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Abstract

Estimating the pose and shape of hands and objects un-
der interaction finds numerous applications including aug-
mented and virtual reality. Existing approaches for hand
and object reconstruction require explicitly defined physical
constraints and known objects, which limits its application
domains. Our algorithm is agnostic to object models, and it
learns the physical rules governing hand-object interaction.
This requires automatically inferring the shapes and physi-
cal interaction of hands and (potentially unknown) objects.
We seek to approach this challenging problem by propos-
ing a collaborative learning strategy where two-branches
of deep networks are learning from each other. Specifically,
we transfer hand mesh information to the object branch
and vice versa for the hand branch. The resulting optimi-
sation (training) problem can be unstable, and we address
this via two strategies: (i) attention-guided graph convo-
lution which helps identify and focus on mutual occlusion
and (ii) unsupervised associative loss which facilitates the
transfer of information between the branches. Experiments
using four widely-used benchmarks show that our frame-
work achieves beyond state-of-the-art accuracy in 3D pose
estimation, as well as recovers dense 3D hand and object
shapes. Each technical component above contributes mean-
ingfully in the ablation study.

1. Introduction

Understanding human hand and object interaction is fun-
damental for meaningful interpretation of human action and
behaviour [65, 72]. With the advent of deep learning and
RGB-D sensors, pose estimation of isolated hands has made
significant progress, e.g., depth-based [12,69,74,81,82] and
RGB-based [51,60,63,77,85] methods. However, despite a
strong link to real applications such as augmented and vir-
tual reality [32,52,71], joint reconstruction of hand and ob-
ject [33, 35] has received relatively less attention. In this
paper, we focus on the problem of hand and object recon-
struction from a single RGB image (see Fig. 1).

Camera view Rotated view

Figure 1. We propose a collaborative learning framework which al-
lows sharing of mesh information across hand and object branches
iteratively. Our model jointly reconstructs hand and object meshes
from a monocular RGB image.

Joint hand and object pose estimation is a challenging
problem. First, while self-occlusion in hand is a well-known
problem [56,80], when interacting with objects, hands (and
objects) exhibit even greater occlusion from almost any
point of view mutually [53]. Secondly, first-person-view
(e.g., FHB [24] dataset) often exhibits large degree of er-
ratic camera motion. Recent works [23, 42, 65] have been
able to tackle some major challenges in joint hand-object
pose estimations in colour input. However, in the absence
of physical constraints, and with sparse keypoint detection,
they often lead to erroneous pose estimation or mesh recon-
structions (e.g. hands penetrating objects).

To fundamentally understand hand-object interactions,
it is essential to fully recover 3D information, and ac-
cordingly, there has been significant improvements towards
hand mesh estimations from single RGB image [3, 4, 10,
19,25, 41, 50, 83, 84, 86]. Hasson et al. [35] further pro-
posed attraction and repulsion loss terms to generate physi-
cally plausible reconstructions. Recent optimisation-based
approaches [14, 34] that rely on these contact terms are
limited to scenarios where hand and object are already in
contact. However, the ability to reason pre-grasp stages are
equally important as it allows robots to infer human in-



tents [48] and learn manipulation skills from humans [45].
Therefore, we propose a strategy that is not restricted by
these contact terms and is able to learn the context of actual
as well as near physical contact.

Our novel collaborative learning framework allows hand
and object branches to boost each other in a progressive and
iterative fashion. There are two motivations for this strat-
egy: 1) estimating the pose of interacting hands and objects
is a highly-correlated task and 2) mutual occlusions can be
tackled by simultaneously sharing mesh information. This
is supported by the fact that the image encoder struggles to
extract useful features under mutual occlusion, and there-
fore capturing object mesh information would compensate
this limitation for hand reconstruction (the same in object
branch). Previous attempts in this context share informa-
tion across branches via simple branch stacking [79] where
communication bottleneck exists: We empirically observed
that performance gain across network inference iterations
are limited in this approach. We explicitly address this by a
new unsupervised associative loss facilitating the informa-
tion transfer. Further, to address frequently occurring occlu-
sions in hand-object interaction scenarios, we propose an
attention-guided graph convolution that can be trained in an
unsupervised manner. Our graph convolution demonstrates
the ability to improve mesh quality as well as correct hand
and object poses.

Our contributions are the following:

1. We propose an end-to-end trainable collaborative
learning strategy for hand-object reconstruction from
a single RGB image.

2. We design an attention-guided graph convolution to
capture mesh information dynamically.

3. We introduce an unsupervised training strategy for ef-
fective feature transfer between hand-object branches.

4. We demonstrate that our model achieves highly physi-
cally plausible results without contact terms.

We evaluate our method on four hand-object datasets i.e.
FHB [24], ObMan [35], HO-3D [31] and DexYCB [17] and
demonstrate that our method significantly outperform state-
of-the-art approaches.

2. Related works

Our work tackles the problem of hand and object recon-
struction from a single RGB image. We first review the lit-
erature on Hand-Object Reconstruction. Then, we focus on
the line of work that leverages Graph Convolutional Neural
Networks on hand-related tasks. Finally, we provide a brief
review on Collaborative Learning despite its weak link in
the literature.

Hand-object reconstruction. Joint reconstruction of hands

and objects has been receiving increasing attention [14,33—
35]. Hasson et al. [35] leverages a differentiable MANO

network layer enabling end-to-end learning of hand shape
estimation and incorporates contact losses which encour-
ages contact surfaces and penalises penetrations between
hand and object. Hasson et al. [33] assumes known ob-
ject models and leverages photometric consistency as self-
supervision on the unannotated intermediate frames to im-
prove hand and object reconstructions. Karunratanakul et
al. [38] proposes an implicit representation for hand in the
form of sign distance fields. Recent works mostly adopt
optimisation-based procedures to jointly fit hand-object
meshes [14, 34, 78]. In this paper, we propose a learning-
based strategy where immediate features are shared across
hand-object branches and are able to produce physically
plausible interactions without any contact terms.

Graph convolution-based methods. As skeleton can be
represented in a form of graph, graph convolution naturally
attracts much attention in hand pose estimation. Graph con-
volutional neural networks (GCN) can be split into spectral-
[11, 21, 40] and spatial-based methods [27, 49, 76]. For
spectral-based application, [19, 25] adopt the Chebyshev
spectral graph convolution [21] to compute hand mesh. Cai
etal. [13] leverages GCN [40] and apply on the sequence of
skeletons as a spatial-temporal graph to exploit the spatial
and temporal consistencies for pose estimation. Doosti e?
al. [23] proposes a lightweight graph convolutional network
which jointly estimates hand and object poses. Kulon et
al. [41] proposes spiral filters to recover hand mesh directly
from autoencoder. They demonstrate that spatial mesh con-
volutions outperform spectral methods and SMPL-based
models [44,57] for hand reconstruction. In contrast, our pro-
posed attention-guided graph convolution is able to take dy-
namic graph input and does not assume a fixed neighbour-
hood for feature aggregation.

Collaborative learning. There has been a lot of literatures
concerning learning multiple tasks simultaneously. They
span across the spectrum of multi-task learning [7, 8, 15],
domain adaptation [46, 47], distributed learning [6, 22, 70]
and collaborative learning [9, 37, 54, 61]. Collaborative
learning refers to making learning more efficient through
sharing of information. Blum et al. [9] proposes a collabora-
tive PAC (probably approximately correct) learning model
which was built upon Valiant ez al. [66] and [18, 54] are the
follow-up works. Song et al. [61] introduces one form of
collaborative learning framework in which multiple classi-
fier heads of the same network are simultaneously trained
on the same training data to improve generalisation and ro-
bustness without extra inference cost. There are two major
mechanisms under his framework: 1) Same training datasets
for multiple views from different classifiers improves gen-
eralisation and 2) Intermediate-level representation sharing.
Yang et al. [79] exploits joint-aware features for gesture
recognition and 3D hand pose estimation. Their mechanism
focuses on intermediate-level representation sharing itera-
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Figure 2. A schematic illustration of our framework. It takes an input image x, which goes through two separate ResNet-18 [36] encoders,

ENC}qna(x) and ENC,y,;(x) to produce hand and object features, rrang and rop;, respectively. Hand mesh estimator g

HME takes Thand

conv

and output hand mesh my, 4,4 Which is then pass to graph convolution module g7 and output ¢rqnq4. Object mesh estimator takes both

T'op; and Ppana to output object mesh myp;. Similarly, graph convolution module Jobj
then combine with hand features r1qnq4 and goes into the hand mesh estimator g™~

ooy " takes object mesh myy; and output ¢op; which is

. An unsupervised associative loss is used to supervise

the feature transfer process under network iterations, i.e. nana and ¢op;. We have included an example on the bottom right corner which
demonstrates the effect of our attention-guided graph convolution for iteration ¢.

tively across multiple tasks. In this paper, we improve on
[79] with an attention-guided graph convolution and an un-
supervised associative loss to guide the intermediate-level
representation sharing process. Also, our proposed graph
convolution is based on a multi-head attention mechanism
which possesses the spirit of [61] to improve generalisation
with multiple views on the same dataset.

3. Collaborative estimation of hand and object
meshes

Our training pipeline, as shown in Fig. 2, takes an in-
put RGB image x € R2%6%256 and involves 4 steps for
one iteration: 1) Reconstruct hand mesh using the paramet-
ric MANO model [57]; 2) Extract hand features from hand
mesh guided by our associative loss; 3) Reconstruct object
mesh by fusing object encoder features and extracted hand
features from the previous step; and 4) Extract object fea-
tures from object mesh. Our architecture is split into hand
and object branches. Each branch has a ResNet-18 [36]
encoder pre-trained on ImageNet [58]: ENCjqpna(x) and
ENCobj (X)

The key motivation for our approach is to leverage
the implicit hand-object relationship: We target the prob-
lem of mutual occlusion in hand-object interactions by si-
multaneously sharing 3D reconstructions under our col-
laborative learning framework. However, naively connect-
ing network branches tended to accumulated errors, lead-
ing to highly unstable training. Therefore, we propose an
attention-guided graph convolution to capture 3D recon-
structions dynamically. In addition, by following the notion

that hand shape deforms according to object shape, we pro-
pose an unsupervised associative loss to improve the fea-
ture transfer process from hand to object, and vice versa.
Our networks are trained in an end-to-end manner. Alg. 1
summarises the training process.

3.1. Hand mesh estimator ¢/

We adopted the differential MANO [57] model from
[35]. It maps pose (@ € R5!) and shape (3 € R!'?) pa-
rameters to a mesh with N = 778 vertices. Pose parameters
(0) consists of 45 DoF (i.e. 3 DoF for each of the 15 finger
joints) plus 6 DoF for rotation and translation of the wrist
joint. Shape parameters (3) are fixed for a given person. A
kinematic tree is formed with the 15 joints and the wrist
joint as the first parent node. Joint locations can be obtained
using the kinematic tree with global rotation based on 6.

Given the 512-dimensional hand feature vector rjqyq4,
we use a fully connected layer to regress 8 and 3. The origi-
nal MANO model uses 6-dimensional PCA (principal com-
ponent analysis) subspace of 8 for computational efficiency.
However, we empirically observed that full 45-dimensional
pose space better captures a variety of hand poses especially
over sequential datasets. A hand mesh can be defined as
Mpyand = (Vhand, fhand)> Where Viana € R78%3 refers
to a set of vertices in the mesh and f},4,,q € R'938%3 refers
to a close set of edges (i.e. a triangle face has 3 edges). The
mesh faces f},,,,4 is provided by MANO [57].

Hand reconstruction loss Lj,,q. We directly optimise
root-relative 3D positions by minimising their L2 distance
to the corresponding ground-truth vertex positions vj . .-



Ly (Vhana) = [Vhand = Viandls (1)

When ground truth vertex positions are not available, we
supervise on 3D joint locations J € R"™*? where n refers to
the number of joints. The 3D joint loss is defined as:

LyI) =T =33, )

where J* refers to ground truth joint positions. The result-
ing loss is defined as: Ly 4nqg = Lv + L. We do not adopt
hand shape regularisation as in [35] as we empirically ob-
served that our iterative process already prevents extreme
mesh deformation.

3.2. Object mesh estimator ¢g°-

Given the 512-dimensional object feature vector rgp;,
we adopt AtlasNet [29] from [35] to estimate object mesh
Moy = (Vobj, fopj), i-e. Vopj € R42%3 refers to object
vertices and f,,; € R1280%3 refers to object mesh faces.

Object reconstruction loss £,;;. As object mesh is recon-
structed in the camera coordinate frame, it can be directly
optimised by minimising the Chamfer distance as in [29].
The resulting loss is defined as:

Lastvor) =5 ( X vy, @)+ Y v ), @

TEVobj yEvzbj

where vy, . refers to the points uniformly sampled on
the surface of the ground truth object, dyr (¥) =

. 2 . 2
minyey:, |2 = ylly, and dy,,,; (y) = mingev,,; [ = yll;-

3.3. Attention-guided graph convolution g°"v

Preliminary. We propose to use the message passing
scheme [27] in graph convolution to capture mesh informa-
tion and transfer to the opposite branch. By denoting vertex
feature ng) € RF of vertex 4 in layer k, the first step of
such message passing scheme can be described as:

msg! = AGGREGATE® ({v*D v e N(i)}), 4

where message msg’ is formed by aggregating neighbour-
hood N (i) around vertex ¢ from previous layer (k —1). The
second step updates vertex feature with this new message:

v# = UPDATE® (v{* V)

,msg;). 5)
The choice for neighbourhood N (7), aggregating function
AGGREGATE™ and update function UPDATE™® are cru-
cial. There has been a variety of functions proposed in the
literature [21,27,40,76]. In this work, we propose to lever-
age attention mechanism to construct aggregating neigh-
bourhood and a history term for updating node features.

Objective. By defining P to be the number of itera-
tions per forward pass, the input is a sequence of meshes
(mj,m2,...) where m} = (v}, f}) fort € [1,...,P]
is defined by vertices v}, and faces f} for either branch
0 € {hand, obj}. The objective is to estimate feature offset
Al ., from the hand branch for object reconstruction, and
vice versa:

t+1

I'obj

= Top; + Ahana- 6)
Attention-guided graph convolution. As the above se-
quential task involves dynamically evolving graphs, static
graph convolution would not be suitable because the
weights are only being updated after P iterations. There-
fore, a solution should maintain the history of operations.
Furthermore, our experiments confirm that static graph con-
volutions that assumes fixed neighbourhood do not benefit
from increasing iterations P (see Table 6).

By assuming input mesh vertices vy is an un-ordered
set, we propose to dynamically construct neighbourhoods
N (7) using attention mechanism [5, 26]. Attention coeffi-
cient o;; € [0, 1] is defined as the importance of vertex j’s
features to vertex ¢ [68]. Node j is included in the neigh-
bourhood N (i) of < when «;; is larger than a threshold, i.e.
0.5. Finally, our proposed graph convolution layer at itera-
tion ¢ can be defined by rewriting Egs. (4-5) as:

. exp (LeakyReLU(a—r (Wi HWV?]))

Qg

= (N
D ket €XD (LeakyReLU(aT (WvE|Wvi] ))

where attention coefficient afj is computed using incom-
ing vertices v! = {v{,..., v} with N being the maxi-
mum mesh vertices and learnable weights a € R2?!" and
W ¢ R¥*3, Note that F is a hyperparameter and || is con-
catenation operation. We then update history h! of vertex i:

K

1
hit! = LayerNOrm(K Z Z ozf;-kV§ + h§>, ®)
k=1jENT(i)

where N'¢(7) is the aggregating neighbourhood around ver-
tex 7 at ¢, history h* = {hf, ..., h%} and it is initialised as
0. Similar to [67,68], we find multi-head attention afj to be
beneficial and apply layer normalisation [2] to stabilise and
enable faster training. We use residual connection [36] to
track the history sequence and prevent performance drop on
increasing iterations. In the final step, we use a fully con-
nected layer to resize to the same size as image features
ro(x), namely ¢y.

Discussions. Our proposed graph convolution is reminis-
cent to GAT [68] and any k-nearest neighbours (k-NN)
based dynamic graph convolutions like EdgeConv [73].
However, our approach differentiates from those because



firstly, we do not assume static graph inputs. Secondly, we
differentiate from GAT [68] by how we leverage attention
mechanism - they aggregate on fixed and local neighbour-
hood whereas we take this further by dynamically con-
structing global neighbourhood using attention mechanism.
In addition, as the incoming mesh are 3D positions, k-
NN like approaches suffer from local neighbourhood ag-
gregation and high k-NN computational cost at each iter-
ations. In short, our proposed method is able to capture
long-range dependencies from dynamic graph in a single
layer. In Table 6, we experiment with two common graph
convolution operators (GCN [40] and spiral mesh convolu-
tion [28,41]) and demonstrate superior performance of our
proposed attention-guided graph convolution.

3.4. Associative supervision

Due to mutual occlusion in hand-object scenarios [53],
it is challenging for the image encoder to capture useful
information for mesh reconstruction. Instead, here we rely
on the fact that hand pose changes with respect to different
objects. For example, we hold cups differently depending
on whether it has handle or not. We hypothesise that ob-
ject branch benefits from hand mesh information (and vice
versa for hand branch) and assume that good feature trans-
fer in collaborative learning occurs when these features are
highly similar within the same object class and distinctive
across all other object classes. However, in practice, such
object class information is not available. Hence, we propose
an unsupervised loss to facilitate effective feature transfer.

Given ¢g = {3, ..., 5’} with B being the input batch
size, we update the image features by simple addition. In
the following, we describe an unsupervised loss for ¢y.

Associative loss L;;s,. Our approach is inspired by [30]
which was originally designed for semi-supervised learn-
ing. We imagine a walker going along ®; = [¢},,,,45 bp;]
where ¢ € {1,..., B}. As each ®; comes in pair with the
same object class, we define a correct walk if transition is
under the same object class. We define similarity between
two embeddings as:

My =@/ ®;, 1<i,j<B. ©)

A single transition based on embeddings similarity is de-
fined as:

exp(Mij)
> exp(Mijr)
The round trip probability (Markov Chain) of walking from
1 to j can then be defined as:
prevnd = Py, Py (11)
ke{1,...,B}

P, = P(®;|%;) = (10)

We further extend this into an unsupervised loss by encour-
aging the walker to walk back to its starting batch index .

This can be achieved by leveraging the fact that batch index
implicitly refers to an object class Cyp; € {1,...,0} and
O < B. An unsupervised loss L5, can be obtained as:

»Casso((zse) = HU - Pround”i ) (12)

where || - ||  is the Frobenius norm and U is a diagonal ma-
trix of % values: The i-th diagonal entry U;; represents that
the walker starts at and returns to state ¢. U can be adjusted
if dataset is class-imbalanced.

4. Experiments

Implementation details. We implement our method in Py-
Torch [55]. All experiments are run on an Intel 19-CPU @
3.50GHZ, 16 GB RAM, and one NVIDIA RTX 3090 GPU.
We train all parts of the network simultaneously with Adam
optimiser [39] at a learning rate 10~ for 400 epochs. We
then freeze the ResNet [36] encoders and decrease the learn-
ing rate to 10~ for another 100 epochs. We empirically
fixed K = 3 attention heads and P = 2 iterations to pro-
duce the best results. Our final 10ss £ f;y,4 is defined as:

['final = Ehand + ['obj + ['asso- (13)

Datasets. First-person hand benchmark (FHB). This is a
widely-used dataset [24] which contains egocentric RGB-
D videos on a wide range of hand-object interactions. The
ground-truth of hand and object poses are captured via mag-
netic sensors. There are 4 available objects, i.e. juice bot-
tle, liquid soap, milk and salt. For fair comparisons with
[33, 65], we follow the same action split for evaluation
where each object is present in both training and testing.
We also compare with [35] which uses the subject split of
the dataset following their experimental settings: They fil-
tered frames when the hand is further than 1cm away from
the manipulated object and excluded the milk object. We
call this subset FHB~ which contains a total of 3 objects.

Algorithm 1 Collaborative learning algorithm

Require: x :inputimage, P : network iteration
1: function OPTIMISE(LTota1)

2: rhand < ENChand(X) > Extract hand features

3; My ana —™E(vhana) > Get hand mesh
4: fort =1to Pdo

5: Ohand < 5oV (Mpenq) > Hand Graph Conv.
6: ropj < ENCopj(X) + dnana > Feature update
7: m,p; g (rop;) > Get object mesh
8: Pobj < opg "’ (Mobj) > Object Graph Conv.
o; Thand < Thand + obj > Feature update
10: Mpand <_gHME(rhandl)

11: end for

12: end function




ObMan. This is a large synthetic dataset [35] which was
produced by rendering hand meshes with selected objects
from ShapeNet [16]. It captures 8 object categories and
results in a total of 2,772 meshes which are split among
154,000 image frames. We pretrained the network on Ob-
Man before training on other real datasets: We observed in
our preliminary experiments that their setting led to consis-
tent improvements over training directly on real data.

DexYCB. This is a recent real dataset for capturing hand
grasping of objects [17]. It consists a total of 582,000 im-
age frames on 20 objects from YCB-Video dataset [75]. We
present results on all 4 official dataset split settings.

HO-3D. [31] is most similar to DexYCB where it consists
of 78,000 images frames on 10 objects. We present results
on the official dataset split (version 2). The hand mesh error
is reported after procrustes alignment and in mm.

Evaluation metrics. Hand error. We report the mean end-
point error (mm) over 21 joints and use the percentage of
correct keypoints (PCK) score to evaluate at different error
thresholds.

Object error. We measure the accuracy of object recon-
struction by computing the Chamfer distance (mm) be-
tween points sampled on ground truth and predicted mesh.

Hand-object interaction. To understand hand-object in-
teraction, we followed [35] to include penetration depth
(mm) and intersection volume (c¢m?). Penetration depth
refers to the maximum distances from hand mesh vertices
to the object’s surface when in a collision. Intersection vol-
ume is obtained by voxelising the hand and object using a
voxel size of 0.5¢cm.

Results. Joint hand-object reconstruction. As recent efforts
on joint hand-object reconstructions [14, 33, 34,38, 78] as-
sume known object models, we compare with [35] (adopted
differential MANO model, AtlasNet and does not assume
known object models) in Table 1. Similar to FHB, we used
the default DexYCB split and filtered frames when hand and
manipulated object are 1cm apart. We name this subset to
be DexYCB™ and retrain [35] using their released code. As
shown, there is still a presence of interpenetration at test
time and even increases the hand error by 0.7mm on FHB~
with contact loss in [35]. This is mainly due to the fact that
their model is not implicitly learning the physical rules im-
posed by the contact loss. In contrast, our method consis-
tently outperforms [35] with a higher hand-object recon-
struction accuracy. In addition, we provide qualitative com-
parisons on FHB and CORe50 [43] datasets in Fig. 3.
Hand pose estimation. We first compare with state-of-
the-art methods on HO-3D [31] in Table 2. As shown, our
method performs competitively against methods that as-
sumes known object models. Then, we compare on FHB
(both action split and subject split) in Table 3 and 4. Note
that [33] is an extension to [35] which leverages photomet-

ObMan Ours

~

Rotated view Rotated view

refers to models trained with FHB. Bottom two rows refers to
in-the-wild settings where models are only trained with synthetic
dataset ObMan. Our method is able to refine and sharpen object
mesh under the collaborative learning framework (see blue arrows)
and generalise better hand pose in both settings.

Table 1. Quantitative comparison with ObMan [35] on ObMan,
FHB™ and DexYCB™ datasets. * refers to the results with contact
loss. Our proposed collaborative learning strategy performs com-
petitively without physical contact loss.

Datasets ObMan FHB~ DexYCB™

Method [35] [35]* Ours [35] [35]* Ours [35]*  Ours
Hand error (mm)]. 11.6  11.6 9.1 28.1 28.8 253 176 153
Object error (mm)| 641.5 6379 385.7 | 1579.2 1565.0 1445.0 | 5494 501.2
Max. penetration (mm)| | 9.5 9.2 7.4 18.7 12.1 16.1 146 121
Intersection vol. (cm?)| 12.3 12.2 9.3 26.9 16.1 14.7 14.9 134

Table 2. Error rates of different hand pose estimation methods
on HO-3D. Note that the reported results for [42] output hand
meshes only. We outperform two other architecturally similar net-
works [33,35] without known object models under our collabora-
tive learning framework.

Mesh F-score F-score Known

Method | error | @5mm T @l5mm 1T objects
[35] 11.0 46.0 93.0 X
[31] 10.6 50.6 94.2 v
[42] 9.5 52.6 95.5 v
[33] 114 42.5 93.4 v

Ours ‘ 10.9 48.5 94.3 X

ric consistency but required known object model. As shown
in Table 3, we demonstrate superior performances among
all three architecturally similar networks [33, 35]. We at-
tribute the performance gain in action split (i.e. FHB) to the
fact that FHB~ contains almost half of FHB with incom-



Table 3. Error rates of different algorithms. FHB refers to action
split and FHB™ refers to subject split of the dataset.

FHB FHB~
Method Hand Error Hand Error
Tekin et al. [65] 15.8 -
Hasson et al. [33] - 28.0
Hasson et al. [35] 18.0 27.4
Cao et al. [14] 14.2 -
Ours ‘ 9.8 25.3

Table 4. PCK performance over respective error threshold on FHB.
Compared to another collaborative learning framework [79] and
graph-based method [23], our method performs better and is able
to reconstruct both hand-object meshes.

Method | PCK@20mm | PCK@25mm

Tekin et al. [65] 69.17% 81.25%
Hernando et al. [24] 74.73 % 82.10%
Yang et al. [79] 81.03% 86.61%
Doosti et al. [23] 92.17% 92.63%
Ours ‘ 93.14% ‘ 95.65%
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Figure 4. 3D PCK for ObMan (left) and FHB (right). Note that

Hasson et al. refers to [35], and Doosti et al. [23] is a hand-object
pose estimation method where known object is given.

Error Threshold (mm)

plete object list and unseen test subjects during test time.
We analyse our hand pose estimation performance using the
PCK metric in Table 4. Note that Yang et al. [79] takes se-
quential images as input and leverages action recognition
task in their collaborative framework. We achieve state-of-
the-art performance to in hand pose estimation with the ad-
vantage of object reconstruction. 3D PCK curves are shown
in Fig. 4. Finally, we compare with a supervised version
of Spurr et al. [62] which won the HANDS 2019 Chal-
lenge [1] on DexYCB [17]. In Table 5, the numbers are ob-
tained from [17] where [62] has a HRNet32 [64] backbone.

Ablation study. To motivate our design choices, we present
a quantitative comparison of our method with various com-
ponents disabled. We validate that the combination of our
design choices outperforms the naive collaborative learn-
ing baseline (see supplementary), which predicts the em-
beddings directly and perform 3D reconstruction last.

Table 5. Error rates on DexYCB and [62] is the winner of HANDS
2019 Challenge [1]. Table indicates hand error (mm) with AUC
values in parentheses. SO-S3 are the official dataset splits [17].

| so | st | s2 | s3
[62] 17.34(0.698) | 22.26(0.615) | 25.49(0.530) | 18.44(0.686)
Ours | 16.05(0.722) | 21.22(0.620) | 27.01(0.521) | 17.93(0.698)

Table 6. Performances of different network design choices on
FHB™. We experiment on network iterations P, associative loss
L qss0 and different convolution operators. The baseline on the first
row is same as ObMan [35].

W Lasso w/o Lasso
Method Hand Error  Object Error | Hand Error ~ Object Error
Baseline - - 28.4 1655.2
Baseline (P = 1) 26.9 1600.3 27.4 1625.9
Baseline (P = 2) 253 1445.0 26.3 1618.4
Baseline (P = 3) 254 1448.2 26.4 1620.5
Baseline (P = 4) 253 1447.9 26.3 1612.9
Baseline (P = 5) 25.3 1445.6 26.2 1618.8
GCN [40] (P =1) 27.1 1587.6 27.8 1629.8
GCN [40] (P =2) 27.0 1590.8 28.2 1635.1
Spiral [28,41] (P =1) 26.8 1581.8 27.6 1630.1
Spiral [28,41] (P = 2) 26.9 1600.2 27.6 1629.5

Impact of the number of network iterations (P): Table
6 shows the results of varying P with associative loss and
demonstrate that associative loss contributes to improving
hand and object error. This can be expected since hand-
object reconstruction are highly correlated such that learn-
ing in a collaborative manner enables performance boost
to each other. The effectiveness of our proposed dynamic
graph convolution can be demonstrated by the fast perfor-
mance saturation at P = 2. Note that we took [35] as our
baseline and graph convolution is enabled from P = 1.

Comparison with static graph convolution: To motivate
our proposed dynamic graph convolution, we experiment
with two commonly used graph convolution in Table 6,
i.e. GCN [40] and spiral mesh convolution [28,41]. As the
graph convolutions weights are only updated after P itera-
tions, increasing network iterations will have zero effects.
It can be seen that static graph convolution does not ben-
efit from increasing network iterations. We also observed
that our unsupervised associative loss (L,ss,) consistently
improves hand-object error across Table 6.

Effectiveness of associative loss (Lgss0): To further
study the effect of our unsupervised L., we plot the train-
ing loss for the collaborative framework, with and without
associative loss in Fig. 5. Unsurprisingly, we find that in-
creasing network iterations P contributes to a higher con-
vergence rate (right of Fig. 5). We also observe that our un-
supervised associative loss (Lgss0) i able to stabilise the
training across all iterations (left of Fig. 5). This shows that
training with L5, is crucial for this framework.

Mesh generation within iterations: We target the prob-
lem of mutual occlusion of interacting hand and object by
sharing 3D information at each iteration via graph convo-
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Figure 5. Progression of training losses for iterations P =
{1, ..., 4}, without (leff) and with (right) associative loss Lqsso-

Table 7. Ablation studies on collaborative learning framework de-
sign. We experiment on both FHB™ and the default DexYCB (S0)
dataset split. * refers to the naive collaborative learning baseline.

FHB~ DexYCB (S0)
Method Hand Error  Object Error | Hand Error  Object Error
P=1 Ours* 28.0 1759.4 17.9 563.4
Ours 26.9 1600.3 17.6 529.3
P =2 Ours* 27.6 1726.8 17.5 554.6
Ours 25.3 1445.0 16.1 461.1
P = Ours* 27.1 1678.1 17.3 542.1
Ours 254 1448.2 16.0 464.2

lution. To validate this design choice, we construct a sim-
pler collaborative learning framework which directly pre-
dicts embeddings ¢y and reconstruct meshes my at the fi-
nal stage (see supplementary diagram). As FHB has lim-
ited backgrounds and visible magnetic sensors, we compare
the two design on FHB and DexYCB. Table 7 shows that
our final design consistently outperforms the naive compo-
sition baseline across both datasets. We observe that shar-
ing 3D mesh information across hand and object branches
improves both reconstruction performance. At the bottom
right of Fig. 2, we provide a qualitative example of how
reconstruction changes with graph convolution. It can be
confirmed that our attention-guided graph convolution com-
bined with collaborative learning enables better mesh qual-
ity as well as more accurate pose estimation. We provide
additional qualitative results in Fig. 6.

Input Camera view Rotated view

S
%
kol
Q

DexYCB

Epic-Kitchen

5. Conclusion

In this paper, we have proposed a novel collaborative
learning framework which allows the sharing of mesh in-
formation across hand and object branches iteratively. The
main idea behind this study was to demonstrate that mutual
occlusion can be tackled in a learning-based strategy. We
designed an attention-guided graph convolution which cap-
tures long-range dependencies from dynamic graph in a sin-
gle layer. However, training with increasing network itera-
tions can be highly unstable. Therefore, we proposed an un-
supervised associative loss to stabilise the training and im-
prove the feature transferring process. Our method demon-
strated superior performance when compared to other exist-
ing approaches on multiple widely-used datasets.

Limitations. Our work relied on AtlasNet for object re-
construction, and we observed that the object reconstruction
quality varies with the size of training data. Furthermore,
we have only considered static objects, hence future works
should consider the interaction between hands and articu-
lated objects.

Potential negative societal impact. Our method can facil-
itate hand-based interaction in various applications includ-
ing augmented and virtual reality. In general, advances in
hand-based interaction can potentially introduce a barrier to
or discourage people having difficulty in using their hands.
This could be mitigated when accompanied by technical
advances in other modes of interaction, e.g. eye or mouse
tracking, or body gesture-based interaction.
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