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CYCLE DECOMPOSITIONS IN 3-UNIFORM HYPERGRAPHS

SIMÓN PIGA AND NICOLÁS SANHUEZA-MATAMALA

Abstract. We show that 3-graphs on n vertices whose codegree is at least p2{3` op1qqn can be
decomposed into tight cycles and admit Euler tours, subject to the trivial necessary divisibility
conditions. We also provide a construction showing that our bounds are best possible up to the
op1q term. All together, our results answer in the negative some recent questions of Glock, Joos,
Kühn, and Osthus.

§1. Introduction

1.1. Cycle decompositions. Given a k-uniform hypergraph H, a decomposition of H is a
collection of subgraphs of H such that every edge of H is covered exactly once. When these
subgraphs are all isomorphic copies of a single hypergraph F we say that it is an F -decomposition,
and that H is F -decomposable. Finding decompositions of hypergraphs is one of the oldest
problems in combinatorics. For instance, the well-known problem of the existence of designs and
Steiner systems can be cast as the problem of decomposing a complete hypergraph into smaller
complete hypergraphs of a fixed size. Thanks to the recent breakthroughs of Keevash [17] and
Glock, Kühn, Lo, and Osthus [11] our knowledge about hypergraph decompositions has increased
substantially; but many open questions remain. We refer the reader to the survey of Glock, Kühn,
and Osthus [12] for an overview of the state of the art.

Here we focus in decompositions in which the subgraphs are all cycles. For k ě 2 and ` ě k` 1,
the k-uniform tight cycle of length ` is the k-graph Ck` whose vertices are tv1, v2, . . . , v`u and
whose edges are all k-sets of consecutive vertices of the form tvi, vi`1, . . . , vi`k´1u for 1 ď i ď `,
where the indices are understood modulo `. Since no other kind of hypergraph cycles will be
considered, we will refer to tight cycles as cycles. If k is clear from the context, we will just write
C` instead of Ck` .

Given a vertex x in H the degree of x, degHpxq, is the number of edges that contain x. For
a positive integer k, when the degree of every vertex of a hypergraph H is divisible by k we
say that H is k-vertex-divisible. Note that in a k-uniform cycle every vertex has degree exactly
k. This implies that, for any ` ě k ` 1, any Ck` -decomposable k-graph H must necessarily be
k-vertex-divisible. Another obvious necessary condition to find C`-decompositions in H is that
the total number of edges of H must be divisible by `. If H satisfies these two conditions, we say
that H is C`-divisible.

However, not every C`-divisible k-graph is C`-decomposable. For instance, a cycle C2` is
C`-divisible, but clearly does not have a C`-decomposition. This motivates the search of easily-
checkable sufficient conditions which, together with the necessary C`-divisibility, already force
the existence of C`-decompositions. A natural choice is to consider degree conditions, which in
hypergraphs can be expressed in terms of codegree. For k-uniform graphs and a set S of pk ´ 1q
vertices, we define the codegree of S, degHpSq, as the number of edges of H that contain all of S.
We denote the minimum (resp. maximum) codegree of a hypergraph H over all S by δk´1pHq
(resp. ∆k´1pHq). The Ck` -decomposition threshold δCk

`
pnq is the minimum d such that every
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2 S. PIGA AND N. SANHUEZA-MATAMALA

Ck` -divisible k-graph H on n vertices with δk´1pHq ě d is Ck` -decomposable. Moreover, it is
convenient to define δCk

`
“ lim supnÑ8 δCk

`
pnq{n. Again, we may omit k from the notation and

write δC`
pnq and δC`

. The very general results of [11] imply that δCk
`
ă 1 for all k ě 2 and ` ą k,

but no precise values are known when k ě 3.
In our main result, we find the value of δC3

`
for all but finitely many values of `.

Theorem 1.1. Suppose ` satisfies one of the following: (i) ` is divisible by 3 and at least 9, or
(ii) ` ě 107. Then δC3

`
“ 2{3.

Theorem 1.1 implies an interesting contrast with respect to what is known for C2
` -decomposition

thresholds, which we now recall. In graphs (i.e. 2-uniform hypergraphs), the codegree conditions
default to conditions on minimum degree. Barber, Kühn, Lo, and Osthus [3] introduced the
technique of iterative absorption to study F -decompositions in graphs —this technique is also
crucial to our present work, and will be reviewed in detail in Section 4. In particular, for cycle
decompositions in graphs, their work implies that δC`

pnq ď δ˚C`
pnq ` opnq. Here, δ˚C`

pnq is the
minimum degree which guarantees the existence of ‘fractional C`-decompositions’ in n-vertex
graphs. This notion corresponds to the natural fractional relaxation of decompositions (we define
and discuss this in Section 7.2). Let δ˚C`

“ lim supnÑ8 δ˚C`
pnq{n.

The famous Nash-Williams conjecture [18] says that δC3pnq ď 3n{4. This is still open, with the
current best upper bound given by δ˚C3 ď d « 0.827 due to Delcourt and Postle [5]. Very recently,
Joos and Kühn [15] proved that δ˚C`

tends to 1{2 whenever ` goes to infinity. Together with the
best known lower bounds [3, 2], we now know that for all odd ` ě 3,

1
2 `

1
2p`´ 1q ď δC`

ď δ˚C`
ď

1
2 `O

ˆ

log `
`

˙

.

On the other hand, cycles of even length are bipartite, and Glock, Kühn, Lo, Montgomery, and
Osthus [10] were able to characterise the ‘decomposition thresholds’ for all bipartite graphs. In
particular, δC4 “ 2{3 and δC`

“ 1{2 for all even ` ě 6. Remarkably, Taylor [20] showed exact
results for large n, by proving δC4pnq “ 2n{3´ 1 and δC`

pnq “ n{2 for all even ` ě 8.
To summarise, for large ` the values of δC2

`
have a strong dependence on the parity of `, being

δC2
`
ą 1{2 if ` is odd, and δC2

`
“ 1{2 otherwise. In contrast, Theorem 1.1 implies that for k “ 3

and large ` the behaviour is different: δC3
`
“ 2{3 for all ` sufficiently large, regardless of whether

the cycle is tripartite or not.
The following simple corollary can be deduced from our main theorem. Say a k-graph has

a cycle decomposition if it admits a decomposition into cycles. That is, there are edge-disjoint
cycles —not necessarily of the same length— which cover every edge exactly once. This notion is
weaker than that of having a C`-decomposition for a fixed `. It is easy to see that any 3-graph
having a cycle decomposition must be 3-vertex-divisible. As a corollary of Theorem 1.1, we obtain
an upper bound on the minimum codegree sufficient to force a cycle decomposition.
Corollary 1.2. Any 3-vertex-divisible 3-graph H with δ2pHq ě p2{3 ` op1qq|H| has a cycle
decomposition.
1.2. Euler tours. Our focus in decompositions into cycles is partly motivated by its close
connections with the celebrated problem of finding Euler tours. Given a k-graph H, a tour is
a sequence of non-necessarily distinct vertices v1, . . . , v` such that, for every 1 ď i ď ` the k
consecutive vertices tvi, vi`1, . . . , vi`k´1u induce an edge (understanding the indices modulo `),
and moreover all of these edges are distinct. If a hypergraph H contains a tour that covers each
edge exactly once, we call it Euler tour and we say that H is Eulerian.

Famously, Euler [8] proved that every Eulerian graph must be 2-vertex-divisible, and stated
(later proved by Hierholzer and Wiener [13]) that connected and 2-vertex-divisible graphs are
Eulerian. Analogously, for k ě 3, it is an easy observation that every Eulerian k-graph must
be k-vertex-divisible. However, the characterisation of Eulerian k-graphs is not as simple as for
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k “ 2. In fact, until recently, it was not even known if complete k-vertex-divisible k-graphs were
Eulerian. It was conjectured by Chung, Diaconis, and Graham [4] that indeed that should be the
case, at least for sufficiently large complete k-graphs. This was proven to be true by Glock, Joos,
Kühn, and Osthus [9], which deduced this from a more general result which finds Euler tours in
k-graphs with certain quasirandom conditions (which are satisfied by complete graphs).

From this more general result, they also deduced a ‘minimum codegree’ version of their
theorem: there exists c ą 0 such that any sufficiently large 3-vertex-divisible hypergraph H
with δ2pHq ě p1 ´ cq|H| is Eulerian. The constant c which they obtained is fairly small (by
inspecting their proof, we estimate log2pcq ď ´1012) and therefore improving the minimum
codegree condition becomes a natural problem. Their proof is based fundamentally on a reduction
to the problem of finding a cycle decomposition. In the same fashion, we can use Theorem 1.1 to
improve the minimum codegree condition.
Corollary 1.3. Any 3-vertex-divisible 3-graph H with δ2pHq ě p2{3` op1qq|H| is Eulerian.
1.3. Lower bounds and counterexamples. Theorem 1.1, Corollary 1.2 and Corollary 1.3 hold
for 3-graphs H satisfying δ2pHq ě p2{3 ` op1qq|H|. Glock, Kühn, and Osthus [12, Conjecture
5.6] conjectured that Corollary 1.2 should hold already for any H with δ2pHq ě p1{2` op1qq|H|.
Similarly, in the setting of Corollary 1.3, Glock, Joos, Kühn, and Osthus [9, Conjecture 3]
conjectured (reiterated in [12, Conjecture 5.4]) that a minimum codegree of p1{2`op1qq|H| should
be enough to guarantee the existence of Euler tours.

However, it turns out that the ‘2{3’ in our statements cannot be lowered. We prove this by
constructing a family of counterexamples which are able to cover all of the previous settings
(C`-decompositions, cycle decompositions, and Euler tours) in a unified way.

A tour decomposition of H is a collection of edge-disjoint tours in H which, together, cover all
edges of H. Note that a cycle is precisely a tour which does not repeat vertices. Thus we have that
both C`-decompositions and cycle decompositions are particular instances of tour decompositions,
and moreover Eulerian graphs are graphs which admit a tour decomposition consisting of a single
tour. Thus the following result shows that Theorem 1.1, Corollary 1.2, and Corollary 1.3 are
asymptotically tight for the minimum codegree condition.
Theorem 1.4. Let ` ě 4 and n ě 3p`` 3q be divisible by 18. Then there exists a C`-divisible 3-
graph H on n vertices which satisfies δ2pHq ě p2n´15q{3, but does not admit a tour decomposition.
1.4. Organisation of the paper. In Section 2 we prove the lower bound of Theorem 1.4. In
Section 3 we give short proofs of Corollaries 1.2 and 1.3 assuming Theorem 1.1.

In Section 4 we show Theorem 1.1 by using the technique of iterative absorption, which we
review there. The technique relies on three main lemmata, the Vortex Lemma, Cover-Down
Lemma and Absorbing Lemma. After some useful tools (Section 5), these three lemmata are
proved in Sections 6, 7 and 8, respectively. We finish in Section 9 with some remarks and
questions.

1.5. Notation. Since isolated vertices make no difference in our context, we usually do not
distinguish from a hypergraph H “ pV,Eq and its set of edges E. We will suppress brackets and
commas to refer to pairs and triples of vertices when they are considered as edges of a hypergraph.
For instance, for x, y, z P V pHq, xyz P H means that the edge tx, y, zu is in EpHq. For a vertex x P
V pHq, the link graph of x is the 2-graph Hpxq with edge set tyz P

`

V
2
˘

: xyz P EpHqu. Moreover,
given a set of vertices U Ď V we denote the restricted link graph by Hpv, Uq “ Hpvq X

`

U
2
˘

.
The degrees degHpxq and degHpx, Uq correspond to |Hpxq| and |Hpx, Uq| respectively. For a
pair of vertices xy in V pHq, the neighbourhood of xy NHpxyq is the set of vertices z P V pHq
such that xyz P H, given U Ď V pHq then NHpxy, Uq “ NHpxyq X U . The codegrees degHpxyq
and degpxy, Uq correspond to |NHpxyq| and |NHpxy, Uq| respectively. We suppress H from the
degrees, codegrees, and neighbourhoods if it can be deduced from context. The shadow BH of a
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3-graph H is tuv P
`

V pHq
2

˘

: degpuvq ą 0u. If C “ tC1, . . . , Cru is a collection of subgraphs of H,
sometimes we will let EpCq be the hypergraph whose edges are

Ť

1ďiďr EpCiq.
We will use hierarchies in our statements. The phrase “a ! b” means “for every b ą 0, there

exists a0 ą 0, such that for all 0 ă a ď a0 the following statements hold”. We implicitly assume
all constants in such hierarchies are positive, and if 1{a appears we assume a is an integer.

A walk in a 3-graph H is a sequence W “ pv1, . . . , v`q of vertices of H such that every 3
consecutive vertices form an edge of H. A trail is a walk in which no edge appears more than
once, and a path is a trail in which no vertex appears more than once. A closed walk is a walk in
which every cyclic shift is still a walk of H (thus tours are trails which are closed walks). Given a
walk W “ pv1, v2, . . . , v`q, we define its start spW q and terminus tpP q as tv1, v2u and tv`´1, v`u
respectively, and we say W goes from pv1, v2q to pv`´1, v`q and also that W is a pv1, v2, v`´1, v`q-
path. We will use the simpler notationW “ v1v2 ¨ ¨ ¨ v` for walks, and, when useful, we will identify
such walks with subgraphs of H (so we can say e.g. e P EpW q).

§2. Lower bounds

In this section we prove Theorem 1.4. The following lemma captures divisibility constraints
that tours in 3-graphs must satisfy, and it will be the basis of our constructions. For a 3-graph
H, a subgraph W Ď H and vertex sets X,Y, Z in V pHq, let W rX,Y, Zs be the set of edges xyz
in EpW q such that x P X, y P Y , and z P Z.

Lemma 2.1. Let H be a 3-graph with a vertex partition tU0, U1, U2u, and HrU0, U1, U2s “ ∅.
Let W be a tour in H. Then |W rU1, U1, U2s| ” |W rU1, U2, U2s| mod 3.

Proof. Let W “ w1w2 ¨ ¨ ¨wr, in cyclic order, and let P “ σ1 ¨ ¨ ¨σr be a cyclic word over the
symbols t0, 1, 2u, where σi “ j if and only if wi P Uj . Since W is a tour, it does not repeat
edges. Thus we have that |W rU1, U1, U2s| is exactly the same as the number of appearances of the
patterns F1 “ t112, 121, 211u formed by three consecutive symbols in P . Similarly, |W rU1, U2, U2s|
is exactly counted by the number of appearances of F2 “ t122, 212, 221u consecutively in P . In
both cases we count the cyclic appearances of the patterns, i.e. we also consider the patterns
formed by σr´1σrσ1 and σrσ1σ2.

Define ΦpP q as follows. Scan the triples of consecutive symbols of P one by one, and if they
belong to F1 Y F2, we add the sum of the values of their symbols to ΦpP q. More formally, let
I Ď rrs be such that i P I if and only if σiσi`1σi`2 P F1 Y F2 (where the indices are always
understood modulo r, i.e. σr`1 “ σ1 and σr`2 “ σ2), and then

ΦpP q “
ÿ

iPI

pσi ` σi`1 ` σi`2q.

We aim to show that ΦpP q ” 0 mod 3. If I “ ∅, this is obvious, and if I “ rrs then ΦpP q
sums every symbol of P three times, and thus also ΦpP q ” 0. Thus we can assume I R t∅, rrsu.
We write I as a disjoint union of intervals of consecutive indices, minimising the number of
intervals. Thus, without loss of generality (after shifting W and P cyclically) we can assume
I “ I1 Y ¨ ¨ ¨ Y Ik, so each Ij is of the form taj , aj ` 1, . . . , bju for some aj ď bj and further we
have a1 “ 1, bj ď aj`1 ´ 2 for all 1 ď j ă k and bk ď r´ 1. Setting Φj “

ř

iPIj
pσi ` σi`1 ` σi`2q

we have ΦpP q “
ř

1ďjďk Φj , so it is enough to show that Φj ” 0 mod 3 for each j.
Let 1 ď j ď k be arbitrary, for brevity write a “ aj and b “ bj . Let Pj “ σaσa`1 ¨ ¨ ¨σb`1σb`2.

We claim that Pj begins with two repeated symbols. Since Ik Ď I, we have σaσa`1σa`2 P F1YF2,
thus in particular σa and σa`1 must be in t1, 2u. If σa ‰ σa`1, then we would have σaσa`1 “ 12
or σaσa`1 “ 21. In any case, it cannot happen that σa´1 P t1, 2u, since then that would imply
that a´ 1 P I, contradicting the choice of Ik. Thus σa´1 “ 0, and therefore σa´1σaσa`1 “ 012 or
σa´1σaσa`1 “ 021. But this implies that W contains an edge in HrU0, U1, U2s, a contradiction.
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Thus Pj begins with two repeated symbols, and an analogous argument implies that Pj also ends
with two repeated symbols.

If a “ b, then we would have σaσa`1σa`2 “ 111 or σaσa`1σa`2 “ 222, then implying a R I, a
contradiction. Thus a ă b, and therefore Pj must have the form Pj “ xxQjyy, where x, y P t1, 2u
and Qj is a (possibly empty) word. Thus we have

Φj “
ÿ

aďiďb

pσi ` σi`1 ` σi`2q “ x` 2x` 3
˜

ÿ

a`2ďiďb
σi

¸

` 2y ` y ” 0 mod 3,

and this implies ΦpP q ” 0 mod 3, as discussed before.
Finally, note that, for j P t1, 2u, if σiσi`1σi`2 P Fj , then σi ` σi`1 ` σi`2 ” j mod 3. Thus

ΦpP q ” |W rU1, U1, U2s| ` 2|W rU1, U2, U2s| mod 3. But since ΦpP q ” 0 mod 3 and 2 ” ´1 mod 3,
we deduce |W rU1, U1, U2s| ” |W rU1, U2, U2s| mod 3, as desired. �

To prove Theorem 1.4, we will consider alterations of the following 3-graph.
Definition 2.2. Let n be divisible by 18 and write n “ 18k. Consider the 3-graph Hn on n
vertices, whose vertex set is partitioned into three clusters V0, V1, V2 whose sizes are n0, n1, n2
respectively, and are defined by

n0 “ 6k, n1 “ 6k ´ 2, and n2 “ 6k ` 2. (2.1)
Given a vertex x P V pHnq, the label lpxq of x is i if and only if x P Vi. The edge set of Hn is

EpHnq “ txyz : lpxq ` lpyq ` lpzq ı 0 mod 3u.
In words, every 3-set is present as an edge in Hn, except for those which are entirely contained

in one of the clusters Vi, or have non-empty intersection with all three clusters. Usually n will
always be clear from context, and for a cleaner notation we will just write H “ Hn in the
remainder of this section.

We begin our analysis by noting the 3-graph H has large minimum codegree.

Lemma 2.3. Let n P 18N. Then δ2pHq ě p2n´ 12q{3.

Proof. Let x, y P V pHq, and set p “ lpxq ` lpyq. By the definition of H, a vertex z will form an
edge together with xy whenever p` lpzq ı 0 mod 3. This is equivalent to lpzq ” 1´ p mod 3 or
lpzq ” 2´p mod 3. Thus, if i, j P t0, 1, 2u are such that i ” 1´p mod 3 and j ” 2´p mod 3, then
Npxyq “ pViYVjqrtx, yu. A quick case analysis reveals that |Npxyq| is minimised whenever x P V0,
y P V1, and in such a case degHpxyq “ n0`n1´2 “ 12k´4. Thus δ2pHq “ 12k´4 “ p2n´12q{3,
as required. �

We note that equations (2.1) imply that, for n “ 18k, all n0, n1, n2 are even, and for all
i P t0, 1, 2u we have

ni ” i pmod 3q, (2.2)

Given pi, j, kq P t0, 1, 2u3, write Hijk “ HrVi, Vj , Vks.

Lemma 2.4. Let n P 18N. Then
(M1) for every x P V pHq, degHpxq ” 1 mod 3 and
(M2) |H112| ı |H122| mod 3.

Proof. We begin by noting that
`

m
2
˘

” 2mpm´ 1q mod 3 holds for all integers m. Thus
`

m
2
˘

”

1 mod 3 if m ” 2 mod 3, and
`

m
2
˘

” 0 mod 3 otherwise.
Now let x P V0. Then the pairs yz such that xyz P H are those such that
(1) y P V0 r txu and z P V1 Y V2, of which there are pn0 ´ 1qpn1 ` n2q many,
(2) yz Ď V1, of which there are

`

n1
2
˘

many, and
(3) yz Ď V2, of which there are

`

n2
2
˘

many.
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Thus we have degHpxq “ pn0 ´ 1qpn1 ` n2q `
`

n1
2
˘

`
`

n2
2
˘

. Together with (2.2), we have that
degHpxq ” 0` 0` 1 ” 1 mod 3. Analogous calculations show that

degHpyq ” 0` 0` 1 ” 1 mod 3 for y P V1 and
degHpzq ” 1` 0` 0 ” 1 mod 3 for z P V2,

thus (M1) holds.
Finally, the sizes of |H112| and |H122| are

`

n1
2
˘

n2 and
`

n2
2
˘

n1 respectively, which then are easily
seen to be equivalent to 0 and 1 modulo 3, respectively, which implies (M2). �

Since H is not quite 3-vertex-divisible, our counterexample will consist actually of a slight
alteration of H obtained by removing some sparse subgraph, which we define now.

Lemma 2.5. Let n P 18N. Then there exists a perfect matching F Ď H r pH112 YH122q.

Proof. Let k be such that n “ 18k. Let a, b be two distinct vertices in V2, and let V 11 “ V1Yta, bu
and V 12 “ V2rta, bu. Note that |V0| “ |V

1
1 | “ |V

1
2 | “ 6k. Let V0 “ tx1, . . . , x6ku, V 11 “ ty1, . . . , y6ku

and V 12 “ tz1, . . . , z6ku, with y1 “ a and y2 “ b. Then
F “ ty2i´1y2ix2i´1 : 1 ď i ď 3ku Y tz2i´1z2ix2i : 1 ď i ď 3ku

is a perfect matching in which every edge intersects V0 in exactly one vertex. Thus F has no
edge in H112 YH122, as required. �

We are now ready to show Theorem 1.4.

Proof of Theorem 1.4. Consider the 3-graph H “ Hn given in Definition 2.2, and consider the
perfect matching F Ď H r pH112 YH122q given by Lemma 2.5. Let `1 P t4, . . . , ` ` 3u be such
that |EpH ´ F q| ` `1 ” 0 mod `. Since n “ 18k ě 3p`` 3q, we have |V0| “ 6k ě `` 3 ě `1. To
H ´F , we add a cycle C of length `1, edge-disjoint from H ´F , which is entirely contained in V0.
We claim H 1 “ pH r F q Y C has all of the desired properties.

We first check H 1 is C`-divisible. We start by checking H 1 is 3-vertex-divisible. Indeed, let
x P V pH 1q be arbitrary. We have degHpxq ” 1 mod 3 by Lemma 2.4(M1), we have degF pxq “ 1
since F is a perfect matching, and degCpxq ” 0 mod 3 since C is a cycle on `1 ě 4 vertices. Thus
degH 1pxq ” 1´ 1` 0 ” 0 mod 3 for all x P V pH 1q, as required. Also, the number of edges of H 1
is |EpH 1q| “ |EpH ´ F q| ` `1, which was chosen to be divisible by `, so indeed H 1 is C`-divisible.

Now we check H 1 has large codegree. It suffices to show H ´ F has large codegree. Removing
a perfect matching from H decreases the codegree of every pair at most by 1, thus by Lemma 2.3,
we have δ2pH ´ F q ě δ2pHq ´ 1 ě p2n´ 12q{3´ 1 “ p2n´ 15q{3.

Now we prove H 1 does not have a tour decomposition. First, since F Ď H r pH112 YH122q,
we have H 1rV1, V1, V2s “ H112 and H 1rV1, V2, V2s “ H122. For a contradiction, suppose that
W 1, . . . ,W r are tours forming a tour decomposition inH 1. For a walkW , letW112 “ H112XEpW q,
and let W122 “ H122XEpW q. Since the tours are edge-disjoint and cover all edges of H 1, we have
ř

1ďiďr |W
i
112| “ |H112| and

ř

1ďiďr |W
i
122| “ |H122|. Since H012 “ ∅, Lemma 2.1 implies that

|W i
112| ” |W

i
122| mod 3 for each 1 ď i ď r. We deduce |H112| ” |H122| mod 3, but this contradicts

Lemma 2.4(M2). �

Remark 2.6. For sufficiently large values of n, we can make our example vertex-regular instead
of C`-divisible. This is needed, for instance, when we are looking at decompositions into spanning
vertex-disjoint collections of cycles, such as Hamilton cycles.

Start from H “ Hn, and remove F as before to get to H 1 “ H ´ F which is 3-vertex-divisible.
Every vertex in Vi has the same degree di, for all i P t0, 1, 2u, and a calculation reveals that
d1 “ d0 ´ 9 and d2 “ d0 ´ 3. Then, adding 3 edge-disjoint Hamilton cycles to HrV1s and one
Hamilton cycle to HrV2s leaves a 3-graph H˚ in which every vertex has degree d0, and it can be
similarly proved that H˚ does not admit any tour decomposition.
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§3. Proof of Corollaries 1.2 and and 1.3

In this short section we deduce Corollaries 1.2 and 1.3 from Theorem 1.1.

Proof of Corollary 1.2. Let m be the number of edges of H, and write it as m “ 9q ` r for
some q ě 1 and 0 ď r ă 9. Find a cycle C of length 9 ` r in H: this can be done greedily
(see Section 5.1 for details). Then, H 1 “ H ´ C is a 3-divisible graph, its minimum codegree is
δ2pH

1q ě δ2pHq ´ 2 ě p2{3 ` ε{2qn, and its number of edges is m ´ p9 ` rq “ 9pq ´ 2q, which
is divisible by 9. By Theorem 1.1, H 1 has a C9-decomposition, together with C this is a cycle
decomposition of H. �

For the proof of Corollary 1.3 we use the strategy of Glock, Joos, Kühn, and Osthus [9]. Crucial
part of their argument is (using our terminology) to first find a trail W which is spanning (i.e.
every 2-tuple of distinct vertices of H is contained as a sequence of consecutive vertices of W )
but at the same time is sparse (it satisfies ∆2pW q “ opnq).

We state their relevant lemma only in the particular case k “ 3. A 3-graph H on n vertices
is α-connected if for all distinct v1, v2, v4, v5 P V pHq, there exist at least αn vertices v3 P V pHq
such that v1v2v3v4v5 is a walk in H.

Lemma 3.1 ([9, Lemma 5]). Suppose n P N is sufficiently large in terms of α. Suppose
H is an α-connected 3-graph on n vertices. Then H contains a spanning trail W satisfying
∆2pW q ď log3 n.

Proof of Corollary 1.3. Take n0 such that 1{n0 ! ε. Since H satisfies δ2pHq ě p2{3` εqn, it is
ε-connected. By Lemma 3.1 there exists a spanning trailW “ w1 ¨ ¨ ¨wr satisfying ∆2pW q ď log3 n.
Use the ε-connected property of H to close W to a tour, using three extra vertices, while avoiding
edges previously used by W (using that ∆2pW q ď log3 n). The resulting W 1 “ w1 ¨ ¨ ¨wr`3 is
a spanning tour which satisfies ∆2pW

1q ď 2 log3 n. Let H 1 “ H ´W 1. Since W 1 is a tour and
H is 3-vertex-divisible, W 1 is 3-vertex-divisible as well. Since ∆2pW

1q ď 2 log3 n ď εn{2 and
δ2pHq ě p2{3` εqn, we deduce δ2pH

1q ě p2{3` ε{2qn. Since n is sufficiently large, Corollary 1.2
implies that H 1 has a cycle decomposition. Fix one of those cycles C “ v1v2 ¨ ¨ ¨ vm and note that
the ordered pair pv1, v2q must appear consecutively in some part of W 1 (since W 1 is spanning).
We may write W 1 “W 1

1v1v2W
1
2 and extend W 1 by taking W 1

1v1v2 ¨ ¨ ¨ vmv1v2W
1
2, which is still an

spanning tour, but now uses the edges of C in addition to those of W 1. Attaching the cycles of
the decomposition one by one to W 1, we obtain the desired Euler tour. �

§4. Iterative absorption: proof of Theorem 1.1

Our proof of Theorem 1.1 follows the strategy of iterative absorption introduced by Barber,
Kühn, Lo, and Osthus [3] and further developed by Glock, Kühn, Lo, Montgomery, and Osthus
[10] to study decomposition thresholds in graphs. We base our outline in the exposition of Barber,
Glock, Kühn, Lo, Montgomery, and Osthus [2].

The method of iterative absorption rests around three main lemmata, originally called the
the Vortex Lemma, Absorbing Lemma, and the Cover-Down Lemma. We will introduce these
lemmata first while explaining the global strategy, then we will use them to prove Theorem 1.1.
The proof of these lemmata will take up the rest of the paper.

A sequence of nested subsets of vertices U0 Ě U1 Ě ¨ ¨ ¨ Ě U` is called a pδ, ξ,mq-vortex in H if
satisfies the following properties.
(V1) U0 “ V pHq,
(V2) for each 1 ď i ď `, |Ui| “ tξ|Ui´1|u,
(V3) |U`| “ m, and
(V4) degpx, Uiq ě δ

`

|Ui|

2
˘

for each 1 ď i ď ` and x P Ui´1, and
(V5) degpxy, Uiq ě δ|Ui| for each 1 ď i ď ` and xy P

`

Ui´1
2
˘

.
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The existence of vortices for suitable parameters δ, ξ, and m is stated in the Vortex Lemma.

Lemma 4.1 (Vortex Lemma). Let ξ, δ ą 0 and m1 P N be such that 1{m1 ! ξ. Let H be a 3-graph
on n ě m1 vertices with δ2pHq ě δ. Then it has a pδ ´ ξ, ξ,mq-vortex, for some tξm1u ď m ď m1.

The main idea is to use the properties of the vortex to find a suitable C`-packing, i.e. a
collection of edge-disjoint C` Ď H. We will find a packing covering most edges of H, and moreover
the non-covered edges will lie entirely in U`. The Absorbing Lemma will provide us with a
small structure that we put aside at the beginning, and that will be used to deal with the small
remainder left by our C`-packing. If R Ď H is a subgraph of H, a C`-absorber for R is a subgraph
A Ď H, edge-disjoint from R, such that both A and AYR are C`-decomposable.

Lemma 4.2 (Absorbing Lemma). Let ` ě 7, ε ą 0, and n,m P N such that 1{n ! ε, 1{m, 1{`.
Let H be a 3-graph on n vertices with δ2pHq ě p2{3` εqn. Let R Ď H be C`-divisible on at most
m vertices. Then there exists a C`-absorber for R in H with at most p4m`q9 edges.

Finally, we construct the desired C`-packing step by step through the nested sets of the vortex.
More precisely, suppose Ui Ě Ui`1 are two consecutive sets in a vortex of H. The Cover-Down
Lemma will be applied to find a C`-packing which covers every edge of HrUis, except maybe for
some in HrUi`1s. Thus the packing will be found via reiterated applications.

Lemma 4.3 (Cover-Down Lemma). Let ` ě 9 be divisible by 3 or at least 107, and ε, µ ą 0
and n P N with 1{n ! µ, ε ! 1{`. Suppose H is a 3-graph on n vertices, and U Ď V pHq with
|U | “ tεnu, which satisfy
(C1) δ2pHq ě p2{3` 2εqn,
(C2) degHpx, Uq ě p2{3` εq

`

|U |
2
˘

for each x P V pHq,
(C3) degHpxy, Uq ě p2{3` εq|U | for each xy P

`

V pHq
2

˘

, and
(C4) degHpxq is divisible by 3 for each x P V pHqr U .

Then H has a C`-decomposable subgraph F such that H ´HrU s Ď F , and ∆2pF rU sq ď µn.

Assuming lemmata 4.2–4.3, we prove Theorem 1.1 holds (cf. [2, Section 3.4]).

Proof of Theorem 1.1. It is enough to show that, for every ε ą 0, there exists n0 such that every
C`-divisible 3-graph H on n ě n0 vertices with δ2pHq ě p2{3` 8εqn admits a C`-decomposition.
Given ε and `, we fix m1, n0 such that

1{n0 ! 1{m1 ! ε, 1{`. (4.1)
Let H on n ě n0 vertices as before, we are done if we show H has a C`-decomposition.
Step 1: Setting the vortex and absorbers. By Lemma 4.1, H has a p2{3 ` 7ε, ε,mq-vortex
U0 Ě ¨ ¨ ¨ Ě U`, for some m such that tεm1u ď m ď m1.

Let L be the family of all C`-divisible 3-graphs which are subgraphs of HrU`s. Since |U`| “ m,
clearly |L | ď 2p

m
3 q. Let L P L be arbitrary. Since m ď m1 and (4.1), a suitable application

of Lemma 4.2 yields a C`-absorber AL Ď H r HrU1s of L with at most p4m`q9 edges. Since
1{n ! 1{m, ε, 1{`, removing the edges of AL only barely affects the codegree of H, thus we can
repeat the argument to obtain an absorber AL1 Ď H rHrU1s for some L1 ‰ L, edge-disjoint from
AL. Since the total number of L P L is tiny with respect to n, we can iterate this argument
to obtain edge-disjoint C`-absorbers AL Ď H rHrU1s, one for each L P L . Moreover, each AL
contains at most p4m`q9 edges, and hence, the union A “

Ť

LPL AL Ď H rHrU1s contains at
most |L |p4m`q9 ď 2p

m
3 qp4m`q9 ď εn edges. By construction, we have A is C`-decomposable and

for each L P L , LYA is C`-decomposable.
Let H 1 “ H rA and observe that δ2pH

1q ě p2{3` 7εqn and U0 Ě ¨ ¨ ¨ Ě U` is a p2{3` 6ε, ε,mq-
vortex forH 1 (for this, it is crucial that A Ď HrHrU1s). Notice that since A andH are C`-divisible,
we get that H 1 is C`-divisible.



CYCLE DECOMPOSITIONS IN 3-UNIFORM HYPERGRAPHS 9

Step 2: The cover-down. Now we aim to find a C`-packing in H 1 using every edge of H 1 rH 1rU`s.
Let U``1 “ ∅. For each 0 ď i ď ` we wish to find Hi Ď H 1rUis such that

(ai) H 1 ´Hi has a C`-decomposition,
(bi) δ2pHiq ě p2{3` 4εq|Ui|,
(ci) degHi

px, Ui`1q ě p2{3` 5εq
`

|Ui`1|
2

˘

for all x P Ui,
(di) degHi

pxy, Ui`1q ě p2{3` 5εq|Ui`1| for all x, y P Ui, and
(ei) HirUi`1s “ H 1rUi`1s.

For i “ 0 this can be done by setting H0 “ H 1. Now suppose Hi satisfying (ai)–(ei) is given for
some 0 ď i ă `, we wish to construct Hi`1 satisfying (ai`1)–(ei`1). By (ai), Hi is C`-divisible.
Let H 1i “ Hi rHirUi`2s. By (bi)–(di) and |Ui`2| ď ε|Ui`1| ď ε2|Ui|, we have
(C1) δ2pH

1
iq ě δ2pHiq ´ |Ui`2| ě p2{3` 3εq|Ui|,

(C2) degH 1ipx, Ui`1q ě degHi
px, Ui`1q ´ |Ui`2|p|Ui`1| ´ 1q ě p2{3` 3εq

`

|Ui`1
2

˘

, for each x P Ui,
(C3) degH 1ipxy, Ui`1q ě degH 1ipxy, Ui`1q ´ |Ui`2| ě p2{3` 4εq|Ui`1| for each x, y P Ui, and
(C4) degH 1ipxq is divisible by 3 for each x P Ui r Ui`1.

This allows us to apply Lemma 4.3 with ε, ε4, |Ui|, H
1
i, Ui`1 playing the rôles of ε, µ, n,H,U .

We obtain a C`-decomposable subgraph Fi Ď H 1i such that H 1i r H 1irUi`1s Ď Fi and that
∆2pFirUi`1sq ď ε4|Ui|. Let Hi`1 “ HirUi`1sr Fi, we prove it satisfies the required properties.

Clearly Fi is C`-divisible and Fi Ď H 1i Ď Hi, so (ai) implies that H 1 ´Hi`1 “ pH
1 ´Hiq Y Fi

has a C`-decomposition, thus (ai`1) holds. From (di) and ∆2pFirUi`1sq ď ε4|Ui| ď ε2|Ui`1|, we
have δ2pHi`1q ě p2{3` 5εq|Ui`1| ´ ε

2|Ui`1| ě p2{3` 4εq|Ui`1|, proving (bi`1).
By the properties of p2{3` 6ε, ε,mq-vortices, we have degH 1px, Ui`2q ě p2{3` 6εq

`

|Ui|

2
˘

for each
x P Ui`1, together with ∆2pFirUi`1sq ď ε2|Ui`1| and (ei) we deduce (ci`1) holds, and (di`1) can
be verified similarly. Finally, since Fi Ď H 1i “ HirHirUi`1s, we have FirUi`2s is empty therefore
Hi`1rUi`2s “ HirUi`2s “ H 1rUi`2s, which verifies (ei`1).

Now H` Ď H 1rU`s is such that H 1 rH` has a C`-decomposition.
Step 3: Finish. Since both H 1 and H 1rH` are C`-divisible, we deduce H` Ď H 1rU`s is C`-divisible.
Therefore, H` P L and by construction of A we know that H` YA is C`-decomposable. Since H
is the edge-disjoint union of H 1 rH` and H` YA, and both of them have C`-decompositions, we
deduce H has a C`-decomposition, as desired. �

§5. Useful tools

We collect various results to be used during the proof of Lemmatas 4.2–4.3.

5.1. Counting path extensions. The following lemma find short trails between prescribed
pairs of vertices. For a 3-graph H, a set of vertices U Ď V pHq, and a set of pairs G Ď

`

V pHq
2

˘

let δp3q2 pH;U,Gq be the minimum of |Npe1q X Npe2q X Npe3q X U | over all possible choices of
e1, e2, e3 P G. This is the size of the minimum joint neighbourhood in U of three distinct pairs in
G. Also, let δp3q2 pH;Uq “ δ

p3q
2 pH,U,

`

V pHq
2

˘

q and δp3q2 pHq “ δ
p3q
2 pH;V pHqq.

Lemma 5.1. Let ε ą 0 and n, ` P N be such that ` ě 5 and 1{n ! ε, 1{`. Let H be a 3-graph
on n vertices, U Ď V pHq and G Ď

`

V pHq
2

˘

such that tuv P
`

V pHq
2

˘

: u P Uu Ď G. Suppose
δ
p3q
2 pH;U,Gq ě 2εn. Then, for every two disjoint pairs v1v2 and v`´1v` in G there exist at least
pεnq`´4 many pv1, v2, v`´1, v`q-paths on ` vertices, whose internal vertices are in U .

Proof. Every pair of vertices in G has at least 2εn neighbours in U . For each 1 ď i ď `´ 3, since
tuv P

`

V pHq
2

˘

: u P Uu Ď G we can build a path v1v2 ¨ ¨ ¨ vi such that tvi´1, viu P G by choosing
vertices in U greedily. The path is then finished by choosing v`´2 as a common neighbour in U of
the pairs v`´4v`´3, v`´3v`´1 and v`´1v`, all of which belong to G. At any step we only need to
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avoid choosing one of vertices already chosen so far, which are at most ` ď εn. Thus in each step
there are at least εn possible choices, which gives the desired bound. �

In the particular for a 3-graph H with δ2pHq ě p2{3` εqn a simple application of Lemma 5.1
with U “ V pHq and G “

`

V pHq
2

˘

implies the existence of many trails of length ` ě 5 between
arbitrary pairs of vertices.

Sometimes we want find many paths which also avoid a small prescribed set of vertices or
edges, for instance to extend paths into cycles. This is accomplished as follows.
Lemma 5.2. Let ε, µ ą 0 and n, ` P N be such that ` ě 5 and 1{n ! µ ! ε, 1{`. Suppose that
v1, v2, v`´1, v` P V pHq and there are at least 2εn`´4 many pv1, v2, v`´1, v`q-paths on ` vertices in
H. Let F Ď H with ∆2pF q ď µn. Then there are at least εn`´4 many pv1, v2, v`´1, v`q-paths on `
vertices in H r F .
Proof. The number of pv1, v2, v`´1, v`q-paths on ` vertices such that v1v2v3 P F is at most
degF pv1v2qn

`´5 ď ∆2pF qn
`´5 ď µn`´4. Similar bound are obtained for the paths of the same

form such that v`´2v`´1v` P F , v3v4v5 P F , or v`´3v`´2v`´1 P F . Finally, the paths such that
vjvj`1vj`2 P F for some 3 ď j ď `´ 4 is at most |EpF q|n`´7 ď µn`´4. All together, the number
of paths destroyed by passing from H to H r F is at most p`´ 2qµn`´4 ď εn`´4, where the last
inequality uses µ ! ε. �

The following is an immediate corollary of Lemma 5.1 and Lemma 5.2.
Corollary 5.3. Let ε ą 0 and n, `, `1 P N be such that 1{n ! µ ! ε ! ε1, 1{`, 1{`1 and ` ě `1 ` 1.
Let H be a 3-graph on n vertices, U Ď V pHq and G Ď

`

V pHq
2

˘

such that tuv P
`

V pHq
2

˘

: u P Uu Ď G.
Suppose δp3q2 pH;U,Gq ě 2ε1n. Let P be a path on `1 vertices in H, whose two endpoints are in G.
Then there are at least εn`´`1 many cycles C on ` vertices which contain P , and V pCqrV pP q Ď U .

Observe that for a 3-graph H with δ2pHq ě p2{3 ` εqn and a set of vertices W Ď V pHq

with |W | ă εn{2, a simple application of Corollary 5.3 with U “ V pHq rW and G “
`

V pHq
2

˘

yields the existence of many cycles containing one fix path P and avoiding the set of vertices W .

5.2. Probabilistic tools. We shall use the following concentration inequalities [14, Corollary
2.3, Corollary 2.4, Remark 2.5, Theorem 2.10].
Theorem 5.4. Let X be a random variable which is a sum of n independent t0, 1u-random
variables, or hypergeometric with parameters n,N,M .

(i) If x ě 7ErXs, then PrX ě xs ď expp´xq,
(ii) Pr|X ´ErXs| ě ts ď 2 expp´2t2{nq, and
(iii) Pr|X ´ErXs| ě ts ď 2 expp´t2{p3ErXsqq.
The following lemma allows us to bound the tail probabilities of sums of sequentially-dependent

t0, 1u-random variables by comparing them with binomial random variables. We use the
probability-theoretic notion of conditioning in a sequence of random variables, which in our applica-
tion will take the following form. If X1, . . . , Xi are random variables, PrXi “ 1|X1, . . . , Xi´1s ď pi
means that the probability of Xi “ 1 is always at most pi, even after conditioning on any possible
output of X1, . . . , Xi´1.
Theorem 5.5. Let X1, . . . , Xt be Bernoulli random variables (not necessarily independent) such
that for each 1 ď i ď t we have PrXi “ 1|X1, . . . , Xi´1s ď pi. Let Y1, . . . , Yt be independent
Bernoulli random variables such that PrYi “ 1s “ pi for all 1 ď i ď t. If X “

řt
i“1Xi and

Y “
řt
i“1 Yi, then PrX ě ks ď PrY ě ks for all k P t0, 1, . . . , tu.

The proof of Theorem 5.5 was given by Jain [19, Lemma 7] in the particular case where pi “ p
for all 1 ď i ď t. The slightly more general statement of Theorem 5.5 follows by mimicking that
proof (which goes by induction on t), so we omit it.
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§6. Vortex Lemma

We prove Lemma 4.1 by selecting random subsets (cf. [2, Lemma 3.7]).

Proof of Lemma 4.1. Let n0 “ n and ni “ tξni´1u for all i ě 1. In particular, note ni ď ξin. Let
` be the largest i such that ni ě m1 and let m “ n``1. Note that tξm1u ď m ď m1.

Let ξ0 “ 0 and, for all i ě 1, define ξi “ ξi´1 ` 2pξinq´1{3. Thus we have

ξ``1 “ 2n´1{3
ÿ̀

i“1
pξ´1{3qi ď 2n´1{3

8
ÿ

i“1
pξ´1{3qi ď

2pnξq´1{3

1´ ξ´1{3 ď ξ,

where in the last inequality we used 1{m1 ! ξ and n ě m1.
Note that taking U0 “ V pHq yields a pδ ´ ξ0, ξ, n0q-vortex in H. Suppose we have already

found a pδ ´ ξi´1, ξ, ni´1q-vortex U0 Ě ¨ ¨ ¨ Ě Ui´1 in H for some i ď ` ` 1. In particular,
δ2pHrUi´1sq ě pδ ´ ξi´1q|Ui´1|. Let Ui Ď Ui´1 be a random subset of size ni. By Theorem 5.4,
with positive probability we have, for all x, y P Ui´1, degpxy, Uiq ě pδ ´ ξi´1 ´ n

´1{3
i q|Ui| and

degpx, Uiq ě pδ´ ξi´1´n
´1{3
i q

`

|Ui|

2
˘

. Since ξi´1`n
´1{3
i ď ξi, we have found a pδ´ ξi, ξ, niq-vortex

for H. In the end, we will have found a pδ ´ ξ``1, ξ, n``1q-vortex for H. Since we have m “ n``1
and we have established ξ``1 ď ξ, we are done. �

§7. Cover-Down Lemma

7.1. Extending paths into cycles. More than once during our proof, we will be faced with the
following situation: we have a family of (not too many) edge-disjoint tight paths, and we want to
extend each of these paths into a tight cycle of a given length, such that all of the obtained cycles
are edge-disjoint. In this subsection we will prove a lemma which will find such extensions for us.

Given a path P we say that a path or a cycle C is an extension of P if P Ď C. Let H be
a 3-graph, for a path P Ď H and a pair of vertices e P

`

V pHq
2

˘

we say that P is of type r for e,
where r “ maxteX spP q, eX tpP qu. The only possible types are 0, 1, or 2.

We say that a collection of edge-disjoint paths P in H is γ-sparse if, for each e P
`

V pHq
2

˘

and
each r P t0, 1, 2u, P has at most γn3´r paths P of type r for e.

Lemma 7.1 (Extending Lemma). Let ε, µ, γ ą 0 and n, `, `1 P N such that `1 ě 4, ` ě `1 ` 2 and
1{n ! γ ! µ ! ε, 1{`. Let H1, H2 be two edge-disjoint 3-graphs on the same vertex set V of size
n. Let P be the 3-uniform tight path on `1 vertices, and let P “ tP1, . . . , Ptu be an edge-disjoint
collection of copies of P in H1 such that

(F1) P is γ-sparse, and
(F2) for each Pi P P, there exists at least 2εn`´`1 copies of C` in H1 Y H2 which extend Pi

using extra edges of H2 only.
Then, there exists a C`-decomposable subgraph F Ď H1 YH2, such that

(C1) EpPq Ď F , and
(C2) ∆2pF r EpPqq ď µn.

Proof. The idea is to pick, sequentially, an extension Ci of Pi into an `-cycle, chosen uniformly at
random among all the extensions which do not use edges already used by C1, . . . , Ci´1. Since P
is γ-sparse and there are plenty of choices for Ci in each step, we expect that in each step the
random choices do not affect the codegree of the graph formed by the unused edges in H2 by
much. This will ensure that, even after removing the edges used by C1, . . . , Ci´1, there are still
many extensions available for Pi. If all goes well, then we can continue the process until the end,
thus achieving (C1) and (C2) by setting F “

Ť

1ďiďtEpCiq.
To formalise the above plan, we begin by noting that the removal of a sufficiently sparse 3-graph

from H2, there are still many extensions available for each Pi. Given G Ď H2 and 1 ď i ď t,



12 S. PIGA AND N. SANHUEZA-MATAMALA

let CipGq be the set of G-avoiding cycle-extensions of Pi, that is, the copies of C` in H1 YH2
which extend Pi and use extra edges from H2 rG only. By assumption, |Cip∅q| ě 2εn`´`1 , thus
Lemma 5.2 implies that

if G Ď H2 is such that ∆2pGq ď µn, then |CipGq| ě εn`´`
1 . (7.1)

We now describe the random process which outputs edge-disjoint extensions Ci of Pi for each
1 ď i ď t. In the case of success each Ci will be an `-cycle extending Pi. To account for the case
of failure, in our description we will allow the degenerate case in which Ci r Pi is empty.

For each 1 ď i ď t, assume we have already chosen C1, C2, . . . , Ci´1 Ď H1 YH2 edge-disjoint
graphs, and we describe the choice of Ci. Let Gi´1 “

Ť

1ďjăiEpCjq r EpPjq correspond to
the edges of H2 used by the previous choices of Cj , which we need to avoid when choosing Ci
(note that G0 is empty). If ∆2pGi´1q ď µn, then by (7.1) we have |CipGi´1q| ě εn`´`

1 , and we
take Ci P CipGi´1q uniformly at random. Otherwise, if ∆2pGi´1q ą µn, let Ci “ Pi.

In any case, the process outputs a collection C1, . . . , Ct of edge-disjoint cycle or paths which
extend Pi. Our task now is to show that with positive probability, there is a choice of C1, . . . , Ct
such that ∆2pGtq ď µn. This would imply also that each Ci was an `-cycle. Formally, for each
1 ď i ď t, let Si be the event that ∆2pGiq ď µn. Thus it is enough to show PrSts ą 0.

Fix e P
`

V
2
˘

. For each 1 ď i ď t, let Xipeq be the random variable which takes the value 1
precisely if e belongs to an edge of Ci r Pi, and 0 otherwise. Equivalently, Xipeq “ 1 if and only
if e belong to the shadow BpCi r Piq. Since ∆2pCiq ď 2 for each 1 ď i ď t, we have

degGi
peq ď 2

i
ÿ

j“1
Xjpeq. (7.2)

For each 1 ď i ď t, define
p˚i peq :“ min

!

1, c

n2´r

)

,

where r P t0, 1, 2u is such that Pi is of type r for e, and c :“ 4`ε´1.

Claim 7.2. For each e P
`

V
2
˘

and 1 ď i ď t,
PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peqs ď p˚i peq,

Proof of the claim. Using conditional probabilities, we separate our analysis depending on whether
Si´1 holds or not. Assume first that Si´1 fails. Then the process declares Ci “ Pi, thus Ci r Pi
is empty. Therefore Xipeq “ 0 regardless of the values of X1peq, . . . , Xi´1peq, and we have

PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Sci´1s “ 0 ď p˚i peq.

Now assume that Si´1 holds. Then the set Gi´1 of edges to be avoided while constructing
Ci satisfies ∆2pGi´1q ď µn. By (7.1), Ci will be an `-cycle extending Pi selected uniformly at
random from the set CipGi´1q, which has size at least εn`´`1 ; and this will happen no matter the
values of X1peq, . . . , Xi´1peq.

If Pi is of type 2 for e, then we are required to bound a probability by p˚i peq “ 1, which holds
trivially. Suppose now that Pi is of type 0 for e, and suppose Pi “ v1v2 ¨ ¨ ¨ v`1 . For Ci P CipGi´1q,
Ci r Pi is a path of the form v`1´1v`1u1u2 ¨ ¨ ¨u`´`1v1v2. We wish to estimate the number of such
paths where e P BpCi r Piq. Since Pi is of type 0 for e, then e P BpCi r Piq can only happen if
e “ ujuk for |j ´ k| ď 2. There are p`´ `1 ´ 1q ´ p`´ `1 ´ 2q ď 2` choices for j, k. Having fixed
those, there are two 2 possibilities for assigning e to tuj , uku, and having fixed those, there are
at most n possibilities for each other up with p R tj, ku. All together, the number of Ci which
extend Pi and such that e P BpCi r Piq is certainly at most 4`n`´`1´2. Thus we have

PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Si´1s ď
4`n`1´`´2

|CipGi´1q|
ď

4`
εn2 “

c

n2 “ p˚i peq,
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as required. Finally, if Pi is of type 1 for e, then similar (but simpler) calculations show that
PrXipeq “ 1|X1peq, X2peq, . . . , Xi´1peq,Si´1s ď

6n`1´`´1

|CipGi´1q|
ď c

n “ p˚i peq, and we are done. ˝

Now, we use that P is γ-sparse to argue
řt
i“1 p

˚
i peq is suitably small. Indeed, for each

r P t0, 1, 2u, let tr be the number of i P t1, . . . , tu such that Pi is of type r for e. Since P is
γ-sparse, we have tr ď γn3´r for each r P t0, 1, 2u. Therefore, we have

t
ÿ

i“1
p˚i peq “ t0

c

n2 ` t1
c

n
` t2 ď γcn` γcn` γn ď

µ

30n, (7.3)

where the last inequality follows from the choice of c and γ ! µ, ε.
We now claim that

P

«

t
ÿ

i“1
Xipeq ě

µ

3n
ff

ď exp
´

´
µ

3n
¯

. (7.4)

Indeed, inequality (7.3) implies that 7
řt
i“1 p

˚
i peq ď µn{3, so the bound follows from Theorem 5.5

combined with Theorem 5.4.
For each e P

`

V pHq
2

˘

, let Xe :“
řt
i“1Xipeq. Let E be the event that maxeXe ď µn{3. By using

an union bound over all the (at most n2) possible choices of e and using (7.4), we deduce that E
holds with probability at least 1´ op1q.

Now we can show that St holds with positive probability. We shall prove that PrSt|Es “ 1, which
then will imply PrSts ě PrSt|EsPrEs ě 1 ´ op1q. So assume E holds, that is, maxeXe ď µn{3.
Note that S0 holds deterministically, and suppose 1 ď i ď t is the minimum such that Si fails to
hold. Since Si´1 holds, using (7.2) we deduce

∆2pGiq ď 2`∆2pGi´1q “ 2`max
e

degGi´1peq ď 2
˜

1`max
e

i´1
ÿ

j“1
Xipeq

¸

ď 2
´

1`max
e
Xe

¯

ď 2
´

1` µ

3n
¯

ď µn,

where in the second to last inequality we used E , and in the last inequality we used 1{n ! µ.
Thus Si holds, a contradiction. �

7.2. Well-behaved approximate cycle decompositions. In this section we show the exis-
tence of approximate cycle decomposition which are ‘well-behaved’, meaning that the subgraph
left by the uncovered edges has small codegree. The argument is different depending on the two
setting considered by Theorem 1.1, and we start with the former.

When ` is divisible by 3, the tight cycle C` is 3-partite. By a well-known theorem from
Erdős [7, Theorem 1], we know that the Turán number of C` is degenerate, i.e. edge-maximal
C`-free 3-graphs on n vertices have at most opn3q edges. This allows us to find an approximate
decomposition of any 3-graph H with copies of C` if ` is divisible by 3, simply by removing
copies of C` greedily until opn3q edges remain. This argument alone does not provide us with the
‘well-behavedness’ condition we alluded to earlier, but it is, however, possible to modify such a
packing locally to guarantee such a property holds.

Lemma 7.3 (Well-behaved approximate cycle decompositions, version 1). Let ε, γ ą 0 and
n, ` P N be such that ` ě 9 is divisible by 3 and 1{n ! ε, γ, 1{`. Let H be a 3-graph on n vertices
with δ2pHq ě p2{3` εqn. Then H has a C`-packing C such that ∆2pH r EpCqq ď γn.

Results in a similar spirit were proven in [3]. The proof is not difficult but somewhat long and
repetitive, thus we defer it to Appendix A.

Now we consider the second range of `, where it ` ě 107, in which we can show the following.
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Lemma 7.4 (Well-behaved approximate cycle decomposition, version 2). Let ε, γ ą 0 and n, ` P N
be such that ` ě 107 and 1{n ! ε, γ, 1{`. Let H be a 3-graph on n vertices with δ2pHq ě p2{3`εqn.
Then H has a C`-packing C such that ∆2pH r EpCqq ď γn.

In this range we exploit the connection of fractional graph decompositions with their integral
counterparts. Given a 3-graph H, let C`pHq be the family of all `-cycles in H, and given X P EpHq
let C`pH,Xq Ď C`pHq be those cycles which use the edge X. A fractional C`-decomposition
of a 3-graph H is a function ω : C`pHq Ñ r0, 1s such that for every edge X P H we have
ř

CPC`pH,Xq
ωpCq “ 1. Joos and Kühn [15] proved the existence of fractional Ck` -decompositions

under general conditions. We state their results only in the particular case k “ 3. A 3-graph H on
n vertices is pα, `q-connected if for every two ordered edges ps1, s2, s3q, pt1, t2, t3q P V pHq3, there
are at least αn`´1{p3!|EpHq|q walks with ` edges starting at ps1, s2, s3q, ending at pt1, t2, t3q.
Theorem 7.5 (Joos and Kühn [15]). For all α P p0, 1q, µ P p0, 1{3q and ` ě 2, there is n0 such
that the following holds for all n ě n0. Suppose H is an pα, `0q-connected 3-graph on n vertices
with 540 `0α log `0

α log 1
µ ď `. Then there is a fractional C`-decomposition ω of H with

p1´ µq2|EpHq|∆pHq` ď ωpCq ď p1` µq2|EpHq|
δpHq`

for all `-cycles C in H.
To use this theorem, we show that 3-graphs with δ2pHq ě 2n{3 are pα, `0q-connected for some

suitable α, `0. The following argument is due to Reiher [15, Lemma 2.3]. We include it for
completeness and since for k “ 3 one can give a better value of α, which in turn increases the
range of ` in which one can apply Theorem 7.5.
Lemma 7.6. For each d ě 1{2, every 3-graph H on n vertices and such that δ2pHq ě pd`op1qqn
is pd2p2d´ 1q4, 8q-connected.
Proof. Let V “ V pHq and ps1, s2, s3q, pt1, t2, t3q P V 3 be two arbitrary ordered edges of H.
For z P V pHq, let the function Iz : V 2 Ñ t0, 1u be such that Izpx1, x2q “ 1 if and only if
s2s3x1x2t1t2 is a path in the link-graph of z in H. Let N “ NHps2s3q X NHpt1t2q and note
that |N | ą p2d ´ 1qn. Note that if z1, z2 P N (possibly equal) and px1, x2q P V

2 are such that
Iz1px1, x2q “ Iz2px1, x2q “ 1, then s1s2s3z1x1x2z2t1t2t3 is a walk from ps1, s2, s3q to pt1, t2, t3q
using 8 edges, call such walks standard.

First, note that having fixed z P N , the number of px1, x2q P V
2 such that Izpx1, x2q “ 1

can be bounded as follows: choose x1 P NHps3zq arbitrarily (there are at least dn choices) and
then x2 P NHpzx1q X NHpzt1q (of which there are at least p2d ´ 1qn choices). Thus we have
ř

px1,x2qPV 2 Izpx1, x2q ě dp2d´ 1qn2 for all z P N .
On the other hand, note that for a fixed px1, x2q with x1 ‰ x2, the number of standard walks

which use px1, x2q is exactly p
ř

zPN Izpx1, x2qq
2. Thus the number of standard walks is at least

(using Jensen’s inequality in the first inequality, and |N | ě p2d´ 1qn in the third inequality)

ÿ

px1,x2qPV 2

˜

ÿ

zPN

Izpx1, x2q

¸2

ě n2

¨

˝

1
n2

ÿ

zPN

ÿ

px1,x2qPV 2

Izpxq

˛

‚

2

ě n2

˜

1
n2

ÿ

zPN

dp2d´ 1qn2

¸2

ě d2p2d´ 1q4n4,

as required. �

To prove Lemma 7.4, we combine the fractional matching of Theorem 7.5 with a nibble-type
matching argument. We use a result of Alon and Yuster [1] (but see also Kahn [16] and Ehard,
Glock and Joos [6] for variations and extensions).
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Proof of Lemma 7.4. Let α “ 4ˆ 3´6 (as in Lemma 7.6 for d “ 2{3) and `0 “ 8. By Lemma 7.6,
H is pα, `0q-connected. A numerical calculation shows that we can fix µ P p0, 1{3q such that
540 `0α log `0

α log 1
µ ď 107 ď `. Thus Theorem 7.5 informs us that there exists a fractional C`-

decomposition ω of H with

ωpCq ď p1` µq2|EpHq|
δ2pHq`

ď 4 |EpHq|
δ2pHq`

ď
4n3

δ2pHq`
ď

4ˆ 3`

n`´3

for all C P C`pHq.
Consider the auxiliary `-uniform hypergraph F with vertex set EpHq, and an edge for each cycle

in C`pHq corresponding to its set of ` edges. Define a random subgraph F 1 Ď F by keeping each
edge C with probability pC :“ n1{2ωpCq. By the bounds on ωpCq and 1{n ! 1{` we have pC ď 1
for all C P C`pHq. For each edge e P EpHq, we have ErdegF 1peqs “ n1{2 ř

CPC`pH,eq
ωpCq “ n1{2.

Two distinct edges e, f P EpHq can participate together in at most Opn`´4q `-cycles in H, thus we
have ErdegF 1pe, fqs “ Opn´1{2q. Standard concentration inequalities (Theorem 5.4(i) and (iii)),
imply that with very high probability F 1 satisfies degF 1peq “ p1` op1qqn1{2 for each e P V pF 1q,
and thus δ1pF

1q ě p1´ op1qq∆1pF
1q; and moreover ∆2pF

1q “ opn1{2q.
For each 2-set uv of vertices of H, let Huv Ď V pF q correspond to the edges in H which contain

uv. There are at most n2 such sets and each has size at least 2n{3. Thus, the Alon–Yuster
theorem [1] implies the existence of a matching M in F 1 such that at most γn vertices in V pF 1q
are uncovered in each Huv. The matching M in F 1 Ď F translates to a C`-packing C in H, and
the latter condition implies ∆2pH r EpCqq ď γn, as desired. �

7.3. Proof of the Cover-Down Lemma. As a final tool, we borrow the following theorem of
Thomassen [21] about path-decompositions of graphs.

Theorem 7.7 ([21]). Any 171-edge-connected graph G such that |EpGq| is divisible by 3 has a
P3-decomposition.

Proof of Lemma 4.3. Let γ1, p1, p2 ą 0 such that γ1 ! p1 ! p2 ! µ, ε. For i P t0, 1, 2, 3u, say
an edge e of H is of type i if |e X U | “ i, and let Hi Ď H be the edges of H which are of type
i. For i P t1, 2u, let Ri Ď Hi be defined by choosing edges independently at random from Hi

with probability 3pi{2. By assumption, δp3q2 pH;Uq ě 3ε|U | (see definition at the beginning of
Section 5.1).

By Theorem 5.4 we get that, for i P t1, 2u, with non-zero probability, that
∆2pRiq ď 2pin, (7.5)

δ
p3q
2 pR1 YR2 YHrU s;Uq ě 2εp1|U |, and (7.6)

δ
p3q
2 pR2 YHrU s;U,Gq ě 2εp2|U |, (7.7)

where G Ď
`

V pHq
2

˘

corresponds to the pairs e such that e X U ‰ ∅. From now on we assume
R1, R2 are fixed with those properties.

Let H 1 “ H´HrU s´R1´R2. Recall that, by assumption, δ2pHq ě p2{3`2εqn and |U | “ tεnu.
By our choice of p1, p2 ! ε, µ and (7.5), we deduce that δ2pH

1q ě p2{3` ε{2qn.
We consider two possible cases depending on the value of `. If ` ě 9 is divisible by 3, then

we apply Lemma 7.3, otherwise by assumption ` ě 107, and we can apply Lemma 7.4. In any
case, the output is a C`-packing C in H 1 such that ∆2pH

1 r EpCqq ď γ1n. Let J “ H 1 r EpCq
be the edges in H 1 not covered by C, and for each i P t0, 1, 2u let Ji be the edges of type i in J .
We shall cover the edges in J with cycles of length ` and for that we will proceed in three steps,
covering the edges of J0, J1, and J2 in order.

Consider each edge in J0 as a path on three vertices v1v2v3, assigning to each edge an arbitrary
order. Let P0 be the collection of those paths. The inequalities ∆2pJ0q ď ∆2pJq ď γ1n show that
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P0 is γ1-sparse. Let µ1, ε1 ą 0 satisfy γ1 ! µ1 ! ε1 ! p1, ε. Equation (7.6) and Corollary 5.3 imply
that each P P P0 can be extended to at least 2ε1n

`´3 cycles C, such that CrP Ď R1YR2YHrU s
and V pCqr V pP q Ď U . Then an application of Lemma 7.1 with ε1, µ1, 3, J0, R1 YR2 YHrU s,P0
in place of ε, µ, `1, H1, H2,P respectively, implies that there is a C`-decomposable subgraph F0
such that F0 Ě J0, and

∆2pF0 r J0q ď µ1n. (7.8)

By construction, F0 is edge-disjoint with the cycles in C, and then F 10 “ EpCq Y F0 is C`-
descomposable. Note that all edges not covered by F 10 lie in pJ1 Y J2q Y pR1 YR2q YHrU s.

Let J 11 “ pJ1 Y R1q r F 10 and R12 “ pR2 Y HrU sq r F 10. Let γ2, µ2, ε2 ą 0 be such that
p1 ! γ2 ! µ2 ! ε2 ! p2, ε. Since J 11 Ď J1 YR1 Ď J YR1, we have

∆2pJ
1
1q ď ∆2pJq `∆2pR1q ď γn` 2p1n ď γ2n.

Since each edge in J 11 is of type 1 in H, we can consider each edge in J 11 as a path P “ v1v2v3 where
v2 P U and v1, v3 R U ; and let P1 be the collection of those paths. Then ∆2pJ

1
1q ď γ2n implies P1

is γ2-sparse. By (7.7) and (7.8), together with Corollary 5.3, we deduce that each P P P1 can
be extended to at least 2ε2n

`´3 cycles C, such that C r P Ď R12 and V pCqr V pP q Ď U . Apply
Lemma 7.1 with ε2, µ2, γ2, 3, J 11, R12,P1 in place of ε, µ, γ, `1, H1, H2,P to obtain a C`-decomposable
subgraph F1 such that F1 Ě J 11, and

∆2pF1 r J1q ď µ2n. (7.9)

By construction, F1 and F 10 are edge-disjoint, and then F 11 “ F1 Y F
1
0 is C`-decomposable. Note

that the edges not covered by F 11 lie in J2 YR2 YHrU s.
Let J 12 “ pJ2 Y R2q r F 11. Note that each edge in J 12 is of type 2. For each v P V pHq r U ,

let Gv “ J 12pv, Uq, that is, Gv is the link graph of v in J 12 restricted to U . Fix v P V pHqrU . Given
x, y P U , the equations (7.7) and (7.9) imply that x and y have at least 2εp2|U | ´ 2µ2n ě 171
common neighbours in Gv, so Gv is 171-edge-connected. Since v R U , our assumption on H
implies that the number of edges of Hpvq is divisible by 3. Note that Gv is exactly the link-graph
over H r F 11 when restricted to U . Therefore, and since F 11 is C`-decomposable, the number of
edges in Gv is divisible by 3 as well.

By Theorem 7.7, Gv has a decomposition into paths P 1v “ tP1, . . . , Ptu, each of length 3.
Observe that these paths yields to a collection of (3-uniform) paths in J 12 by substituting each
path Pi “ w1w2w3w4 in P 1v by the tight path w1w2vw3w4. Let Pv be the collection of paths
obtained in this way. Observe that for u ‰ v in V pHq r U , Pv and Pu are edge-disjoint. Let
P2 “

Ť

vPV pHqrU Pv. Note that P2 decomposes J 12 into paths on five vertices.
Let γ3, ε3 ą 0 be such that p2 ! γ3 ! ε3 ! µ3 ! µ, ε. Recall that |U | “ tεnu. Since

J 12 Ď J2 Y R2 Ď F Y R2, we have ∆2pJ
1
2q ď ∆2pR2q ` ∆2pJq ď 2p2n ` γ1n ď γ3n, so P2 is

γ3-sparse. Let H 12 “ HrU s r F 11. We have F 11rU s “ F1rU s Y F0rU s. By (7.8)–(7.9), we have
δ2pH

1
2q ě δ2pHrU sq ´ 2µ2n ě p2{3 ` ε{2q|U |. By Corollary 5.3, we deduce each P P P2 can be

extended to at least 2ε2n
`´5 cycles C such that C r P Ď H 12. Thus we can apply Lemma 7.1

with ε3, µ3, γ3, 5, J 12, H 12,P2 playing the rôles of ε, µ, γ3, `
1, H1, H2,P respectively, to obtain a C`-

decomposable subgraph F2 such that F2 Ě J 12, and

∆2pF2 XH
1
2q ď µ3n. (7.10)

By construction, F2 and F 11 are edge-disjoint, and then F “ F 11YF2 is C`-decomposable. Moreover,
all edges not contained in U are covered by F . In fact, we have that

H ´HrU s “ EpCq Y J0 Y pJ1 YR1q Y pJ2 YR2q Ď EpCq Y F0 Y F1 Y F2 “ F.

Finally, inequalities (7.8)–(7.10) yield that ∆2pF rU sq ď µn, as required. �
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§8. Absorbing Lemma

In this section we prove Lemma 4.2. We need to show that, given a sufficiently large H
with δ2pHq ě p2{3` εqn and a subgraph R Ď H on at most m vertices, there is an C`-absorber A
for R on at most Opm9`9q vertices. We divide the proof in two main parts.

First, in Section 8.1 we shall find a bounded-size hypergraph A1 Ď H, edge-disjoint from R,
which admits a C`-decomposition. This subgraph will be chosen such that RYA1 contains a tour
decomposition, that is, a decomposition in which all subgraphs are tours (see Lemma 8.1). The
second step is to transform the found tour decomposition in the remainder to a C`-decomposition
(see details in Section 8.2). Finally, in Section 8.3 we combine both steps to prove Lemma 4.2.

8.1. Tour decomposition. The main goal of this subsection is to prove the following lemma.
Lemma 8.1. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a 3-graph
on n vertices with δ2pHq ě p2{3` εqn. Let R Ď H be C`-divisible on at most m vertices. There
exists a subgraph A1 Ď H, edge-disjoint with R, such that

(i) A1 has at most 30
`

m
3
˘

`p6`` 1q edges,
(ii) A1 YR spans at most 30

`

m
3
˘

`p6`` 1q vertices.
(iii) A1 has a C`-decomposition, and
(iv) A1 YR has a tour decomposition,

8.1.1. Tour-trail decompositions. We consider decompositions T “ tC1, . . . , Ct, P1, . . . , Pku in
which Ci is a tour for every i P rts and Pj is a trail for every j P rks. In this case we say T is a
tour-trail decomposition. Note that every 3-graph has a tour-trail decomposition, since we can
consider every single edge in a 3-graph as a trail on three vertices (by giving it an arbitrary
ordering).

For a trail P “ u1u2 ¨ ¨ ¨uk´1uk we say that the ordered pairs pu2, u1q and puk´1, ukq are
the ends of P . We denote the those pairs as endspP q. Observe that the set of ends of a P depends
on the edge-set of P only, i.e. is independent of order in which we transverse the trail. We remark
that the ends differ from the start and terminus of P (as defined in Section 1.5) since they have
different orderings.

Given H and a tour-trail decomposition T “ tC1, C2, . . . , Ct, P1, P2, . . . , Pku of some R Ď H,
we define the residual digraph of T , denoted as DpT q, as the multidigraph on the same vertex set
as H, where the arcs correspond to the union of the ordered ends of each trail of T , considered
with repetitions. Thus DpT q has exactly 2t arcs, counted with multiplicities, if and only if T has
t trails. For a given pair of vertices u, v P V we denote the multiplicity of the pair pu, vq in DpT q
as µT pu, vq. Outdegrees and indegrees of a vertex x in DpT q are denoted by d`DpT qpxq, d´DpT qpxq
respectively, omitting subscripts from the notation if the underlying digraph is clear from context.
Remark 8.2. Observe that if px, yq, py, xq P EpDT q then, there are two trails Pi and Pj in T
that can be merged into a trail (if i ‰ jq or tour (if i “ j) which contains all the edges contained
in Pi and Pj . Thus there is another tour-trail decomposition T 1 of R with less trails than T ,
obtained from T by removing Pi, Pj and adding the tour or trail born from joining P1 and P2.

We construct A1 in Lemma 8.1 as follows. We begin with an arbitrary tour-trail decomposition
T0 of R and we will find an increasing sequence of subgraphs ∅ “ T0 Ď T1 Ď ¨ ¨ ¨ Ď Tk Ď H.
Each Tir Ti´1 will be sufficiently small, C`-decomposable and edge-disjoint from Ti´1. Moreover,
each Ti r Ti´1 will be a ‘gadget’ 3-graph of a prescribed family, which is designed to modify Ti´1
locally. More precisely, for each i ą 0, each Ti Y R will contain a tour-trail decomposition Ti,
obtained from the tour-trail decomposition Ti´1 of Ti´1 Y R, and the gadget Ti r Ti´1 will be
chosen carefully so the residual digraph is slightly modified and becomes ‘simpler’. At the end,
we will have found Tk and a tour-trail decomposition Tk of RY Tk which has an empty residual
digraph. Thus Tk is actually a tour decomposition, and we finish by setting A1 “ Tk.

The following lemma establishes a crucial property of residual digraphs.
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Lemma 8.3. Let H “ pV,Eq be a 3-vertex-divisible hypergraph and let T be a tour-trail decom-
position of H with residual digraph DpT q. For every x P V we have that

d`pxq ” d´pxq pmod 3q.

Proof. For every vertex x P V pHq, we need to show that d`pxq ´ d´pxq ” 0 mod 3 in the
digraph DpT q. Consider the auxiliary digraph F pT q obtained as follows: for every trail or tour
P “ w1w2 ¨ ¨ ¨w` in T , to F pT q add the arcs pwi, wi`1q and pwi`2, wi`1q for every 1 ď i ď `´ 2
(and for tours, add pw`´1, w`q, pw1, w`q, pw`, w1q, pw2, w1q as well), including all repetitions. In
such a way (and since T is a decomposition) every edge of H contributes with exactly two arcs
to F pT q. It is straightforward to check DpT q Ď F pT q and, crucially, that

d`DpT qpxq ´ d
´
DpT qpxq “ d`F pT qpxq ´ d

´
F pT qpxq,

so from now on we work with F pT q only.
Let x P V pHq. Each edge xyz in H contributes with two arcs to F pT q, which can be of type

tpx, yq, px, zqu, tpy, xq, py, zqu, or tpz, xq, pz, yqu. The edges of the first type contribute with 2 to
d`pxq ´ d´pxq in F pT q. The edges of second and third type contribute with ´1 to d`pxq ´ d´pxq
in F pT q, which is congruent to 2 mod 3. Thus we deduce d`pxq ´ d´pxq ” 2|degHpxq| mod 3.
Since H is 3-vertex-divisible, this is congruent to 0 mod 3, and we are done. �

8.1.2. Gadgets. In the following three lemmata we describe the aforementioned gadgets, and their
main properties.

First, for a given tour-trail decomposition T of R Ď H and three distinct vertices v1, v2, v3, the
following lemma states that there is a subgraph S3 “ S3pv1, v2, v3q Ď H edge-disjoint with R and
which contains a C`-decomposition. Moreover, there is a tour-trail decomposition of RY S3 such
that its residual digraph is exactly DpT q with the additional arcs pv1, v2q, pv2, v3q, and twice the
arc pv1, v3q. We define the multidigraph ~S3pv1, v2, v3q “ tpv1, v3q, pv1, v3q, pv1, v2q, pv2, v3qu.

For two multidigraphs D1, D2, we set the notation D1 \ D2 to mean the multigraph on
V pD1q Y V pD2q obtained by adding all the arcs of D2 to D1, considering the multiplicities.

Lemma 8.4. Let ` ě 7, ε ą 0 and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a 3-graph
on n vertices with δ2pHq ě p2{3 ` εqn. Given three distinct vertices v1, v2, v3 P V pHq, R Ď H
on at most m vertices, and a tour-trail decomposition T of R the following holds. There is a
subgraph S3 “ S3pv1, v2, v3q Ď H, edge-disjoint from R, and a tour-trail decomposition TS3 “

TS3pT , v1, v2, v3q of RY S3 such that
(i S3) S3 contains at most 2` edges and S3 YR spans at most m` 2`´ 3 vertices,
(ii S3) S3 has a C`-decomposition, and
(iii S3) DpTS3q “ DpT q \ ~S3pv1, v2, v3q.

Proof. The minimum codegree condition on H implies that there is a vertex x P V pHq that lies
in Npv1v2q XNpv1v3q XNpv2v3q. Considering the paths v1v3x and v3xv2v1, two applications of
Lemma 5.1 yield the existence of two edge-disjoint cycles C1 and C2 of length `, edge-disjoint
with R, and such that v1v3x P EpC1q and v3xv2, xv2v1 Ď EpC2q (transversing the vertices in that
order). Then S3 “ C1 Y C2, clearly satisfies (i S3) and (ii S3). Hence, we only need to prove the
existence of a tour-trail decomposition TS3 of RY S3 for which (iii S3) holds.

For this, consider the trail P1 “ v3v2xv1v3. Observe that EpS3qr EpP1q consists exactly in
the edges of a trail P2 whose ends are pv1, v2q and pv1, v3q. Indeed, the edges contained in the
set EpC2qr tv3v2x, v2xv1u form a trail between pv2, v1q and pv3, xq, that we may merge with the
trail with edges in EpC1qr txv1v3u from pv3, xq to pv1, v3q. Therefore, TS3 “ T Y tP1, P2u is a
tour-trail decomposition of R Y S3. We deduce (iii S3) by noticing that the ends of P1 and P2
are pv2, v3q and pv1, v3q, and pv1, v2q and pv1, v3q respectively. �
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The following is our second gadget. It is designed so we can add a small subgraph C4 Ď H to
some R, such that RYC4 has a tour-trail decomposition in which the residual digraph has an extra
directed four-cycle. We use the notation ~C4pv1, v2, v3, v4q “ tpv1, v2q, pv2, v3q, pv3, v4q, pv4, v1qu.

Lemma 8.5. Let ` ě 7, ε ą 0 and n,m P N such that 1{n ! ε, 1{m, 1{`. Let H be a 3-graph
on n vertices with δ2pHq ě p2{3 ` εqn. Given four distinct vertices v1, v2, v3, v4 P V pHq, a
subgraph R Ď H on at most m vertices, and a tour-trail decomposition T of R the following
holds. There is a subgraph C4 “ C4pv1, v2, v3, v4q Ď H, edge-disjoint from R and a tour-trail
decomposition TC4 “ TC4pT , v1, v2, v3, v4q of RY C4 such that
(i C4) C4 has at most 8` edges and C4 YR spans at most m` 4`´ 6 vertices,
(ii C4) C4 has a C`-decomposition, and
(iii C4) DpTC4q “ DpT q \ ~C4pv1, v2, v3, v4q.

Proof. Two consecutive applications of Lemma 8.4 yield the existence of edge-disjoint subgraphs
S3pv1, v2, v3q and S3pv3, v1, v4q. More precisely, first we apply Lemma 8.4 to obtain S3pv1, v2, v3q
edge-disjoint from R. Then, we apply it again with R Y S3pv1, v2, v3q in place of R to ob-
tain S3pv3, v2, v4q edge disjoint from RYS3pv1, v2, v3q (here we use 1{n ! 1{m, to apply Lemma 8.4
to a larger subgraph with at most m ` 2` ´ 6 vertices). It is not difficult to check that the
subgraph C4 “ S3pv1, v2, v3q Y S3pv3, v1, v4q satisfies (i C4) and (ii C4)

Moreover, in the second application of Lemma 8.4 we obtain a tour-trail decomposition T 1
of RY C4 equal to T 1 “ TS3

`

TS3pT , v1, v2, v3q, v3, v1, v4
˘

, whose residual digraph is given by

DpT 1q “ DpT q \ ~S3pv1, v2, v3q \ ~S3pv3, v4, v1q.

Observe that DpT 1q contains both the arcs pv1, v3q and pv3, v1q twice. By Remark 8.2, we can
obtain a tour-trail decomposition TC4 which satisfies (iii C4). �

Our third and final gadget will add the arcs of two vertex-disjoint oriented triangles to the
residual digraph. Set the notation ~T3pv1, v2, v3q “ tpv1, v2q, pv2, v3q, pv3, v1qu for the oriented
triangle on vertices v1, v2, v3. Given six distinct vertices v1, v2, v3, v4, v5, v6, as a final result we
wish for a residual digraph consisting of the two oriented triangles ~T3pv1, v2, v3q and ~T3pv4, v5, v6q.

This can be done using the oriented 4-cycles of Lemma 8.5 three times, by considering the
oriented 4-cycles ~C4pv1, v2, v5, v6q, ~C4pv2, v3, v4, v5q, and ~C4pv1, v6, v4, v3q. This can be thought
geometrically, as the oriented 4-cycles forming the faces of a triangular prism, whose bases lie
in the desired triangles. The arcs between the vertices of the two triangles will go in opposite
directions, and therefore we will be able to “cancel” them.

To have an analogous notation as for the other two gadgets, set
~P6pv1, v2, v3, v4, v5, v6q “ ~T3pv1, v2, v3q \ ~T3pv4, v5, v6q.

Lemma 8.6. Let ` ě 7, ε ą 0 and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a
3-graph on n vertices with δ2pHq ě p2{3 ` εqn. Given six distinct vertices v1, v2, v3, v4, v5, v6 P
V pHq, R Ď H on at most m vertices, and a tour-trail decomposition T of R the following holds.
There exists a subgraph P6 “ P6pv1, v2, v3, v4, v5, v6q Ď H, edge-disjoint from R and a tour-trail
decomposition TP6 “ TP6pT , v1, v2, v3, v4, v5, v6q of RY P6 such that
(i P6) P6 has at most 12` edges and P6 YR spans at most m` 12`´ 18 vertices,
(ii P6) P6 has a C`-decomposition, and
(iii P6) DpTP6q “ DpT q \ ~P6pv1, v2, v3, v4, v5, v6q

Proof. Using 1{n ! 1{m we apply Lemma 8.5 iteratively three times, to obtain three edge-
disjoint subgraphs C4pv1, v2, v5, v6q, C4pv2, v3, v4, v5q, and C4pv1, v6, v4, v3q, which are also edge-
disjoint from R. It is straightforward to check that P6 “ C4pv1, v2, v5, v6q Y C4pv2, v3, v4, v5q Y
C4pv1, v6, v4, v3q satisfies (i P6) and (ii P6).
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The last application of Lemma 8.5 yields a tour-trail decomposition T 1 of RY P6 with residual
digraph given by

DpT 1q “ DpT q \ ~C4pv1, v2, v5, v6q \ ~C4pv2, v3, v4, v5q \ ~C4pv1, v6, v4, v3q.

DpT 1q contains the arcs pv1, v6q, pv6, v1q, pv2, v5q, pv5, v2q, pv3, v4q, and pv4, v3q, and by Remark 8.2
we can remove them to obtain a tour-trail TP6 which satisfies (iii P6). �

8.1.3. The sea of triangles. In what follows, we will use the previous gadgets to find, for any
given R Ď H, an edge-disjoint small C`-decomposable T Ď H, the main property being that RYT
contains a tour-trail decomposition with residual digraph consisting only of vertex-disjoint oriented
triangles.

The following definitions will be useful for this propose. Given a multidigraph D “ pV,Eq,
a triangle lake T Ď D is an induced subdigraph with vertices in V 1 Ď V that consists only of
vertex-disjoint (simple) oriented triangles and such that there is no arc between V 1 and V r V 1 or
vice versa. Any D contains a unique vertex-maximal triangle lake (possibly empty), we call such
subdigraph the sea of triangles of D and we denote it by ~4pDq. If D “ ~4pDq we say D is itself a
sea of triangles. Given two directed digraphs D1 and D2 on the same vertex set, we establish the
notation D1 ´D2 to mean the multigraph resulting from subtracting the edges of D2 from D1
counting the multiplicities.

As for hypergraphs, we do not distinguish between the directed multigraph D “ pV,Eq and
the set of arcs E.

Lemma 8.7. Let ` ě 7, and ε ą 0 and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a
3-graph on n vertices with δ2pHq ě p2{3` εqn. Let R Ď H be C`-divisible on at most m vertices.
There exists a subgraph T Ď H, edge-disjoint from R, such that
(i 8.7) T has at most 30

`

m
3
˘

` edges,
(ii 8.7) T YR spans at most 30

`

m
3
˘

` vertices,
(iii 8.7) T has a C`-decomposition, and
(iv 8.7) there is a tour-trail decomposition T4 of T YR such that DpT4q is a sea of triangles.

Proof. Set k “ 2
`

m
3
˘

` 1. To find T , we will iteratively find subgraphs Ti Ď H for every 0 ď i ď k
such that each Ti has a C`-decomposition, is edge-disjoint with respect to R, contains at most 14`i
edges, and such that Ti Y R spans at most m ` ip14` ´ 38q vertices. We will see that the last
subgraph Tk satisfies the desired properties. Note that in this case properties (i 8.7), (ii 8.7), and
(iii 8.7) would follow directly since 14`i and m` ip14`´38q are smaller than 30

`

m
3
˘

` for every i ď k.
Hence, most or our effort is dedicated to ensure (iv 8.7). To do so, at each step we will define a
tour-trail decomposition Ti of Ti YR such that its residual digraph will be almost identical to
the one of Ti´1 except for a few subtly chosen arcs. Additionally, we will define auxiliary vertex
sets Xi of size at least n{2´ 4i such that pTi YRqrXis is empty.

Since 1{n ! 1{m, 1{` and Ti Y R spans at most 30
`

m
3
˘

` vertices for every i P rks, n will be
sufficiently large to apply lemmata 8.4–8.6 with Ti YR in place of R, and we will do this without
further comment.

For i “ 0, take T0 “ ∅ and T0 to be an arbitrary tour-trail decomposition of R (this always
exists). Also, let X0 Ď V pHq have size rn{2s such that RrX1s is empty, which can be done since
1{n ! 1{m. Now, for 0 ď i ă k, given Ti, Ti and Xi define Ti`1, Ti`1 and Xi`1 using the following
set of rules:

(I) Suppose there are vertices a, b P V such that pa, bq, pb, aq P DpTiq. In this case just
set Ti`1 “ Ti and Xi`1 “ Xi, and let Ti`1 be a tour-trail decomposition such that

DpTi`1q “ DpTiq ´ tpa, bq, pb, aqu, (8.1)

which exists by Remark 8.2.
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(II) Suppose that (I) does not hold and DpTiq contains an arc with multiplicity more than one,
i.e. there are vertices a, b P V pHq with µTipa, bq ą 1. Take x P Xi and apply Lemma 8.4
to RY Ti on the vertices b, x, a to obtain the subgraph S3pb, x, aq Ď H and the tour-trail
decomposition T 1i “ TS2pTi, b, x, aq. Further, take new vertices y, z, w P Xi r txu and
apply Lemma 8.6 on Ti Y R Y S3pb, x, aq to obtain P6pa, x, b, y, z, wq and a tour-trail
decomposition T 2i “ TP6pT 1i , a, x, b, y, z, wq. Set

Ti`1 “ Ti Y S3pb, x, aq Y P6pa, x, b, y, z, wq, and
Xi`1 “ Xi r tx, y, z, wu,

and observe that (i S3) and (i P6) in Lemmata 8.4 and 8.6, we have that Ti`1 has at
most 14`i` 2`` 12` “ 14`pi` 1q edges and the subgraph Ti`1 YR spans at most

m` ip14`´ 21q ` 14`´ 21 “ m` pi` 1qp14`´ 21q
vertices. Moreover, since Ti`1 is edge-disjoint union of subgraphs that contain C`-
decomposition it also contains one. Additionally |Xi`1| “ |Xi| ´ 4.

Observe that the resulting tour-trail decomposition T 2i has a residual digraph given
by DpT 2i q “ DpTiq \ ~S3pb, x, aq \ ~P6pa, x, b, y, z, wq. Recall that the multiplicity of pa, bq
is at least two in DpTiq and, using Remark 8.2 to annihilate edges which have opposite
directions, we obtain a tour-trail decomposition Ti`1 such that

DpTi`1q “ DpTiqr tpa, bq, pa, bqu \ tpb, aqu \ ~T3py, z, wq. (8.2)
(III) Suppose cases (I) and (II) do not hold, and that there are three distinct vertices a, b, c P

V pHq such that pa, bq, pb, cq P DpTiqr ~4pDpTiqq.
Consider vertices x, y, z P Xi and apply Lemma 8.6 on the vertices c, b, a, x, y, z to ob-

tain P6pc, b, a, x, y, zq and the tour-trail decomposition T 1i “ TP6pTi, c, b, a, x, y, zq. Setting
Ti`1 “ Ti Y P6pc, b, a, x, y, zq and Xi`1 “ Xi r tx, y, zu,

we deduce from Lemma 8.6 that Ti`1 has at most 14`i ` 12` ď 14`pi ` 1q edges and
that Ti`1 YR spans at most m` ip14`´ 38q ` 12`´ 18 ď m` pi` 1qp14`´ 21q vertices.
Moreover, it is clear that Ti`1 contains a C`-decomposition and that |Xi`1| ě |Xi| ´ 4.

The residual digraph of T 1i is DpT 1i q “ DpTiq \ ~P6pc, b, a, x, y, zq and therefore, using
Remark 8.2, we obtain a tour-trail decomposition Ti`1 such that

DpTi`1q “ pDpTiq ´ tpa, bq, pb, cquq \ tpa, cqu \ ~T3px, y, zq. (8.3)
(IV) Suppose that cases (I), (II) and (III) do not hold, and that there are vertices a, b, c, d

such that pa, bq, pa, cq, pa, dq P DpTiq. Apply Lemma 8.4 on the vertices c, d, a to ob-
tain S3pc, d, aq and a tour-trail decomposition T 1i “ TS3pTi, c, d, aq. Further, take x, y, z P
Xi apply Lemma 8.6 to Ti Y R Y S3pc, d, aq on the vertices a, c, b, x, y, z to obtain
P6pa, c, b, x, y, zq and the tour-trail decomposition T 2i “ TP6pT 1i , a, c, b, x, y, zq. Set

Ti`1 “ Ti Y S3pc, d, aq Y P6pa, c, b, x, y, zq and
Xi`1 “ Xi r tx, y, zu,

(8.4)

and observe that Ti`1 has at most 14`pi` 1q edges and that Ti`1 YR spans at most m`
ip14`´21q`14`´21 “ m`pi`1qp14`´21q. Again, it is easy to check that Ti`1 contains
a C`-decomposition and that |Xi`1| ě |Xi| ´ 4.

Observe that the residual digraph of the tour-trail decomposition T 2i is given by

DpT 2i q “ DpTiq \ ~S3pc, d, aq \ ~P6pa, c, b, x, y, zq,

and again, by Remark 8.2 we can find a tour-trail decomposition Ti`1 such that

DpTi`1q “ pDpTiq ´ tpa, bq, pa, cq, pa, dquq \ tpc, bq, pc, dqu \ ~T3px, y, zq. (8.5)
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(V) If none of the previous cases takes place, then set Ti`1 “ Ti and Ti`1 “ Ti.
Let T “ Tk and T4 “ Tk. As discussed before, we have ensured (i 8.7)–(iii 8.7) hold by

construction. To prove (iv 8.7) we have to show all arcs of DpT q are in its sea of triangles
~4pDpTkqq. We shall require the following definition. For any tour-trail decomposition T define
the parameter ΦpT q “ |EpDpT qq| ´ |Ep~4pDpT qqq|. In words, ΦpT q is the number of arcs in T
which are not in its sea of triangles. Note ΦpT q ě 0 always.

First, we claim that there exists some 0 ď i ă k such that case (V) happens when processing Ti.
Suppose this is not the case. Observe that if any of the cases (I)–(IV) happens when processing
Ti, due to the structure of DpTi`1q given in (I), (8.2), (8.3), and (8.5), we have

ΦpTi`1q ď ΦpTiq ´ 1.

Hence, we have ΦpTkq ď ΦpT0q ´ k. Note that the number of arcs in DpT0q is twice the number
of trails of T0, each trail uses at least one edge of R, and R has at most

`

m
3
˘

edges since
it spans at most m vertices. Thus ΦpT0q ď 2|EpRq| ď 2

`

m
3
˘

. Since ΦpTkq ě 0, we deduce
2
`

m
3
˘

ă k ď ΦpT0q ď 2
`

m
3
˘

, a contradiction. This proves the claim.
Now, let ~G “ DpT4qr ~4pDpT4qq. To prove (iv 8.7) we need to show ~G is empty. Note that

once the procedure falls in (V) in a step i ă k ´ 1, it will happen again in step i` 1. Therefore,
by the previous discussion, we know that case (V) happened when processing Tk´1 to build Tk.
In particular, Tk´1 “ Tk “ T4 and we know cases (I)–(IV) did not hold when processing Tk´1.

Denote the vertices spanned by the arcs of ~G as V . Observe first that there are no vertices a, b P
V such that pa, bq, pb, aq P DpTk´1q otherwise case (I) would have hold. Then, notice that for
every pair a, b P V we have that µTk´1pa, bq ď 1, otherwise Tk´1 would have qualified for case (II).
This implies that ~G is an oriented graph, with no multiple edges or directed 2-cycles. Moreover,
for every vertex b P V we have either d`pbq “ 0 or d´pbq “ 0 in ~G, otherwise the case (III) would
have taken place. If ~G is non-empty, then there is a vertex b P V with d`pbq ą 0, which then
implies d´pbq “ 0. Then Lemma 8.3 implies that d`pbq ě 3. Therefore, Tk´1 would have fallen in
case (IV), a contradiction. Thus ~G is empty, which finally shows (iv 8.7). �

Now we are ready to prove the main lemma of this subsection.

Proof of Lemma 8.1. Let T Ď H as found in Lemma 8.7 and let T4 be a tour-trail decomposition
of RY T given in (iv 8.7) such that it residual digraph is a sea of triangles.

Since each trail of T4 contributes two arcs to DpT4q the number of arcs is even, and so
is the number of oriented triangles in DpT4q. Suppose the number of triangles is 2k and
let DpT4qq “

Ť

iPr2ks
~T3pai, bi, ciq. Since the triangles are vertex-disjoint and by (ii 8.7) we have

that 2k ď 30
`

m
3
˘

`.
Apply Lemma 8.6 to obtain the prism P1 “ P6pc1, b1, a1, c2, b2, a2q and the tour-trail decompo-

sition T 1 of RY T Y P1 whose residual digraph is given by

DpT 1q “ ~T3pc1, b1, a1q \ ~T3pc2, b2, a2q \
2k
ď

i“1

~T3pai, bi, ciq

“ ~T3pc1, b1, a1q \ ~T3pa1, b1, c1q \ ~T3pa2, b2, c2q \ ~T3pc2, b2, a2q \
2k
ď

i“3

~T3pai, bi, ciq.

Using Remark 8.2 we can “cancel out” the arcs of triangles ~T3pc1, b1, a1q, ~T3pa1, b1, c1q, ~T3pa2, b2, c2q,
and ~T3pc2, b2, a2q, and obtain a tour-trail decomposition Ti whose residual digraph is a sea of
triangles with 2k ´ 2 triangles.

Since 1{n ! 1{m, and every prism spans at most 12` ´ 18 new vertices, we may assume
that n is large enough for k ´ 1 ď 15

`

m
3
˘

` ´ 1 extra applications of Lemma 8.6, adding the
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prism Pi “ P pc2i´1, b2i´1, a2i´1, c2i, b2i, a2iq in each step 2 ď i ď k. Therefore, we can repeat the
previous argument until there are no more triangles in the residual digraph (and hence, no more
arcs). Taking A1 “ T Y

Ť

iPrks Pi, it is easy to check that it satisfies all the desired properties. �

8.2. From a tour decomposition to a cycle decomposition. In this section we prove the
following lemma, which constructs an absorber given a C`-divisible remainder which has a tour
decomposition.

Lemma 8.8. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a 3-graph
on n vertices with δ2pHq ě p2{3`εqn. Let R Ď H be a C`-divisible edge-disjoint collection of tours
spanning at most m vertices in total. Then, there is a C`-absorber A2 for R, such that A2 YR
spans at most 10

`

m
3
˘

`2 edges.

Given two subgraphs R1 and R2, we say that a subgraph T Ď H edge-disjoint from R1 and R2
is a pR1, R2q-transformer if T rV pR1qs, T rV pR2qs are empty and both T YR1 and T YR2 contain
a C`-decomposition. Observe that if R2 has a C`-decomposition, then T Y R2 is an absorber
for R1.

Lemma 8.9. Let ` ě 7, ε ą 0, and n,m P N be such that 1{n ! ε, 1{m, 1{`. Let H be a 3-graph
on n vertices with δ2pHq ě p2{3 ` εqn. Let R Ď H be a tour and C Ď H be a cycle. Suppose
that R and C are edge-disjoint and contain the same number of edges, which is at most m.
Then H contains an pR,Cq-transformer L with at most m` edges and spanning at most mp`´ 4q
vertices.

Proof. Let r1, r2, . . . , rm and c1, c2, . . . , cm the sequence of vertices of R and C respectively (recall
that while C does not contain repetitions, R may contain).

In the following, all operations on the indices are modulo m. We define iteratively the following
paths Pi, Qi for every i P rms. Apply Lemma 5.1 to obtain a path Pi on 5 vertices, edge-disjoint
from R Y C, from the pair pri, ri`1q to the pair pci´1, ciq. Similarly, we can obtain a path Qi
on `´ 5 vertices, from the pair pri, ri´1q to the pair pci, ci´1q, edge disjoint from RYC, and with
no interior vertex in common with the paths Pi, Pi´1.

We claim that L “
Ť

iPrms pPi YQiq is the desired transformer. Indeed, observe that the edges
of Pi and Qi together with the edge ri´1riri`1 P EpRq form a cycle of length `, thus R Y L
can be decomposed into those `-cycles. In the same way, the edges of Pi´1 and Qi together
with the edge ci´2ci´1ci P EpCq form a cycle of length `, and therefore all those cycles form a
C`-decomposition of C Y L. �

For any k, ` P N we define Bpk, `q to be the 3-graph resulting from a cycle of length k` with
vertices in tv1, v2, . . . , vk`u and identifying all vertices vi with i ” 1 mod ` and all vertices vj
with j ” 2 mod `. This is to say that Bpk, `q consists of k copies of cycles of length ` glued
through exactly two vertices, and those two vertices are consecutive in every cycle. Observe
that Bpk, `q is a tour and admits a C`-decomposition.

Now we are ready to prove Lemma 8.8.

Proof of Lemma 8.8. Consider the tours T1, T2, . . . , Tk in R and observe that k ď
`

m
3
˘

{4 (each
tour has at least 4 edges). First, we want to reduce the proof to the case in which there is a
single long tour. Suppose k ě 2 and take ai, bi two consecutive vertices in Ti for i “ t1, 2u. We
can apply Lemma 5.1 to find a path P1 on 5 vertices with ends pb1, a1q and pa2, b2q which is
edge-disjoint to R. Similarly, we can find P2 on `´ 5 vertices with ends pa1, b1q and pb2, a2q, edge-
disjoint with R, and sharing no interior vertex with P1. Starting in pa1, b2q and then traversing
sequentially T1, P1, T2, and P2, one can check that T1 Y T2 Y P1 Y P2 forms a tour spanning at
most |V pT1 Y T2q| ` `´ 4 vertices. Moreover, it is easy to see that P1 Y P2 is a cycle of length `.
By repeating this argument we can obtain A1 Ď H edge-disjoint from R, C`-decomposable, and

https://www.youtube.com/watch?v=4oOWghSh3_Q
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such that R1 “ RYA1 consists of a single tour spanning at most m` kp`´ 4q vertices. Observe
that since R is C`-divisible, then so is R1. Let m1 be the number of edges in R1 and notice that

m1 ď

ˆ

m

3

˙

` k` ď 2
ˆ

m

3

˙

`

Second, observe that by several applications of Lemma 5.1 we can find two edge-disjoint
subgraphs B,C Ď H, vertex-disjoint to each other, both of them edge-disjoint with R1, and such
that B is a copy of Bpm1{`, `q and C is a cycle of length m1 (observe that ` divides m1 since R1
is C`-divisible).

Now two suitable applications of Lemma 8.9 yield the result. More precisely, first apply
Lemma 8.9 with R1 in the rôle of R to obtain a pR1, Cq-transformer L1 Ď H with at most m1`
edges. For the second application of Lemma 8.9 observe that, since R1YL1 contain at mostm1p``1q
we may assume n is large enough so that δ2pH r pR1 Y L1qq ě p2{3 ` ε{2qn. Hence, another
application of Lemma 8.9 now with B in the rôle of R and H r pR1 Y L1q in the rôle of H yields
the existence of a pB,Cq-transformer L2 Ď H edge disjoint with R1 Y L1.

Putting all this together, and recalling that both A1 and B contain a C`-decomposition, we
have that the hypergraphs

RYA1 Y L1 Y C Y L2 YB and A1 Y L1 Y C Y L2 YB

contain C`-decompositions. To finish the proof take A2 “ A1YL1YC YL2YB and observe that
each of the hypergraphs A1, L1, L2, C, and B contain at most m1` ď 2

`

m
3
˘

`2 edges. �

8.3. Proof of Lemma 4.2. We can finally give the short proof of Lemma 4.2.

Proof of Lemma 4.2. Given R Ď H, an application of Lemma 8.1 yields the existence of A1 Ď H
edge disjoint from R such that

(i) A1 has a C`-decomposition,
(ii) A1 YR contain a tour decomposition, and
(iii) A1 YR spans at most 30

`

m
3
˘

`p6`` 1q vertices.
Then, we apply Lemma 8.8 to obtain A2 Ď H, which is an absorber of RYA1. It is straightforward
to check that A “ A1 YA2 has the desired properties. �

§9. Final remarks

A natural question is what happens for the values of ` not covered by our Theorem 1.1. Our
results do not cover C3

` -decompositions for small values of `, i.e. ` ď 8. As in the graph case, for
short cycles it is likely that the behaviour of the decomposition threshold is different.

For ` “ 4 the 3-uniform tight cycle C3
4 is isomorphic to a tetrahedron K3

4 , i.e. a complete
3-graph on four vertices. Since every pair of vertices in K3

4 has degree 2, the obvious necessary
divisibility conditions in a host 3-graph which admits a C3

4 -decomposition are (i) total number of
edges divisible by 4, (ii) every vertex degree divisible by 3, and (iii) every codegree divisible by 2.
Say that a 3-graph satisfying all three conditions is K3

4 -divisible. We define δK3
4
as the asymptotic

minimum codegree threshold ensuring a K3
4 -decomposition over K3

4 -divisible graphs (in analogy
to δC`

taken over C`-divisible graphs). The following construction shows that δK3
4
ě 3{4.

Example 9.1. Let k ě 1 be arbitrary, d “ 6k ` 2 and n “ 12k ` 9. Let G1 be an arbitrary
d-regular graph on n vertices. Let G be the graph on 2n vertices obtained by taking two vertex-
disjoint copies of G1 and adding every edge between vertices belonging to different copies, say
those edges are crossing. Now, form a 3-graph H as follows. Take a set Z on 2n vertices and
edges forming a complete 3-uniform graph on Z. Then add two new vertices x1, x2. For each
z P Z, add the edge x1x2z. Identify a copy of the graph G in Z and, for each edge z1z2 of G add
the edges z1z2x1 and z1z2x2.
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H has 2n ` 2 “ 24k ` 20 vertices and δ2pHq “ d ` n ` 1 “ 18k ` 12 (attained by any pair
x1z with z P Z). It is tedious but straightforward to check H is K3

4 -divisible. To see H is not
K3

4 -decomposable, we prove that the link graph Hpx1q is not C2
3 -decomposable. Note Hpx1q is

isomorphic to the graph G1 obtained from G by adding an extra universal vertex x. Suppose
G1 has a triangle decomposition. There are n2 crossing edges in G, at most n of those can be
covered with triangles using x. Thus at least npn´ 1q crossing edges are covered with triangles
which use one edge in a copy of G1 and two crossing edges. Thus we need at least npn´ 1q{2
edges in the two copies of G1, but those copies have dn ă npn´ 1q{2 edges, contradiction.

What is the smallest `0 such that δC3
`
“ 2{3 holds for all ` ě `0? The previous example and

Theorem 1.1 show that 5 ď `0 ď 107. Observe that our Absorbing Lemma works for all ` ě 7.
The bottleneck is our use of Theorem 7.5 in the Cover-Down Lemma. New ideas are needed to
close the gap.

Another question is what happens for k-graphs with k ě 4. It is not clear for us if Theorem 1.4
indicates the emergence of a pattern where the necessary codegree to ensure cycle decompositions
and Euler tours on n-vertex k-graphs is substantially larger than p1{2` op1qqn.
Question 9.2. For k ě 4, let H be a k-graph on n vertices. Is δk´1pHq ě ppk ´ 1q{k ` op1qqn a
necessary and sufficient condition for the existence of cycle decompositions or Euler tours?
Acknowledgments. We thank Felix Joos for helpful discussions and suggestions, and the second
author wants to thank Allan Lo and Vincent Pfenninger for useful conversations.
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§Appendix A. Proof of Lemma 7.3

Proof. The proof proceeds in three steps. First, we find Hp Ď H by including each edge with
probability p, and in the remainder H0 “ H rHp we find an almost perfect C`-packing C0, let
L0 “ H0 r EpC0q be the leftover edges. Secondly, we correct the leftover L0 in the vertices
incident with Ωpn2q many edges of L0 by constructing cycles with the help of the edges in Hp.
This provides us with a new cycle packing C1 Ď L0YHp whose new leftover L1 “ H0 rEpC0YC1q
satisfies ∆1pL1q “ opn2q. Finally, we correct the new leftover L1 in a similar way, fixing the pairs
incident to Ωpnq edges in L1. We get a cycle packing C2 Ď L1 YHp, and C0 Y C1 Y C2 will be the
desired cycle packing.

Step 1: Random slice and aproximate decomposition. Note that δp3q2 pHq ě 3εn. Now let p “ γ{4,
and let Hp Ď H be obtained from H by including each edge independently with probability p.
Using concentration inequalities (e.g. Theorem 5.4) we see that with non-zero probability

∆2pHpq ď 2pn, and δp3q2 pHpq ě 2εpn. (A.1)

hold simultaneously for Hp. From now on we suppose Hp is fixed and satisfies (A.1).
Let H0 “ H rHp. In H0, construct a C`-packing by removing edge-disjoint cycles, one by one,

until no longer possible. We get a C`-packing C0 in H0, let F0 “ EpC0q. By Erdős’ Theorem [7,
Theorem 1] there exists c ą 0 such that L0 “ H0 r F0 has at most n3´3c edges.

Step 2: Eliminating bad vertices. Let B0 “ tv P V : degL0pvq ě n2´2cu. Since |L0| ď n3´3c, by
double-counting we have |B0| ď 3n1´c.

For each b P B0, let Gb be the subgraph of L0pbq obtained after removing the vertices of B0.
Note that L0pbq ´G0 has at most |B0|n ď 3n2´c edges. Now, let Pb be a maximal edge-disjoint
collection of paths of length 3 in Gb. Since every graph on n vertices with at least n` 1 edges
contains a path of length 3, then Gb ´ EpPbq has at most n edges. All together, we deduce that
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the number of edges in L0pbq ´ EpPbq satisfies

|L0pbq| ´ |EpPbq| ď 3n2´c ` n ď 4n2´c. (A.2)

Since Gb contains at most n2 edges, we certainly have |Pb| ď n2. Let Pb be a collection of tight
paths on five vertices obtained by replacing each v0v1v2v3 in Pb with the tight path v0v1bv2v3 in
L0. Note that any two distinct P1, P2 P Pb are edge-disjoint, and for two distinct b, b1 P B0, and
P P Pb, P 1 P Pb1 , since b1 R V pGbq we have P, P 1 are edge-disjoint. Thus the union P “

Ť

bPB0
Pb

is an edge-disjoint collection of tight paths on 5 vertices.
Select γ1, µ1, ε1 such that 1{n ! γ1 ! µ1 ! ε1 ! γ, ε, 1{`. We wish to apply Lemma 7.1 to extend

P into cycles. We claim P is γ1-sparse. Let S P
`

V pHq
2

˘

. Since |P| ď |B0|n
2 ď 3n3´c ď γ1n3,

certainly P contains at most |P| ď γ1n3 paths of type 0 for S. Now, note that for each b P B0,
P P Pb can have at most 2n paths of type 1 for S, thus P has at most |B0|2n ď 6n2´c ď γ1n2

paths of type 1 for S. Analogously, for each b P B0, P P Pb can have at most 1 path of type 2 for
S, thus P has at most |B0| ď 3n1´c ď γ1n paths of type 2 for S. Thus P is γ1-sparse.

Recall that L0 is edge-disjoint with Hp. Inequalities (A.1) together with p “ γ{4 and ε1 ! γ, 1{`,
show that we can use Corollary 5.3 (with U “ V pHq) and deduce that for each P P P, there
exists at least ε1n`´5 copies of C` in L0 YHp which extend Pi using extra edges of Hp only.

We apply Lemma 7.1 with ε1, µ1, γ1, `, 5, L0, Hp,P playing the rôle of ε, µ, γ, `, `1, H1, H2,P
respectively, to obtain a C`-decomposable graph F1 Ď L0 YHp such that EpPq Ď F1 and

∆2pF1 r EpPqq ď µ1n. (A.3)

Since F0, F1 are edge-disjoint, F0 Y F1 is C`-decomposable. Let L1 “ H0 r pF0 Y F1q. Observe
that, if v R B0, then degL1pvq ď degL0pvq ă n2´2c by definition. Moreover, if v P B0, then each
edge in EpPvq is in F1, and hence (A.2) implies degL1pvq ď |L0pvq|´ |EpPvq| ď 4n2´c. Therefore,

∆1pL1q ď 4n2´c. (A.4)

Step 3: Eliminating bad pairs. Let f “ c{2 and B1 “ txy P
`

V
2
˘

: degL1pxyq ě n1´fu. From
|L1| ď |L0| ď n3´3c ď n3´6f we deduce |B1| ď n2´4f . Now consider B1 as the set of edges of a
2-graph in V . Each edge of B1 incident to a vertex x implies that x belongs to at least n1´f edges
in L1, and each of those edges participates in at most two of the edges in B1 incident to x. So we
have degL1pxq ě

1
2n

1´f degB1pxq. Together with inequality (A.4) we deduce ∆pB1q ď 8n1´f .
A path P on L1 is B1-based if P “ zxyw and xy P B1. Let P2 be a maximal packing of

B1-based paths. For all xy P B1, it holds that degL1pxyq ´ degEpP2qpxyq ď 1. Otherwise it would
exist distinct z, w P NL1rEpP2qpxyq, and then zxyw would a B1-based path not in P2 which
contradicts its maximality.

We claim P2 is γ1-sparse. For each xy P B1, let Pxy Ď P2 be the paths whose two interior
vertices are precisely xy. Clearly |Pxy| ď n and P2 “

Ť

xyPB1
Pxy. Let e P

`

V
2
˘

. Since |P2| ď
ř

xyPB1
|Pxy| ď n|B1| ď n3´4f ď γ1n3, there are at most γ1n3 paths of type 0 for e in P2. Recall

that if P “ zxyw is a path of type 1 for e, then we have |eX tz, x, y, wu| “ 1. If xy P B1 satisfies
e X tx, yu “ ∅, then at most two paths in Pxy can be of type 1 for e and therefore there are
at most 2|B1| ď 2n2´4f paths of type 1 for e in P2. We estimate the contribution of the pairs
xy P B1 such that |eX tx, yu| “ 1. Each such xy contributes with at most n paths of type 1 for e
in Pxy. By (A.4), the number of such xy is at most 2∆pB1q ď 16n1´f , thus the total contribution
of those pairs is at most 16n2´f . All together, the total number of paths of type 1 for e in P2 is
at most 2n2´4f ` 16n2´f ď γ1n2. If e “ ta, bu then Pa,b does not contain any path of type 2 for
e, by definition of the path types. Thus the only possible contributions come from the pairs in
Pa,x and Pb,y for some x, y P V pHq; and each one of those sets contains at most 1 path of type 2
for e. Thus the total number of pairs of type 2 for e in P2 is at most 2∆pB1q ď 16n1´f ď γ1n.
Thus P2 is γ1-sparse.
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Let H 1p “ Hp r pF0 Y F1q. (A.1) and (A.3), together with µ1 ! ε1 ! γ, 1{`, allow us to use
Corollary 5.3 with U “ V pHq, thus for each P P P2, there exists at least ε1n`´4 copies of C` in
L1 YH

1
p which extend P using extra edges of H 1p only. Apply Lemma 7.1 with the parameters

ε1, µ1, γ1, `, 4, L1, H
1
p,P2 playing the rôles of ε, µ, γ, `, `1, H1, H2,P respectively, to obtain a C`-

decomposable F2 Ď L1 YH
1
p such that EpP2q Ď F2 and ∆2pF2 r EpP2qq ď µ1n.

We claim that ∆2pL1 r F2q ď n1´f . Indeed, if xy P B1, degL1rF2pxyq ď degL1pxyq ď n1´f

follows by definition, otherwise, EpP2q Ď F2 implies degL1rF2pxyq ď degL1pxyq ´ degF2pxyq ď 1.
Since F2 and F0 Y F1 are edge-disjoint, F “ F0 Y F1 Y F2 is a C`-decomposable subgraph of H.
We claim L “ H r F satisfies ∆2pLq ď γn. Indeed, an edge not covered by F is either in Hp or
in L1 r F2. Thus we have ∆2pLq ď ∆2pHpq `∆2pL1 r F2q ď 2pn` n1´f ď γn, as required. �
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