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Abstract 

Road infrastructure systems have been suffering from ineffective maintenance strategies, 

exaggerated by budget restrictions. A more holistic road asset management approach enhanced 

by data-informed decision making through effective condition assessment, distress detection, 

future condition predictions can significantly enhance maintenance planning, prolonging asset 

life. Recent technology innovations such as Digital Twins have great potentials to enable the 

needed approach for road condition predictions and a proactive asset management. To this end, 

machine learning techniques have also demonstrated convincing capabilities in solving 

engineering problems. However, none of them has been considered specifically within digital 

twins context. There is therefore a need to review and identify appropriate approaches for the 

usage of machine learning techniques within road digital twins. This paper provides a 

systematic literature review of machine learning algorithms used for road condition predictions 

and discusses findings within the road digital twin framework. The results show that existing 

machine learning approaches are to some extent, suitable and mature to stipulate successful 

road digital twin development. Moreover, the review whilst identifying gaps in the literature, 

indicates several considerations and recommendations required on the journey to road digital 

twins, and suggests multiple future research directions based on the review summaries of 

machine learning capabilities. 
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1. Background 

The maintenance and management of road infrastructure is of great significance in any country 

for achieving a sustainable social and economic development. Therefore, there is an ongoing 

research question on how to achieve high quality for the operation and maintenance of roads 

within an optimised asset management strategy when facing insufficient funding (Burningham 

& Stankevich, 2005). In the UK, the cost of road maintenance activities for local roads, 

managed by local authorities, was up to £3.3 billion in the years 2016 to 2017 (Haylen, 2019). 

The maintenance activities are mostly carried out based on a reactive approach which involves 

heavy manual labour, enough to maintain the serviceability of roads. However, the reactive 

approach is not as cost-effective as the proactive approaches (UK House of Commons, 2019). 

One of the reasons that proactive maintenance strategies are not well adopted is a lack of a 

holistic management approach based on the reliable and accurate deterioration modelling and 

asset whole lifecycle data management (Bowden et al., 2006). The most recent trend in the 

field of infrastructure maintenance is leaning towards intelligent models informed by 

monitoring data for proactively optimised maintenance strategies (MJ DeJong et al., 2019). 

This requires consideration of (i) maintenance activities covering the whole lifecycle of the 

asset, (ii) relevant data that can be influential factors of asset performance, (iii) the quantified 

optimum balance of costs across different stakeholders including infrastructure owner, manager, 

and user. Due to the complexity of road types, materials, structures, and their degradation 

mechanisms shaped by large number of factors during their service life, it is extremely 

challenging to create precise maintenance strategies with a high level of granularity. 
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On the other hand, recent developments in digital technologies such as Internet of Things 

(IoT), Big Data, Sensorisation, Machine Learning (ML) or Deep Learning (DL), and Artificial 

Intelligence (AI) have received increasing attention in resolving civil engineering problems 

(Karimzadeh, 2020). Among both academics and practitioners, road engineers have recognised 

that a large amount of data from a network of sensors can provide continuous and useful 

information on road behaviour and performance and is able to provide a more comprehensive 

understanding of the road status if combined well with visualisation (D Trousdale, 2019; Steyn, 

2020). Specifically, with the growing number of real-time data from various sources, data 

analytics approaches have been leveraged to perform improved road deterioration modelling 

and to enable prediction with high accuracy for road performance (Piryonesi, 2019). With 

regards to road performance prediction, various ML neural networks and different DL 

algorithms have been explored to predict the road performance based on a data-driven method 

(Amirhossein Hosseini, 2020; Choi & Do, 2020). As a result of the evolvement of these 

technologies, a novel concept of digital twin has recently become a popular research area for 

architecture, engineering and construction management and has shown a great potential to 

support thorough intelligent automated decision-making as a visual-aided tool for the asset 

whole lifecycle management and therefore to optimise operation and maintenance strategies 

(Macchi et al., 2018). The report from National Infrastructure Commission - Data for the 

Public Good provided suggestions for the UK government toward a digital infrastructure and 

development of a national digital twin was the key element (NIC, 2017). The Gemini principles 

published by the UK Digital Framework Task Group and the Centre for Digital Built Britain 
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also addressed the need of digital twins (Bolton, 2018). Various applications of digital twin 

concept have been investigated for different assets at different levels. For example, at a city 

level for buildings, Lu et al (2020) demonstrated successful implementation of a building 

digital twin which integrates heterogeneous data sources and supports decision-making 

processes in operational and maintenance management. As for the bridges, and at an asset level 

Ye et al (2019) created a digital twin for structural health monitoring of bridges which provided 

several benefits including efficient query of relevant data, integrated capabilities of data 

processing and interpretation as well as a collaborative environment for various stages of a 

bridge project. Yu et al (2020) presented a highway tunnel performance prediction model based 

on digital twin concept and ML technique, which illustrated a reliable data-driven management 

method for preventive maintenance. Comprehensibly, road being one of the fundamental assets 

of any national infrastructure system, digital twins for roads would improve the accuracy of 

prediction and through that the effectiveness of any associated decision-making. However, no 

previous research has thoroughly investigated the potential applications of digital twin and its 

involved capabilities for roads, especially with a focus on road condition prediction. 

One key enabling element of digital twin is the ML or DL capability for classifications 

and prediction of deterioration trends by taking advantage of the large volume of data available 

in the industry 4.0 age (Fuller et al., 2020). For instance, ML algorithms have been used to 

efficiently and effectively perform classification tasks on remotely sensed images (Maxwell et 

al., 2018). With regards to road management, they have been utilised in classifying the types of 

roads (Saleh & Otoum, 2020), and different road surfaces (Bibi et al., 2021; Menegazzo & von 
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Wangenheim, 2021a) as well as forecasting future performance of roads (Marcelino et al., 

2021). 

Currently, digital twin has various definitions provided by different organisations and 

sectors.  VanDerHorn & Mahadevan (2021) summarised more than 46 literatures related to 

digital twin concept and provided a relatively generalised and consolidated definition as 

follows, “a virtual representation of a physical system (and its associated environment and 

processes) that is updated through the exchange of information between the physical and 

virtual systems”. Based on these definitions, there are multiple requirements for a digital twin 

which are summarised in Table 1. Considering current practices for road maintenance and the 

core functionalities and elements of an ideal pavement management system (PMS), a more 

specific list of requirements for road digital twin together with a detailed mapping with ML 

algorithms are presented in Table 1. 

While various ML algorithms have been developed for modelling road deteriorations and 

to predict its conditions, none of these has been developed, tailored nor applied for a digital 

twin and its needs. Therefore, this research first takes a detailed look at the literature related to 

ML algorithms as a foundational basis for the road digital twin, in order to map the 

requirement of the digital twins against the ML capacities and applications. ML algorithms 

could have potential to assist and cover a broad range of road digital twin functionalities 

depending on the user requirements, such as traffic management and safety assurance. 

However, this paper then narrows down to describe and discuss the ML approaches and 

algorithms, identified through a systematic literature review, that could fit into a road digital 
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twin to satisfy the requirements of road condition prediction applications. 

 

2. Systematic review 

A systematic literature review has been carried out to critically appraise and syntheses research 

findings on ML models for road conditions prediction. The systematic review described in this 

paper addressed the follow question: 

 What are the most suitable ML algorithms or approaches to address the requirements 

of a road digital twin for the application of road condition prediction? 

 

2.1 Definitions 

The systematic literature review followed a search protocol which is based on the definitions 

provided in Table 2. 

 

2.2 The adopted search approach 

The first step was to define the search keywords to identify relevant articles according to three 

categories (Subject, Technology and Functionality), as described in Table 3, to identify the 

potentially relevant articles in different databases. The sources used in this systematic literature 

review were Google Scholar, ResearchGate, SAGE Journal, ScienceDirect (Elsevier), Scopus, 

Taylor and Francis, Transport Research International Documentation (TRID), Web of Science, 

and library database at the Universities of Birmingham, Nottingham, and Manchester. 

A systematic literature review software (EPPI-ReviewerTM Web version) (UCL, 2019) 

facilitated the review and was used for screening, coding, analysing, and storing retrieved 

articles (Thomas and Brunton, 2010). In particular, ML based priority screening function within 
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the EPPI-ReviewerTM was utilised to help screening the large volume of articles as part of the 

review process (Tsou et al., 2020). The adopted systematic literature review process is 

summarised in Figure 1. 

 

2.3 Weight of evidence: assessing the quality of studies 

A weight of evidence (WoE) framework has been developed and used to assess the quality and 

suitability of the included studies in three categories - research soundness, appropriateness of 

study design to review question, and relevance of evidence focus to review question (see Table 

4). The studies finally included and considered were required to score high rating in at least 

two categories and one medium rating on the third. If the study satisfies at least one of the 

points of the description ratings, the corresponding ratings are applied. 

 

2.4 Synthesis of evidence 

The data were synthesised to indicate the most suitable ML algorithms to best predict road 

condition considering within a road digital twin environment. More specifically, section 3 

summaries different ML models, their inputs, output, data being used that would potentially 

have an impact on the model performance; and section 4 provides a further discussion on how 

these findings and insights could be contributed to the development of a road digital twin. 

 

3. Summary of main findings 

This section reports detailed findings on the selected studies after the Weight of Evidence stage. 

Although it is not within the scope of this review, to facilitate review findings summary, a 

potential road digital twin framework has been suggested (Figure 2) based on the large amount 
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of literature reviewed, with a focus on road condition prediction within a road digital twin 

application. 

Nine high quality studies based on the WoE analysis were identified to answer the 

primary review question. The given ranking for the nine selected studies during the WoE stage 

are presented in Table 5. 

All the nine studies contribute to the understanding and definition of the requirements of 

a road DT as well as the suitability of up-to-date ML techniques. DT is a digital replica of the 

physical entity across its lifecycle, and therefore its prediction capacity for the road condition is 

vital, which could be achieved through a ML based approach. Various findings of the identified 

studies are synthesised and described in the following subsections. The following sub-sections 

describe findings in further details on the key elements shown in Figure 2. 

 

3.1 Model input parameters 

The systematic literature review indicates that researchers have considered a broad spectrum of 

different types of categories of parameters that could have an impact on the pavement 

performance and have used them as ML prediction model inputs. To summarise, the considered 

input parameters fall under below categories: Pavement structure, material, historical 

performance, traffic, environment, as well as maintenance treatment records. 

Six studies (Alharbi, 2018; Fathi et al., 2019; Gong et al., 2018; Marcelino et al., 2019; 

Ziari et al., 2015, 2016) have considered the total thickness of the pavement structure as one of 

the model inputs, the results of the studies suggest that the range of pavement thickness have 

an impact on pavement performances, with a particular emphasis on cracking. As for the 
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material, asphalt mixture air voids and the measured asphalt content have been utilised by three 

studies to build prediction models (Fathi et al., 2019; Gong et al., 2018; Tabatabaee et al., 

2013). Fathi et al (2019) reported that air voids are one of the important attributes that 

significantly affect fatigue cracking along with pavement age and thickness. Annual average 

precipitation has been mostly considered to account for climate impacts on pavement 

performance (Alharbi, 2018; Gong et al., 2018; Marcelino et al., 2019; Ziari et al., 2015, 2016). 

This is an important factor for pavement condition forecasting to include the impact of 

changing climate and on road deterioration. The reviewed ML models have proved its 

capacities to quantify the impact of climate factors. For traffic loadings, equivalent single axis 

load (ESALs) has been used as input for four studies (Bukharin et al., 2021; Tabatabaee et al., 

2013; Ziari et al., 2015, 2016) whereas annual average daily traffic (AADT) also has been 

utilised in four studies (Gong et al., 2018; Marcelino et al., 2019; Ziari et al., 2015, 2016). It 

appears that most studies either considered ESALs or AADT and not both at the same time. 

However, Ziari et al (2015) considered both and presented that AADT has slightly more 

importance on pavement performance prediction than ESAL by 10%. In addition, some studies 

chose not to consider ESAL as it can be assumed to be equivalent to age (Abdelaziz et al., 

2018). Historical pavement performance metrics have also been identified as useful model 

inputs by various studies. For instance, three studies used previous rutting values to predict 

future road condition (Abdelaziz et al., 2018; Alharbi, 2018; Gong et al., 2018). Furthermore, 

Abdelaziz et al. (2018) and Alharbi (2018) have investigated other road defects as road 

condition indicators such as international roughness index (IRI) and crack rating for model 
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development. Most studies have concluded that initial condition data is the most significant 

factor that determines the model performance (Alharbi, 2018; Fathi et al., 2019; Gong et al., 

2018; Tabatabaee et al., 2013; Ziari et al., 2015). Last but not least, although maintenance data 

is an equally important information and a useful additional data source, few studies have 

utilised the data due to the potential difficulty to access them. Among the chosen studies, only 

one study has considered maintenance treatments as an input for the prediction model and have 

produced satisfying results (R2 = 98%) (Tabatabaee et al., 2013). Abdelaziz et al. (2018) also 

analysed maintenance impacts on the IRI values before and after the treatment, but it has only 

been used to identify and evaluate the corrected IRI values instead of maintenance type itself 

being prepared as an input to the model. It would be useful to understand ML’s capacity in 

handing maintenance effects when making road condition predictions. 

 

3.2 Model output parameters 

Four studies (Abdelaziz et al., 2018; Marcelino et al., 2019; Ziari et al., 2015, 2016) have 

analysed IRI as the prediction model target output, noting that it has been used by many world 

transportation agencies as an indicator for pavement performance as well as maintenance and 

rehabilitation initiation factor (Abdelaziz et al., 2018). Moreover, Tabatabaee et al. (2013) have 

predicted present serviceability index (PSI) which is highly correlated with the IRI. The rest of 

the studies have focused on the forecasting of the future condition of the road with specific 

distresses, and in particular, cracking (Alharbi, 2018; Bukharin et al., 2021; Fathi et al., 2019) 

and rutting (Alharbi, 2018; Gong et al., 2018). In addition, this review also found that the 

output of ML model for different applications could potentially be expanded to detect and 
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locate road defects (Ahmadi et al., 2021; Alzraiee et al., 2021; Arya, Maeda, Ghosh, Toshniwal, 

& Sekimoto, 2021), measure road temperature or wetness (Milad et al., 2021; Morris & Yang, 

2021), classify roads based on intelligent inertial sensors (Lee et al., 2021; Menegazzo & von 

Wangenheim, 2021b), prioritise and plan maintenance (Gao et al., 2021; Han et al., 2020), as 

well as determine the remaining service life of pavements (Citir et al., 2021; Karballaeezadeh 

et al., 2019; Nabipour et al., 2019) depending on the requirements of the road DT. 

 

3.3 Data used for research 

Various data have been explored and used to develop prediction models using ML technique 

with unique data characteristics, pre-processing methods, and training and testing data split 

percentage, which are described in the following sub-sections. 

 

3.3.1 Database 

Six studies (Abdelaziz et al., 2018; Fathi et al., 2019; Gong et al., 2018; Marcelino et al., 2019; 

Ziari et al., 2015, 2016) have used US Long-Term Pavement Performance (LTPP) (Highway 

Administration and Pavement Performance program, 2017) which is a public database that 

provides state-of-the-art pavements information. The other three studies (Alharbi, 2018; 

Bukharin et al., 2021; Tabatabaee et al., 2013) used data sources from the pavement 

management systems (PMSs) owned by the US state transportation agencies. In addition, two 

studies (Gong et al., 2018; Marcelino et al., 2019) combined LTPP data with US National 

Cooperative Highway Research Program (NCHRP) permanent deformation model and reports 

and Portuguese national road administration database accordingly to increase the total amount 
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of data. The reason behind the LTPP database being extensively researched by the pavement 

scholars is because of its availability for public, and its comprehensive coverage of various 

types and categories of data, such as structure and material, climate, traffic, and performance. 

The number of considered road sections and data records also vary significantly for 

different studies. Fathi et al. (2019), Gong et al. (2018), and Ziari et al. (2015, 2016) used data 

from 26 to 88 road sections and obtained over 200 records for ML model development. 

Meanwhile Abdelaziz et al. (2018), and Alharbi (2018) collected data from around 500 sections 

resulting in average of 1,792 records to train and test the ML algorithms. However, other 

researchers (Bukharin et al., 2021; Marcelino et al., 2019; Tabatabaee et al., 2013) utilised over 

14,000 data entries for preparation of next stages such as data pre-processing, model 

development and validation. The number of years covered in the utilised data ranged from five 

to 31 years. 

 

3.3.2 Data pre-processing 

Road condition data often includes various measurement errors and missing values, and hence 

it is essential to perform data pre-processing in order to achieve a relatively complete, clean, 

and high-quality data set (Ziari et al., 2015). This would help ML algorithms to better identify 

and understand the data and to eventually resolve the classification and regression problems for 

future road condition predictions. 

Four studies (Abdelaziz et al., 2018; Bukharin et al., 2021; Ziari et al., 2015, 2016) have 

particularly addressed the issue of missing data. The methods used to fill missing values were 1) 

linear interpolation, 2) removal 3) regression model. In addition, Bukharin et al. (2021) 
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performed removal on irrational behaviours of the crack, ride, or rut ratings data. To increase 

the accuracy and the large variance in the collected data, Ziari et al. (2015) used data 

normalisation technique to prevent bias due to large differences between minimum and 

maximum values in datasets. 

 

3.3.3 Split on training and testing data 

Before developing any ML model, it is important to prepare specific data for training and 

testing purposes. The size of training data in the considered studies varies from 58% (Bukharin 

et al., 2021) to 90% (Ziari et al., 2016). However, it can be concluded that the most common 

practice has been using 80% of the data for training and 20% of the testing, which is the case 

for four studies (Fathi et al., 2019; Gong et al., 2018; Marcelino et al., 2019; Ziari et al., 2015). 

 

3.4 ML algorithms and configurations 

Among the nine chosen studies, two main approaches have been explored to achieve 

satisfactory prediction model results. One approach was to use single ML algorithm to train 

and learn from the data, while alternatively a combined ML algorithms method was used for 

model development. For the usage of single ML algorithm, neural networks with various 

neuron configurations in hidden layers have been adopted (Abdelaziz et al., 2018; Alharbi, 

2018; Gong et al., 2018; Ziari et al., 2015). Among these studies, Ziari et al. (2015) with a 

three-layer neuron structure achieved the highest prediction accuracy (R2 = 96.8% and Root 

Mean Squared Error (RMSE) = 0.14). In addition to neural networks, other algorithms such as 

support vector machines with Pearson VII Universal kernel (Ziari et al., 2016) and 
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boosting-based learning algorithm - TrAdaBoost (Marcelino et al., 2019) have been utilised 

and also produced a very high prediction accuracy (in average R2 > 85%). As for the combined 

ML algorithms approach, it has resulted in a higher accuracy compared to the single ML 

algorithms (in average R2 > 95%). As part of this combined ML approaches, the output of one 

ML algorithm model was used as an inputs into another ML algorithm with the purpose of 

improving the overall prediction accuracy. The explored algorithms are support vector machine 

with recurrent neural network (RNN) (Tabatabaee et al., 2013); random forest with artificial 

neural network (ANN) (Fathi et al., 2019); and long-term short memory neural network plus 

ANN (Bukharin et al., 2021). Detailed ML algorithms and model accuracy for all nine studies 

are presented in Table 6 below. 

 

3.5 Types of prediction and accuracy 

From the perspective of different prediction duration, most studies produced one year or one 

step prediction, which is a basic capability of any ML models. But several studies have 

developed the ML algorithm for the use of multi-year or multi-step predictions. For example, 

Ziari et al. (2015) forecasted the IRI values for the next one year (R2 = 96.8%), two years (R2 = 

97.2%) and the whole lifecycle, i.e., three or over three years, (R2 = 97.9%). Moreover, the 

study conducted by Bukharin et al. (2021) produced next 1 – 5 years condition predictions on 

crack ratings with a continuous high accuracy (in average R2 = 98.5%). Similarly, (Marcelino 

et al., 2019) predicted the next one to four years with relatively little loss in performance (in 

average R2 = 99.5%). One insight worth noting is the use of transfer learning which enables the 

model to learn and extract the knowledge from multiple different databases and thereby 
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increasing the overall prediction capacity. 

 

3.6 Model Sensitivity analysis 

Sensitivity analysis is another key component for any ML model development and analysis 

process. Five studies have provided a relatively in-depth analysis on the importance of each 

input parameter to the model output (Alharbi, 2018; Fathi et al., 2019; Gong et al., 2018; 

Tabatabaee et al., 2013; Ziari et al., 2015). Table 7 shows a summary of the most important 

input parameters ranking from #1 (most relevant) to #5 (least relevant) for different considered 

ML models.  

 

4. Discussions 

Based on the findings of systematic literature review, it can be understood that various 

databases, data analytics techniques and ML algorithms have been developed, trailed, and 

tested for modelling road deterioration and to predict the road condition. Having said that, none 

of the existing data analysis and ML algorithms has been developed, tailored nor applied for 

road DT context to accommodating its needs. Therefore, this section explores further on the 

review findings and discusses the potential applications of different types of ML algorithms, 

their configurations as well as the optimisations that could be applied within a DT framework 

especially formed on the basis of the high-level requirements defined by the Centre for Digital 

Built Britain (CDBB) (Bolton, 2018) as well as multiple definitions and requirements 

summarised by VanDerHorn and Mahadeva (2021). 
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4.1 Data collection and analysis 

As described in Figure 2, data source module contains both historical and real-time data, using 

multiple sources and types of data are important requirements for a road DT to ensure high 

accuracy in showing the status of the asset and predicting its future condition. Possible data 

sources are historical road inspection surveys, existing public pavement performance database 

(e.g., LTPP (FHWA, 1995)), public image datasets for road damage analysis (Arya, Maeda, 

Ghosh, Toshniwal, Omata, et al., 2021; Atikur, 2020; Maciej Serda, 2013; Varma et al., 2018), 

ground penetrating radar (GPR) surveys, data from existing pavement management systems, 

IoT devices, smartphones, cameras, and intelligent sensors based on distributed acoustic 

sensing (DAS) which enable the collection of a broad range of types of data (Liehr et al., 2019). 

These various sources of data can then be fed into the road DT for further processing, 

analysing, and modelling for the specific applications of the DT. 

It also can be inferred from this review that various types of ML algorithms are capable 

of being the enabler of a road DT regarding future condition predictions. However, all selected 

studies have focused on time static data which is collected at a fixed time or frequency. Large 

amount of data as well as a more frequent data (real-time or near real-time) is expected to be an 

essential part of a DT according to various definitions of the concept (Abramovici et al., 2017; 

Demkovich et al., 2018; Negri et al., 2017). The higher sampling frequency could potentially 

result in the improvement on the prediction accuracy of different ML methods and possibly 

help to identify pavement condition changes at an early stage although it may not be easy to 

determine a sampling ratio in practice due to variable factors influencing road performance 
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(e.g., different ages of the roads and different road conditions). However, the higher sampling 

could lead to big data, which further requires large storage and computations. Therefore, there 

is a need for further research on ML pavement performance prediction model development 

using big data concept and IoT platforms (Steyn, 2020) to understand the capabilities of 

different ML algorithms to deal with higher frequency data collection mechanisms, especially 

on the trade-off between the accuracy and sampling frequency (and intervals). 

 

4.2 Data characteristics and ML algorithms choice 

As it is mentioned in the definition and DT general requirements summarised in Table 1, DT is 

built on data, while the data itself plays a decisive role in the development of a DT. Data 

pre-processing and cleaning remain to be a fundamental factor in achieving high quality data 

and subsequently reliable ML prediction modelling in a road DT scenario where data could 

become larger in volume, variety, and velocity. Based on the review, an important finding is 

that the performance of ML algorithm itself is largely dependent on the data in terms of its 

structure, values, and patterns, where the same algorithm and configurations could result in 

completely different prediction accuracy if applied on a different dataset. This might be another 

potential research area where a road DT needs to have a process or algorithm in place to 

intelligently identify the most suitable ML algorithm(s) for a given dataset. The selection also 

depends on the needs of various users of the DT. The process or algorithm could provide a 

platform, like a data lake (Redeker et al., 2021), where all potential types of ML algorithms can 

be trialled to select the one with highest accuracy as the output. The findings from this review 

suggest that ANN, RNN, Long-short-term memory (LSTM) and a boosting algorithm 
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AdaBoost.RT would be helpful in a road DT environment as it gives high prediction accuracies 

for not only short-term prediction (e.g., 1 or 2 years) but also long-term multiple year 

predictions (e.g., 3, 5 or 10 years) (Bukharin et al., 2021; Marcelino et al., 2019; Ziari et al., 

2015). 

Another fundamental key requirement and characteristic of a DT from Table 1 is its 

dependency on quality and variety of data, as well the data science pipeline. Having said that, 

none of the studies has considered to perform feature selection first on the identified model 

input parameters, which is an important component as part of the standard process within ML 

prediction model development. This could be one of the future research areas to improve the 

accuracy and reliability of the developed ML models. 

 

4.3 Road lifecycle analysis based on DT 

According to the defined road DT requirements in Table 1, the ability to communicate and 

reflect the characteristics and functionalities across the entire lifecycle within different phases 

of the corresponding physical asset is a crucial factor for DTs. Although the review result only 

presents the use of ML algorithms for road condition predictions, various ML or DL algorithms 

have been applied and could be further improved on other aspects of road asset management 

lifecycle. These applications could also be considered in the road DT development. For 

instance, ML algorithms such as Conventional Neural Network (CNN) can be used on image 

data to perform on-going structural condition health monitoring or assessment (Azimi and 

Pekcan, 2020) and to automatically detect different types of pavement distresses using 

k-nearest neighbour (kNN) algorithm (Du et al., 2020). In addition, to the application of DT for 
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health monitoring, distress identification, and performance prediction, it can also be used for 

the maintenance treatments and rehabilitation strategy selections using DL or reinforcement 

learning algorithms, which has been proven more effective in optimising maintenance planning 

and budget allocations than traditional methods (Gao et al., 2021b; Yao et al., 2020). 

While the management of the road during its operation phase is important, the benefit of 

using ML capabilities within a DT environment for other phases of a road lifecycle cannot be 

ignored. Therefore, future research directions could be on the development or improvement of 

DTs for road design, construction, and demolition. Furthermore, as an ideal DT should be able 

to reflect the whole lifecycle development of the physical asset, there is a great value in 

understanding the framework and processes of integrating the usage of different ML, DL or 

reinforcement learning algorithms at different stages of the lifecycle of the road DT that 

altogether could enable its purpose, and fully realise the asset values that would result in 

highest operation efficiency and the lowest cost for the asset owners and end-users. 

 

4.4 Future pavement management system based on road DT 

Furthering the discussion from Section 4.3, this paper identified a large number of articles on 

the applications of ML algorithms for various road applications. Therefore, this section focuses 

on discussing road DT applications in improving pavement management systems. As 

mentioned by Kulkarni et al (2003), the existing key elements of pavement management 

systems are 1) data collection and management; 2) pavement performance prediction; 3) 

economic analysis 4) priority evaluation 5) optimisation and 6) institutional issues. For each 

element, a specific road DT application can be developed, enabled by one or multiple ML 
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algorithms. For example, a road DT for pavement health monitoring can be created using the 

data from multiple sensors such as pressure cells, deflectometers, strain gauges, thermocouples, 

moisture sensors, fibre-optic sensors, non-destructive testing surveys or other IoT devices, to 

enable a constant monitoring of the pavement. This in turn enables to detect the formation of 

road distresses such as internal cracks (di Graziano et al., 2020). ML or DL algorithms such as 

genetic expression programming models (Majidifard et al., 2020) have been developed to 

perform classification tasks to evaluate road surface conditions over time. With all the 

available data fed into the road DT, additional applications can be created to use the data 

leveraging that the identified ML or DL models in this paper can provide. The ML algorithms 

can be used to firstly create more precise and dynamic prediction model which self-validates, 

and updates based on constant data inputs. Secondly, with data from maintenance activities, 

construction history and asset owner policy, finance, and user cost, road DT can then be used to 

generate and analyse ‘what-if’ scenarios on maintenance planning. This will enhance asset 

maintenance prioritisation at network or project level, by achieving maintenance optimisation 

through taking into consideration the associated social and economic factors (Yao et al., 2020). 

Maintenance optimisation could be achieved by understanding the right timing to perform the 

most cost-effective maintenance treatment on the right location(s) of road network and sections 

with the highest priorities. However, to enable the innovation of road DTs, the sharing of 

various data across different departments and even organisations would be the number one 

challenge due to data privacy and data security issues (Marai et al., 2020). Aforementioned 

applications could be also presented in 3D pavement models via BIM-based PMS for improved 
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visualisation compared to current 2D or GIS-based visualisation (D’amico et al., 2022). 

 

4.5 Other factors 

Road condition data often suffers poor quality regardless of its collection frequencies, while 

periodical inspection surveys often have missing values due to machine faults or human errors 

(Ziari et al., 2015). In addition, as sensor monitoring data also is subjected to some level of 

inaccuracies influenced by various factors and conditions (Oliveira et al., 2021), it would be 

necessary to take into consideration these uncertainties into the road DT framework. This can 

be done, considering a probabilistic approach for the DT environment, thereby achieving a 

more realistic and accurate model output. For instance, Yao et al. (2021) proposed a 

probabilistic ML model – Bayesian neural network to address the issue of uncertainty, which 

could be adopted within a DT context. Another possibility to address poor quality data could be 

combining physics-based modelling with ML algorithms to generate extra data from 

physics-based model to compliment the data quality issues faced normally by ML applications 

(Arias Chao et al., 2020; Willard et al., 2020). 

It is worth mentioning that although the purpose of this systematic literature review was 

to be inclusive and avoid missing valuable relevant articles, given the fact that DT and ML are 

recent technological advancements, the articles before and including the year 2011 have not 

been considered in this review. 

There are various functionalities for a road DT, depending on the user requirements, 

which might or might not be addressed by ML algorithms. For instance, a road DT could 

consider traffic and its management, and/or enhancing safety by minimising car accidents 
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(variable speed limits) while ML has the potential to assist achieving these. However, this 

paper only focused on ML capacity for predicting road condition. 

 

5. Conclusion 

This study is the first systematic literature review summarising the ML algorithms used in road 

condition predictions, and specifically, attempting to identify the most suitable ML approach 

within a road DT framework considering the attributes and characteristics of DTs. From the 

review’s results, it can be concluded that in order to fulfil the purpose of future performance 

prediction of a road, the corresponding DT should include at least the following categories of 

data inputs: 

1) Existing performance index; 

2) Existing distress condition; 

3) Materials; 

4) Structure; 

5) Climate; 

6) Traffic 

The main data outputs of the ML models could be 1) Future performance index and 2) 

Future distress condition. In addition, this study comprehensively reviewed different types of 

ML algorithms and approaches applied for multiple functionalities that a road DT should 

include from the perspectives of road condition assessment, road defect detection, future 

performance prediction as well as maintenance planning and optimisations. This review has 

provided a thorough synthesis of findings on ML techniques used for pavement performance 
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prediction. Several articles have been identified to show promising adaptability with high ML 

prediction capability that could fulfil the road DT requirements. 

From this systematic review, it can be concluded that the ML algorithms which have 

recently been applied in resolving various aspects of pavement management problems are the 

foundational building blocks for a road DT and they do certainly demonstrate enough maturity 

within DTs’ context. The insights obtained from this review indicate that there are multiple 

potential future research directions for a successful road DT development. For example, 

real-time data analytics capability, optimum choice of ML algorithms, integration of various 

ML algorithms for different DT capacities and the inclusion of probability ML considerations 

are some of the research areas. Further exploration and development in DTs for road would 

allow transportation agencies to more intelligently and efficiently, design, construct, operate 

and maintain their road infrastructure systems. 
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Table 1. Requirements for a general digital twin, road digital twin mapped against ML capacities / applications 
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Table 2. Search protocol definitions 

 

Term Definition Reference 

Digital 

Twin 

Digital Twin is a virtual representation of manufacturing 

elements such as personnel, products, assets and process 

definitions, a living model that continuously updates and 

changes as the physical counterpart changes to represent 

status, working conditions, product geometries and 

resource states in a synchronous manner. 

(ISO/ISO-AWI 

23247, 2019) 

Machine 

Learning 

Machine Learning is a broad term encompassing a 

number of methods that allow the investigator to learn 

from the data. These methods may permit large real-world 

databases to be more rapidly translated to inform decision 

making. 

(Brnabic and 

Hess, 2021) 

Road 

Prediction 

Model 

Prediction Model predicts future road conditions or 

performances, and it’s used for assessing and prioritising 

maintenance treatment type and timing, and estimating 

life-cycle costs 

(Kargah-Ostadi 

et al., 2019) 
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Table 3. Study Search Keywords 

 

Subject Technology Functionality 

"Road" OR "Roads" OR 

"Pavement" OR "Pavements" OR 

"Highway" OR "Highways" 

"Machine Learning" OR "Deep 

Learning" OR "Digital Twin" 

OR "Digital Twins" 

OR "Artificial Intelligence" 

"Performance" OR 

"Condition" OR 

"Prediction" 

OR "Forecast" 

OR "Forecasting" 
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Table 4. Weight of evidence (Gough et al., 2017) 

 

Weight of Evidence Ratings Descriptions 

Soundness 

High  Explicit and detailed methods and results on data collection, cleaning, and analysis 

 Comprehensive model development, optimisation and evaluation based on ML principles 

 Compelling ML algorithm prediction accuracy (R2 > 90%) 

 Critical comparisons with other studies or models 

Medium  Satisfactory methods and results on data collection, cleaning, and analysis 

 Detailed model development and evaluation based on ML principles with satisfactory optimisation 

 Satisfactory ML algorithm prediction accuracy (80% < R2 < 90%) 

 Limited comparisons with other studies or models 

Low  Unsatisfactory methods and results on the data used 

 No optimisation on model development and evaluation 

 Unsatisfactory ML algorithm prediction accuracy (R2 < 80%) 

 No critical comparisons with other works 

Appropriateness of 

study design 

High  Data comes from real world with extensive coverage. Frequency of collected data is high (weekly or monthly) 

 The prediction model input parameters cover at least the following five categories: Traffic, Climate, 

Performance, Structure, Material, and makes performance prediction for one and more years 

 Model outputs include one or more of the following aspects: distress condition, maintenance planning, and 

road lifecycle 

Medium  Data comes from real world with limited coverage. Frequency of data collected is medium (yearly) 

 The prediction model input parameters cover at least three of the below categories: Traffic, Climate, 

Performance, Structure, Material, and makes performance prediction for one and more years 

 Model outputs include at least one of the following aspects: distress condition, maintenance planning, and 
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road lifecycle 

Low  Data comes from laboratory or simulation. Frequency of data collected is low (by-yearly) 

 The prediction model input parameters cover one or two of the categories of Traffic, Climate, Performance, 

Structure, Material, and makes prediction for one year only 

 Model outputs include only one of the following aspects: distress condition, maintenance planning, and road 

lifecycle 

Relevance of the 

study focus 

High  The length of road sections chosen is greater than 100 meters 

 The historical data covers more than 15 - 20 years 

Medium  The length of road sections is less than 100 and greater than 50 

 The historical data covers more than 10 - 15 years 

Low  The length of road sections is less than 50 

 The historical data coverage is less than 10 years 
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Table 5 Details of WoE analysis on selected studies 

 

Selected 

studies 

Research 

soundness 

Study design 

Appropriateness 

Study focus 

relevance 
Ranking Justification 

(Tabatabaee et 

al., 2013) 

High High High  Clearly explained the utilised ML algorithm structure and the associated 

mathematical equations. 

 Collected large amount of data with over 10,000 records enabled by sensor 

data for over 15 years 

 Considered more than 5 categories of data sources including structure, 

performance, traffic, climate, material, and maintenance records and plans  

(Ziari et al., 

2015) 

High High High  Used advanced data processing method, i.e., group method of data handling 

(GMDH) and performed in-depth model optimisation with large scale. 

 Collected sources of data are broad, covering performance, structure, traffic, 

climate, and material 

 The collected data covers large spectrum of characteristics, for over 17 years 

(Ziari et al., 

2016) 

High High High  Used the same data as (Ziari et al., 2015), and provided clear explanation on 

the ML algorithm, including cross-validation method on the testing data 

(Alharbi, 

2018) 

High Medium High  Demonstrated clear ML algorithm training and testing process with loss 

functions 

 Collected annual data for over 17 years with over 1,000 records in total, aimed 

at multiple output predictions (roughness, cracking and rutting) 

 Rated Medium in the study design appropriateness criteria mainly due to the 
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limited considered number of data sources 

 Conducted model sensitivity analysis to understand the parameters affecting 

the performance 

(Abdelaziz et 

al., 2018) 

High Medium High  Provided clear hidden layer structure for the ML algorithm for model 

optimisation 

 Emphasised much on data processing and cleaning, as well as maintenance 

impacts, ensuring high quality data 

 Regarding model inputs, it mainly considered previous condition index as the 

fundamental information 

(Fathi et al., 

2019) 

High Medium High  Combined two ML algorithms and showed significant improvement with R2 

from 64% to 92%. 

 Collected data over 20 years across four climate zone in the US  

 It used cross-validation techniques in the ML model training, testing process to 

avoid overfitting issues in ML 

 Put an emphasis on material properties as data sources for prediction 

(Marcelino et 

al., 2019) 

High Medium High  Combined two databases using transferring learning algorithms to make 

predictions with 99.5% accuracy for multi-year prediction 

 The types of considered data are performance, traffic, climate, structure 

(Bukharin et 

al., 2021) 

High Medium High  Showed detailed ML model structure and evaluated model performance with 

existing baseline models 

 Used around 15,000 data records for over 20 years, and made multiple year 

predictions (e.g., 2-5 years) with the minimum accuracy of 98% 

 Considered different types of data including geometry, performance, traffic 
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(Gong et al., 

2018) 

Medium High High  Combined data from LTPP data with the information from 

Mechanistic-Empirical Pavement Design Guide (MEPDG) to improve 

prediction 

 Provided clear illustration on deep neural network, optimised with adaptive 

moment estimation, and focused on regularisation of overfitting of the model. 

It was rated Medium in the research soundness mainly due to the relatively 

lower model performance (e.g., less than R2 = 90%) 
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Table 6. Summary on ML algorithms and relevant accuracies 

 

Author(s)  ML Technique(s)  Model Accuracy  

Tabatabaee (2013)  Support Vector Classifier + Recurrent Neural Network  R2 = 98%  

RMSE = 0.135  

Ziari (2016)  

 

Support Vector Regression  R2 = 91.69%  

RMSE = 0.2259  

Ziari (2015)   

  

Artificial Neural Network + Group Method of Data 

Handling (GMDH)  

Short term (1 

year):  

R2 = 96.8%  

RMSE = 0.14  

Short term (2 

years):  

R2 = 97.2%  

RMSE = 0.167  

Long 

term (lifecycle):  

R2 = 97.9%  

RMSE = 0.377 

Marcelino (2020)  Boosting - TrAdaBoost algorithm for regression  R2 = 99.5%  

Gong (2018)  Deep neural networks  R2 = 86.7%  

RMSE = 1.403  

Fathi (2019)  Random Forest + ANN  R2 = 91%  

RMSE = 10.9  

Bukharin (2021)  LSTM + ANN  Year 1: R2 = 99%  

Year 2: R2 = 98%  

Year 3: R2 = 98%  

Year 4: R2 = 99%  

Year 5: R2 = 98%  

Alharbi (2018)  ANN  R2 = 92%  

RMSE = 8.42  

Abdelaziz (2020)  ANN      R2 = 75%* 

*This article was selected despite a lower overall accuracy than the threshold defined in the weight of evidence 

stage because the author presented the model goodness-of-fit with 86% in the paper 
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Table 7. Summary for the sensitivity analysis for the considered ML models 

 

No. Study ML Algorithm(s) Model output 
Input (importance) 

#1 #2 #3 #4 #5 

1 
Tabatabaee et 

al. (2013) 

Support Vector Classifier 

+ RNN 
Next year’s PSI PSI 

Maintenance is 

required 
Structure Season Age 

2 
Ziari et al. 

(2015) 

ANN + Group Method of 

Data Handling (GMDH) 
IRI 

Annual Average 

Precipitation 
AADT 

Annual Average 

Daily Truck Traffic 

Pavement 

thickness 
ESAL 

3 
Gong et al. 

(2018) 
Deep neural networks Rutting 

Predicted rutting in 

the asphalt concrete 

layer 

Air voids 

in asphalt 

concrete 

Predicted rutting in 

the granular base 

layer 

AADT 
Annual average 

precipitation 

4 
Fathi et al. 

(2019) 
Random Forest + ANN 

Alligator 

deterioration 

index (ADI) 

 

Age 

Asphalt 

content of the 
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Figure 1. The systematic literature review process 
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Figure 2. Digital Twin (DT) framework for road condition prediction 
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