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Abstract—Uniform Resource Identifier (URI) schemes instruct
browsers to conduct specific actions depending on the requested
scheme. Previous research has addressed numerous issues with
web URI schemes (e.g., http: and https:) both for desktop and
mobile browsers. Less attention has been paid to local schemes
(e.g., data: and file:), specifically for mobile browsers. In this work,
we examined the implementation of such schemes in Android
OS browsers, analysing the top-15 mobile browsers. As a result,
we discovered three vulnerability types that affect several major
browsers (including Google Chrome, Opera and Samsung Inter-
net). First, we demonstrate an URI sanitisation issue that leads
to a cross-site scripting attack via the JavaScript scheme. The
problem affects Chromium browsers including Chrome, Opera,
Edge, and Vivaldi. Second, we found a display issue in Samsung
Internet that allows abusing data URIs to impersonate origins
and protocols, posing a threat in the context of phishing attacks.
Finally, we discover a privilege escalation issue in Samsung’s
Android OS, leading to full read and write access to the internal
storage without user consent and bypassing the Android storage
permission. While this issue was originally discovered in the
file scheme of the Samsung browser, utilising a combination
of static and dynamic analysis, we traced the problem back to
an authorization issue in Knox Sensitive Data Protection SDK.
We then show that any app can abuse this SDK to obtain full
access to the internal storage without appropriate permission on
Samsung devices running Android 10. We responsibly disclosed
the vulnerabilities presented in this paper to the affected vendors,
leading to four CVEs and security patches in Chrome, Opera and
Samsung Internet browser.

Keywords—Android, mobile browsers, XSS, privilege escalation,
URI schemes

I. INTRODUCTION

Mobile browsers are among the most widely used apps on
mobile devices. They feature various methods, known as URI
schemes, to access Internet (e.g., https:) and device resources
(e.g., file:) [1]. Due to the complexity and feature-richness of
URI schemes, they also expose substantial attack surfaces. A
single flaw in their implementation can jeopardize the security
of a user’s data, profile, and online accounts and thus also
compromise the user’s privacy.

In general, URI schemes can be classified into two broad

types: web schemes and local schemes. Web schemes are
protocols that are used to communicate with online endpoints
(e.g., https: and http:), whereas local schemes perform certain
client-side operations (e.g., JavaScript: and file:). While web
schemes have been extensively scrutinised in the literature,
particularly with regard to authentication and authorization
procedures, local schemes received less attention. Nevertheless,
some notable issues in local schemes have been reported for
desktop browsers (e.g., phishing with top-level navigation via
data URIs [2, 3] and Cross-Site Scripting (XSS) via encoding
JavaScript URIs [4]).

In this paper, we set out to analyse local URI schemes on
mobile devices. Our initial assumption was that the specific
usage context and the different OS characteristics compared to
desktop browsers give rise to new vulnerability types specific
to the mobile context.

A. Our contribution

In this paper, we perform a systematic analysis of local
browser schemes on mobile devices, focusing on JavaScript,
data:, and file: schemes. We concentrate on these three schemes,
however, also analysed other schemes (e.g., about:) but did not
find significant issues. We then describe several vulnerabilities
affecting mobile browsers that we found. In summary, our main
contribution are:

First, we discovered a self-XSS issue [5, 6, 7] in the
JavaScript scheme. The issue allows executing JavaScript in
the context of a loaded web page, e.g., leading to session
hijacking. The issue is caused by lack of sanitisation of the
clipboard of Android’s Input Method Editor (IME) keyboards.
Most Chromium browsers are affected by this issue, including
Google Chrome, Microsoft Edge, Opera, and Brave.

Second, we demonstrate how data URIs in the Samsung
Internet browser can be used to impersonate websites, i.e.,
render content that seems hosted on a genuine origin. This
problem is caused by Samsung Internet’s behaviour to display
the last URI characters in the address bar, making the data:
scheme prefix invisible.

Finally, by examining the file scheme, we uncover a
privilege escalation issue in Samsung’s Android variant that
allows an arbitrary app to access the internal storage of the
device without user consent, bypassing the Android storage
permission. We trace the issue to Sensitive Data Protection
(SDP), a Samsung Knox module.
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B. Responsible disclosure

The vulnerabilities described in this paper have been
responsibly disclosed through the respective channels. The
JavaScript scheme issues described in Section III-A were
reported to Google and Opera on December 1, 2020 and
November 25, 2020 respectively. They can be tracked via
CVE-2020-6159 for Opera and #1154353 in the Chromium
bug tracker. The latter issue is currently embargoed until Google
has released a patch. The data scheme issue in Samsung Internet
browser described in Section III-B was reported on March 19,
2021, and can be tracked via CVE-2021-25419. Finally, the file
scheme vulnerability described in Section III-C was reported
on October 30, 2020 and resulted in two CVEs as follow: CVE-
2021-25348 for bypassing the permission security check in the
browser, and CVE-2021-25417 for the underlying privilege
escalation issue in Samsung’s Android OS variant.

C. Outline

The remainder of this paper is structured as follows: In
section II, we provide a background on browser schemes
together with related work regarding their security. Based on
this, we define the scope of our work and choose specific
schemes for our analysis. In section III, we discuss our analysis
and present the discovered issues in widely-used browsers.
Subsequently, we assess the impact of the discovered issues
and propose mitigations in section IV. Finally, we conclude in
section V, discussing limitations and opportunities for future
work.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of browser schemes
and review their security aspects. We then discuss related work
in terms of security issues and common weaknesses.

A. URIs

User agents (browsers) accept URIs from users and execute
an action based on the URI. RFC3986 defines a URI to have
the following structure [8]:

URI = scheme ":" hier-part [ "?" query ]
[ "#" fragment ]

hier-part = "//" authority path-abempty
/ path-absolute
/ path-rootless
/ path-empty

From the perspective of the browser, the scheme refers to
the used protocol in a request (e.g., https but also local schemes
like file and JavaScript). The “authority” includes host and port
for requests to remote servers.

Browsers adopt the Same-Origin Policy (SOP) as a security
model. SOP provides isolation between origins (authorities),
i.e., prevent different origins from accessing each other unless
they are the same origin or explicitly authorised each other
for example via Cross-Origin Resource Sharing (CORS) [9].
SOP prevents network adversaries from compromising retrieved
responses from one origin or carrying out actions on behalf of
the user from compromised origins (e.g., via JavaScript) [10].

B. Browser schemes

Browsers support different schemes for remote communi-
cation (e.g., http, https, ftp) as well as local schemes (e.g.,
JavaScript, data, file). Unlike remote schemes, these local
scheme solely operate on the client machine and do not require
internet access. As they operate locally, they may expose local
computer privileges which can cause security issues. Therefore,
in this paper, we focus on understanding and analysing local
schemes from a security perspective.

a) The JavaScript scheme: is implemented in web
browsers applications to execute custom JavaScript from a
URI [11]. The scheme uses the following URI format:

javascript:<script>

where <script> is JavaScript code. The scheme has
two sequential operations: source text retrieval and in-context
evaluation. The first operation retrieves the source text that is
included in the <script> part of the URI and applies necessary
decoding and characters replacements operations to it. Then,
the in-context evaluation operation evaluates the generated text.
A typical JavaScript scheme example for embedding a script
as a hyperlink in an HTML document is as follows [11]:

<a href="javascript:doSomething()">click</a>

In this example, when the user clicks on the hyperlink, the
browser executes the doSometing() function in the context
of the currently loaded origin. The embedded JavaScript inherit
the current origin [12]. The JavaScript scheme can also be
invoked (like any URI) from the browser address bar.

b) The data scheme: renders binary data as-is and
allow to include external data [13]. An according URI has
the following form:

data:[<mediatype>][;base64],<data>

<mediatype> is a media type specification for the repre-
sented data (e.g., txt or png). base64 indicates if the data is
Base64-encoded, otherwise, ASCII encoding is assumed. <da
ta> is the payload data itself. The following is an example of
rendering a PNG image using the data scheme [13]:

<img src="data:image/png;base64,aGVsbGl..." />

The maximum length of URIs in browsers imposes a
limitation on the size of the <data> part in data URIs. Similarly
to JavaScript URIs, data URIs can be used from the browser’s
address bar.

c) The file scheme: allows accessing files and directo-
ries on a host machine. Due to the SOP, remote hosts cannot
query the scheme to access local files [1]. A file URI is
structured as follow:

file://<host>/<path>

Where <host> is the mount point on the host machine
(e.g., drive name or /sdcard on mobile devices) and <path>
is the path to the requested file. Each file accessed by a file
URI is assigned a unique origin based on the system’s Globally
Unique IDentifiers (GUID). This prevents files from accessing
each others’ contents by means of the SOP policy [1].
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C. Related work

In this section, we give an overview of related work
regarding previously reported attacks on browsers using URI
schemes.

a) Vulnerabilities in the JavaScript scheme: Improper
handling of JavaScript URIs enables attacks including Cross-
Site Request Forgery (CSRF) and Cross-Site Scripting (XSS).
CSRF refers to an attack where the adversary causes the browser
to initiate a request to a certain server without user consent,
while XSS is an attack that allows an adversary to inject
malicious scripts into the visited (legitimate) website [14].
In both attacks, a victim can be affected by the attacks
unintentionally by visiting a vulnerable website or using
vulnerable services (e.g., plugins, browsers) [15]. XSS is
classified into several subtypes that include reflected XSS,
stored XSS, DOM-based XSS and self-XSS [6, 15, 16, 17].
Among them, the one that relates to the JavaScript scheme is
self-XSS: it is a social engineering attack in which victims
are tricked into executing scripts that compromise their web
accounts or leak their data [5, 6, 7]. Figure 1 illustrates
an example of a self-XSS attack. First, the adversary sets
up a server to accept requests and instructs the victim to
use a malicious JavaScript URI 1 . The victim accesses a
benign target websites 2 . Then, they copy-paste the malicious
URI into the browser address bar 3 . Based on the script,
the adversary can forward sessions data and cookies to his
server 4 . Adversaries rely on obfuscation, minification and
encoding of JavaScript code to increase the willingness of
the victim to execute the scripts [6]. Cao et al. measured the
effectiveness of various obfuscation techniques for JavaScript
URIs. They found that obfuscated JavaScript URIs achieve 10%
more execution by participants (38.4%) compared to regular
JavaScript URIs (29.4%) [6].

In Android, Terada demonstrates an issue with the JavaScript
scheme in Google Chrome and Android browsers: because
the browsers did not sanitize the JavaScript scheme URIs
in incoming Android intents, an adversary can perform XSS
attacks by sending multiple intents to the browsers to first
request a target domain and then to obtain personal data (e.g.,
session cookies) via the JavaScript scheme [18].

Attacker.com

Access-Control-Allow-Origin : *

POST /cookie

Javascript:$post(document.cookie)

Bank
website

1

2

3
4

Figure 1. Scenario showing a self-XSS attack to steal a victim’s session
cookie. The adversary sets up a server to accepts requests from any origin 1 .
The victim logs into his bank account 2 and copy-pastes a malicious self-XSS
URI into the address bar 3 . The session cookie is sent to the adversary server
via an XML HTTP request 4 .

b) Phishing with the data scheme: In contrast to
the JavaScript scheme, the data scheme focuses on data
representation. A common issue with it relates to the user

clicking e.g., a hyperlink and not realising that this leads to a
data URI instead of a web URI [19]. The adversary can then
render a phishing page or provide a malicious executable from
that data URI. Therefore, most browsers including Firefox and
Chromium block top-level navigation to data URIs [2, 3]. In
terms of sanitization, Chromium did not sanitise SVG contents
in pasted text. This allowed embedding a JavaScript payload
in SVG content in a data URI, leading to JavaScript execution
in the target document [20].

Address bar spoofing using data URIs refers to displaying
data: content that appear to be hosted on a legitimate origin, e.g.,
showing an attacker-controlled form that seems hosted on exa
mple.com and thus enabling phishing attacks [21]. Nishimura
reported a related bug in Firefox on Android [22]: data URI
were persistently shown in the address bar regardless of web
navigation. This occurred when it opened from a stored shortcut
or from a bookmark intent sent from an Android application.
This hides the true origin of the current content. Baloch showed
a different attack against Opera, Safari and UC, where data
URI content is loaded while the address bar shows a different
origin. The issue is due to the browser preserving a target
URI in the address bar when requested over an arbitrary port
repeatedly [23, 24].

c) Privilege escalation with file URIs: Mobile browsers
expose an interface to accept browsing requests by other apps
or web pages. Wu and Chang illustrates a weakness in this
feature because of not appropriately sanitising “intents” : if
an intent requests a file URI while auto-download is enabled,
browsers might download their own private data (e.g., session
cookies) to the SD card, allowing malicious apps on the device
with storage permission to read these information [25]. Terada
reported an issue in Opera with similar consequences: Web
pages on Opera can access any private activities in Android
Opera browser because of improper filtering. Utilising this
issue, allows file URI to access the browser’s cookies and
render them as an HTML document. A malicious website can
set a a malicious JavaScript code in a cookie to execute it
when it rendered it as an HTML. Allowing to steal the rest
cookies [18].

Improper implementation of SOP in browsers can equally
introduce security issues: as demonstrated by Wu and Chang,
63 Android browsers improperly implemented SOP, resulting
in leaking sensitive data from local files (e.g., HTML) [25].
In Chrome, Barth et al. showed that remotely hosted XML
files can retrieve contents of local files due to the same root
issue [26].

d) Browsers analysis and detection tools: Conventional
automated unit tests are often insufficient to detect the afore-
mentioned issues. As a result, the research community has
developed according testing and debugging tools. Google
developed a remote debugger for troubleshooting Chromium-
based mobile browsers and Android Webviews. The debugger
provides a developer console for inspecting components and a
log monitor [27]. Wu and Chang implemented an automated
test tool to check for their file URI issues. The tool interacts
with the browser-under-test and the adversary’s app using
Android Debug Bridge (ADB) and can find certain issues
automatically [25].
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Browser JavaScript Data File

Query Clip-trim Null origin

Chrome *C ✓ ✓ ✓

Samsung *C ✓ ✓ ✓

Opera *C ✓ ✓ ✓ ✓

Brave *C ✓ ✓ ✓ ✓

Edge *C ✓ ✓ ✓ ✓

Vivaldi *C ✓ ✓ ✓ ✓

FireFox ✓ ✓

FireFox focus ✓ ✓

DuckDuckGo ✓ ✓ Crash

Mint ✓ ✓*2

Mi Browser ✓*1 ✓ ✓*2

MX6 ✓*2

US browser ✓ ✓ ✓*2

Phoenix browser ✓ ✓ ✓*2

Dolphin ✓ ✓ ✓*2

Table I. SUMMARY OF HOW THE CONSIDERED BROWSERS HANDLE
JAVASCRIPT, FILE AND DATA SCHEMES. (*C) INDICATES CHROMIUM

BROWSERS. (*1) INDICATES THAT JAVASCRIPT EXECUTED ONLY IN THE
NULL ORIGIN WHERE NO WEBSITE IS LOADED. (*2) INDICATE SUPPORT OF
THE FILE SCHEME BUT WITHOUT AN IMPLEMENTATION OF AN INDEX PAGE

THAT LISTS THE INTERNAL STORAGE FILES.

III. CASE STUDIES

We focused our analysis on three browser schemes
(JavaScript, data, file), because these have been the most
common sources of vulnerabilities in the past and because
they expose the largest attack surface compared to functionally
limited schemes (e.g., about:). We analysed the implementation
of each considered scheme in the top-15 mobile browsers (based
on Google Play downloads). As an initial step, we reviewed
how each considered browser handles JavaScript, data, and
file URIs. The results are shown in Table I and are further
elaborated in the following sections.

A. Self-XSS using the JavaScript scheme

The JavaScript scheme, as described in Section II, allows
JavaScript code to be executed in the context of the currently
loaded origin. This enables numerous JavaScript-based threats,
in particular self-XSS, which we investigate in the following.

a) Threat model: We consider the threat model of Face-
book, Cao et al., in which an adversary tricks a victim into
performing a “self-XSS” by sending them a malicious URI,
e.g., through a messenger of social network. The attack does
not require the victim to install apps and proceeds as follows:

1) The adversary sends a URI containing the JavaScript
scheme with malicious code to the victim and tricks them
into copy-pasting the URI.

2) The victim copies the URI using the clipboard and pastes
it into a vulnerable web browser.

3) The script is executed, potentially in the context of the
current origin.

Obviously, self-XSS requires social engineering: the practice
of copy-pasting URIs is common, especially in emails where

it is often requested if clicking the URI does not work. The
adversary might include the target website’s original URI to
display its original logo in a social media post or direct message.
As can be seen in Figure 2, WhatsApp v2.21.23 (latest version
at the time of writing) mis-recognises the URI of Twitter
within a malicious JavaScript scheme and displays the website
information, potentially misguiding users. Cao et al. have shown
that 30% of participants in a self-XSS experiment were deceived
by such an attack [6].

Figure 2. An example of sharing a JavaScript URI 1 and data URI 2 on
WhatsApp. The app recognises only the fake https URI at the end and shows
website info, tricking users into believing the URI to be genuine.

b) JavaScript scheme implementations in mobile
browsers: To understand how our selected browsers handle
and sanitise JavaScript URIs, we analysed the behaviour by
supplying several test URIs to each browser. The results are
summarised in the JavaScript column in Table I. Concretely,
we found that browsers exhibited one (or a combination) of
the following handling practices:

Search query: A JavaScript URI is treated as a search query
for the browser’s default search engine, but never executed.

Clipboard trimming: The browsers intercepts URI paste
events from the clipboard and strips the scheme from
the pasted text. This prevents attacks where a victim is
lured into copying a URI into the address bar. However,
manually typing a JavaScript URI using the keyboard is
still allowed.

Only on null origin: JavaScript URI are executed only on a
null origin, i.e., when no website loaded in the browser.

Not supported: JavaScript URIs are not not supported at all.
This was only the case for the Mint and MX6 browsers.

As can be seen in Table I, Chromium-based browsers adopt the
clipboard trimming approach: The browser detects paste events
and trims the scheme if required. Nevertheless, we noticed
that the Android Clipboard Manager does not provide an event
listener for intercepting paste events [28]. Therefore, it appears
that Chromium employs a custom solution based on the address
bar to sanitise pasted URIs, leading us to a potential security
problem:
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Potential issue #1: The Android Clipboard Manager does not
provide a mechanism to listen to paste events. Chromium-based
browsers use a custom solution to sanitise pasted URI, which might
contain security issues in the implementation.

c) Intercepting clipboard events: We focused on
Chromium browsers, because they are the only browsers in
our set to implement clipboard trimming (apart from Samsung
Internet, cf. Table I). Rather than analysing each Chromium
browser individually, we examined the Chromium source code
as the likely base [29]. From this, we found that the JavaScript
scheme is handled as follow:

1) The URI address bar is a custom field that inherits the
functionality of AutoCompleteEditView.

2) The onTextContextMenuItem method is overridden to
listen for context menu events (e.g., cut, copy, and paste).

3) The so-called omnibox API sanitises the pasted text,
trimming the JavaScript scheme.

We reviewed the omnibox unit test cases and found that
the sanitisation properly handles even obfuscated scheme
expressions, where special characters or spaces are used,
e.g., java\x0d\x0ascript:alert(0) and java script:
alert(0). However, we noticed that paste interception only
works for paste events from the context menu. Therefore,
trimming will not be applied if the paste events originates
from a different source.

d) Bypass clipboard trimming: Since Android 7, An-
droid supports Input Method Editor (IME) keyboards [30]. IME
keyboards are custom keyboards that extend the functionality of
the default keyboard e.g., with emojis and pictures. Several IME
keyboards are shipped with a custom clipboard implementation
that is not context menu-based. Respective keyboards are pre-
installed as the primary keyboard by major manufacturers, e.g.,
Gboard for Google devices and the Samsung keyboard for
Samsung devices.

As suspected, we found that using the paste operation of
IME keyboards does not trigger the JavaScript sanitisation of
Chromium-based browsers. This issue can thus be exploited to
enable self-XSS attacks against Chrome, Opera, Brave, Edge
and Vivaldi if the user pastes from the IME keyboard clipboard
as shown in Figure 3.

Issue #1: Self-XSS attacks against Chromium browsers are possible
if URIs are pasted from IME keyboards

IME keyboards are widely pre-installed by major manu-
facturers, including Google and Samsung: the Gboard IME
keyboard has over 1 billion installs according to Google
Play [31]. The issue can be utilized for session hijacking (e.g.,
stealing session cookies) or general JavaScript code execution in
the browser (e.g., to submit forms on behalf of the user without
consent and knowledge). In the affected browsers, JavaScript
code can access the current session data, including the document
components, because the scheme inherits the currently loaded
origin. The browser’s SOP can be circumvented by configuring
the adversary’s back-end servers to accept requests from any
origin using CORS.

e) Disclosure: We reported this issue to Opera, and,
because it affects all Chromium browsers, subsequently also
to the Chromium team. Both vendors confirmed the issue.

Figure 3. An example of self-XSS against Google Chrome with an IME
keyboard: pasting a JavaScript URI from the keyboard bypasses sanitisation
1 , thus, navigating to the URI causes the JavaScript code to run 2 .

The Opera issue can be tracked via CVE-2020-6159, while
the Chromium issue in the patching process. While certain
practices from Table I could be used for mitigation (e.g.,
“Search query” or “Null origin”), Chromium intends to repair
the issue while maintaining support for typing JavaScript URIs.
This is made difficult because IME keyboards do not provide
APIs for listening to clipboard events. Thus, we propose a
solution that meets the above criteria in Section IV.

B. Impersonation of website origins using the data scheme

Data URIs allow to render data included in the URI string in
the web browser. As a consequence, data URIs have been used
in the past to display “fake” origins in browsers as described in
Section II. We thus opted to study this problem in the context
of our set of mobile browsers. As evident from Table I, only
FireFox and FireFox focus lack support for data URIs.

While all browsers restrict top-level navigation for data
URIs, we noticed an issue in the behaviour of the address
bar in the Samsung browser: it displays the last characters of
data URI, which truncates the data scheme and most of the
actual data from lengthy URIs. As a consequence, we found
that it is possible to craft a data URI that renders a web page
that seems to be hosted on a legitimate origin, e.g., a fake
login phishing page. As can be seen in Figure 4 (right), such
a custom data URI renders a form that appears to be hosted
on a legitimate domain (fakebook.com in our example) and
served via HTTPS. We tested the crafted data URI on two
different Samsung devices with different display resolutions,
Samsung A75 and Samsung S20 Ultra, and confirmed that the
URI produces the same result regardless of the screen size. In
contrast, all other browsers in our set correctly displayed the
beginning of the URI, including the data scheme, as can be
seen for Chrome in Figure 4 (left).

Issue #2: Displaying only the end of a Data URI in the Samsung
browser address bar allows an adversary to fake the origin of the
rendered data.

5



Figure 4. Loading a crafted data URI in Google Chrome (left) and Samsung
browser (right). The data scheme is visible on Google Chrome. In contrast, the
Samsung browser displays the last characters of the URI, leading the user to
think that the content is hosted on a legitimate origin and served via HTTPS.

a) Threat model: Two threat models can be considered
for this issue. First, since chromium browsers support opening
a data URI via new tab option, an adversary can set up a
phishing data URI link asking the user to open it with new tab
if it is not working resulting of origin spoofing as illustrated
in figure 5. Alternatively, the same threat model as for the
JavaScript scheme (Section III-A) can be considered. Namely
that a victim is ticked into copying a data URI and pasting it
into their browser. Our considered browsers do not apply any
trimming for data URI, so in this case pasting via the context
menu or an IME keyboard leads to identical results. Similar to
the JavaScript scheme, the adversary can prepend the URI of a
legitimate origin to the crafted data URI to display the target
website’s logo, as seen in Figure 2.

Figure 5. An example of opening a data URI via new tab option 1 . Samsung
browser displays only the final characters leading to origin spoofing.

Conventional phishing defenses, such as showing the origin
in the address bar or black-listing known phishing sites [26]
are ineffective against this issue because the rendered data is
embedded in the URI, rather than being fetched from a remote

server.

We reported the issue to Samsung and it can be tracked via
CVE-2021-25419. We discuss mitigations in Section IV.

C. Permission system bypass on Samsung Android OS through
the file scheme

The file scheme in mobile browsers gives access to the
content of the internal storage, thus browser apps should require
the Android storage permission. Similar to the previous case
studies, we evaluated the implementation of the file scheme in
the selected browsers, cf. Table I. Most browsers support the
scheme, with the notable exception of Chrome, and give access
to mobile internal storage. Many popular browsers, including
Samsung browser, Opera, Brave, Edge, Vivaldi, and FireFox
(Focus) also display an HTML index page that lists internal
storage’ files on the device. Accessing local content through
the file scheme from a local or an external HTML file is not
permitted in all supported browsers because of SOP.

Starting from a fresh browser install with no permissions, we
tested the handling of file URIs and the respective permission
requests in all our browsers. This revealed an unexpected
behaviour in the Samsung browser that was not present in
the other browsers:

Navigating to file:///sdcard results in a prompt to
grant or deny storage permissions. However, if the user selects
“deny and don’t ask again”, i.e., permanently declines storage
permission, and then repeats the request to the same URI, the
internal file list appears and access to the internal storage is
given.

Potential issue #3: The Samsung browser can access the internal
storage of the device without storage permission. The app apparently
uses a proprietary non-standard mechanism that bypasses the Android
permission system.

a) Handling of file URIs in the Samsung browser:
To understand this surprising behaviour and apparent bypass
of the Android permission system, we reverse-engineered the
handling of file URIs in the Samsung browser. We found that a
request to access the file scheme is only denied if the following
three conditions are all satisfied:

• The app can request storage permissions.
• The app does not have storage permissions.
• The request does not access the Samsung browser’s private

files located at /data/data/com.sec.android.app.s
browser/sbrowser.

At first glance, this logic (cf. Table II) appears to prohibit
requests for local file access without storage permission. The
first and second conditions seem identical, i.e., the first condition
seems to imply the second and vice versa. More specifically,
if storage permission is not granted, it is possible to request it
(case I), and once storage permission is granted, it is no longer
possible to request it (case II).

However, the relatively new “deny and don’t ask again”
option in the Android permission system allows to circumvent
these rules: it does not grant the app storage permission nor does
it allow subsequent requests. Thus, when Samsung browsers
does not have storage permission and can no longer request
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Conditions Case I Case II Case III
(Exploit)

App can request storage permissions T F F
App does not have storage permissions T F T
Request does not access Samsung
browser storage

T T T

Access to internal storage Denied Granted Granted

Table II. DIFFERENT CASES OF FILE URI RESTRICTIONS IN SAMSUNG
BROWSER. CASE I: USER DENIES STORAGE PERMISSION; CASE II: USER

GRANTS STORAGE PERMISSION; CASE III: USER DENIES STORAGE
PERMISSION AND DISABLES FURTHER PROMPTS.

storage permission, an access to the internal storage will bypass
the check and proceed with the access (case III).

b) Root cause analysis: Still, it remains unclear how
the Samsung browser is—even though it theoretically allows
the access—is able to gain access to the internal storage without
holding the actual permission. Finding the root cause proved to
be challenging because many Android components are involved.
It was however clear that the issue is caused by the interplay of
Samsung-specific modifications, as the problem did not occur
with other browsers (and because the Samsung browser only
runs on Samsung devices). We therefore examined the involved
components step-by-step.

c) System-level analysis: At the Android system level,
we identified two possible mechanisms that could cause the
observed permission system bypass:

Privileged permissions: Android can give read/write access
to specific apps via so-called allowlists [32].

Signature-based permissions: Apps signed with the vendor
key are granted system signature permissions.

We analysed Samsung’s allowlist and did not find any rule
granting Samsung browser storage permission. This eliminates
the first option. Further, we found that the Samsung browser is
not a system app and installed on the data partition. We repacked
and self-signed the app with a debug key. This invalidates any
signature permission that might be granted by Android to
the app. We found that the issue is still present in the self-
signed browser, thus excluding the possibility of signature-based
permissions as root cause.

d) App-level analysis: As we excluded a system-level
root cause, we began to consider possibilities that certain
characteristics in the app cause the behaviour. First, we
determined whether the issue is related to Chromium: We
patched other Chromium browsers and eliminated the storage
permission request. We however found that (as expected) access
is denied.

We thus a statically analysed the Samsung browser app
to find any components that access the internal storage, both
within the app and through external components, e.g., third-
party apps, services or SDKs. Because the code base of the
Samsung browser is large (278 MB after decompression), we
concentrated on the file scheme handling and any involved
app components (activities, services, content providers and
broadcast receivers). From this analysis, we found that file
URIs are handled as follows:

1) The requested URI is retrieved from the address bar.

2) It is sanitised against the allowed schemes.
3) The URI is passed to Terrace browser engine to further

process and issue the request.

e) Inside the Terrace browser engine: Terrace is the
browser engine used by Samsung. It is a native C library
(compiled for ARM) with a large code base of 70 MB for
64-bit and 50 MB for 32-bit processors. We found that Terrace
is based on Blink, which is a rendering engine part of the
Chromium project [33]. Unfortunately, the size of the Terrace
code base and the lack of debug symbols makes a full static
analysis infeasible. Nevertheless, we noticed several interesting
strings related to the file scheme. At this stage, we decided to
switch to dynamic analysis. We used Frida [34] to intercept
and override potentially interesting methods within the browser
engine. Frida’s interception abilities allowed us to inspect
parameters and return values of relevant functions calls. Figure 6

Terrace
browser
engine

Load

Samsung 
browser

Java
Interface 

instrument

Frida
Gadget

PC

Script 
over ADB

ADB

Port:27453

Listening

Frida

Android Device

Samsung Browser

1
2

3

Figure 6. Our dynamic analysis setup for Samsung browser to inspect the
Terrace browser engine. Original browser components are blue, and our test
components are yellow. The analysis starts by loading a Frida gadget to open
a communication port 1 . The Frida module communicates with the gadget
through adb to transmit inspection scripts 2 . Finally, the Frida gadget uses
the supplied scripts to perform the analysis 3 .

illustrates our dynamic analysis setup using Frida. We inject a
Frida gadget into the Samsung browser and instruct it to start
it when the app starts 1 . The browser is self-signed with our
own debug key. We used adb to connect the smartphone to a
PC. From the PC, we use Frida module to communicate with
Frida gadget in the app over adb 2 . The Frida gadget starts
in listen mode, ready to accept scripts to inspect components
in the target application 3 .

The setup does not require rooting the device, as we noticed
that the Samsung browser relies on Samsung Knox. Rooting
the device would remove the Knox modules, possibly causing
misbehaviour or crashes of the browser [35].

We identified and intercepted the Java method responsible
for loading URIs method and witnessed how file URIs are
forwarded to the Terrace engine. To overcome Terrace’s lack
of debug symbols, rather than inspecting potentially relevant
Terrace functions, we hooked native file access operations like
read() and open() syscalls. When accessing the internal
storage using the file scheme, we indeed observed Terrace
invoking open() and opendir() to open files and directories,
respectively. At this stage, we confirmed that the Samsung
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browser, as a single process, has access to the internal storage
and is not reliant on app components or external applications.

f) Finding the root cause: Having determined that
syscalls to access the internal storage always succeed in the
Samsung browser (independent of Android permissions), we
injected a compiled module into the app to print its effective
permission. From this, we found that the Samsung browser is
in the group sdcard_rw, finally explaining why access to the
internal storage is granted. However, it remained unclear how
the app obtains membership of the sdcard_rw group.

To understand that, we repacked the app numerous times,
each time removing one component and checking if group
membership was removed. We started with removing native C
libraries, then app components, and lastly classes and libraries in
the app’s source code. We found that neither native C libraries,
including the Terrace engine, nor app components affect access
to internal storage.

However, we identified a specific metadata entry called
“SDP” in the Android manifest of the application that grants
the sdcard_rw permission to the Samsung browser.

<meta-data android:name="sdp"
android:value="enabled"/>

We found that Secure Data Protection (SDP) is a Samsung
Knox SDK component that can provide protection of sensitive
data within an app [36, 37].

g) Exploiting SDP to bypass storage permissions: It
appears that any app can request the inclusion of SDP and
its SDK through a simple metadata setting, both are used in
the Samsung browser. To verify that, as a proof-of-concept
we cloned the code base of the Samsung browser app, but
changed its package name and self-signed the binary. This
process is complex for an app with a large code base like
Samsung browser, because it requires changes in several places
(classes, directories and metadata) and because the authority
names of app components must be altered as well. Taking this
into account, we successfully created an independent app with
a distinct name that uses SDP and has access to the internal
storage. The app does not interfere with and can be installed
alongside the original Samsung browser. Because it has a
distinct package name, the cloned app can also be published
to Google Play.

Alternatively, one can also include the SDP configuration in
any other app. Thus, an adversary who can trick the user into
installing a malicious app (e.g., disguised as a game or similar)
can exploit this issue to exfiltrate the internal storage even
though the user did not grant the Android storage permission.
We reported these issues to Samsung on October 30, 2020 and
February 9, 2021. They assigned two CVEs as follow: CVE-
2021-25348 for bypassing the security check in the browser,
and CVE-2021-25417 for the underlying privilege escalation
issue in Samsung’s Android variant. At the time of reporting,
both issues affected Android 10. Samsung has patched the
issues on December 1, 2020 and June 8, 2021, respectively,
with the Samsung browser version v13.0.1.64.

Issue #3: Regardless of Android permission, the Samsung Knox SDP
gives any app access to the internal storage without user approval.

IV. DISCUSSION AND MITIGATIONS

Our case studies show that, even though the general topic
has been extensively studied, handling of local URI schemes in
mobile browsers still suffers from substantial oversights. Thus,
we conclude that currently used test methods are insufficient
to detect complex issues, especially those that are caused in
interaction with external components, e.g., the Knox SDK or
IME keyboards. Similarly, more principal mitigations appear to
be required for the issues pointed out in this paper, especially
those related to JavaScript and data URIs.

a) Mitigating self-XSS via the JavaScript scheme: As
shown in Section III-A, hooking paste events is not sufficient
to capture all sources of input into the address bar (other than
the user typing): IME keyboards are third-party components
and do not expose APIs for event listening (e.g., paste events),
nor does Android provide a generic interface for this. The issue
cannot be resolved through changes to the IME keyboard code,
as the Android guidelines state that IME keyboards are not
responsible for sanitising their output [38].

Apart from that, new input methods might be introduced
in the future that could also bypass the existing address
bar sanitisation logic. Google thus sought a solution that
fundamentally prevents future similar issues but still allows
manual typing of URIs with local schemes (like JavaScript).

We thus propose a generic multi-character handler for
Android that solves the issue. Our solution is based on the fact
that user-typed text appears character-by-character, whereas
pasted text (be it from normal or IME keyboard clipboard) is
inserted as a block. Android keyboard uses the commitText()
method to send text to a designated input field. If the sent
text is a single character, it is sent as it. Otherwise, the
keyboard sends a special key event along with the text in
a block. Therefore, to intercept paste events, we can override
the address bar’s onTextChange() method and inspect the
number of inserted characters: if a multi-character insertion is
detected, this indicates a paste event (from any source) that
can be blocked.

We implemented this approach as a proof-of-concept and
confirmed that it was able to intercept paste events from both
the context menu and the IME keyboards. Alternately, instead
of overriding the address bar’s onTextChange() method.
It its possible to attach a TextWatcher to the address bar
and override its onTextChange() method to achieve the
same results. Google’s security team considered and our
proposed solution. They adopted and deployed a fix using
TextWatcher [39].

b) Standard approach to avoid phishing with data
URIs: While most browsers adopt the correct approach to
display the beginning of an URI, rather than its end, we found
that Samsung browsers did not follow this behaviour: the prefix
data URI scheme for long URIs is hidden as shown in Figure 4,
enabling an adversary to create phishing URIs that appear to
be hosted on legitimate origins. To resolve this issue for data
URIs (and also other schemes), we propose that the community
defines a standard approach to correctly and securely display
URIs in browser. For example, such a standard could mandate
to always show the start of the URI as implemented in most
browsers (and also how Samsung patched the issue after our
report).
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c) Preventing permission system bypass on Samsung
Android: The issue presented in Section III-C cannot be fully
prevented at the browser level, as the underlying reason is
rooted in Samsung’s modifications to Android. Because SDP
does not authenticate apps that utilise it, any app may publicly
subscribe to it and obtain access to internal storage. Therefore,
an OS update or an update to the Knox SDK are required to
patch the vulnerability. While Samsung informed us that the
issue has been resolved for Android 10, we did not receive
information on their mitigation strategy. However, recently, we
noticed that SDP is deprecated in the latest Knox SDK patch
v3.7.

d) Limitations: Our work is based on manual inspection
of the most common local schemes in the most popular mobile
browsers. Automating (parts of) our analysis and extending it
to other browsers and schemes is an interesting research area
that we leave for future work. We note that such automation is
challenging: the found issues are related to complex interactions
between UI components (e.g., text fields) and data entry
methods (e.g., IME keyboards) or OS-specific configuration
options.

V. CONCLUSIONS

In this paper, we demonstrated several security issues in
local URI schemes, affecting major mobile browsers including
Google Chrome, Edge, Opera, and the Samsung browser. We
show that a lack of proper sanitisation of JavaScript URIs can
lead to self-XSS attacks, while data URIs can be abused for
spoofing origins in phishing attacks. Finally, an issue in file
URIs led us to discover a much deeper design flaw in Samsung’s
Android, giving an arbitrary app access to the internal storage
without user consent and bypassing the dedicated Android
storage permission. Our results highlight that, even though
the overall attack surface is well-understood, testing methods
and tools to (semi)automatically detect URI handling issues in
mobile browsers are still lacking and motivate future work in
this direction.
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