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Abstract
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)cate-
gories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct
examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of
displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this
notion and prove that several bicategories of interest are univalent. Among these are the bicategory of
univalent categories with families and the bicategory of pseudofunctors between univalent bicategories.
Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a
univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent
mathematics.

Keywords: Bicategory theory; univalent mathematics; dependent type theory; Coq

1. Introduction
Category theory (by which we mean 1-category theory) is established as a convenient language
to structure and discuss mathematical objects and morphisms between them. To axiomatize the
fundamental objects of category theory itself – categories, functors, and natural transformations
– the theory of 1-categories is not enough. Instead, category-like structures allowing for “mor-
phisms between morphisms” were developed to account for the natural transformations. Among
those structures are bicategories. Bicategory theory was originally developed by Bénabou (1967) in
set-theoretic foundations. The goal of our work is to develop bicategory theory in univalent foun-
dations. Specifically, we give a notion of a univalent bicategory and show that some bicategories
of interest are univalent, with examples from algebra and type theory. To this end, we generalize
(univalent) displayed categories of Ahrens and Lumsdaine (2019) to the bicategorical setting and
prove that the total bicategory generated by a displayed bicategory is univalent, if the constituent
pieces are. In addition, we show how to embed any bicategory with univalent hom-categories into
a univalent bicategory via the Yoneda lemma, and we show how to use displayed machinery to
construct biequivalences between total bicategories.

Univalent foundations and categories therein. According to Voevodsky (2014), a foundation of
mathematics specifies, in particular, three things:
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2 B. Ahrens et al.

(1) a language for mathematical objects;
(2) a notion of proposition and proof; and
(3) an interpretation of those into a world of mathematical objects.

By “univalent foundations,” we mean the foundation given by univalent type theory as described,
for example, in the HoTT book (Univalent Foundations Program, 2013), with its notion of “uni-
valent logic,” and the interpretation of univalent type theory in Kan complexes expected to arise
from Voevodsky’s simplicial set model (Kapulkin and Lumsdaine, 2021).

In the simplicial set model, univalent categories (just called “categories” by Ahrens et al. 2015)
correspond to truncated complete Segal spaces, which in turn are equivalent to ordinary (set-
theoretic) categories. In this respect, univalent categories are “the right” notion of categories in
univalent foundations: they correspond exactly to the traditional set-theoretic notion of category.
Similarly, the notion of univalent bicategory, studied in this paper, provides the correct notion of
bicategory in univalent foundations (Ahrens et al., 2021, Example 9.1). In this work, we provide
results for showing, modularly, that certain bicategories are univalent.

Throughout this article, we work in type theory with function extensionality. We explicitly
mention any use of the univalence axiom. We use the notation standardized in the HoTT book
(Univalent Foundations Program, 2013); a significantly shorter overview of the setting we work
in is given by Ahrens et al. (2015). As a reference for 1-category theory in univalent foundations,
we refer to Ahrens et al. (2015), which follows a path suggested by Hofmann and Streicher (1998,
Section 5.5).

Motivation: bicategories for type theory. One of the motivations for this work stems from several
particular (classes of) bicategories that come up in our work on the semantics of type theories and
Higher Inductive Types (HITs).

Firstly, we are interested in the “categories with structure” that have been used in the model
theory of type theories. The purpose of the various categorical structures is tomodel context exten-
sion and substitution. Prominent such notions are categories with families (see, e.g., the work by
Clairambault and Dybjer 2014; Dybjer 1995), categories with attributes (see, e.g., work by Pitts
2000), and categories with display maps (see, e.g., work by North 2019; Taylor 1999). Each notion
of “categorical structure” gives rise to a bicategory whose objects are categories equipped with
such a structure. In the present work, we provide machinery that can be used to show, in a mod-
ular way, that these bicategories are univalent; we exemplify the machinery with categories with
families.

Secondly, Dybjer and Moeneclaey (2018) define a notion of signature for 1-HITs and study
algebras of those signatures. These algebras are groupoids equipped with extra structure accord-
ing to the signature. In the present work, we give general methods for constructing bicategories of
such algebras and we demonstrate the usage of those methods by constructing the bicategory of
monads internal to a given bicategory. We then construct a bicategory of Kleisli triples (an alterna-
tive presentation of monads1) and show that it is equivalent to the bicategory of monads. We also
show that the resulting bicategory of monads internal to the bicategory of univalent categories is
biequivalent to the bicategory of Kleisli triples.

Technical contribution: displayed bicategories. In this work, we develop the notion of displayed
bicategory in analogy to the 1-categorical notion of displayed category introduced by Ahrens and
Lumsdaine (2019). Intuitively, a displayed bicategory D over a bicategory B represents data and
properties to be added to B to form a new bicategory: D gives rise to the total bicategory

∫
D. Its

cells are pairs (b, d) where d in D is a “displayed cell” over b in B. Univalence of
∫
D can be shown

from univalence of B and “displayed univalence” of D. The latter two conditions are easier to show,
sometimes significantly easier.

Two features make the displayed point of view particularly useful: firstly, displayed structures
can be iterated, making it possible to build bicategories of very complicated objects layerwise.
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Mathematical Structures in Computer Science 3

Secondly, displayed “building blocks” can be provided, for which univalence is proved once and
for all. These building blocks, for example, the Cartesian product, can be used like LEGOTM pieces
to modularly build bicategories of large structures that are automatically accompanied by a proof
of univalence.

We demonstrate these features in examples, proving univalence of three important (classes of)
bicategories: first, the bicategory of pseudofunctors between two univalent bicategories; second,
bicategories of algebraic structures (given as pseudoalgebras of pseudofunctors); and third, the
bicategory of categories with families.

Main contributions. Here we give a list of the main results presented in this paper:

• Following the construction of the Rezk completion for categories by Ahrens et al. (2015,
Theorem 8.5), we show in Section 5 that every locally univalent bicategory embeds into a
univalent one. This result fundamentally relies on the proof of a bicategorical version of the
Yoneda lemma.

• We develop displayed infrastructure for bicategories and show that it is useful for build-
ing bicategories. In particular, we modularly prove univalence of complicated bicategories
in Section 9, such as the bicategory of pseudofunctors between two univalent bicategories,
the bicategory of pseudoalgebras of a given pseudofunctor, and the bicategory of categories
with families.

• We show the benefits of the displayed infrastructure for defining morphisms between bicat-
egories in layers. We demonstrate this on two examples in Section 8: the construction of a
biequivalence between pointed 1-types and pointed univalent groupoids and the construc-
tion of a biequivalence between monads internal to the bicategory of univalent categories
and the bicategory of Kleisli triples.

Formalization. The results presented here are mechanized in the UniMath library (Voevodsky
et al., 2021), which is based on the Coq proof assistant (Coq Development Team, 2019). The
UniMath library is under constant development; in this paper, we refer to the version with git
hash c26d11b. Throughout the paper, definitions and statements are accompanied by a link to the
online documentation of that version. For instance, the link bicat points to the definition of a
bicategory.

Related work. Our work extends the notion of univalence from 1-categories (Ahrens et al., 2015)
to bicategories. Similarly, we extend the notion of displayed 1-category (Ahrens and Lumsdaine,
2019) to the bicategorical setting.

Ahrens et al. (2020) devise a notion of “signature” and “theory” for mathematical structures.
To each theory they associate a type of models of that theory and a predicate of “being univa-
lent” on such models. Their signatures encompass, in particular, bicategories (Ahrens et al., 2021,
Example 9.1), more specifically, saturated ana-bicategories. Ana-bicategories that are both satu-
rated and univalent should correspond to the univalent bicategories studied here, even though a
formal statement and construction of a suitable equivalence is outside the scope of the present
work.

Capriotti and Kraus (2018) study univalent (n, 1)-categories for n ∈ {0, 1, 2}. They only con-
sider bicategories where the 2-cells are equalities between 1-cells; in particular, all 2-cells
considered there are invertible, and their (2, 1)-categories are by definition locally univalent
(cf. Definition 3.1, Item 1). Consequently, the condition called univalence by Capriotti and Kraus
is what we call global univalence, cf. Definition 3.1, Item 2. In this work, we study bicategories,
a.k.a. (weak) (2, 2)-categories, that is, we allow for non-invertible 2-cells. The examples we study
in Section 9 are proper (2, 2)-categories and are not covered by Capriotti and Kraus (2018).

Outside of univalent foundations, there are also computer-checked libraries of bicategory
theory, see, for example, work by Stark (2020), Hu and Carette (2021).
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Publication history. This article is an extended version of a conference contribution (Ahrens et al.,
2019). Compared to the conference version, we have added the following content:

• In Section 2, we define the notion of biequivalence of bicategories, the “correct” notion
of sameness for bicategories. We construct a biequivalence between 1-types and univalent
groupoids.

• In Section 3, we present an induction principle for invertible 2-cells in a locally univa-
lent bicategory and an induction principle for adjoint equivalences in a globally univalent
bicategory. We put these principles to work in a number of examples.

• Section 4 is new. In there, we propose a definition of 2-category and of strict bicategory, and
we show that these are equivalent.

• Section 5 is new. In there, we show that any bicategory embeds into a univalent one via the
Yoneda embedding. This construction is reminiscent of the Rezk completion for categories.

• In Section 6, we give the definition of the displayed bicategory of monads internal to a given
bicategory and the displayed bicategory of Kleisli triples . The bicategory of monads on a
bicategory B is univalent whenever B is univalent, which is proved in Section 9.2.

• Section 8 is new. In there, we introduce the notion of displayed biequivalence. Using this
notion, we show that the biequivalence between 1-types and univalent groupoids extends to
a biequivalence between their pointed variants. We also construct a biequivalence between
the bicategory of Kleisli triples and the bicategory of monads internal to the bicategory of
univalent categories.

• Section 10 is new. Following a suggestion by an anonymous referee, we generalize the
constructions in Sections 9.2 and 9.3 using displayed inserters.

2. Bicategories and Some Examples
Bicategories were introduced by Bénabou (1967), encompassingmonoidal categories, 2-categories
(in particular, the 2-category of categories), and other examples. He (and later many other authors)
defines bicategories in the style of “categories weakly enriched in categories.” That is, the hom-
objects B1(a, b) of a bicategory B are taken to be (1-)categories, and composition is given by a
functor B1(a, b)× B1(b, c)→ B1(a, c). This presentation of bicategories is concise and convenient
for communication between mathematicians.

In this article, we use a different, more unfolded definition of bicategories, which is inspired by
Bénabou (1967, Section 1.3) and nLab authors (2018, Section “Details”). One the one hand, it is
more verbose than the definition via weak enrichment. On the other hand, it is better suited for
our purposes; in particular, it is suitable for defining displayed bicategories, cf. Section 6.

Definition 2.1 (prebicat, bicat). A prebicategory B consists of
(1) a type B0 of objects;
(2) a type B1(a, b) of 1-cells for all a, b : B0;
(3) a type B2(f , g) of 2-cells for all a, b : B0 and f , g : B1(a, b);
(4) an identity 1-cell id1(a) : B1(a, a);
(5) a composition B1(a, b)× B1(b, c)→ B1(a, c), written f · g;
(6) an identity 2-cell id2(f ) : B2(f , f );
(7) a vertical composition θ • γ : B2(f , h) for all 1-cells f , g, h : B1(a, b) and 2-cells θ : B2(f , g)

and γ : B2(g, h);
(8) a left whiskering f � θ : B2(f · g, f · h) for all 1-cells f : B1(a, b) and g, h : B1(b, c) and 2-cells

θ : B2(g, h);
(9) a right whiskering θ � h : B2(f · h, g · h) for all 1-cells f , g : B1(a, b) and h : B1(b, c) and 2-cells

θ : B2(f , g);
(10) a left unitor λ(f ) : B2(id1(a) · f , f ) and its inverse λ(f )−1 : B2(f , id1(a) · f );
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(11) a right unitor ρ(f ) : B2(f · id1(b), f ) and its inverse ρ(f )−1 : B2(f , f · id1(b));
(12) a left associator α(f , g, h) : B2(f · (g · h), (f · g) · h) and a right associator α(f , g, h)−1 : B2((f ·

g) · h, f · (g · h)) for f : B1(a, b), g : B1(b, c), and h : B1(c, d)
such that, for all suitable objects, 1-cells, and 2-cells,

(13) id2(f ) • θ = θ , θ • id2(g)= θ , θ • (γ • τ )= (θ • γ ) • τ ;
(14) f � (id2g)= id2(f · g), f � (θ • γ )= (f � θ) • (f � γ );
(15) (id2f )� g = id2(f · g), (θ • γ )� g = (θ � g) • (γ � g);
(16) (id1(a)� θ) • λ(g)= λ(f ) • θ ;
(17) (θ � id1(b)) • ρ(g)= ρ(f ) • θ ;
(18) (f � (g � θ)) • α(f , g, i)= α(f , g, h) • ((f · g)� θ);
(19) (f � (θ � i)) • α(f , h, i)= α(f , g, i) • ((f � θ)� i);
(20) (θ � (h · i)) • α(g, h, i)= α(f , h, i) • ((θ � h)� i);
(21) (θ � h) • (g � γ )= (f � γ ) • (θ � i);
(22) λ(f ) • λ(f )−1 = id2(id1(a) · f ), λ(f )−1 • λ(f )= id2(f );
(23) ρ(f ) • ρ(f )−1 = id2(f · id1(b)), ρ(f )−1 • ρ(f )= id2(f );
(24) α(f , g, h) • α(f , g, h)−1 = id2(f · (g · h)), α(f , g, h)−1 • α(f , g, h)= id2((f · g) · h);
(25) α(f , id1(b), g) • (ρ(f )� g)= f � λ(g);

f · (id1(b) · g) α(f ,id1(b),g) ��

f�λ(g)
��

(f · id1(b)) · g

ρ(f )�g
�� ����

����
����

����
�

����
����

����
����

�

f · g

(26) α(f , g, h · i) • α(f · g, h, i)= (f � α(g, h, i)) • α(f , g · h, i) • (α(f , g, h)� i).

f · (g · (h · i)) α(f ,g,h·i) ��

f�α(g,h,i)
��

(f · g) · (h · i) α(f ·g,h,i) �� ((f · g) · h) · i

f · ((g · h) · i)
α(f ,g·h,i)

�� (f · (g · h)) · i
α(f ,g,h)�i

����������������

��������������

A bicategory is a prebicategory whose types of 2-cells B2(f , g) are sets for all a, b : B0 and f , g :
B1(a, b).

We write a→ b for B1(a, b) and f ⇒ g for B2(f , g).
Mitchell Riley formalized a definition of bicategories as “categories weakly enriched in cat-

egories” in UniMath, based on work by Peter LeFanu Lumsdaine. We do not reproduce this
definition here; it is available as prebicategory. That definition is equivalent to our definition,
in the following sense:

Proposition 2.2 (weq_bicat_prebicategory). The type of bicategories defined in Definition 2.1
is equivalent to the type of bicategories in terms of weak enrichment.

For this result, one needs to show that each B1(a, b) forms a category whose morphisms are
2-cells. Let us introduce this formally.
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6 B. Ahrens et al.

Definition 2.3 (hom). Let B be a bicategory and a, b : B0 objects of B. Then, we define the hom-
category B1(a, b) to be the category whose objects are 1-cells f : a→ b and whose morphisms from
f to g are 2-cells α : f ⇒ g of B. The identity morphisms are identity 2-cells, and the composition is
vertical composition of 2-cells.

Recall that our goal is to study univalence of bicategories, which is a property that relates
equivalence and equality. For this reason, we study the two analogs of the 1-categorical notion
of isomorphism. The corresponding notion for 2-cells is that of invertible 2-cells.

Definition 2.4 (is_invertible_2cell). A 2-cell θ : f ⇒ g is called invertible if we have γ : g ⇒
f such that θ • γ = id2(f ) and γ • θ = id2(g). An invertible 2-cell consists of a 2-cell and a proof that
it is invertible, and inv2cell(f , g) is the type of invertible 2-cells from f to g.

Since 2-cells form a set and inverses are unique, being an invertible 2-cell is a proposition. In
addition, id2(f ) is invertible, and we write id2(f ) : inv2cell(f , f ) for this invertible 2-cell.

The bicategorical analog of isomorphisms for 1-cells is the notion of adjoint equivalence.

Definition 2.5 (adjoint_equivalence). An adjoint equivalence structure on a 1-cell f : a→ b
consists of a 1-cell g : b→ a and invertible 2-cells η : id1(a)⇒ f · g and ε : g · f ⇒ id1(b) such that
the following two diagrams commute

(f · g) · f α(f ,g,f ) �� f · (g · f )
f�ε

��
id1(a) · f
η�f

��

f · id1(b)
ρ(f )
��

f
id2(f )

��

λ(f )−1

��

f

g · (f · g) α(g,f ,g)−1
�� (g · f ) · g

ε�g
��

g · id1(b)
g�η

��

id1(b) · g
λ(g)
��

g
id2(g)

��

ρ(g)−1

��

g

An adjoint equivalence consists of a 1-cell f together with an adjoint equivalence structure on f .
The type AdjEquiv(a, b) consists of all adjoint equivalences from a to b.

We call η and ε the unit and counit of the adjoint equivalence, and we call g the right adjoint.
The prime example of an adjoint equivalence is the identity 1-cell id1(a), and we denote it by
id1(a) : AdjEquiv(a, a). Sometimes, we write a� b for AdjEquiv(a, b).

Before we start our study of univalence, we present some examples of bicategories and
preliminary notions from bicategory theory.

Example 2.6 (fundamental_bigroupoid). Let X be a 2-type. Then, we define the fundamental
bigroupoid π(X) to be the bicategory whose 0-cells are inhabitants of X, 1-cells from x to y are
paths x= y, and 2-cells from p to q are higher-order paths p= q. The operations, such as compo-
sition and whiskering, are defined using path induction. Every 1-cell is an adjoint equivalence and
every 2-cell is invertible.

Example 2.7 (one_types). Let U be a universe. The objects of the bicategory 1-TypeU are
1-truncated types of the universeU, the 1-cells are functions between the underlying types, and the
2-cells are homotopies between functions. The 1-cells id1(X) and f · g are defined as the identity
and composition of functions, respectively. The 2-cell id2(f ) is refl, the 2-cell p • q is the concate-
nation of paths. The unitors and associators are defined as identity paths. Every 2-cell is invertible,
and adjoint equivalences from X to Y are the same as equivalences of types from X to Y .
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Example 2.8 (bicat_of_univ_cats). We define the bicategory Cat of univalent categories as
the bicategory whose 0-cells are univalent categories, 1-cells are functors, and 2-cells are natu-
ral transformations. The identity 1-cells are identity functors, the composition and whiskering
operations are composition of functors and whiskering of functors and transformations, respec-
tively. Invertible 2-cells are natural isomorphisms, and adjoint equivalences are external adjoint
equivalences of categories.

Example 2.9 (op1_bicat). Let B be a bicategory. Then we define Bop to be the bicategory whose
objects are objects in B, 1-cells from x to y are 1-cells y→ x in B, and the 2-cells from f to g are
2-cells f ⇒ g in B.

Definition 2.10 (fullsubbicat). Let B be a bicategory and P : B0 → hProp a predicate on the
0-cells of B. We define the full subbicategory of B with 0-cells satisfying P as the bicategory whose
objects are pairs (a, pa) : ∑(x:B0) P(x), 1-cells from (a, pa) to (b, pb) are 1-cells a→ b in B, and
2-cells are as in B. In Example 6.5, we present a construction of this bicategory using displayed
bicategories.

Example 2.11 (grpds). We define the bicategory Grpd as the full subbicategory of Cat in which
every object is a groupoid.

For 1-categories, the “correct” notion of equality is not isomorphism of categories, but equiva-
lence of categories. Similarly, the right notion of equality for bicategories is biequivalence. To talk
about biequivalences, we need to introduce pseudofunctors.

Definition 2.12 (psfunctor). Let B and C be bicategories. A pseudofunctor F from B to C
consists of

• A function F0 : B0 → C0;
• For all a, b : B0, a function F1 : B1(a, b)→ C1(F0(a), F0(b));
• For all f , g : B1(a, b), a function F2 : B2(f , g)→ C2(F1(f ), F1(g));
• For each a : B0 an invertible 2-cell Fi(a) : id1(F0(a))⇒ F1(id1(a));
• For each f : B1(a, b) and g : B1(b, c), an invertible 2-cell Fc(f , g) : F1(f ) · F1(g)⇒ F1(f · g)

such that
F2(id2(f ))= id2(F1(f )) F2(f • g)= F2(f ) • F2(g)

and such that the following diagrams commute (where all free variables should be taken to be
universally quantified):

F1(f ) · F1(g1)
F1(f )�F2(θ)

��

Fc(f ,g1) �� F1(f · g1)
F2(f�θ)
��

F1(f ) · F1(g2) Fc(f ,g2)
�� F1(f · g2)

F1(f1) · F1(g)
F2(θ)�F1(g)

��

Fc(f1,g) �� F1(f1 · g))
F2(θ�g)
��

F1(f2) · F1(g) Fc(f2,g)
�� F1(f2 · g)

id1(F0(a)) · F1(f ) λ(F1(f )) ��

Fi(a)�F1(f )
��

F1(f )

F1(id1(a)) · F1(f ) Fc(id1(a),f )
�� F1(id1(a) · f )

F2(λ(f ))

��
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F1(f ) · id1(F0(b)) ρ(F1(f )) ��

F1(f )�Fi(b)
��

F1(f )

F1(f ) · F1(id1(b)) Fc(f ,id1(b))
�� F1(f · id1(b))

F2(ρ(f ))

��

F1(f ) · (F1(g) · F1(h)) α(F1(f ),F1(g),F1(h)) ��

F1(f )�Fc(g,h)
��

(F1(f ) · F1(g)) · F1(h)
Fc(f ,g)�F1(h)
��

F1(f ) · F1(g · h)
Fc(f ,g·h)

��

F1(f · g) · F1(h)
Fc(f ·g,h)
��

F1(f · (g · h))
F2(α(f ,g,h))

�� F1((f · g) · h)

We write B→ C for the type of pseudofunctors from B to C.

In the remainder of the paper, we sometimes write F(a) instead of F0(a), and we use the same
convention for F1 and F2. We call the 2-cells Fi and Fc the identitor and compositor, respectively.
From each pseudofunctor F : B→ C, we can assemble functors F1(a, b) : B1(a, b)→ C1(F(a), F(b))
between the hom-categories.

Definition 2.13 (pstrans). Let B and C be bicategories and F,G : B→ C pseudofunctors between
them. Then, a pseudotransfomation η from F to G consists of

• For each a : B0 a 1-cell η0(a) : F0(a)→G0(a);
• For each a, b : B0 and f : B1(a, b), an invertible 2-cell η1(f ) : η0(a) ·G1(f )⇒ F1(g) · η0(b)

such that the following diagrams commute

η0(a) · id1 ρ ��

η0(a)�Gi(a)
��

η0(a)
λ−1

�� id1 · η0(a)
Fi(a)�η0(a)
��

η0(a) ·G1(id1)
η1(id1(a))

�� F1(id1) · η0(a)

η0(a) · (G1(f ) ·G1(g))
α ��

η0�Gc

��

(η0(a) ·G1(f )) ·G1(g)

η1(f )�G1(g)
��

(F1(f ) · η0(b)) ·G1(g)

α−1

��
η0(a) ·G1(f · g)

η1(f ·g)

��

F1(f ) · (η0(b) ·G1(g))

F1(f )�η1(g)
��

F1(f ) · (F1(g) · η0(c))
α

��
F1(f · g) · η0(c) (F1(f ) · F1(g)) · η0(c)Fc�η0(c)��

We write F ⇒G for the type of pseudotransformations from F to G.
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Definition 2.14 (modification). Let B and C be bicategories, F,G : B→ C be pseudofunctors,
and η, θ : F ⇒G be pseudotransformations. A modification � from η to θ consists of 2-cells �(a) :
η(a)⇒ θ(a) for each a : B such that

η(a) ·G1(f )
η(f ) ��

�(a)�G1(f )
��

F1(f ) · η(b)
F1(f )��(b)
��

θ(a) ·G1(f )
θ(f )

�� F1(f ) · θ(b)

commutes for any a, b : B and f : B1(a, b). We write η � θ for the type of modifications from η to θ .

To illustrate these three definitions, we look at some examples.

Example 2.15. Let X and Y be 2-types.

• (ap_psfunctor) Each function f : X → Y induces a pseudofunctor f : π(X)→ π(Y), which
sends objects x : X to f (x), 1-cells p : x= y to ap f p, and 2-cells h : p= q to ap (ap f ) h.

• (ap_pstrans) Suppose we have f , g : X → Y and e : ∏x:X f (x)= g(x). Then we obtain a pseu-
dotransformation e : f ⇒ g whose component at x is e(x), and whose actions on 1-cells are
given by path induction.

• (ap_modification) Let f , g : X → Y and e1, e2 : ∏x:X f (x)= g(x). Then each family of
paths h : ∏x:X e1(x)= e2(x) gives rise to a modification h : e1 � e2 whose component at x
is h(x).

Example 2.16. We have the following pseudofunctors and pseudotransformations:
• (id_psfunctor) Given a bicategory B, we have the identity pseudofunctor id (B) from B to
B. Its action on 0-cells, 1-cells, and 2-cells is the identity.

• (comp_psfunctor) Given bicategories B1, B2, and B3 and pseudofunctors F : B1 → B2 and
G : B2 → B3, then we have a pseudofunctor F ·G fromB1 toB3. It sends objects a toG0(F0(a)),
1-cells f to G1(F1(f )), and 2-cells θ to G2(F2(θ)).

• (id_pstrans) Given bicategories B1 and B2 and a pseudofunctor F : B1 → B2, we have a
pseudotransformation id (F) from F to F. It sends objects a to id1(F1(a)), and similarly for
1-cells.

• (comp_pstrans) Given bicategories B1 and B2, pseudofunctors F,G,H : B1 → B2, and two
pseudotransformations θ1 : F ⇒G and θ2 :G⇒H, we have a pseudotransformation η1 • η2 :
F ⇒H. It sends objects a to θ1(a) · θ2(a).

Note that we have a bicategory Pseudo(B, C) of pseudofunctors, pseudotransformations, and
modifications. We construct this bicategory in Section 9.1 using displayed bicategories, and then,
we define invertible modifications to be invertible 2-cells in this bicategory. With all this in place,
we can define biequivalences.

Definition 2.17 (biequivalence). Let B and C be bicategories. A biequivalence from B to C
consists of

• A pseudofunctor L : B→ C;
• A pseudofunctor R : C→ B;
• Pseudotransformations η : R · L⇒ id (C) and ηi : id (C)⇒ R · L;
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• Pseudotransformations ε : L · R⇒ id (B) ad εi : id (B)⇒ L · R;
• Invertible modifications

m1 : η • ηi � id m2 : ηi • η � id m3 : ε • εi � id m4 : εi • ε � id

Usually, the notion of biequivalence is not sufficient, and instead biadjoint biequivalences are
used. The latter notion has an extra requirement, namely that L and R form a pseudoadjunction
(Lack, 2000). Note that this is similar to the situation in types (Univalent Foundations Program,
2013, Section 4) and categories (Mac Lane, 1978, Section IV.4), where one also considers coher-
ent notions of equivalence. However, we restrict our attention to biequivalences, because every
biequivalence can be refined to a biadjoint biequivalence (Gurski, 2012, Theorem 3.1).

As an example, we construct a biequivalence between 1-types (Example 2.7) and univalent
groupoids (Example 2.11).

Example 2.18 (biequiv_path_groupoid). We construct a biequivalence between 1-types and
univalent groupoids. We only show how the involved pseudofunctors are defined.

• (path_groupoid) Define a pseudofunctor PathGrpd : 1-Type→ Grpd. It sends a 1-type X
to the groupoid PathGrpd(X) whose objects are X andmorphisms from x to y are paths x= y.

• (objects_of_grpd) Define a pseudofunctor Ob : Grpd→ 1-Type. It sends a groupoid G to
the 1-type Ob(G) whose inhabitants are objects of G. Note that this is a 1-truncated type,
because G is univalent.

3. Univalent Bicategories
Recall that a (1-)category C (called “precategory” by Ahrens et al. 2015) is called univalent if, for
every two objects a, b : C0, the function idtoisoa,b : (a= b)→ Iso(a, b) mapping the constant path
to the identity isomorphism is an equivalence. For bicategories, where we have one more layer of
structure, univalence can be imposed both locally and globally.

Definition 3.1 (Univalence.v). Univalence for bicategories is defined as follows:

(1) Let a, b : B0 and f , g : B1(a, b) be objects and morphisms of B; by path induction we define
a function idtoiso2,1f ,g : f = g → inv2cell(f , g) which sends refl (f ) to id2(f ). A bicategory B is
locally univalent if, for every two objects a, b : B0 and two 1-cells f , g : B1(a, b), the function
idtoiso2,1f ,g is an equivalence.

(2) Let a, b : B0 be objects of B; using path induction we define idtoiso2,0a,b : a= b→
AdjEquiv(a, b) sending refl (a) to id1(a). A bicategory B is globally univalent if, for every
two objects a, b : B0, the canonical function idtoiso2,0a,b is an equivalence.

(3) (is_ univalent_ 2 ) We say that B is univalent if B is both locally and globally univalent.

Local univalence can be characterized via the hom-categories. More precisely, it is equivalent
to all hom-categories being univalent.

Proposition 3.2 (is_univalent_2_1_weq_local_univ). A bicategory B is locally univalent if
and only if for every a, b : B0 the category B(a, b) is univalent.

Remark 3.3. If B and C are locally univalent and F is a pseudofunctor from B to C, then the
identity and compositions are preserved up to a path instead of just an invertible 2-cell. However,
this does not mean such pseudofunctors should be considered as strict, because these are not paths
between elements of a set.

https://doi.org/10.1017/S0960129522000032
Downloaded from https://www.cambridge.org/core, on subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid.html#biequiv_path_groupoid
https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid.html#path_groupoid
https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.PseudoFunctors.Examples.PathGroupoid.html#objects_of_grpd
https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.Core.Univalence.html
https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.Core.Univalence.html#is_univalent_2
https://unimath.github.io/doc/UniMath/c26d11b//UniMath.Bicategories.Core.Univalence.html#is_univalent_2_1_weq_local_univ
https://doi.org/10.1017/S0960129522000032
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Mathematical Structures in Computer Science 11

Univalent bicategories satisfy a variant of the elimination principle of path induction. More
precisely, there are two such principles: a local one for invertible 2-cells and a global one for adjoint
equivalences. We start with the induction principle associated with invertible 2-cells:

Proposition 3.4 (J_2_1). Let B be a locally univalent bicategory. Given a type family Y and a
function y with types

Y :
∏

(a,b:B0)

∏
( f ,g:B1(a,b))

inv2cell( f , g)→ U y :
∏

(a,b:B0)

∏
( f :B1(a,b))

Y(a, b, f , f , id2(f )),

there is a function

J2,1(Y , y) :
∏

(a,b:B0)

∏
( f ,g:B1(a,b))

∏
(θ :inv2cell(f ,g))

Y(a, b, f , g, θ)

such that J2,1(Y , y, a, b, f , f , id2(f ))= y(a, b, f ).

In particular, in order to prove a predicate over all invertible 2-cells in a given locally univalent
bicategory, it suffices to prove it for all identity 2-cells.

Next, we present the induction principle associated with adjoint equivalences:

Proposition 3.5 (J_2_0). Let B be a globally univalent bicategory. Given a type family Y and a
function y with types

Y :
∏

(a,b:B0)
a� b→ U y :

∏
(a:B0)

Y(a, a, id1(a)),

there is a function

J2,0(Y , y) :
∏

(a,b:B0)

∏
(f :a�b)

Y(a, b, f )

such that J2,0(Y , y, a, a, id1(a))= y(a).

In particular, in order to prove a predicate over all adjoint equivalences in a given globally
univalent bicategory, it suffices to prove it for all identity 1-cells. Notice that in both induc-
tion principles, the computation rules hold only up to propositional equality. Next, we present
some usage examples of how to use Propositions 3.4 and 3.5. The constructions described in
Example 3.6 and Proposition 3.9 work for arbitrary bicategories, not just globally/locally univa-
lent ones. Nevertheless, these constructions are considerably simpler if the involved bicategories
satisfy certain univalence assumptions.

Example 3.6 (comp_adjoint_equivalence). In a globally univalent bicategory B, sequential
composition of adjoint equivalences can be defined in a way that resembles the construction
of composition of paths. Consider the type family Y(a, b, f ) :≡ ∏

(c:B0) b� c→ a� c and the
function y(a) :≡ λ (c : B0)(f : a� c). f . The composition of f : a� b and g : b� c is given by

f ·� g :≡ J2,0(Y , y, a, b, f , c, g).

Example 3.7 (left_adjequiv_invertible_2cell). Let B be a bicategory, f , g : B1(a, b) and
θ : inv2cell(f , g). If f is an adjoint equivalence, then g is an adjoint equivalence as well. While
this result generally holds in any bicategory B, it is particularly simple to prove when B is locally
univalent. Applying Proposition 3.4, we are left to prove the statement with θ as the identity 2-cell.
In that statement, f and g are definitionally equal, and hence the statement is trivially true.
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Proposition 3.8. Every pseudofunctor F : B→ C preserves adjoint equivalences, that is, if f : a� b
in B, then F1(f ) : F0(a)� F0(b) in C.

Proof. Lengthy but straightforward.

If B is globally univalent and C is locally univalent, the above statement can be proved very
easily.

Proposition 3.9 (psfunctor_preserves_adjequiv). If B is globally univalent and C is locally
univalent, then every pseudofunctor F : B→ C preserves adjoint equivalences.

Proof. Applying Proposition 3.5 on f , we are left to prove that F1(id1(a)) is an adjoint equiva-
lence. Since F is a pseudofunctor, there exists an invertible 2-cell Fi(a) : id1(F0(a))⇒ F1(id1(a)).
Therefore, by Example 3.7 and the fact that id1(F0(a)) is an adjoint equivalence, we conclude that
F1(id1(a)) is an adjoint equivalence as well.

Another consequence is that biequivalences between univalent bicategories gives rise to
equivalences on the level of objects.

Proposition 3.10 (biequivalence_to_object_equivalence).Given univalent bicategories B
and C, and a biequivalence F from B to C, then we get an equivalence of types F0 : B0 � C0.

While right adjoints are only unique up to isomorphism in general, they are unique up to
identity if the bicategory is locally univalent:

Proposition 3.11 (isaprop_left_adjoint_equivalence). Let B be locally univalent. Then
having an adjoint equivalence structure on a 1-cell in B is a proposition.

As a consequence of this proposition, we get the following:

Theorem 3.12. In a univalent bicategory B,

• (univalent_ bicategory_ 0_ cell_ hlevel_ 4 ) the type B0 of 0-cells is a 2-type.
• (univalent_ bicategory_ 1_ cell_ hlevel_ 3 ) for any two objects a, b : B0, the type a→
b of 1-cells from a to b is a 1-type.

Proposition 3.11 has another important use: to prove global univalence of a bicategory, we
need to show that idtoiso2,0a,b is an equivalence. Often we do that by constructing a function in the
other direction and showing these two are inverses. This requires comparing adjoint equivalences,
which is done with the help of Proposition 3.11.

Local univalence is also relevant when one discusses bicategorical analogues of limits and col-
imits. To exemplify this, we look at biinitial objects, and we note that a similar discussion can be
given for bifinal objects (bifinal_unique). We start by defining biinitiality structures.

Definition 3.13 (is_biinitial). Let B be a bicategory and let a be an object in B. Then, a biini-
tiality structure on a consists of an external adjoint equivalence structure on the canonical functor
from B(a, b) to the unit category for each b : B. A biinitial object is an object a : B together with a
biinitiality structure on a.

In general, adjoint equivalence structures are not necessarily unique, but they are if the bicat-
egory is locally univalent. As such, having a biinitiality structure is not necessarily a proposition,
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and instead, it should be viewed as a structure on the objects. If the bicategory is locally univalent,
however, then we can use Proposition 3.11 to show that biinitiality structures form a proposition.

Proposition 3.14 (isaprop_is_biinitial). Let B be a locally univalent bicategory. Then for
each a : B the type of biinitiality structures on a is a proposition.

While local univalence affects the uniqueness of biinitiality structures, global univalence affects
the uniqueness of biinitial objects. Since limits and colimits are unique up adjoint equivalence, the
type of biinitial objects is a proposition if the bicategory is univalent.

Proposition 3.15 (biinitial_unique). Let B be a univalent bicategory. Then the type of biinitial
objects in B is a proposition.

Before we discuss examples of biinitial objects, we give an equivalent definition of biinitiality
formulated using universal mapping properties.

Lemma 3.16 (biinitial_weq_biinitial’). Let B be a bicategory and let a be an object in B.
Then a has a biinitiality structure if and only if the following holds:

• for every b there is a 1-cell a→ b;
• for every two 1-cells f , g : a→ b there is a unique 2-cell f ⇒ g.

Example 3.17. Note that both 1-Type and Cat have a biinitial object.

• (biinitial_1_types) The empty type is a biinitial object in 1-Type.
• (biinitial_cats) The empty category is a biinitial object in Cat.

Now let us prove that some examples from Section 2 are univalent.

Example 3.18. The following bicategories are univalent:

(1) (TwoType.v, Example 2.6 cont’d) The fundamental bigroupoid of each 2-type is univalent.
(2) (OneTypes.v, Example 2.7 cont’d) The bicategory of 1-types of a universe U is locally

univalent; this is a consequence of function extensionality. If we assume the univalence
axiom for U, then 1-types form a univalent bicategory. To show that, we factor idtoiso2,0
as follows.

X = Y
idtoiso2,0X,Y

��

�
���

���
���

���
AdjEquiv(X, Y)

X � Y
�

�������������

The left function is an equivalence by univalence, and the right function is an equivalence
by the characterization of adjoint equivalences in Example 2.7. The fact that this diagram
commutes follows from Proposition 3.11.

(3) (FullSub.v, If B is univalent and P is a predicate on B, then so is the full subbicategory of
B with those objects satisfying P.

It is more difficult to prove that the bicategory of univalent categories is univalent, and we only
give a brief sketch of this proof.
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Proposition 3.19 BicatOfUnivCats.v, Example 2.8 cont’d. The bicategory Cat is univalent.

Local univalence follows from the fact that the functor category [C,D] is univalent if D is. For
global univalence, we use that the type of identities on categories is equivalent to the type of adjoint
equivalences between categories (Ahrens et al., 2015, Theorem 6.17). The proof proceeds by fac-
toring idtoiso2,0 as a chain of equivalences (C =D) ∼−→ CatIso(C,D) ∼−→ AdjEquiv(C,D). To our
knowledge, a proof of global univalence was first computer-formalized by Rafaël Bocquet.2

In the previous examples, we proved univalence directly. However, inmany complicated bicate-
gories such proofs are not feasible. An example of such a bicategory is the bicategory Pseudo(B, C)
of pseudofunctors from B to C, pseudotransformations, and modifications (Leinster, 1998) (for
a univalent bicategory C). Even in the 1-categorical case, proving the univalence of the category
[C,D] of functors from C toD, and natural transformations between them, is tedious. In Section 7,
we develop some machinery to prove the following theorem.

Theorem 3.20 (psfunctor_bicat_is_univalent_2). If B is a (not necessarily univalent) bicat-
egory and C is a univalent bicategory, then the bicategory Pseudo(B, C) of pseudofunctors from B to
C is univalent.

4. Bicategories and 2-Categories
In this section, we propose a definition of 2-category and compare 2-categories to bicategories.
We start by defining strict bicategories.

Definition 4.1 (locally_strict,is_strict_bicat). A bicategory is called locally strict if each
B1(x, y) is a set. A 1-strict bicategory is a locally strict bicategory such that

(1) for each a, b : B and f : a→ b we have pλ(f ) : id1(a) · f = f , and idtoiso2,1(pλ(f ))= λ(f );
(2) for each a, b : B and f : a→ b we have pρ(f ) : f · id1(b)= f , and idtoiso2,1(pρ(f ))= ρ(f );
(3) for each a, b, c, d : B and f : a→ b, g : b→ c, and h : c→ d we have pα(f , g, h) : f · (g · h)=

(f · g) · h, and idtoiso2,1(pα(f , g, h))= α(f , g, h).

Proposition 4.2 (isaprop_is_strict_bicat). Being a 1-strict bicategory is a proposition.

Now let us look at an example of a 1-strict bicategory.

Example 4.3 (strict_bicat_of_strict_cats). Recall that a category is called strict if its
objects form a set. Define CatS to be the bicategory whose objects are strict categories, 1-cells
are functors, and 2-cells are natural transformations. Then CatS is a 1-strict bicategory.

The bicategory Cat of univalent categories is not 1-strict. This is because functors between two
categories do not necessarily form a set.

Proposition 4.4 (cat_not_a_two_cat). Assuming the univalence axiom, we can show that the
bicategory Cat is not 1-strict.

Remark 4.5. Without the local strictness condition (the 1-cells form sets), the conditions
of Items 1 to 3 of Definition 4.1 are not well-behaved. In our UniMath formalization, we
study a coherent version of Definition 4.1 without the requirement that the 1-cells form a
set, under the name of coherent strictness structures (coh_strictness_structure). One
can show that the additional coherence conditions are unique and automatic when the
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bicategory under consideration is locally strict or locally univalent. Furthermore, when the
bicategory is locally univalent, the type of coherent strictness structures on it is contractible
(unique_strictness_structure_is_univalent_2_1).

Next we look at 2-categories. These are defined as 1-categories with additional structure and
properties.

Definition 4.6 (two_cat). A 2-category C consists of
• a category C0;
• for each x, y : C0 and f , g : x→ y a set C2(f , g) of 2-cells;
• an identity 2-cell id2(f ) : C2(f , f );
• a vertical composition θ • γ : C2(f , h) for all 1-cells f , g, h : C1(a, b) and 2-cells θ : C2(f , g) and

γ : C2(g, h);
• a left whiskering f � θ : C2(f · g, f · h) for all 1-cells f : C1(a, b) and g, h : C1(b, c) and 2-cells

θ : C2(g, h);
• a right whiskering θ � h : C2(f · h, g · h) for all 1-cells f , g : C1(a, b) and h : C1(b, c) and 2-cells

θ : C2(f , g);
such that, for all suitable objects, 1-cells, and 2-cells,

• id2(f ) • θ = θ , θ • id2(g)= θ , θ • (γ • τ )= (θ • γ ) • τ ;
• f � (id2g)= id2(f · g), f � (θ • γ )= (f � θ) • (f � γ );
• (id2f )� g = id2(f · g), (θ • γ )� g = (θ � g) • (γ � g);
• (id1a� x) • idto2cell(idleft(g))= idto2cell(idleft(f )) • x;
• (x� id1 b) • idto2cell(idright(g))= idto2cell(idright(f )) • x;
• (f � (g � x)) • idto2cell(assoc(f , g, i))= idto2cell(assoc(f , g, h)) • (f · g � x);
• f � (x� i) • idto2cell(assoc(f , h, i))= idto2cell(assoc(f , g, i)) • ((f � x)� i);
• idto2cell(assoc(f , h, i)) • (x� h� i)= (x� h · i) • idto2cell(assoc(g, h, i)).

Here, the function idto2cellf ,g : (f = g)→ (f ⇒ g) is defined by path induction, sending the
identity path to the identity 2-cell. The paths idleft(f ), idright(g), and assoc(f , g, h) are those
given by the categorical axioms for C0.

We call 0-cells of a 2-category C the objects of C0, and 1-cells the morphisms of the category C0.
In particular, the 1-cells between every two 0-cells of a 2-category always form a set.

Remark 4.7. The last few axioms of a 2-category could, equivalently, be stated using transport
along a categorical equality axiom (e.g., along idleft(f )), instead of using idto2cell.

The type of 1-strict bicategories is equivalent to that of 2-categories.

Problem 4.8. To construct an equivalence between the type of 1-strict bicategories and the type of
2-categories.

Construction 4.9 for Problem 4.8; (strict_bicat_to_two_cat). In one direction, suppose C
is a 2-category. We associate with C the following bicategory:

(1) 0-cells, 1-cells, and 2-cells are those of C;
(2) composition and identity of 1-cells and 2-cells are those of C, respectively;
(3) whiskering is given by the whiskering of C;
(4) left and right unitors, and associators, are 2-cells induced by the corresponding equality

axioms via idto2cell.
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The bicategorical axioms are then easily shown, using compatibility, in a suitable sense, of
idto2cell with composition of paths (which corresponds to composition of 2-cells) and functions
on paths (which corresponds to whiskering). The resulting bicategory is 1-strict.

In the other direction, suppose B is a 1-strict bicategory. We associate the following 2-category
to B:

(1) 0-cells, 1-cells, and 2-cells are those of B, respectively;
(2) composition, identities, and whiskering are given by the corresponding operations of B;
(3) the equality axioms for composition of 1-cells are proved using the strictness properties

of B;
(4) the remaining axioms are proved using suitable compatibility results about idto2cell.

The two functions are easily shown to be inverse to each other, thus forming an equivalence of
types.

5. The Yoneda Embedding
In this section, we show that any locally univalent bicategory naturally embeds into a univalent
one, via the Yoneda embedding. This construction is similar to the Rezk completion for cate-
gories (Ahrens et al., 2015, Theorem 8.5), and it makes use of the Yoneda lemma. We start by
discussing representable pseudofunctors, pseudotransformations, and modifications. These are
used to define the desired embedding.

Definition 5.1 (Representables). Let B be a locally univalent bicategory.

• (representable ) Given an object a : B, we define the representable pseudofunctor Rep0(a)
from Bop (see Example 2.9) to Cat. It sends objects b to the category B1(b, a) and 1-cells f :
b1 → b2 to the functor Rep0(a)(f ) : B1(b2, a)→ B1(b1, a) given by g 	→ f · g. If we have 1-cells
f , g : b1 → b2 and a 2-cell θ : f ⇒ g, then Rep0(a)(θ) : Rep0(a)(f )⇒ Rep0(a)(g) is the natural
transformation whose component for each h : b2 → a is θ � h.

• (representable1 ) Let a, b : B be objects and let f : a→ b be a 1-cell. Then, we define the
representable pseudotransformation Rep1(f ) from Rep0(a) to Rep0(b). Its component for each
c : B is the functor Rep1(f )(c) : B1(c, a)→ B1(c, b) sending g to g · f . If we have c1, c2 : B and a
1-cell g : c1 → c2, then the naturality 2-cell Rep1(f )(g) : Rep1(f )(c1) · Rep0(b)(g)⇒
Rep0(a)(g) · Rep1(f )(c2) is a natural transformation, whose component for each h is
α(g, h, f ) : g · (h · f )⇒ (g · h) · f .

• (representable2 ) Suppose that we have 0-cells a, b : B, 1-cells f , g : a→ b, and a 2-cell θ :
f ⇒ g. Then, the representable modification Rep2(α) from Rep1(f ) to Rep1(g) is amodification,
whose component for each c : B is the natural transformation defined on h : B(c, a) by h� θ .

Definition 5.2 (y). Let B be a locally univalent bicategory. Then, the Yoneda embedding y : B→
Pseudo(Bop, Cat) is defined as

y(a)= Rep0(a) for a : B
y(f )= Rep1(f ) for a, b : B, f : a→ b
y(θ)= Rep2(θ) for a, b : B, f , g : a→ b, θ : f ⇒ b

Problem 5.3 Bicategorical Yoneda lemma. Given a locally univalent bicategory B, a pseud-
ofunctor P : Bop → Cat, and a : B, to construct an adjoint equivalence between the categories
Pseudo(Bop, Cat)(y(a), P) and P(a).
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Construction 5.4 for Problem 5.3; (bicategorical_yoneda_lemma). To construct this, we
provide

• (yoneda_to_presheaf) A functor F from y(a)⇒ P to P(a);
• (presheaf_to_yoneda) A functor G from P(a) to y(a)⇒ P;
• (yoneda_unit) A natural isomorphism from the identity to F ·G;
• (yoneda_counit) A natural isomorphism from G · F to the identity.

We only discuss the data of the involved functors. The functor F sends pseudotransformations τ to
τ (a)(id1(a)) andmodificationsm tom(a)(id1(a))(a). In the other direction,G sends objects z : P(a)
to the pseudotransformation whose components are P(f )(z) with b : Bop and f : b→ a.

Now let us use the bicategorical Yoneda lemma to construct for each locally univalent bicate-
gory a weakly equivalent univalent bicategory. We follow the construction of the Rezk completion
by Ahrens et al. (2015) and take the image of the Yoneda embedding to be the univalent
completion.

First, we define weak equivalences of bicategories.

Definition 5.5. Let B and C be bicategories and let F : B→ C be a pseudofunctor. We say

• (local_ equivalence ) F is a local equivalence if for each x, y : B the functor from B1(x, y) to
C1(F(x), F(y)) induced by F is an adjoint equivalence.

• (essentially_ surjective ) F is essentially surjective if for each y : C there merely exists an
x : B and an adjoint equivalence from F(x) to y.

• (weak_ equivalence ) F is a weak equivalence if F is both a local equivalence and essentially
surjective.

The notion of weak equivalence has already been studied in classical mathematics where, using
the axiom of choice, it was shown to be equivalent to the usual notion of equivalence (Lack, 2010;
Leinster, 1998). However, these notions are generally not equivalent in a constructive setting, but
we conjecture that they are for univalent bicategories.

Furthermore, the notion of weak equivalence can be weakened by requiring that the pseud-
ofunctor only induces a weak equivalence of categories on the hom-categories. Such a weaker
notion would be useful if one desires to find a univalent completion of arbitrary bicategories
instead of just locally univalent ones. To do so, we anticipate a two-step process: first, a local
completion, which embeds bicategories in locally univalent ones, followed by, second, the con-
struction described in this section. More concretely, for any bicategory B we expect to be able to
construct pseudofunctors as in the following diagram.

B
ηloc �� RC loc(B)

ηglob
�� RC (B)

Here, RC loc(B) is a locally univalent bicategory, and RC (B) is a univalent one. While the pseud-
ofunctor ηglob : RC loc(B)→ RC (B) would be a weak equivalence according to Definition 5.5,
ηloc : B→ RC loc(B), would not be: locally, it consists of weak equivalences of categories instead
of equivalences. Hence, the more general notion would thus be applicable if one is interested in
the univalent completion of arbitrary bicategories. We expect such a local completion ηloc : B→
RC loc(B) can be constructed by taking the Rezk completion of every hom-category, and since
that only yields a weak equivalence of categories, the resulting pseudofunctor is not locally an
equivalence. However, we only consider the second step in this paper and leave the construction
of ηloc : B→ RC loc(B) as an open problem.
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Conjecture 5.6. For every bicategory B, there is a locally univalent bicategory RC loc(B) and a
pseudofunctor ηloc : B→ RC loc(B) which is essentially surjective and locally a weak equivalence of
categories.

Weak equivalences between univalent categories are actually equivalences (Ahrens et al., 2015,
Lemma 6.8). We conjecture that the same is possible for bicategories.

Conjecture 5.7. Every weak equivalence between univalent bicategories is a biequivalence.

From the Yoneda lemma, we know that y is a local equivalence:

Corollary 5.8 (yoneda_mor_is_equivalence). The pseudofunctor y is a local equivalence.

However, y is not essentially surjective: the bicategory Pseudo(Bop, Cat) contains non-
representable presheaves. To make y essentially surjective, we restrict the bicategory of presheaves
to the full image of the Yoneda embedding.

Definition 5.9 (full_image). Let B and C be bicategories and let F : B→ C be a pseudofunctor.
Then, the full image im(F) of F is the full subbicategory consisting of those objects c in C for which
there merely exists b : B such that F(b)= c.

Proposition 5.10 (is_univalent_2_full_image). If C is univalent, then so is the full image of
F : B→ C.

Proof. Follows from Item 3 in Example 3.18.

Definition 5.11 (corestrict_full_image). Again let B and C be bicategories and suppose we
have a pseudofunctor F : B→ C. Then, we define the corestriction of F to be the pseudofunctor F :
B→ im(F) which sends b to F(b). The fact that F(b) is indeed in the image is witnessed by |(b, refl )|.

Now everything is in place to construct the desired embedding into a univalent bicategory.

Problem 5.12. For each locally univalent bicategory B, to construct a univalent bicategory RC (B)
and a weak equivalence F : B→ RC (B).

Construction 5.13 for Problem 5.12; (rezk_completion_2_0). We define RC (B) to be the
image of the Yoneda embedding y : B→ Pseudo(Bop, Cat). Since the codomain of y is univalent
by Theorem 3.20, the image is univalent as well by Proposition 5.10. Note that the corestric-
tion gives rise to a pseudofunctor y : B→ RC (B). It is essentially surjective by construction.
Furthermore, y is a local equivalence by Corollary 5.8, and local equivalences are preserved by
corestriction. Hence, y is indeed a weak equivalence.

Note that Construction 5.13 raises universe levels: the bicategory RC (B) lives in a higher
universe than B itself, for the same reasons as in the 1-categorical case (Ahrens et al., 2015,
Remark 8.6).

6. Displayed Bicategories
Now let us study how to construct more complicated univalent bicategories. To that end, we intro-
duce displayed bicategories, the bicategorical analog to the notion of displayed category developed
by Ahrens and Lumsdaine (2019). A displayed (1-)category D over a given (base) category C con-
sists of a family of objects over objects in C and a family of morphisms over morphisms in C
together with suitable displayed operations of composition and identity. A category

∫
D is then

constructed, the objects and morphisms of which are pairs of objects and morphisms from C and
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D, respectively. Properties of
∫
D, in particular univalence, can be shown from analogous, but

simpler, conditions on C and D.
A prototypical example is the following displayed category over C :≡ Set: an object over a set

X is a group structure on X, and a morphism over a function f : X → X′ from group structure G
(on X) to group structure G′ (on X′) is a proof of the fact that f is compatible with G and G′. The
total category is the category of groups, and its univalence follows from univalence of Set and a
univalence property of the displayed data.

Just like in 1-category theory, many examples of bicategories are obtained by endowing previ-
ously considered bicategories with additional structure. An example is the bicategory of pointed
1-types inU. The objects in this bicategory are pairs of a 1-typeA and an inhabitant a :A. The mor-
phisms are pairs of a morphism f of 1-types and a path witnessing that f preserves the selected
points. Similarly, the 2-cells are pairs of a homotopy p and a proof that this p commutes with the
point preservation proofs. Thus, this bicategory is obtained from 1-TypeU by endowing the cells
on each level with additional structure.

Of course, the structure should be added in such a way that we are guaranteed to obtain a
bicategory at the end. Now let us give the formal definition of displayed bicategories.

Definition 6.1 (disp_bicat). Given a bicategory B, a displayed bicategory D over B is given by
data analogous to that of a bicategory, to which the numbering refers:

1. for each a : B0 a type Da of displayed 0-cells over a;
2. for each f : a→ b in B and ā : Da, b̄ : Db a type ā f−→ b̄ of displayed 1-cells over f ;

3. for each θ : f ⇒ g in B, f̄ : ā f−→ b̄ and ḡ : ā g−→ b̄ a set f̄ θ=⇒ ḡ of displayed 2-cells over θ

and dependent versions of operations and laws from Definition 2.1, which are

4. for each a : B0 and ā : Da, we have id1 (ā) : ā id1(a)−−−→ ā;

5. for all 1-cells f : a→ b, g : b→ c, and displayed 1-cells f̄ : ā f−→ b̄ and ḡ : b̄ g−→ c̄, we have a

displayed 1-cell f̄ · ḡ : ā f ·g−→ c̄;

6. for all f : B1(a, b), ā : Da, b̄ : Db, and f̄ : ā f−→ b̄, we have id2 (f̄ ) : f̄ id2(f )===⇒ f̄ ;

7. for 2-cells θ : f ⇒ g and γ : g ⇒ h, and displayed 2-cells θ̄ : f̄ θ=⇒ ḡ and γ̄ : ḡ γ−→ h̄, we have a
displayed 2-cell θ̄ • γ̄ : f̄ θ•γ==⇒ h̄.

8. for each displayed 1-cell f̄ : ā f−→ b̄ and each displayed 2-cell ḡ θ=⇒ h̄, we have a displayed 2-cell
f̄ � θ̄ : f̄ · ḡ f�θ==⇒ f̄ · h̄ ;

9. for each displayed 1-cell h̄ : b̄ h−→ c̄ and each displayed 2-cell θ̄ : f̄ θ=⇒ ḡ, we have a displayed
2-cell θ̄ � h̄ : f̄ · h̄ θ�h==⇒ ḡ · h̄;

10. for each f̄ : ā f−→ b̄, we have displayed 2-cells λ(f̄ ) : id1(ā) · f̄ λ(f )==⇒ f̄ and λ(f̄ )−1 : f̄ λ(f )−1
===⇒

id1(ā) · f̄ ;
11. for each f̄ : ā f−→ b̄, displayed 2-cells ρ(f̄ ) : f̄ · id1(b̄) ρ(f )==⇒ f̄ and ρ(f̄ )−1 : f̄ ρ(f )−1

===⇒ f̄ · id1(b̄);
12. for each f̄ : ā f=⇒ b̄, ḡ : b̄ g=⇒ c̄, and h̄ : c̄ h=⇒ d̄, we have displayed 2-cells α(f̄ , ḡ, h̄) : f̄ · (ḡ ·

h̄) α(f ,g,h)====⇒ (f̄ · ḡ) · h̄ and α(f̄ , ḡ, h̄)−1 : (f̄ · ḡ) · h̄ α(f ,g,h)−1
=====⇒ f̄ · (ḡ · h̄).
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Note that we use the same notation for the displayed and the non-displayed operations.
These operations are subject to laws, which are derived systematically from the non-displayed ver-

sion. Just as for displayed 1-categories, the laws of displayed bicategories are heterogeneous, because
they are transported along the analogous law in the base bicategory. For instance, the displayed left-
unitary law for identity reads as id2(f̄ ) • θ̄ =e θ̄ , where e is the corresponding identity of Item 13 in
Definition 2.1.

13. id2(f ) • θ =∗ θ , θ • id2(g)=∗ θ , θ • (γ • τ )=∗ (θ • γ ) • τ ;
14. f � (id2g)=∗ id2(f · g), f � (θ • γ )=∗ (f � θ) • (f � γ );
15. (id2f )� g =∗ id2(f · g), (θ • γ )� g =∗ (θ � g) • (γ � g);
16. (id1(a)� θ) • λ(g)=∗ λ(f ) • θ ;
17. (θ � id1(b)) • ρ(g)=∗ ρ(f ) • θ ;
18. (f � (g � θ)) • α(f , g, i)=∗ α(f , g, h) • ((f · g)� θ);
19. (f � (θ � i)) • α(f , h, i)=∗ α(f , g, i) • ((f � θ)� i);
20. (θ � (h · i)) • α(g, h, i)=∗ α(f , h, i) • ((θ � h)� i);
22. λ(f ) • λ(f )−1 =∗ id2(id1(a) · f ), λ(f )−1 • λ(f )=∗ id2(f );
23. ρ(f ) • ρ(f )−1 =∗ id2(f · id1(b)), ρ(f )−1 • ρ(f )=∗ id2(f );
24. α(f , g, h) • α(f , g, h)−1 =∗ id2(f · (g · h)), α(f , g, h)−1 • α(f , g, h)=∗ id2((f · g) · h);
25. α(f , id1(b), g) • (ρ(f )� g)=∗ f � λ(f );
26. α(f , g, h · i) • α(f · g, h, i)=∗ (f � α(g, h, i)) • α(f , g · h, i) • (α(f , g, h)� i).

The purpose of displayed bicategories is to give rise to a total bicategory together with a
projection pseudofunctor. They are defined as follows:

Definition 6.2 (total_bicat). Given a displayed bicategory D over a bicategory B, we form the
total bicategory

∫
D (or

∫
B D) which has:

(1) as 0-cells tuples (a, ā), where a : B and ā : Da;
(2) as 1-cells tuples (f , f̄ ) : (a, ā)→ (b, b̄), where f : a→ b and f̄ : ā f−→ b̄;
(3) as 2-cells tuples (θ , θ̄) : (f , f̄ )⇒ (g, ḡ), where θ : f ⇒ g and θ̄ : f̄ θ=⇒ ḡ.

We also have a projection pseudofunctor πD : ∫ D→ B.

As mentioned before, the bicategory of pointed 1-types is the total bicategory of the following
displayed bicategory.

Example 6.3 (p1types_disp, Example 3.18, Item 2 cont’d). Given a universe U, we build a
displayed bicategory of pointed 1-types over the base bicategory of 1-types in U (Example 2.7).

• For 1-type A in U, the objects over A are inhabitants of A.
• For f :A→ B with A, B 1-types in U, the displayed 1-cells over f from a to b are paths
f (a)= b.

• Given two functions f , g :A→ B, a homotopy p : f ∼ g, two points a :A and b : B, and paths
qf : f (a)= b and qg : g(a)= b, the 2-cells over p are paths qf = p(a) • qg .

The bicategory of pointed 1-types is the total bicategory of this displayed bicategory.
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Example 6.4 (pgrpds). We define a displayed bicategory of pointed groupoids over the base
bicategory Grpd of groupoids.

• For a groupoid G, the objects over G are objects of G.
• For a functor F :G1 →G2 between groupoids G1 and G2, the displayed 1-cells over F from x
to y are isomorphisms F(a)∼= b.

• Given two functors F1, F2 :G1 →G2, a natural transformation n : F1 ⇒ F2, two points x :G1
and y :G2, and isomorphisms q1 : F1(x)∼= y and q2 : F2(x)= y, the displayed 2-cells over n
are paths p(a) • qg = qf .

The bicategory of pointed groupoids is the total bicategory of this displayed bicategory.

Example 6.5 (disp_fullsubbicat). Given a bicategory B and a predicate on 0-cells P : B0 →
hProp, define a displayed bicategory D over B such that Dx :≡ P(x), and the types of displayed
1-cells and 2-cells are the unit type. The total bicategory of D provides a formal construction of
the full subbicategory of B with cells satisfying P introduced in Definition 2.10. In particular, a
1-cell in the total bicategory of D is a pair consisting of a 1-cell from B and the unique inhabitant
of the unit type. Similarly for 2-cells.

We end this section presenting several general constructions of displayed bicategories.

Definition 6.6 (Various constructions of displayed bicategories).

(1) (disp_ dirprod_ bicat ) Given displayed bicategories D1 and D2 over a bicategory B, we
construct the product D1 × D2 over B. The 0-cells, 1-cells, and 2-cells are pairs of 0-cells,
1-cells, and 2-cells, respectively.

(2) (sigma_ bicat ) Given a displayed bicategory D over a base B and a displayed bicategory
E over

∫
D, we construct the sigma displayed bicategory

∑
D E over B as follows. The objects

over a : B are pairs (ā, e), where ā : Da and e : E(a,ā), the morphisms over f : a→ b from (ā, e)

to (b̄, e′) are pairs (f̄ , ϕ), where f̄ : ā f−→ b̄ and ϕ : e (f ,f̄ )−−→ e′, and similarly for 2-cells.
(3) (trivial_ displayed_ bicat ) Every bicategory D is, in a trivial way, a displayed

bicategory over any other bicategory B. Its total bicategory is the direct product B× D.
(4) (disp_ cell_ unit_ bicat ) We say a displayed bicategory D over B is locally chaotic if,

for each α : f ⇒ g and f̄ : ā f−→ b̄ and ḡ : ā g−→ b̄, the type f̄ α=⇒ ḡ is contractible. Let B be a
bicategory and suppose we have
– for each object a in B a type Db of displayed 0-cells;

– for each 1-cell f : a→ b in B and for each ā : Da, b̄ : Db a type ā f−→ b̄ of displayed 1-cells;
– displayed 1-identities id1 and compositions ( · ) of displayed 1-cells as in Definition 6.1.
Then we have an associated locally chaotic displayed bicategory D̂ over B by stipulating
that the types of 2-cells are the unit type. Note that this construction essentially gives a
way of obtaining a displayed bicategory from the data of a displayed category (Ahrens and
Lumsdaine, 2019, Def. 3.1, Items 1–4).

Now let us discuss two more examples of bicategories obtained from displayed bicate-
gories: firstly, monads internal to an arbitrary bicategory and secondly, Kleisli triples. In
Construction 8.14, we construct a biequivalence between the bicategory of Kleisli triples and the
bicategory of monads internal to Cat.
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Definition 6.7 (monad). Let B be a bicategory. Then, we define a displayed bicategory M(B) over B
such that

• The displayed objects over a : B are monad structures on a. A monad structure on a consists
of a 1-cell ma : a→ a and 2-cells ηa : id1(a)⇒m and μa :m ·m⇒m such that the following
diagrams commute

f · id1 f�η ��

λ(f )
���

��
��

��
��

�

��
��

��
��

��
f · f
μ

��

id1 ·fη�f��

ρ(f )
		 ��

��
��
��
��

��
��
��
��
��

f

f · (f · f )
f�μ

��

α(f ,f ,f ) �� (f · f ) · f μ�f �� f · f
μ

��
f · f

μ
�� f

• The displayed 1-cells over f : a→ b from (ma, ηa,μa) to (mb, ηb,μb) consist of invertible 2-cells
nf :ma · f ⇒ f ·mb such that the following two diagrams commute

id1(a) · f ηa�f ��

λ(f )
��

ma · f n �� f ·mb

f
ρ(f )−1

�� f · id1(b)
f�ηb

��

(ma ·ma) · f μa�f ��

α(ma,ma,f )−1

��

ma · f n �� f ·mb

ma · (ma · f )
ma�n

��

f · (mb ·mb)

f�μb

��

ma · (f ·mb)
α(ma,f ,mb)

�� (ma · f ) ·mb n�mb
�� (f ·mb) ·mb

α(f ,mb,mb)−1

��

• The displayed 2-cells over x : f ⇒ g from nf to ng are proofs that the following diagrams
commute

ma · f mx�x ��

nf
��

ma · g
ng

��
f ·mb x�mx

�� g ·mb

The total bicategory of M(B) is the bicategory of monads internal to B.

Next, we define a bicategory of Kleisli triples, also known as extension systems (Marmolejo and
Wood, 2010).

Definition 6.8 (kleisli_triple_disp_bicat). We define a displayed bicategory K over Cat
such that

• The displayed objects over C are Kleisli triples over C. These consist of a function M : C0 →
C0, for each a : C an arrow η(a) : a→M(a), and for each arrow f : a→M(b), an arrow f ∗ :
M(a)→M(b) such that the usual laws hold.
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• The displayed 1-cells over a functor F : C →D from MC to MD consists of isomorphisms FM
from MD(F(a)) to F(MC(a)) for each a : C0 such that the usual laws hold.

• The displayed 2-cells over n : F ⇒G from FM to GM are equalities

FM(a) · n(MC(a))=MD(n(a)) ·GM(a).

The total bicategory of K is the bicategory of Kleisli triples.

7. Displayed Univalence
Given a bicategory B and a displayed bicategory D over B, our goal is to prove the univalence of

∫
D

from conditions on B and D. For that, we develop the notion of univalent displayed bicategories.
We start by defining displayed versions of invertible 2-cells.

Definition 7.1 (is_disp_invertible_2cell). Given are a bicategory B and a displayed bicat-
egory D over B. Suppose we have objects a, b : B0, two 1-cells f , g : B1(a, b), and an invertible 2-cell

θ : B2(f , g). Suppose that we also have ā :Da, b̄ :Db, f̄ : ā f−→ b̄, ḡ : ā g−→ b̄, and θ̄ : f̄ θ=⇒ ḡ. Then, we

say θ̄ is invertible if we have γ̄ : ḡ θ−1==⇒ f̄ such that θ̄ • γ̄ and γ̄ • θ̄ are identities modulo transport
over the corresponding identity laws of θ .

A displayed invertible 2-cell over θ , where θ is an invertible 2-cell, is a pair of a displayed 2-cell
θ̄ over θ and a proof that θ̄ is invertible. The type of displayed invertible 2-cells from f̄ to ḡ over θ is
denoted by f̄ ∼=θ ḡ.

Being a displayed invertible 2-cell is a proposition and the displayed 2-cell id2(f̄ ) over id2(f ) is
invertible. Next, we define displayed adjoint equivalences.

Definition 7.2 (disp_left_adjoint_equivalence). Given are a bicategory B and a displayed
bicategory D over B. Suppose we have objects a, b : B0 and a 1-cell f : B1(a, b) together with an
adjoint equivalence structure A on f . We write r, η, ε for the right adjoint, unit, and counit of

f respectively. Furthermore, suppose that we have ā : Da,b̄ : Db, and f̄ : ā f−→ b̄. A displayed adjoint
equivalence structure on f̄ consists of

• A displayed 1-cell r̄ : b̄ r−→ ā;
• An invertible displayed 2-cell id1 (ā)

η=⇒ f̄ · r̄;
• An invertible displayed 2-cell r̄ · f̄ ε=⇒ id1 (b̄).

In addition, two laws reminiscent of those in Definition 2.5 need to be satisfied.
A displayed adjoint equivalence over the adjoint equivalence A is a pair of a displayed 1-cell f̄

over f together with a displayed adjoint equivalence structure on f̄ . The type of displayed adjoint
equivalences from ā to b̄ over f is denoted by ā�f b̄.

The displayed 1-cell id1(ā) is a displayed adjoint equivalence over id1(a).
Using these definitions, we define univalence of displayed bicategories similarly to univalence

for ordinary bicategories. Again we separate it in a local and global condition.
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Definition 7.3 (DispUnivalence.v). Let D be a displayed bicategory over B.

(1) Let a, b : B, and ā : Da, b̄ : Db. Let f , g : a→ b, let p : f = g, and let f̄ and ḡ be displayed
morphisms over f and g respectively. Then we define a function

disp_idtoiso2,1
p,f̄ ,ḡ

: f̄ =p ḡ → f̄ ∼=idtoiso2,1f ,g (p)
ḡ

sending refl to the identity displayed isomorphism. We say that D is locally univalent if the
function disp_idtoiso2,1

p,f̄ ,ḡ
is an equivalence for each p, f̄ , and ḡ.

(2) Let a, b : B, and ā : Da, b̄ : Db. Given p : a= b, we define a function

disp_idtoiso2,0
p,ā,b̄

: ā=p b̄→ ā�idtoiso2,0a,b(p)
b̄

sending refl to the identity displayed adjoint equivalence. We say that D is globally univalent
if the function disp_idtoiso2,0

p,ā,b̄
is an equivalence for each p, ā, and b̄.

(3) (disp_ univalent_ 2 ) We call D univalent if it is both locally and globally univalent.

The following result states that univalence of the total bicategory can be proved from univa-
lence of the base and of the displayed part. This is the bicategorical version of the analogous result
for 1-categories shown by Ahrens and Lumsdaine (2019, Theorem 7.4), which in turn generalizes
the Structure Identity Principle (Univalent Foundations Program, 2013, Theorem 9.8.2).

Theorem 7.4 (total_is_univalent_2). Let B be a bicategory and let D be a displayed bicategory
over B. Then

(1)
∫
D is locally univalent if B is locally univalent and D is locally univalent;

(2)
∫
D is globally univalent if B is globally univalent and D is globally univalent.

Proof. The main idea behind the proof is to characterize invertible 2-cells in the total bicategory
as pairs of an invertible 2-cell p in the base bicategory and a displayed invertible 2-cell over p.
Concretely, for the local univalence of D, we factor idtoiso2,1 as a composition of the following
equivalences:

(f , f̄ )= (g, ḡ)

w1 ∼
��

idtoiso2,1 �� inv2cell
(
(f , f̄ ), (g, ḡ)

)

∑
(p:f=g) f̄ =p ḡ w2

∼ ��
∑

(p:inv2cell(f ,g)) f̄ ∼=p ḡ

w3∼
��

The function w1 is just a characterization of paths in a sigma type. The function w2 turns equal-
ities into (displayed) invertible 2-cells, and it is an equivalence by local univalence of B and
displayed local univalence of D. Finally, the function w3 characterizes invertible 2-cells in the total
bicategory.

The proof is similar in the case of global univalence. The most important step is the
characterization of adjoint equivalences in the total bicategory.

(a, ā)� (b, b̄) ∼−→
∑

(p:a�b)
ā�p b̄.

To check displayed univalence, it suffices to prove the condition in the case where p is
reflexivity. This step, done by path induction, simplifies some proofs of displayed univalence.
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Proposition 7.5. Given a displayed bicategory D over B, then D is univalent if the following
functions are equivalences:

• (fiberwise_ local_ univalent_ is_ univalent_ 2_ 1 )

disp_idtoiso2,1
refl (f ),f̄ ,f ′ : f̄ = f ′ → f̄ ∼=id2(f ) f ′

• (fiberwise_ univalent_ 2_ 0_ to_ disp_ univalent_ 2_ 0 )

disp_idtoiso2,0
refl (a),ā,a′ : ā= a′ → ā�id1(a) a′

Now, we establish the univalence of several examples.

Example 7.6. The following bicategories and displayed bicategories are univalent:

(1) The category of pointed 1-types (see Example 6.3) is univalent (p1types_univalent_2).
(2) The full subbicategory (see Definition 2.10) of a univalent bicategory is univalent

(is_univalent_2_fullsubbicat).
(3) The product of univalent displayed bicategories (Definition 6.6, Item 1) is univalent

(is_univalent_2_dirprod_bicat).

For the sigma construction, we give two conditions for the univalence of the total bicategory.
If we have univalent displayed bicategories D1 and D2 over B and

∫
D1, respectively, then we can

either show the univalence of
∫
(
∑

D1 D2) directly or we can show the displayed univalence of∑
D1 D2. Note that the second property could be necessary as an intermediate step for proving the

univalence of a more complicated bicategory. For the proof of displayed univalence of
∑

D1 D2, we
need two assumptions on both displayed bicategories.

Definition 7.7 (disp_locally_groupoid). A displayed bicategory is locally groupoidal if all its
displayed 2-cells are invertible.

Definition 7.8 (disp_2cells_isaprop). A displayed bicategory D over a bicategory B is called
locally propositional if the type f̄ θ=⇒ ḡ of displayed 2-cells over θ is a proposition.

Proposition 7.9. Let D1 and D2 be univalent displayed bicategories over univalent bicategories B
and

∫
D1 respectively.

(1) The bicategory
∫
(
∑

D1 D2) (Definition 6.6, Item 2) is univalent
(sigma_ is_ univalent_ 2 ).

(2) If D1 and D2 are locally propositional and groupoidal, then
∑

D1 D2 is displayed univalent
(sigma_ disp_ univalent_ 2_ with_ props ) .

We are not sure whether Item 2 of Proposition 7.9 is as strong as it can be – it might be possible
to weaken the assumptions of D1 and D2 being locally propositional and groupoidal. However,
this would make the proof significantly more complicated. In our examples, these assumptions
are satisfied, and thus, the statement of Proposition 7.9, Item 2 is sufficient for our purposes.

Lastly, we give a condition for when a locally chaotic displayed bicategory is univalent.

Proposition 7.10 (disp_cell_unit_bicat_univalent_2). Let B be a univalent bicategory,
and let D be a locally chaotic displayed bicategory (as in Definition 6.6, Item 4). Assume that for
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any a : B, the type Da is a set, and for any ā : Da, b̄ : Db, f : a→ b, the type ā
f−→ b̄ is a proposition.

Then D is univalent if we have a function in the opposite direction of disp_idtoiso2,0.

8. Displayed Constructions
The idea of building bicategories by layering displayed bicategories does not only allow for mod-
ular proofs of univalence but also for the modular construction of maps between bicategories,
for example, pseudofunctors and biequivalences. In this section, we introduce the notions of dis-
played pseudofunctor and biequivalence, and use them to build biequivalences. The first example
we look at extends the biequivalence between 1-types and univalent groupoids in Example 2.18 to
their pointed variants (Examples 6.3 and 6.4).

Problem 8.1. To construct a biequivalence between pointed 1-types and pointed groupoids.

To construct the desired biequivalence, we first define displayed biequivalences over a given
biequivalence in the base and we show that it gives rise to a total biequivalence on the total
bicategories. Since biequivalences are defined using pseudofunctors, pseudotransformations, and
invertible modifications, we first need to define displayed analogues of these.

Definition 8.2 (disp_psfunctor). Suppose we have bicategories B and C, displayed bicate-
gories D1 and D2 over B and C, respectively, and a pseudofunctor F : B→ C. Then, a displayed
pseudofunctor F̄ from D1 to D2 over F consists of

• For each a : B a function F̄0 : D1(a)→ D2(F(a));
• For every 1-cell f : a→ b and all displayed objects ā : D1(a) and b̄ : D1(b), a function sending

f : ā f−→ b̄ to F̄1(f ) : F̄0(ā) F(f )−−→ F̄0(b̄);

• For each 2-cell θ : f ⇒ g and displayed 1-cells f̄ : ā f−→ b̄ and ḡ : ā g−→ b̄, a function sending θ :
f̄ θ=⇒ ḡ to F̄2(θ) : F̄1(f̄ ) F(θ)==⇒ F̄1(ḡ);

• For all objects a : B and displayed objects ā : D1(a), we have a displayed invertible 2-cell F̄i(x̄) :
id1(F̄0(x̄))

Fi(x)==⇒ F̄1(id1(x̄));
• For all displayed 1-cells f̄ : ā f−→ b̄ and ḡ : b̄ g−→ c̄, we have a displayed invertible 2-cell F̄c(f̄ , ḡ) :
F̄1(f̄ ) · F̄1(ḡ) Fc(f ,g)===⇒ F̄1(f̄ · ḡ).

In addition, several laws similar to those in Definition 2.12 need to hold. They are just dependent
variants of them, and they hold over the corresponding non-dependent law. Since the required laws
are obtained in the same way as in Definition 6.1, we do not show them here and instead refer the
interested reader to the formalization. We denote the type of displayed pseudofunctors from D1 to
D2 over F by D1

F−→ D2.

Definition 8.3 (disp_pstrans). Suppose that we have bicategories B and C, pseudofunctors
F,G : B→ C, and a pseudotransformation η : F ⇒G. Suppose furthermore that we have displayed
bicategories D1 and D2 over B and C, respectively, and displayed pseudofunctors F̄ and Ḡ from D1
to D2 over F and G, respectively. Then, a displayed pseudotransformation η̄ over η from F̄ to Ḡ is
given by

• For each x : B and x̄ : D1(x) a displayed 1-cell η̄0(x̄) : F̄0(x̄) η0(x)−−→ Ḡ0(x̄);

• For all 1-cells f : x→ y, displayed objects x̄ : D1(x) and ȳ : D1(y) and displayed 1-cells f̄ : x̄ f−→ ȳ,
a displayed invertible 2-cell η̄1(f̄ ) : η̄0(x̄) · F̄2(f̄ ) η1(f )==⇒ F̄1(f̄ ) · η̄0(ȳ).
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Again laws similar to those in Definition 2.13 need to hold, and again they are derived similar to
those in Definition 6.1. We denote the type of displayed pseudotransformations from F̄ to Ḡ over η

by F̄ η=⇒ Ḡ.

Definition 8.4 (disp_modification). Suppose that we have bicategories B and C, pseudofunctors
F,G : B→ C, pseudotransformations η, θ : F ⇒G, and a modification m : η � θ . In addition, we
are given displayed bicategories D1 and D2 over B and C, respectively, displayed pseudofunctors F̄ :
D1

F−→ D2 and Ḡ : D1 G−→ D2, and displayed pseudotransformations η̄ : F̄ η=⇒ Ḡ and θ̄ : F̄ θ=⇒ Ḡ. Then, a
displayed modification from η̄ to θ̄ over m is given by a displayed 2-cell η̄0(x̄)

m(x)==⇒ θ̄0(x̄) for each
x : B and x̄ : D1(x). In addition, the dependent version of the law in Definition 2.14 needs to hold.
We denote the type of displayed modifications from η̄ to θ̄ over m by η̄

m �

 θ̄ .

In order to formulate displayed biequivalence, we need an invertible version of Definition 8.4.

Definition 8.5 (disp_invmodification). A displayed invertible modification over an invertible
modification m : η � θ is a displayed modification m̄ : η̄

m �

 θ̄ such that

m̄(x̄) : η̄0(x̄) m(x)==⇒ θ̄0(x̄)

is invertible for each x : B and x̄ : D1(x).

Each of the discussed notions also has a total version. These are constructed similarly to how
the total bicategory is constructed in Definition 6.2.

Problem 8.6. For each displayed gadget we discussed before, we have a total version.

• (total_ psfunctor ) Given a displayed pseudofunctor F̄ : D1 F−→ D2, to construct a pseudo-
functor

∫
F̄ : ∫ D1 → ∫

D2.
• (total_ pstrans ) Given a displayed pseudotransformation η̄ : F̄ η=⇒ Ḡ, to construct a pseudo-
transformation

∫
η̄ : ∫ F̄ ⇒ ∫

Ḡ.
• (total_ invmodification ) Given a displayed invertible modification m̄ from η̄ to θ̄ , to
construct an invertible modification

∫
m̄ : ∫ η̄ �

∫
θ̄ .

Construction 8.7. for Problem 8.6. Each of the constructions is defined componentwise. For
example,

∫
F̄ on an object (x, x̄) is defined to be (F(x), F̄(x̄)).

To define displayed biequivalences, we need composition and identity of displayed pseudofunc-
tors and pseudotransformations:

Definition 8.8. Suppose that B1, B2, and B3 are bicategories and that D1, D2, and D3 are displayed
bicategories over B1, B2, and B3, respectively. In addition, let F : B1 → B2 and G : B2 → B3 be pseud-
ofunctors and suppose we have displayed pseudofunctors F̄ from D1 to D2 and Ḡ from D2 to D3 over
F and G, respectively.

• (disp_ pseudo_ id ) We have the identity displayed pseudofunctor id (D1) : D1 id (B1)−−−→ D1.
• (disp_ pseudo_ comp ) We have a composition displayed pseudofunctor F̄ · Ḡ : D1 F·G−−→ D3.
• (disp_ id_ pstrans ) We have a displayed identity pseudotransformation id1(F̄) : F̄ id1(F)===⇒ F̄.
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• (disp_ comp_ pstrans ) Suppose, we also have pseudofunctors F′, F′′ : B1 → B2 and pseudo-
transformations η : F ⇒ F′ and θ : F′ ⇒ F′′. If we also have displayed pseudofunctors F̄′ : D1 F′−→
D2 and F̄′′ : D1 F′′−→ D2 and displayed pseudotransformations η̄ : F̄ η=⇒ F̄′ and θ̄ : F̄′ θ=⇒ F̄′′, then
we have a composition displayed pseudotransformation η̄ • θ̄ : F̄ η•θ==⇒ F̄′′.

Now we have developed sufficient displayed machinery to define displayed biequivalences.

Definition 8.9 (disp_is_biequivalence_data). Let D1 and D2 be displayed bicategories over
bicategories B and C, respectively. Suppose that we have a biequivalence L : B→ C. We use the
naming from Definition 2.17. Then, a displayed biequivalence from D1 to D2 over L consists of

• A displayed pseudofunctor L̄ : D1 L−→ D2;
• A displayed pseudofunctor R̄ : D2 R−→ D1;
• Displayed pseudotransformations η̄ : R̄ · L̄ η=⇒ id (D2) and ηi : id (D2) ηi=⇒ R̄ · L̄;
• Displayed pseudotransformation ε̄ : L̄ · R̄ ε=⇒ id (D1) and εi : id (D1) εi=⇒ L̄ · R̄;
• Displayed invertible modifications

m1 : η̄ • ηi
m1 �

 id1(R̄ · L̄) m2 : ηi • η̄

m2 �

 id1(id(D2))

• Displayed invertible modifications

m3 : ε̄ • εi
m3 �

 id1(L̄ · R̄) m4 : εi • ε̄

m4 �

 id1(id(D1))

Note that the total variant of each example in Definition 8.9 is its non-displayed ana-
logue. Displayed biequivalences give rise to total biequivalences between their associated total
bicategories.

Problem 8.10. Let B and C be bicategories and suppose we have a biequivalence L : B→ C. If we
have displayed bicategories D1 and D2 over B and C, then each displayed biequivalence L̄ from D1 to
D2 over L gives rise to a biequivalence

∫
L̄ from

∫
D1 to

∫
D2.

Construction 8.11 for Problem 8.10; (total_is_biequivalence). The pseudofunctors, pseu-
dotransformations, and invertible modifications are constructed using Construction 8.7.

Note that to construct a displayed biequivalence, one must show several laws and con-
struct multiple displayed invertible 2-cells. If the involved displayed bicategories are locally
groupoidal (Definition 7.7) and locally propositional (Definition 7.8), then constructing a dis-
played biequivalence is simpler. This is because all the necessary laws follow immediately from
local propositionality and all the involved displayed 2-cells are invertible. With all this in place, we
finally show how to construct the desired biequivalence in Problem 8.1 with displayed machinery.

Construction 8.12 for Problem 8.1; (disp_biequiv_data_unit_counit_path_pgroupoid).
By Problem 8.10, it suffices to construct a displayed biequivalence.We only show how to construct
the required displayed pseudofunctor from points on 1-types to points on groupoids.

• Given a 1-type X and a point x : X, we need to give an object of PathGrpd(X), for which we
take x.
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• If we have 1-types X and Y with points x : X and y : Y , and a function f : X → Y with a path
pf : f (x)= y, then we need to construct an isomorphism between f (x) and y in PathGrpd(X).
It is given by pf .

• Suppose we have 1-types X and Y with points x : X and y : Y . Furthermore, suppose we have
a homotopy s : f ∼ g between functions f , g : X → Y , paths pf : f (x)= y and pg : g(x)= y, and
a path h : pf = s(x) • pg . Then, the required displayed 2-cell is the inverse of h.

The compositor and the identitor are both the reflexivity path.

As a final example, we construct a biequivalence between the bicategory of monads internal to
Cat and the bicategory of Kleisli triples.

Problem 8.13. To construct a biequivalence between monads and Kleisli triples.

Construction 8.14 for Problem 8.13; (Monad_biequiv_Ktriple). Note that the bicategory of
monads and Kleisli triples are defined as the total bicategories of Definitions 6.7 and 6.8, respec-
tively. Hence, by Problem 8.10, it is sufficient to construct a displayed biequivalence between the
respective displayed bicategories. For the details on this construction, we refer the reader to the
formalization.

9. Univalence of Complicated Bicategories
In this section, we demonstrate the power of displayed bicategories on a number of complicated
examples. We show the univalence of the bicategory of pseudofunctors between univalent bicate-
gories and of univalent categories with families. In addition, we give two constructions to define
univalent bicategories of algebras.

9.1 Pseudofunctors
As promised, we use displayed bicategories to prove Theorem 3.20. For the remainder, fix bicate-
gories B and C such that C is univalent. Recall that a pseudofunctor consists of an action on 0-cells,
1-cells, 2-cells, a family of 2-cells witnessing the preservation of composition and identity 1-cells,
such that a number of laws are satisfied.

To construct the bicategory Pseudo(B, C) of pseudofunctors, we start with a base bicategory
whose objects are functions from B0 to C0. Then, we add structure to the base bicategory in several
layers. Each layer is given as a displayed bicategory over the total bicategory of the preceding one.
The first layer consists of actions of the pseudofunctors on 1-cells. On its total bicategory, we define
three displayed bicategories: one for the compositor, one for the identitor, and one for the action
on 2-cells.We take the total bicategory of the product of these three displayed bicategories. Finally,
we take the full subbicategory of that total bicategory on those objects that satisfy the axioms of a
pseudofunctor. To show its univalence, we show the base and each layer are univalent.

Now let us look at the formal definitions.

Definition 9.1 (ps_base). The bicategory Base(B, C) is defined as follows.

• The objects are functions B0 → C0;
• The 1-cells from F0 to G0 are families of 1-cells η0, β0 : ∏(x:B0) F0(x)→G0(x);
• The 2-cells from η0 to β0 are families of 2-cells � : ∏(x:B0) η0(x)⇒ β0(x).

The operations are defined pointwise.
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Next we define a displayed bicategory over Base(B, C). The displayed 0-cells are actions of
pseudofunctors on 1-cells. The displayed 1-cells over η0 are 2-cells witnessing the naturality of η0.
The displayed 2-cells over � are equalities which show that � is a modification.

Definition 9.2 (map1cells_disp_bicat). We define a displayed bicategory Map1D(B, C) over
Base(B, C) such that

• the displayed objects over F0 : B0 → C0 are families of functions

F1 :
∏

(X,Y:B0)
B1(X, Y)→ C1(F0(X), F0(Y));

• the displayed 1-cells over η0 : F0(x)→G0(x) from F1 to G1 are families of invertible 2-cells

η1 :
∏

(X,Y:B0)(f :X→Y)
η0(X) ·G1(f )⇒ F1(f ) · η0(Y);

• the displayed 2-cells over � : η0(x)⇒ β0(x) from η1 to β1 are families of equalities
∏

(X,Y:B0)(f :X→Y)
η1(f ) • (F1(f )� �(Y))= (�(X)�G1(f )) • β1(f ).

We denote the total bicategory of Map1D(B, C) by Map1(B, C). Now we define three displayed
bicategories over Map1(B, C). Each of them is defined as a locally chaotic displayed bicategory
(Item 4 in Definition 6.6).

Definition 9.3 (identitor_disp_cat). We define a displayed bicategory MapId(B, C) over
Map1(B, C) as follows:

• The displayed objects over (F0, F1) are identitors

Fi :
∏

(X:B0)
id1(F0(X))⇒ F1(id1(X));

• The displayed morphisms over (η0, η1) from Fi to Gi are equalities

ρ(η0(X)) • λ(η0(X))−1 • (Fi(X)� η0(X))= (η0(X)�Gi(X)) • η1(id1(X)).

Definition 9.4 (compositor_disp_cat). We define a displayed bicategory MapC(B, C) over
Map1(B, C) as follows:

• The displayed objects over (F0, F1) are compositors

Fc :
∏

(X,Y ,Z:B0)(f :B1(X,Y))(g:B1(Y ,Z))
F1(f ) · F1(g)⇒ F1(f · g);

• The displayed morphisms over (η0, η1) from Fc to Gc consists of equalities

α • (η1(f )�G1(g)) • α−1 • (F1(f )� η1(g)) • α • (Fc � η0(Z))= (η0(X)�Gc) • η1(f · g)
for all X, Y , Z : B0, f : B1(X, Y) and g : B1(Y , Z).
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Definition 9.5 (map2cells_disp_cat). We define a displayed bicategory Map2D(B, C) over
Map1(B, C) as follows:

• The displayed objects over (F0, F1) are

F2 :
∏

(a,b:B0)(f ,g:a→b)
(f ⇒ g)→ (F1(f )⇒ F1(g));

• The displayed morphisms over (η0, η1) from F2 to G2 consist of equalities
∏

(θ :f⇒g)
(η0(X)�G2(θ)) • η1(g)= η1(f ) • (F2(θ)� η0(Y)).

We denote the total category of the product of Map2D(B, C), MapId(B, C), and MapC(B, C) by
RawPseudo(B, C). Note that its objects are of the form ((F0, F1), (F2, Fi, Fc)), its 1-cells are pseudo-
transformations, and its 2-cells are modifications. However, its objects are not yet pseudofunctors,
because those also need to satisfy the laws in Definition 2.12.

Definition 9.6 (psfunctor_bicat).We define the bicategory Pseudo(B, C) as the full subbicate-
gory of RawPseudo(B, C) where the objects satisfy the following laws

• F2(id2(f ))= id2(F1(f )) and F2(f • g)= F2(f ) • F2(g);
• λ(F1(f ))= (Fi(a)� F1(f )) • Fc(id1(a), f ) • F2(λ(f ));
• ρ(F1(f ))= (F1(f )� Fi(b)) • Fc(f , id1(b)) • F2(ρ(f ));
• (F1(f ) • Fc(g, h)) • Fc(f , g · h) • F2(α)= α • (Fc(f , g)� F1(h)) • Fc(f · g, h);
• Fc(f , g1) • F2(f � θ)= (F1(f )� F2(θ)) • Fc(f , g2);
• Fc(f1, g) • F2(θ � g)= (F2(θ)� F1(g)) • Fc(f2, g);
• Fi(X) and Fc(f , g) are invertible 2-cells.

Note that the objects, 1-cells, and 2-cells of the resulting bicategory correspond to
pseudofunctors (Definition 2.12), pseudotransformations (Definition 2.13), and modifications
(Definition 2.14), respectively. Each displayed layer in this construction is univalent. In addition,
if C is univalent, then so is Base(B, C). All in all, the results of this subsection can be summarized
as follows.

Definition 9.7. Given bicategories B and C, we define a bicategory Pseudo(B, C) whose objects are
pseudofunctors, 1-cells are pseudotransformations, and 2-cells are modifications.

Theorem 9.8. If C is univalent, then so is Pseudo(B, C).

9.2 Algebraic examples
Next, we show how to use displayed bicategories to construct univalent bicategories of algebras
for some signature. We consider signatures that specify operations, equations, and coherencies
on those equations. More specifically, a signature consists of a pseudofunctor F (specifying the
operations), a finite set of pairs of pseudotransformations li and ri (specifying the equations), and
a proposition P (specifying the coherencies) which can refer to F and the li and ri. An algebra on
such a signature consists of an object X, a 1-cell h : F(X)→ X, 2-cells li(X)⇒ ri(X), such that the
predicate P is satisfied by all this data.

To define the bicategory of algebras on a signature, we define three displayed bicategories which
add the operations, equations, and coherencies. Since the equations canmake use of the operations
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and the coherencies can refer to the equations, the displayed bicategories must be layered suitably.
More specifically, starting with a bicategory B and a pseudofunctor F : B→ B, we first define a
displayed bicategory whose displayed objects are algebras on F. On top of its total bicategory, we
give a displayed bicategory which adds 2-cells (modeling equations) to the structure. This gives
rise to another total bicategory. Finally, we consider the full subbicategory of the latter total bicat-
egory consisting of all objects satisfying the desired coherencies. The objects of the resulting total
bicategory are models for the signature we started with.

To illustrate our approach, we show how to define the bicategory of monads internal to a bicat-
egory, as discussed in Definition 6.7. Amonad internal to a bicategory B consists of, among others,
a 0-cell X : B and 1-cell X → X as an “operation.” Such structure is encapsulated by algebras for a
pseudofunctor and pseudomorphisms between those algebras.

Definition 9.9 (disp_alg_bicat). Let B be a bicategory and let F : B→ B be a pseudofunctor.
We define a displayed bicategory AlgD(F).

• The objects over a : B are 1-cells F0(a)→ a.
• The 1-cells over f : B1(a, b) from ha : F0(a)→ a to hb : F0(b)→ b are invertible 2-cells ha · f ⇒
F1(f ) · hb.

• Given f , g : B1(a, b), algebras ha : F0(a)→ a and hb : F0(b)→ b, and hf and hg over f and g
respectively, a 2-cell over θ : f ⇒ g is a commuting square

ha · f hf ��

ha�θ

��

F1(f ) · hb
F2(θ)�hb
��

ha · g
hg

�� F1(g) · hb

We write Alg(F) for the total category of AlgD(F).

Theorem 9.10 (bicat_algebra_is_univalent_2). Let B be a bicategory and let F : B→ B be
a pseudofunctor. If B is univalent, then so is Alg(F).

Example 9.11 Example 6.3 cont’d. The bicategory of pointed 1-types is the bicategory of algebras
for the constant pseudofunctor F(a)= 1.

Returning to the example of monads, define M1 to be Alg(id(B)). Objects of M1 consist of an
X : B0 and a 1-cell X → X. To refine this further, we need to add 2-cells corresponding to the unit
and the multiplication. We do this by defining two displayed bicategories over M1.

In general, the construction for building algebras with 2-cells (which model “equations”) looks
as follows. Suppose that we have a displayed bicategory D over some B. Our goal is to define a dis-
played bicategory over

∫
D where the displayed 0-cells are certain 2-cells in B. The endpoints for

these 2-cells are choices of 1-cells that are natural in objects; thus, they are given by pseudotransfor-
mations l, r. The source of the endpoints is πD · S for some S : B→ B, and the target is πD · id (B)
where πD is the projection from

∫
D to B. The source pseudofunctor S : B→ B determines the

shape of the free variables that occur in the endpoints. Note that the target of the endpoint is
πD · id (B), instead of πD, which is symmetric to the source πD · S. This allows us to construct
such transformations by composing them.

Thus, pseudotransformations l, r : πD · S→ πD · id (B) give 1-cells l(a, ha), r(a, ha) : B1(S(a), a)
for each (a, ha) :

∫
D. By allowing l and r to depend not only on the 0-cell a : B, but also on the dis-

played cell ha : D(a), the endpoints can refer to the operations that were added as part of algebras
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in Definition 9.9. Formally, the construction that adds 2-cells from l(a) to r(a) is defined as the
following displayed bicategory.

Definition 9.12 (add_cell_disp_cat). Suppose that D is a displayed bicategory over B. Let S :
B→ B be a pseudofunctor and let l, r : πD · S→ πD · id (B) be pseudotransformations. We define a
displayed bicategory Add2Cell(D, l, r) over

∫
D as a locally chaotic displayed bicategory (c.f. Item 4

in Definition 6.6).

• The objects over (a, ha) are 2-cells l(a, ha)⇒ r(a, ha).
• The morphisms over (f , f̄ ) : ∫ D((a, ha), (b, hb)) from α : l(a, ha)→ r(a, ha) to β : l(b, hb)→
r(b, hb) are the following commuting squares in B:

l(a, ha) · f α�f ��

l(f ,f̄ )
��

r(a, ha) · f
r(f ,f̄ )
��

S(f ) · l(b, hb) S(f )�β
�� S(f ) · r(b, hb)

Theorem 9.13. The displayed bicategory Add2Cell(D, l, r) is locally univalent (add_ cell_
disp_ cat_ univalent_ 2_ 1 ). Moreover, if C is locally univalent and D is locally uni-
valent, then Add2Cell(D, l, r) is globally univalent (add_ cell_ disp_ cat_ univalent_
2_ 0 ).

Returning to the example of monads, let us use Definition 9.12 to add the unit and the multi-
plication 2-cells to the structure of M1. We can add the unit and the multiplication separately, as
two displayed bicategories. For the unit, we pick the source pseudofunctor S(a)= a and the end-
points are defined as l(a, f : a→ a)= id0 (a) and r(a, f : a→ a)= f . For the multiplication, we use
the same source pseudofunctor and the same right endpoint, but we pick the left endpoint to be
l(a, f : a→ a)= f · f .

Let M2′ be the product of these two displayed bicategories, displayed over
∫
M1. We use the

sigma construction (c.f. Item 2 in Definition 6.6) to obtain a displayed bicategory M2 over B. It is
almost the bicategory of monads internal to B. To finalize the construction, we need to require the
structures in M2 to satisfy the monadic laws: for each object (f , η,μ) in

∫
M2 the diagrams from

Definition 6.7 need to commute. We construct the final bicategory M(B) (as in Definition 6.7)
as the full subbicategory of

∫
M2 with respect to these laws. Again to guarantee that M(B) is dis-

played over B, we use the sigma construction. From Proposition 7.9, Theorems 9.10 and 9.13,
and Example 7.6 we conclude:

Theorem 9.14 (bigmonad_is_univalent_2). If B is univalent, then so is M(B).

9.3 Categories with families
Finally, we discuss the last example: the bicategory of (univalent) categories with families (CwFs)
(Dybjer, 1995). We follow the formulation by Fiore (2012) (there described as “dependent context
structures”) and Awodey (2018, Section 1), which is already formalized in UniMath (Ahrens et al.,
2018): a CwF consists of a category C, two presheaves Ty and Tm on C, a morphism p : Tm→ Ty,
and a representation structure for p.

However, rather than defining CwFs in one step, we use a stratified construction yielding the
sought bicategory as the total bicategory of iterated displayed layers. The base bicategory is Cat
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(cf. Example 2.8). The second layer of data consists of two presheaves, each described by the
following construction.

Definition 9.15 (disp_presheaf_bicat).Define the displayed bicategory PShD over Cat:

• The objects over C are functors from Cop to the univalent category Set;
• The 1-cells from T : Cop → Set to T′ :Dop → Set over F : C →D are natural transformations
from T to Fop · T′;

• The 2-cells from β : T ⇒ Fop · T′ to β ′ : T ⇒Gop · T′ over γ : F ⇒G are equalities

β = β ′ • (γ op � T′).

Denote by CwF1 the total category of the product of PShDwith itself. An object in CwF1 consists
of a category C and two presheaves Ty, Tm : Cop → Set.

The next piece of data in a CwF is a natural transformation from Tm to Ty:

Definition 9.16 (morphisms_of_presheaves_display). We define a displayed bicategory
dCwF2 on CwF1 as the locally chaotic displayed bicategory (Item 4 in Definition 6.6) such that

• The objects over (C, (Ty, Tm)) are natural transformations from Tm to Ty.
• Suppose we have two objects (C, (Ty, Tm)) and (C′, (Ty′, Tm′)), two natural transforma-
tions p : Tm⇒ Ty and p′ : Tm′ ⇒ Ty′, and suppose we have a 1-cell f from (C, (Ty, Tm)) to
(C′, (Ty′, Tm′)). Note that f consists of a functor F : C → C′ and two transformations β : Ty⇒
Fop ◦ Ty′ and β ′ : Tm⇒ Fop ◦ Tm′. Then, a 1-cell over f is an equality

p • β = β ′ • (Fop � p′).

With dCwF2 and the sigma construction from Item 2 in Definition 6.6, we get a displayed
bicategory over Cat and we denote its total bicategory by CwF2. As the last piece of data, we add
the representation structure for the morphism p of presheaves.

Definition 9.17 (cwf_representation). Given a category C together with functors Ty, Tm :
Cop → Set and a natural transformation p : Tm⇒ Ty, we say isCwF(C, Ty, Tm, p) if for each � : C
and A : Ty(�), we have a representation of the fiber of p over A.

A detailed definition is given by Ahrens et al. (2018, Definition 3.1). Since C is univalent, the
type isCwF(C, Ty, Tm, p) is a proposition, and thus, we define CwF as a full subbicategory of CwF2.

Proposition 9.18 Ahrens et al. 2018, Lemma 4.3 , isaprop_cwf_representation. The type
isCwF(C, Ty, Tm, p) is a proposition.

Definition 9.19 (cwf).We define CwF as the full subbicategory of dCwF2 with isCwF.

Theorem 9.20 (cwf_is_univalent_2). CwF is univalent.

10. Displayed (2-)Inserters
In this section, we study two general constructions which have been suggested by an anonymous
referee. Both the constructions and their name were suggested by the referee. We already saw
instances of them, namely in Sections 9.2 and 9.3.
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The first one, called the displayed inserter, constructs a displayed bicategory whose total bicat-
egory represents the inserter of two pseudofunctors. A similar construction, namely inserters of
1-cells in bicategories, has already been studied in the literature. Lambek defined subequalizers of
functors (Lambek, 1970), and these are inserters in the bicategory of categories. These inserters are
also known as dialgebras, and they have been used to study the semantics of inductive-inductive
types (Altenkirch et al., 2011). Power and Robinson (1991) defined PIE-limits (products, inserters,
equifiers) in 2-categories and showed that they can be used to construct a general class of limits.
In addition, it has been shown that bicategories of algebras are closed under inserters (Blackwell
et al., 1989; Veltri and van der Weide, 2021). Note that the terminology “displayed inserter” has
also been used for the inserter of displayed functors (Bocquet et al., 2021), which is different from
what we look at.

Definition 10.1 (Displayed inserter, disp_inserter_bicat). Let B and D be bicategories and
let F,G : B→ D be pseudofunctors. We define the following displayed bicategory over B, called the
displayed inserter:

(1) displayed objects over b : B0 are 1-cells g : D1(Fb,Gb);
(2) displayed 1-cells over f : B1(b, b′) from g : D1(Fb,Gb) to g′ : D1(Fb′,Gb′) are displayed 2-cells

γ as in

Fb
Ff

��

g
��

Fb′

g′
��

Gb
Gf

�� Gb′
����
��γ

(3) displayed 2-cells over b
f

��

g
��

�� ��
�� θ b′ from γ : g ·Gf ⇒ Ff · g′ to γ ′ : g ·Gf ′ ⇒ Ff ′ · g′ are iden-

tities γ • (Fθ � g′)= (g �Gθ) • γ ′.
(4) composition of 1-cells is defined using whiskering and the associator in D.

The remaining properties are readily shown; we refer to the formalization for details.

Example 10.2 Definitions 9.9 and 9.15 are – almost – instances of Definition 10.1. Specifically,
Definition 9.9 is obtained as the displayed inserter with F the identity pseudofunctor and
with G the pseudofunctor F of Definition 9.9. However, this does not yet give the correct dis-
played 1-cells; we furthermore need to take the full subbicategory of invertible displayed 1-cells
(cf. disp_sub1cell_bicat). Definition 9.15 is obtained by taking F to be the identity on Cat
and G to be the functor that is constantly Setop.

Note that this is slightly different than in Definition 9.15, corresponding to the two ways to
represent a contravariant functorH :A→ B in terms of a covariant one – as a functorH :Aop → B
or a functorH :A→ Bop. While Definition 9.15 uses the former, this is not possible here: domain
and codomain of the inserter are specified by pseudofunctors, but the function (_)op : Cat0 →
Cat0 on categories does not extend to a pseudofunctor Cat→ Cat that could take the place of
the pseudofunctor F above. Instead, here we have to represent contravariant functors by taking
the opposite of the target category, and thus consider the constant pseudofunctor returning the
category Setop.

Proposition 10.3 (disp_inserter_bicat_univalent_2_0). Suppose given data as in
Definition 10.1. Then the displayed inserter is
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(1) locally univalent;
(2) globally univalent if B and C are locally univalent.

Next we look at displayed 2-inserters. These are quite similar to displayed inserter, but with
one main difference: instead 1-cells, 2-cells are added to the structure. More precisely, given two
pseudotransformations α and β , the displayed 2-inserter gives a displayed bicategory of maps
from α(x) to β(x) for every x.

Definition 10.4 (Displayed 2-inserter, disp_two_inserter_bicat). Let B and D be bicategories,
let F,G : B→ D be pseudofunctors, and let α, β : F ⇒G be pseudotransformations. We define the
following locally chaotic displayed bicategory over B, called the displayed 2-inserter:

(1) displayed objects over b : B0 are 2-cells r in D as in

F0b
α(b)

		

β(b)




�� ��
�� r G0b

(2) displayed 1-cells over f : B1(b, b′) from F0b
α(b)

		

β(b)




�� ��
�� r G0b to F0b′

α(b′)
��

β(b′)
��

�� ��
�� s G0b′ are

identities

(r�G1f ) • β(f )= α(f ) • (F1f � s).

Example 10.5. The displayed bicategory of Definition 9.12 is immediately a displayed 2-inserter.
The displayed bicategory of Definition 9.16 can be obtained as the following displayed

2-inserter: consider the functors F,G : CwF1 → Cat given by F(C, Ty, Tm) :≡ C andG(_) :≡ Setop.
As pseudotransformations, we take the projections α :≡ Tm and β :≡ Ty, respectively. As in
Example 10.2, we have to put the oppositization into the target pseudofunctor G, that is, take
presheaves on C to be functors C → Setop instead of Cop → Set.

Proposition 10.6 (disp_two_inserter_univalent_2_0). In the context of Definition 10.4, the
displayed 2-inserter is

• locally univalent;
• globally univalent if B is locally univalent.

11. Conclusions and Open Questions
In the present work, we studied univalent bicategories. Showing that a bicategory is univalent
can be challenging; to simplify this task, we introduced displayed bicategories, which provide
a way to modularly reason about involved bicategorical constructions. We then demonstrated
the usefulness of displayed bicategories by using them to show that certain complicated bicate-
gories are univalent. The same approach is useful for many other basic notions and constructions
such as pseudofunctors, pseudotransformations, modifications, and biequivalences: the displayed
machinery allows one to stratify their presentation and thus eases reasoning on such objects.
Veltri and van der Weide (2021) used the techniques described in the present paper to construct
univalent bicategories of algebras for a class of signatures. In addition, they defined displayed
biadjunctions, and those were used to construct biadjunctions between bicategories of algebras.
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For the practical mechanization of mathematics in a computer proof assistant, two issues may
arise when building an elaborate bicategory as the total bicategory of iterated displayed bicate-
gories. Firstly, the structures may not be parenthesized as desired. This problem can be avoided
or at least alleviated through a suitable use of the sigma construction of displayed bicategories
(Item 2 in Definition 6.6). Secondly, “meaningless” terms of unit type may occur in the cells of
this bicategory. We are not aware of a way of avoiding these occurrences while still using dis-
played bicategories. However, both issues can be addressed through the definition of a suitable
“interface” to the structures, in form of “builder” and projection functions, which build, or project
a component out of, an instance of the structure. The interface hides the implementation details
of the structure and thus provides a welcome separation of concerns between mathematical and
foundational aspects.

We have only started, in the present work, the development of bicategory theory in univalent
foundations and its formalization. There are some important questions that we have left open,
such as proving the universal property of the Rezk completion. Furthermore, the precise relation-
ship to the bicategories studied by Ahrens et al. (2021, Example 9.1) should be established; those
bicategories are defined, in particular, using relations instead of functions. It seems reasonable to
hope for our univalent bicategories to coincide (in the sense of an equivalence of types) with the
univalent bicategories of Ahrens et al. (2021, Example 9.1); a construction of such an equivalence
is outside the scope of this work. We also anticipate that the displayed machinery can be usefully
employed for extending the comparison of different categorical structures for type theories started
by Ahrens et al. (2018) to the bicategorical setting.
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Notes
1 Also known in the literature as extension systems (Marmolejo and Wood, 2010) or Manes-style monads (Manes, 1976).
2 https://github.com/mortberg/cubicaltt/blob/a5c6f94bfc0da84e214641e0b87aa9649ea114ea/
examples/category.ctt.
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