows that for the artificial brain activation vectors with

x = 0.125 and B&L semantic vectors there is steady improvement

in performance on the prediction task from two data measure-

ments (the minimum required to measure stability) up to seven,

but then there is a ceiling effect levelling off. For the corresponding

x = 0.3 stronger signal case, the performance reaches ceiling levels

after only three or four data measurements. For the real brain

activations, there is again little increase in performance to be

gained by using more than the first three or four measurements

out of the six collected, but it is not obvious why. In fact, the

graphs show that reversing the real data (i.e., using the last sets of

measurements rather than the first) results in the performance

deteriorating much more rapidly as the number of measurements

is reduced from the full set of six and fewer of the early

measurements are used. This is presumably because of the

demands on the participants as they lay in the scanner for more

than an hour generating brain activations for six repetitions of the

word set in a single continuous run. Clearly, more data collection

repetitions allow a better signal to emerge from the noise, as shown

with the artificial brain activations for which the order of the

measurements makes no difference, but that is limited by how

much useful signal there is to be found. The longer the participants

are in the scanner, the more they will tend to move, and the more

poorly they are likely to perform due to fatigue. That will lead to

more noise in the later repetitions and less to be gained by using

them. This pattern is equally clear in the dependence of the simple

clustering purities on the number of data collection repetitions

shown in Figure 4, which provides further evidence that the

purities are a useful indicator of the performance that can be

expected on the harder prediction task.

Figure 2. Prediction performance results for the artificial brain activations. For the within-category word pairs (Within), the prediction
performances are essentially at chance level as expected. For the cross-category word pairs (Cross), performance increases as a function of the
semantic signal level parameter x, for all three input semantic feature versions (M et al., B&L, New), and both the Perf (left) and PairPerf (right)
measures.
doi:10.1371/journal.pone.0057191.g002
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Improved Corpus-Based Semantic Vectors
It is evident from Figures 2 and 3 that, even when the models’

outputs are the perfectly clustering artificial activations with

x$0.3, the performances are still not perfect. All these results

inevitably also depend on the quality of the semantic representa-

tions used for the models’ inputs. The clustering purity of the

Mitchell et al. semantic feature inputs [8] is 0.47, and for the B&L

input semantic representation it is 0.83, and that difference is

clearly reflected in the models’ performances seen in Figure 2.

Consequently, it is natural to ask whether improved semantic

representation inputs with perfect clustering could result in better

models. Murphy, Talukdar & Mitchell [19] have already

compared a number of alternative corpus-based representations

as inputs for the brain activation prediction task, but none of them

perform any better than the B&L vectors we have been using.

Unfortunately, the Mitchell et al. word set [8] contains several

problematic words that render it impossible to obtain perfectly

clustering semantic vectors using standard corpus co-occurrence

statistics based approaches [12,13,20,28], so we first need to

optimise the word set for this kind of semantic representation. The

main problem is that words which have multiple meanings will

result in combined semantic vectors that match no single meaning

and therefore cluster poorly. Another issue is that words in diverse

categories, and single words that are outliers in (or unusual

members of) their semantic category, also tend to cluster poorly.

Dealing effectively with such words is not straightforward (e.g.,

[28,29]), and this matter will clearly need to be addressed in the

future, but for the current study, that aims to see how well the

existing brain activation vectors could perform given more reliable

semantic vectors, we can proceed by simply avoiding the

problematic words. Fortunately, the CLUTO Clustering Toolkit

[24], that is already being used to determine the clustering purities,

also allows the word clustering to be plotted as dendrograms in

which any problematic words can be easily identified for

replacement [21]. The simplest way to improve the Mitchell et

al. word set [8] was found in that way to be by replacing two

problematic categories (man made objects, too diverse, replaced by

fruit; furniture, too diverse and ambiguous, replaced by birds) and

five other problematic words (bear, not always the animal, replaced

by pig; saw, not always the tool, replaced by spanner; glass, not always

the kitchen utensil, replaced by bowl; knife, not always used as a kitchen

utensil, replaced by plate; igloo, class outlier, replaced by cottage).

These changes prove to be sufficient to result in an improved word

set (denoted ‘‘New’’) that has B&L style semantic vectors [12,21]

which cluster perfectly (i.e., with purity of 1.0).

The graphs in Figure 2 show the artificial brain activity

prediction task performance with those improved input vectors

(New) on the within- and cross-category withheld word pairs.

Now, perfect performances on the cross-category task are achieved

using the perfectly clustering artificial activations with x$0.3, and

the within-category task performances remain at chance level as

expected for all values of x. Similarly, Figure 3 shows that the

improved input vectors result in significantly enhanced cross-

category performance for all numbers of data collection repeti-

tions. This establishes the importance of having a good test word

set, for which a good semantic representation is possible, and

confirms that the linear mapping approach is able to perform

perfectly on the cross-category prediction task given perfectly

clustering inputs and outputs. Later, an alternative series of

artificial brain activation vectors will be developed that allows us to

Figure 3. Dependence of the prediction performance results on the number of data collection repetitions. There is a general increase
and then levelling off of performance with number of repetitions for each of the real (Real), reversed real (Rev), and artificial (x = 0.125, 0.3) brain
activations for cross-category word pairs, for both input semantic feature sets (B&L, New), and both the Perf (left) and PairPerf (right) measures.
doi:10.1371/journal.pone.0057191.g003

Figure 4. Dependence of the clustering purity on the number
of data collection repetitions. The clustering purities of the real
(Real), reversed real (Rev) and artificial (x = 0.125) brain activations all
follow similar patterns to the corresponding brain activity prediction
performances seen in Figure 3.
doi:10.1371/journal.pone.0057191.g004
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test the limits of the linear mapping approach on the harder

within-category prediction task too.

Since we have no fMRI data for the new words in the improved

word set (New), they cannot be tested on the prediction task using

real brain activation outputs. However, the clustering purity of the

artificial activations with x = 0.125 matches the clustering purity of

the real fMRI vectors, so those artificial activations might provide

an indication of how well the real activations would perform with

the improved word set. The prediction performances of the

artificial activations for that and selected higher values of x are

plotted in the histograms of Figure 5 for the three input vector

types, with the corresponding results for the real brain activation

vectors (Real) with the two input vector types for the original word

set. It is clear that the improved word set on its own only provides

rather limited, albeit significant, prediction task enhancement.

Interestingly, there is a close correspondence between the

x = 0.125 and real activation prediction results for the B&L input

features, but the Mitchell et al. input features [8] produce much

better results with the real activations than the artificial activations

would suggest. The reasons for that are certainly worthy of further

exploration.

Another way to explore the effect of better semantic inputs on

models using real fMRI outputs would be to look for subsets of the

original 60 Mitchell et al. words [8] that cluster better, and see

how well they perform with the real fMRI vectors. This can be

done by removing the furniture, man made objects, and kitchen utensil

categories from the full set of 60 words to leave nine categories of

five items that lead to B&L style semantic vectors [12,21] which

cluster perfectly (with purity of 1.0). Obviously, the prediction task

performance will fall with the number of training items [18], but

these good 45 words can be compared with the corresponding

results obtained using random sets of 9 categories and random sets

of 45 words. On the main Mitchell et al. prediction task [8] with

real brain activation outputs, this results in average Perf

performances of 0.765, 0.739 and 0.743 respectively, and

corresponding average PairPerf performances of 0.844, 0.819 and

0.827. The differences are small, but paired t tests on the nine

participants’ results show that the semantic vectors for the chosen

good words perform significantly (t(8).3.36, p,0.01) better than

those of both random sets, using either performance measure,

again confirming the importance of having good semantic vector

inputs for the models.

Finally, it is possible to get an idea of the contribution of the

quality of the real brain activation vectors to this less-than-perfect

performance on the 45 word subsets by running the same tests

using good quality (x = 0.5) artificial brain activation vectors. In

this case, we obtain Perf performances of 0.954, 0.924, 0.923 and

PairPerf performances of 0.958, 0.950, 0.960, and the chosen good

words do not perform significantly differently from the expected

ceiling of 0.955 (derived assuming chance performance on the

within-category pairs). These results indicate that, while having

more reliable B&L semantic vector inputs does enable improved

prediction performance, it is the quality of the brain activation

vectors that remains the main limiting factor.

Further Measures of Performance
One crucial difference between real brain activation vectors and

the artificial version discussed above is that the artificial activations

only represent the distinctions between the 12 Mitchell et al. [8]

semantic categories, and it would obviously be better if they could

include finer grained structure that allowed more realistic semantic

relations within and between those 12 high-level categories.

Unfortunately, those finer grained semantic relations are enor-

mously complex, and building them into the artificial vectors by

hand would be a huge task, even if we had already solved the

difficult task of establishing what form they should take. In

practice, that is not really feasible, even for the relatively small sets

of 60 words used here. What we can and should do, however, is

explore the consequences of that simplification.

Since the category labels of the simple artificial activations

discussed above are assigned randomly, and all the categories have

an equivalent randomly generated form, they can clearly be

swapped around with no change to the resulting performances.

Similarly, if the members within each category are swapped

around, the performances do not change. The complete lack of

cross-category semantic structure can be confirmed by using one

of Mitchell et al.’s supplementary tasks, that was designed to see

how much the performance dropped if, for each pair of withheld

words, all the other words from their respective categories were

withheld from training too [8]. For the real fMRI vectors, the Perf

performances drops from 0.721 and 0.763 (for the Mitchell et al.

and B&L input features) down to 0.668 and 0.664, and the PairPerf

performances drop from 0.793 and 0.846 down to 0.736 and

Figure 5. Comparative brain activation prediction performance results. Performance of the real (Real) and artificial (x = 0.125, 0.15, 0.5) brain
activations for cross-category word pairs, for the three input semantic feature versions (M et al., B&L, New), and both Perf (left) and PairPerf (right)
measures. These comparisons provide the first indication that it is the quality of the brain activation data that is the main factor limiting performance.
doi:10.1371/journal.pone.0057191.g005
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0.793, but they all remain significantly better than chance. The

same measures for the artificial brain activation vectors all drop to

chance levels, as expected. The implication is that the real brain

activation vectors contain a lot more useful information than

simply the highest level categories, and any pre-processing of them

that leads to improved clustering at the expense of the finer

grained structure will render them closer to the artificial vectors

and lead to similar limitations.

Although both the original Mitchell et al. [8] and improved

B&L [12,21] semantic feature vectors are derived from large text

corpora, they are generated by different computational processes,

have massively different dimensionality (25 and 10,000), and

inevitably have rather different internal structures. It is natural,

therefore, to ask how much their fine-grained structure, beyond

the clustering into 12 broad categories, contributes to the

performances on the brain activity prediction task. Randomly

reassigning the feature vectors to the wrong words would clearly

cause the performance to drop to chance levels, because that

destroys all the semantic structure. However, it is not obvious how

the results would be affected if the feature vectors were randomly

reassigned in a way that preserved the main category structure, i.e.

all the words within one category were only assigned feature

vectors that really corresponded to words from within a single

other category. To test that, one can take the perfectly clustering

feature vectors (New), randomly swap the categories with the

original word set in such a way that none are correct, and retrain

the models. That obviously makes no difference to the perfect

cross-category and chance within-category performance for the

artificial activation vectors, because all the categories there are

equivalent. For the real fMRI activation vectors, the resulting

cross-category performances are 0.73 for Perf and 0.80 for PairPerf,

which are significantly worse than the corresponding results of

0.77 of 0.86 for the genuine B&L feature vectors, but they are still

highly statistically significantly better than chance. Interestingly,

there is no significant difference between these category random-

ized B&L feature results and the genuine Mitchell et al. feature

results (0.73 and 0.81). Naturally, since the within-category

semantic structure is now essentially random, all the within-

category performances have dropped to chance level.

One can take this idea even further and use randomly generated

‘‘semantic features’’ that have the main category structure and see

how well they perform. Obviously there are lots of ways that could

be done, but one simple approach will suffice to illustrate what

typically happens. Twelve random 25-dimensional vectors were

created with components drawn uniformly from the range [0, 1] to

represent 12 category centres, and then to each of these were

added five different random perturbation vectors with components

drawn uniformly from the range [0, 0.2] to give 60 feature vectors.

Only about one in four of the resulting vector sets clustered with

perfect purity, but after 35 attempts, ten sets of random vectors

with the required category structure were obtained. These were

then each used as inputs in the main brain activity prediction task

using real fMRI activation vector outputs as described above, and

the average results over the ten random sets computed. Obviously,

the within-category performances were again at chance level,

because the within-category structure of the inputs is random, but

the cross-category performances were 0.74 for Perf and 0.81 for

PairPerf, which are again significantly worse than the correspond-

ing results of 0.77 of 0.86 for the B&L input vectors, but still

significantly better than chance, and not significantly different to

the results of 0.73 and 0.81 for the Mitchell et al. input features

[8]. The implication is that surprisingly good statistically

significant results can be achieved with any input vectors that

have the right high-level category structure, irrespective of whether

they correspond to a semantic representation based on real

empirical linguistic measurements.

The remaining supplementary task used by Mitchell et al. [8]

was designed to investigate how well the brain activation

prediction models perform when faced with large numbers of

inputs not from their 60 word set. For each of 1000 control words

(selected due to their ranking 301 to 1300 in frequency in the

corpus), corpus-derived semantic vector inputs were created as

before. These were then passed through each of the 60 models

generated by training on 59 of the 60 words, and for each model

the similarity of the withheld word brain activation pattern with

each of the 1000 control word outputs and 1 withheld word output

were ranked. The higher the withheld word ranks on average,

measured as a fraction of the other 1000 words falling below it, the

better the models’ prediction performance. The measured

performances using the improved input semantic vectors (B&L)

and the corresponding improved word set vectors (New) with the

artificial brain activation outputs of varying quality are shown in

Figure 6. Both input types show increased performance as a

function of x, reaching ceiling levels around x = 0.4. The New

(perfect purity) vectors perform significantly better than the

original B&L vectors (reaching 0.995 rather than 0.945), again

confirming the advantage of using a word set that allows good

semantic features. (Note that perfect performance is not expected

here, even with perfect features and perfect artificial activation

vectors, because the 1000 words include some closely semantically

related words that are effectively within-category and the artificial

activation vectors therefore have no way to distinguish them.) By

comparison, using the real Mitchell et al. fMRI activation outputs

[8], the B&L input features achieve a performance on this task of

only 0.81. Once again, this indicates that it is the brain activation

vectors that are the main limiting factor of the mapping approach.

Corpus-Based Artificial Brain Activations
As noted above, the artificial brain activation vectors might lead

to more informative results, with better than chance level within-

category performances, if they had a more refined structure than

merely the highest level semantic categories. However, the best

semantic representations currently available are the corpus-based

Figure 6. Single word prediction performance. Ranking the
similarity of the actual brain activations to the predicted activations for
each test word and 1000 control words provides an alternative measure
of performance as a function of the artificial brain activations’ semantic
signal level x, for the two input feature sets (B&L, New). This exhibits the
same general pattern of prediction results as seen for the main task in
Figure 2.
doi:10.1371/journal.pone.0057191.g006
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representations that are already being used as the inputs to the

models [12,21], and using those as a basis for modelling the

outputs as well would clearly not be very realistic since it would

reduce the brain activity prediction task to simply learning an

identity mapping. Moreover, if such vectors were taken to be the

underlying representation and six versions of added noise were

combined with them to simulate the six repetitions of the fMRI

measurements, the simulated voxels selected by their stability

would be a relatively small random subset of the full set of 10,000

corpus vector components, and they would not perform well [12].

It is possible to take this idea a little further, though, because there

exists a transformation of the standard B&L corpus-based

semantic representation that uses a weighted version of Singular

Valued Decomposition (SVD) to reduce the dimensionality of the

vectors and flatten the relative contribution of the remaining

vector components [13,30]. That transformation leads to semantic

representations with significantly improved performance on some

semantic tasks [13], but has a relatively modest effect on the brain

activity prediction task of interest here. However, it is useful in that

the transformed semantic representation can be taken to form the

basis of another series of artificial brain activation vectors.

Obviously, they will be rather unrealistic as a model of real brain

activation vectors, but they may, nevertheless, provide a useful

approach for estimating how much real training data might be

required to learn the prediction task mapping. The idea is that if

the simplified mapping based on these artificial vectors cannot be

learned with a certain number of words, it is unlikely that the real

mapping with real brain activations will either.

These artificial brain activation vectors are not a simple

transformation of the 10,000 component B&L vectors used as

the models’ inputs for the 60 target words. Rather, one starts with

the matrix M of B&L style corpus-derived semantic vectors

consisting of 50,509 component vectors for each of the 50,548

highest frequency target words, and SVD allows the original

matrix to be written in the form M = USVT, where U and V are

orthogonal matrices, and S is a diagonal matrix containing the

singular values in decreasing order. (The precise size of the starting

matrix M is not crucial – larger matrices do not improve what

emerges, though much smaller matrices can lead to worse

performance [13].) Then the vectors Y = MV = US are principal

components that can be truncated at an optimal number of

dimensions, and can also be scaled by positive or negative powers

of the singular values to allow emphasized contributions from the

earlier or later components [30]. That scaling can be optimized for

the chosen application (in this case, by maximizing performance

on independent validation tasks that also require good semantic

representations) leading to the vectors X = US0.25 which are

weighted principal components that prove to be equally good or

better semantic representations than the original vectors M [13].

These can then be used to generate artificial brain activations by

starting with vectors that are the first 1000 dimensions of X for our

chosen word sets, creating six different noisy versions by adding

random noise drawn uniformly from the range [2z, z] to

represent the six repetitions of the simulated fMRI measurements,

and again using the same normalization, averaging and sorting

with respect to stability as with the real data. This gives a new

series of artificial brain activation vectors parameterized by the

noise value z. These allow us to simulate the (probably

unachievable in practice) limiting case in which the semantic

representation input for the brain prediction task has a simple

noisy linear relation to the brain activations. If the brain activation

prediction models cannot perform well in this case, then they

probably never can.

Figure 7 shows how the stability of these new corpus-based

artificial brain activations fall with the noise parameter z,

independently of which word set is used. It also shows how their

semantic clustering purity falls from the noise free levels (of 1.00

for the improved word set denoted ‘‘New’’, and 0.86 for the

Mitchell et al. word set denoted ‘‘M et al.’’) to a floor of about

0.35. The corresponding falls in performance on the brain

activation prediction task using B&L style input semantic vectors

are shown in Figure 8 for the original word set (denoted ‘‘B&L’’)

and the improved word set (denoted ‘‘New’’). The cross-category

performances (both Perf and PairPerf) are now near perfect for both

word sets for zero noise z, but the improved word set performances

fall more slowly for moderate noise levels. For a noise level of z ,
0.35, all the brain activity prediction performances are in

reasonable agreement with those arising from using the real fMRI

data in the same way.

The more realistic fine-grained semantic structure of these

corpus-based artificial brain activations leads to within-category

performances that are now significantly better than chance, but

they are still far from perfect. Here the poorer quality M et al.

word set performs better (Perf of 0.79 rather than 0.70, for the zero

noise case), as expected given that many of its ‘‘within-category’’

vectors are not really within their nominal category. The relatively

poor within-category performance (Perf) on the New word set

indicates that 60 words are insufficient to provide enough

information for the linear models to learn fine-grained semantic

distinctions from the corpus-based representations.

Establishing how many training words are required for the

whole approach to work well is obviously important, particularly

given the difficulties involved in obtaining good quality fMRI

measurements for large numbers of words. One advantage of

working with artificial brain activations is that it is relatively easy

to generate them, and that makes it feasible to explore how the

performance improves as more words (in addition to the 60 word

test set) are used to train the linear models. This was done using

100, 230 and 360 additional words from the Distance Comparison test

set of Bullinaria & Levy [12,13]. Figure 9 shows how the within-

category performance (Perf) for the New word set improves as a

function of the total number of training words. For the noise free

case (z = 0), the performance quickly improves from the 60 word

Figure 7. Stability and purity of the corpus-based artificial
brain activations. The stability of the artificial voxel activations over
repeated measurements and their semantic clustering purity both fall
as a function of the noise parameter z, for both the original word set (M
et al.) and the improved word set (New).
doi:10.1371/journal.pone.0057191.g007
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level seen in Figure 8 to near perfect performance. The noisy case

(z = 0.35) also shows improvement, but reaches a relatively low

ceiling of 0.65 by about 300 training words. So, more training

words do help, but that alone is not likely to be sufficient to

overcome the current noise levels in the brain activation vectors.

Reliability of the Performance Measures
Throughout this paper, we have taken the trouble to present the

results using both the PairPerf measure used in the earlier studies

[8,14–20], and the Perf measure [18] that we consider to be more

useful in practice, because it provides an estimate of the

probability that the model predicts the right output rather than

a given random alternative. In most cases, the Perf and PairPerf

results have followed the same pattern, with Perf taking on slightly

lower values. However, for the zero noise case in Figure 8, both

the within and cross-category paired performances are perfect,

even though the Perf graph shows that up to 30% of the individual

within-category predictions are actually wrong. Clearly, this

discrepancy could give a misleading impression of the perfor-

mance of the model, and it is consequently important to

investigate further what is underlying it.

Both measures are based on the cosine distance between the

model output and the corresponding actual brain activation

(distance d11 for input word 1 and d22 for input word 2) and the

cosine distance between the model output and the brain activation

for the other word (d12 for input word 1 and d21 for input word 2).

A correct prediction for word 1 has d11,d12, and a correct

prediction for word 2 has d22,d21. Perf is simply the percentage of

correct predictions, while PairPerf is the percentage for which

d11+d22 , d12+d21. To explain how a big discrepancy between

the two measures can arise, Figure 10 plots the crucial distance

differences for the cross- and within-category pairs, for the New

dataset, corresponding to one z = 0.0 and one z = 0.4 simulated

participant used to generate the results of Figure 8. For the cross-

category case with no noise (top-left graph), all the correct-word

distances (d11 and d22) tend to be much less than 1 and the wrong-

word distances (d12 and d21) near 1, so there are few prediction

errors, and none for which both the pair of words is wrong. When

noise is added (bottom-left graph) all the distances are around 1,

there are many more prediction errors, and correspondingly more

PairPerf errors. One might expect the harder within-category task

for zero noise (top-right graph) to follow a similar distribution to

the high noise cross-category case, but that does not happen.

Instead, the nature of the mapping means that the two

components of the paired measure are not independent, but

anti-correlated with the correct result dominating. Even though

there are many individual prediction errors, the paired measure

does not show any. There is still a noticeable anti-correlation in

the high-noise within-category case (bottom-right graph), but the

effect on the PairPerf measure is not so dramatic there.

Since the standard prediction task [8] is dominated by the cross-

category word pairs, and the real brain activation data is very

noisy, this potentially misleading aspect of the PairPerf measure will

not have made much difference to the patterns of results presented

in previous studies, but the results for the artificial brain activations

in this paper lead us to suggest that using the Pair measure would

be a more reliable approach for future studies of this type.

Figure 8. Prediction performance results for the corpus-based artificial brain activations. All the performances fall as a function of the
noise parameter z, for within- and cross-category word pairs (Within, Cross), two input semantic feature sets (B&L, New), and both Perf (left) and
PairPerf (right) measure.
doi:10.1371/journal.pone.0057191.g008

Figure 9. Dependence of the within-category prediction
performance on the number of training words. Prediction results
on the New word set for noise free (z = 0) and noisy (z = 0.35) corpus-
based artificial brain activations, as a function of the number of words
used to train the linear models. These results indicate that many more
than the 60 words currently used will be required to achieve good
performance, even for much cleaner brain activation data.
doi:10.1371/journal.pone.0057191.g009
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Conclusions and Discussion

In view of the considerable recent interest in the idea that linear

mappings from general-purpose semantic representations to

patterns of fMRI brain activity could be a fruitful avenue for

helping to understand the representation of semantics (or lexical/

conceptual meanings) in the human brain [8,14–20], this paper

has explored the key factors which currently limit that approach.

Studying improved corpus-based semantic representations and

two parameterized series of artificial brain activation vectors has

led to the conclusion that better brain activation prediction

performance is achievable with better semantic feature input

vectors or better brain activation vectors, but the improved B&L

semantic vectors [12,21] are already close to ceiling quality for

non-ambiguous concrete nouns. We have also shown that

surprisingly good performance can even be achieved with input

feature vectors that do not correspond to the right words at all, as

long as they have the right high-level semantic category structure,

so one has to be careful when drawing conclusions simply because

the performance levels are statistically significantly better than

chance.

Figure 10. Individual distance differences underlying the measures of performance. The results from Figure 8 are shown for z = 0.0
(upper), z = 0.4 (lower), cross-category (left) and within-category (right). The Perf measure is the percentage of data points with distance differences
(d112d12 and d222d21) that are less than zero. The PairPerf measure is the percentage of data points with combined distance difference
(d11+d222d122d21) less than zero, i.e. below the diagonal dotted lines in the graphs.
doi:10.1371/journal.pone.0057191.g010
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It has become clear how the brain activation prediction models’

ability to distinguish words within the same semantic category is a

more challenging sub-task, and that may provide a more reliable

indication of the limits of the whole approach. Of course, it is not

surprising that the linear mapping approach is better able to

distinguish between semantically unrelated words than it is

between words within the same semantic category, particularly

for the relatively small word sets used so far. The empirical results

presented in this paper indicate that, with cleaner brain activation

vectors, the approach should be capable of working well on non-

ambiguous concrete nouns for the easier cross-category task, but it

remains to be seen how well it will be able to perform on the

within-category task, or how technically feasible it will be to obtain

better fMRI vectors. The results from studying corpus-based

artificial brain activations suggest that larger word sets for training

the mapping will be required to distinguish nouns with closely

related semantics. For other word types, such as verbs and

homographs, there are known problems with generating good

corpus-based semantic representations for use as the input features

[12,20,28], so it remains unclear how well the approach will ever

be able to work for them. However, recent work on this matter

(e.g., [19,29]) suggests that further progress should be achievable.

Taken together, the experimental results presented in this paper

strongly suggests that it is the lack of representational distinctive-

ness of the fMRI voxel activation vectors that is the major limiting

factor to further improvements in the Mitchell et al. style learning

models [8,14–20]. There is compelling evidence that the brain

activation vectors do contain significant categorical and item-based

semantic information, but the linear models fail to generalize at

anything near the level of the human ability to categorise and

identify individual items. The results of Figure 3 suggest that

simply collecting more data for each test word with the Mitchell et

al. approach [8] has already reached a performance ceiling. It may

be the case that fMRI technology is never going to be able to

measure semantic representations in the brain at an appropriate

‘‘grain size’’, either due to the lack of sufficient field strength or

other technical limitations, or due to the vascular source of the

Blood Oxygen Level Dependent (BOLD) signal not reflecting

neural representations precisely enough. However, this pessimism

may be premature, since further experimental paradigms for data

collection have yet to be explored. These will certainly include a

range of different semantic domains and experimental designs. For

example, Wang, Baucom & Shinkareva [31] have already

investigated an experimental paradigm that should lead to less

general and diffuse brain activation than the property generation

approach of Mitchell et al. [8], and demonstrated in a decoding

task that single-trial brain activation vectors can reliably distin-

guish between concrete and abstract words at above chance levels,

though performance on distinguishing individual words remains

rather low. Moreover, we have shown in the current study that

there tends to be a fall off in quality for later fMRI data collection

repetitions, and our results from corpus-based artificial brain

activations suggest that the datasets may need to involve

considerably more than 60 words to provide good results, so

future experimental paradigms may need to use event-related

designs over multiple runs, and even multiple sessions, in order to

collect enough good quality data. Raizada & Connolly [32] go

further and suggest neural activation decoding across subjects

purely within neural similarity space.

The general way forward for the Mitchell et al. [8] style brain

activation prediction task seems to be clear: choose word sets for

which high quality semantic representations are possible, and then

try to identify ways of obtaining brain activation vectors that

perform better. Choosing word sets with good semantic represen-

tations appears straightforward using the corpus-based approach

of Bullinaria & Levy [12,21], and there is plenty of scope for

accommodating more sophisticated hierarchical semantic struc-

tures that will allow finer-grained investigations than the simple

high-level categories used so far. The stimuli used by Mitchell et al.

[8] were pairs of concrete nouns and simple line drawings of the

concepts denoted by those nouns. Just et al. [22] and Shinkareva et

al. [33] have demonstrated that similar results can be obtained

using purely lexical stimuli. In both cases, visual cortical areas are

included in the set of most stable voxels, and it is possible that the

properties of the stimuli, along with the property generation task

used in the experimental paradigm, encourage more purely visual

representations than other tasks that might be more purely

conceptual. It would be interesting to explore whether auditory

presentations of word stimuli, or experimental tasks that are

passive (e.g., [34]), or demand judgements of semantic similarity

(e.g., [35]), produce different results in models similar to those of

Mitchell et al.

There are also several ways in which the fMRI data could be

collected and/or pre-processed differently, that might better

capture the voxel activation patterns underlying the important

semantic distinctions in future data-sets. The fMRI data collected

by Mitchell et al. [8] are in the form of rather large voxels

(3.12563.12565 mm, with a 1 mm gap between slices, re-

sampled to 36366 mm) measured over brief (1 second) scans.

The fMRI signal depends on blood flow, and this is relatively slow

compared to the dynamics of cognitive processing. Mitchell et al.

took this into account by discarding the first three scans and taking

the mean of the next four. This is a rough approximation of the

usual fMRI pre-processing step of convolving the data time series

with a continuous canonical haemodynamic response function.

Their approach produced fMRI data that demonstrated the

feasibility of the modelling approach, and was easily re-analyzed

when released to the research community. However, it is possible

that different details might lead to improved performance on the

prediction task. Longer scan times of around two or three seconds

could allow the sampling of smaller voxels, and that might enable

better performance, though changes in the timing parameters may

necessitate changes in the task required of the participants. The

merits demonstrated in this paper for collecting data on greater

numbers of words or concepts suggest that future experiments may

have to be broken up into multiple fMRI runs and sessions

anyway. That will clearly pose additional data processing

challenges, but could mitigate some of the current problems with

the introduction of noise in long runs due to fatigue and head

movements. It is not obvious whether any of these scanning or pre-

processing changes will really be able to improve the data

sufficiently, but this might prove to be the best way for future

research in this area to make advances.

Another possibility remaining is that more complex variations

on the linear models, or more sophisticated learning and

regularization approaches, may be able to perform better with

the existing fMRI data, for example, by extracting more of the

signal that is potentially still hidden in that data. Some interesting

experiments with different regularization methods and multi-task

learning have already been proposed by Liu, Palatucci & Zhang

[36] and Chen et al. [37], though no techniques have yet been

found to work much better on the original Mitchell et al. fMRI

data [8] than the approaches discussed in this paper. However, the

range of possible further investigations in this direction is certainly

far from exhausted, and, if better models are developed, the

approach presented in this paper can be repeated to determine the

new limiting factors in the data.
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