
 
 

University of Birmingham

Electrothermal dynamics-conscious many-objective
modular design for power-split plug-in hybrid
electric vehicles
Li, Ji; Liu, Kailong; Zhou, Quan; Meng, Jinhao; Ge, Yunshan; Xu, Hongming

DOI:
10.1109/TMECH.2022.3156535

License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Li, J, Liu, K, Zhou, Q, Meng, J, Ge, Y & Xu, H 2022, 'Electrothermal dynamics-conscious many-objective
modular design for power-split plug-in hybrid electric vehicles', IEEE/ASME Transactions on Mechatronics.
https://doi.org/10.1109/TMECH.2022.3156535

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2022 IEEE.  Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1109/TMECH.2022.3156535
https://doi.org/10.1109/TMECH.2022.3156535
https://birmingham.elsevierpure.com/en/publications/f69a98c9-8dc7-40fb-bfdf-64eab37ce528


IEEE/ASME Transactions on Mechatronics 1 

Abstract--This paper proposes an improved modular design 

methodology of a power-split plug-in hybrid electric vehicle 

(PHEV) that introduces an advanced electrothermal coupled 

model and a temperature-related sub-objective to simultaneously 

reveal battery thermal and electrical dynamics in the modular 

design. Considering to provide customers with more optimal 

configuration solutions, a Pareto-augmented collaborative 

optimization (PACO) scheme is designed that integrates three 

benchmarking many-objective evolutionary algorithms (MOEAs) 

to expand the distribution of an approximated Pareto frontier 

composed of the best solution set. Two realistic worldwide 

harmonized light vehicles test cycles are separately reproduced by 

two trained drivers on a chassis dynamometer to test the 

robustness of the optimized vehicle system. The simulation results 

demonstrate that the MOEA based on decomposition (MOEA/D) 

in the PACO is the main contributor for PHEV modular design 

because it lessens the generational distance by at least 2.7% and 

enlarges the hypervolume by at least 17.6%, compared to the elitist 

non-dominated sorting genetic algorithm and improved strength 

Pareto evolutionary algorithm. In the modular adaptation for 

different user types, the PHEV system optimized by the PACO can 

regulate cell temperatures (𝟐𝟕. 𝟓 − 𝟑𝟖. 𝟑℃) of all user types within 

a safe and efficient working zone (𝟎 − 𝟓𝟓℃). 

 
Index Terms--electrothermal battery model; many-objective 

evolutionary algorithm; modular design and adaptation; power-

split plug-in hybrid electric vehicle. 

 

NOMENCLATURE 

𝑀 Gross mass 

𝐴𝑓 Windward area 

𝑅𝑤ℎ Tire rolling radius 

𝐶𝑑 Air drag coefficient 

𝑖0 Reducer ratio 

𝜂𝑖0 Differential efficiency 

𝜏𝑑 Torque demand 

𝑛𝑑 Rotation speed demand 

𝑔 Gravitational constant 

𝛿 Coefficient of rolling friction 

𝜃 Slope grade 

𝑢 Vehicle speed 

𝑃𝑓,𝐿𝑖𝑐𝑒 Equivalent power of the fuel consumption 

𝐿𝑖𝑐𝑒 Displacement of the candidate engine 

𝐿∗ Displacement of the baseline engine 

𝑚𝑓̇  Instantaneous fuel consumption 

𝐻𝑓 Heat value for gasoline oil 

𝑆𝑜𝐶 State of charge  
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𝐼 Battery current 

𝑇𝑠 Battery surface temperature 

𝑇𝑐 Battery internal temperature 

𝐶𝑛 Battery nominal capacity 

𝑇𝑎𝑚𝑏 Ambient temperature 

𝑉𝑜𝑐 Open circuit voltage 

𝝃 Power-split vector 

𝜏𝑚𝑜𝑡 Trans-motor torque 

𝑛𝑚𝑜𝑡 Trans-motor speed 

𝜏𝑖𝑐𝑒 ICE torque 

𝑛𝑖𝑐𝑒 ICE speed 

𝑃𝑔𝑒𝑛 ISG power 

𝜒𝑖 Proportionality factor 

𝑆𝑜𝐶∗ Scaling coefficient of the battery module’s SoC 

𝜙𝑖,𝛼 Control parameters for ICE 

𝜙𝑖,𝛽 Control parameters for ISG 

Num𝑏𝑐 Number of battery cells 

𝐶𝑐𝑒𝑙𝑙 Cost of one battery cell 

𝑇𝑎𝑣𝑔 Average temperature of battery cells 

𝜽𝑠𝑖𝑧𝑒
∗  Vector of modular component sizing parameters 

𝜽𝑒𝑚𝑠
∗  Vector of power-split control parameters 

 

I.  INTRODUCTION 

ROWING concerns for transport-related air pollution and 

global warming have thrust the automotive industry to 

seek low-cost carbon emission reduction solutions [1], [2]. In 

this context, plug-in hybrid electric vehicles (PHEVs) are 

increasingly seen as an efficient means of transportation in 

mitigating the growing air quality concerns of exhaust gas 

emissions from traditional internal combustion engines (ICE) 

[3]. Compared to a pure electric vehicle, a PHEV normally has 

more mileage, and more flexibility in the control of emission 

actuation, e.g., a green zone/district in a city, or to the polluting 

mode when the resulting emissions have less effect [4]. 

Modular design allows vehicular products to be customized, 

upgraded, repaired and for parts to be reused in a fast and low-

cost way. In 2012, the Volkswagen Group released the well-

known MQB platform [5] that enables to sharing a common 

engine-mounting core for various drivetrains, as well as 

reducing weight. In Ref. [6], a model-based sizing tool for a 

hybrid wind-diesel-photovoltaic-battery system by empirical 

approach is developed to analyze the performance and life-

cycle cost. Besides, sizes of the engine and generator can be 

also determined according to the average electrical power 
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requirement in various driving cycles [7].These conventional 

modular design methods depend on the experts’ experience [8], 

while the design results are determined by the design of 

experiments [9]. Since multiple disciplines may be involved in 

such a complicated hybrid powertrain, e.g., electrical, chemical, 

mechanical, etc. it is extremely difficult to size its components 

manually or analytically because they rely on the sizing 

experience or simple calculation [10]. 

Rapid development in informatics enables a faster and more 

efficient fashion for intelligent modular design of vehicles. As 

the core of intelligent modular design, a computationally 

efficient algorithm is the guarantee for acquiring the desirable 

powertrain specifications and control parameters [11]. Convex 

optimization has been widely developed for HEV component 

sizing [12], [13], because it can overcome the limitation of size 

in the optimization problem. Nevertheless, developers must 

have strong skills in convex modelling to reformulate the 

optimization issue into a convex form. Heuristic algorithms are 

often used to solve such an NP-complete problem. Li et al. and 

Zhou et al. study an enhanced particle swarm optimization 

algorithm with chaotic attraction strategy for energy 

management system design of on-road [14], [15] and off-road 

vehicles [16]. Such single-objective optimization algorithms 

are difficult to establish a well-distributed Pareto frontier, 

especially when the objectives are more than two. Another idea 

is to formulate vehicle optimal design as an optimal control 

problem e.g., co-optimization of energy management and 

driving speed [17], but its optimality is difficult to guarantee. 

Battery is primary energy storage source supplied for 

PHEVs, which would present various electrical and thermal 

dynamics during its operations [18]. In this context, numerous 

modelling techniques have been developed [19] to capture the 

electrical or thermal behaviors of batteries, which can be 

primarily divided into the electrical model, thermal model, and 

coupled model. For the electrical model, due to the superiority 

in terms of computational efficiency, equivalent circuit models 

(ECMs), i.e., resistor-capacitor (RC) ECMs [20] and fractional-

order ECMs [21], have been widely used to capture the 

electrical behavior in battery real-time applications. For the 

thermal model, through assuming the heat generation is evenly 

distributed within batteries, two-stage thermal modelling has 

become an effective path to describe the thermal dynamics of 

both battery surface and interior [22]. Several coupled 

electrothermal models have been also designed to describe the 

strongly coupled relation between battery electrical and thermal 

behaviors [23]. Among various types of coupled models, the 

lumped-parameter electrothermal models [24] with reduced 

order and a relatively small number of model parameters are 

popular in practice such as battery energy and charging 

management [25], [26]. Even so, the thermal dynamics of 

batteries is often ignored in the system-level modular design of 

PHEVs owing to a heavy increase in system complexity. 

To simultaneously reveal battery thermal and electrical 

dynamics in the PHEV modular design, this paper proposes an 

improved modular design methodology that introduces an 

advanced electrothermal coupled model and a temperature-

related sub-objective. The model contains a second-order RC 

sub-model and an extra two-state thermal sub-model that can 

well capture both battery electrical and thermal dynamics. 

Considering to provide customers with more optimal 

configuration solutions, a Pareto-augmented collaborative 

optimization scheme is designed that integrates three 

benchmarking many-objective evolutionary algorithms 

(MOEAs). Conversely, this scheme absorbs their advantages in 

solving such a many-objective problem to construct and expand 

an approximated Pareto frontier which is closer to the ground 

truth for providing more design options for customers. Finally, 

the optimal combination of module specifications and control 

parameters can be determined by the desirability function. 

The rest of this paper is organized as follows: the powertrain 

and scalable modules to be studied in this paper are analyzed in 

section II. The optimization problem is formulated in Section 

III. The improved modular design methodology with 

electrothermal dynamics-conscious is described in section IV. 

Section V explains the experimental process of the studied 

driving cycle and discusses the results of 1) many-objective 

optimization; 2) vehicle system robustness; and 3) the modular 

adaptation. Conclusions are summarized in section VI. 

II.  POWERTRAIN AND SCALABLE MODULES 

The power-split plug-in hybrid powertrain for this research 

comprises an internal combustion engine (ICE), an integrated 

starter-generator (ISG), a trans-motor (i.e., electric motor with 

float stator [27]) which is used for speed coupling. As illustrated 

in Fig. 1, this powertrain topology enables to decoupling speeds 

of the two powerplants. Therefore, the speed of both the 

powerplants can be chosen freely. The vehicle data in Table I 

was sourced from ADVISOR software for powertrain system 

analysis and design.  

 
Fig. 1. The architecture of power-split plug-in hybrid powertrain 

 

TABLE I 

MAIN PARAMETERS OF THE VEHICLE MODEL 

Symbol Parameters Values 

𝑀 Gross mass 1,500 kg 
𝐴𝑓 Windward area 2 m2 

𝑅𝑤ℎ Tire rolling radius 0.3 m 

𝐶𝑑 Air drag coefficient 0.3 

𝑖0 Reducer ratio 3.75 

𝜂𝑖0 Differential efficiency 0.95 

 

By controlling the disengagement/engagement of the clutch 

and lock, the PHEV can work on three operational modes, i.e., 

EV mode, parallel mode, and series mode. If the clutch is 
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disengaged, and the lock is engaged, the PHEV will work at the 

EV mode like an electric vehicle. If the clutch is engaged, and 

the lock is disengaged, the PHEV will work at the parallel mode 

where the engine is used for joint propulsion. If the clutch is 

disengaged, and the lock is engaged, the PHEV will work at the 

series mode where the engine is used for charging the battery in 

case the lower SoC causes the motor not to work especially 

when the ICE cannot meet the high-speed demand. 

A backwards-facing vehicle model considering longitudinal 

dynamics is used in this study. The torque demand 𝜏𝑑  and 

rotation speed demand 𝑛𝑑  after a bi-level-gear speed reducer 

are: 

𝜏𝑑 = (𝛿𝑚𝑎 +
𝐶𝑑𝐴𝑓𝑢

2

21.15
+𝑚𝑔𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑓𝑐𝑜𝑠𝜃) ∙

𝑅𝑤ℎ
𝑖0 ∙ 𝜂𝑖0

𝑛𝑑 = 9.55 ∙
𝑢

3.6 ∙ 𝑅𝑤ℎ }
 
 

 
 

(1) 

where, 𝑔 =  9.81𝑚/𝑠2  is gravitational constant; 𝛿 = 1 is the 

equivalent mass inertia; 𝑓 = 0.015 is the coefficient of rolling 

friction; 𝑢  is the vehicle speed in km/h which is defined by 

driving cycles; 21.15  is a conversion coefficient under 

windless condition; 𝜃 = 0 is slope grade; 9.55 is a conversion 

coefficient from radian per second to revolution per minute; 3.6 

is a conversion coefficient from meter per second to kilometer 

per hour. For this model to be valid, we assume the PHEV has 

an available energy budget for a particular journey. 

A.  Internal Combustion Engine Module 

An empirical ICE model from a Saturn 1.9 L spark-ignition 

engine validated by Argonne National Laboratory [28] is 

selected as the baseline for the modular design. According to 

Willans approximation method [29], the maximum power of the 

engine can be scaled by considering its displacement, and thus, 

the equivalent power of the fuel consumption is scaled by the 

displacement of the engine, 𝐿𝑖𝑐𝑒  

𝑃𝑓,𝐿𝑖𝑐𝑒 =
𝐿𝑖𝑐𝑒
𝐿∗

∙ 𝐻𝑓 ∙ 𝑚𝑓̇ (𝑇𝑖𝑐𝑒 , 𝑛𝑖𝑐𝑒)                 (2) 

where 𝐿𝑖𝑐𝑒 is the displacement of the candidate engine in liters; 

𝐿∗ is the displacement of the baseline engine in liters; 𝑚𝑓̇  refers 

to the instantaneous fuel consumption, g/s; and 𝐻𝑓 refers to the 

heat value for gasoline oil, which is 46 ×  106 J/kg. 

B.  Electrothermal Coupled Lithium-ion Battery Module 

To well capture both battery electrical and thermal dynamics 

in this study, an advanced electrothermal coupled model is 

established, as illustrated in Fig. 2. The model contains a 

second-order RC sub-model and a two-state thermal sub-model. 

For this electrothermal model, the battery’s state of charge 

(SoC),𝑆𝑜𝐶(𝑡)  and voltages (𝑉1(𝑡), 𝑉2(𝑡) ) of two RC parts 

versus time 𝑡 are described by (3a) to (3c) respectively, while 

the surface temperature 𝑇𝑠(𝑡)  and internal core temperature 

𝑇𝑐(𝑡) versus 𝑡 are captured by (3d) and (3e) respectively. 
𝑑𝑆𝑜𝐶(𝑡)

𝑑𝑡
=
𝐼(𝑡)

𝐶𝑛
                              (3𝑎) 

𝑑𝑉1(𝑡)

𝑑𝑡
=

𝑉1(𝑡)

𝑅1(𝑡)𝐶1(𝑡)
+
𝐼(𝑡)

𝐶1(𝑡)
                   (3𝑏) 

𝑑𝑉2(𝑡)

𝑑𝑡
=

𝑉2(𝑡)

𝑅2(𝑡)𝐶2(𝑡)
+
𝐼(𝑡)

𝐶2(𝑡)
                   (3𝑐) 

𝑑𝑇𝑠(𝑡)

𝑑𝑡
=
𝑇𝑎𝑚𝑏 − 𝑇𝑠(𝑡)

𝑅𝑢𝐶𝑠
−
𝑇𝑠(𝑡) − 𝑇𝑐(𝑡)

𝑅𝑐𝐶𝑠
          (3𝑑) 

𝑑𝑇𝑐(𝑡)

𝑑𝑡
=
𝑇𝑠(𝑡) − 𝑇𝑐(𝑡)

𝑅𝑐𝐶𝑐
+
𝑄(𝑡)

𝐶𝑐
                 (3𝑒) 

where 𝐼(𝑡), 𝑅1(𝑡)𝐶1(𝑡), 𝑅2(𝑡)𝐶2(𝑡) are the current, parameters 

of 𝑅1𝐶1 pair and 𝑅2𝐶2 pair versus 𝑡, respectively. 𝐶𝑛 represents 

the battery normal capacity, 𝑇𝑎𝑚𝑏  means the ambient 

temperature, 𝑅𝑢, 𝑅𝑐, 𝐶𝑠, 𝐶𝑐 are the model’s thermal parameters. 

Here the heat generation 𝑄(𝑡) in (3𝑒) is calculated by: 

𝑄(𝑡) = 𝐼(𝑡)𝑇𝑐(𝑡)
𝑑𝑂𝐶𝑉(𝑡)

𝑑𝑇𝑐(𝑡)
+ 𝐼(𝑡)(𝑉(𝑡) − 𝑂𝐶𝑉(𝑡))  (4)  

The open circuit voltage (OCV) presents a nonlinear relation 

with the battery SOC level. According to this electrothermal 

model, battery terminal voltage 𝑉(𝑡) can be obtained by:  

𝑉(𝑡) = 𝑂𝐶𝑉(𝑆𝑜𝐶(𝑡)) + 𝑅(𝑡)𝐼(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡)   (5)  

The exact parameter values of this battery electrothermal 

coupled model are referred to [30] for the A123 26650 battery. 

In this study, coolant is adopted, which can be expressed in the 

electrothermal model by a convection resistance, 𝑅𝑢 , as 

considered in [31]. The established model has been well 

validated, with a satisfactory accuracy of less than 20 mV 

rooted mean square error (RMSE) of terminal voltage, while 

both internal and surface temperatures present less than 1°C 

RMSEs. In the battery module, all these cells are connected in 

series with the unified current as the similar strategies deployed 

in many PHEV applications such as [32]. 

 
Fig. 2. Electrothermal model of a cylindrical Li-ion battery [33]: a) Equivalent 

circuit electrical model; and b) Lumped thermal model 

C.  Energy Management Module 

The energy management module adopts a typical state 

machine [34] to control the transition between three operation 

modes as shown in Fig. 3. This method is robust and easy to 

implement that is commonly used in automotive industry. 

 
Fig. 3. Overview of states of mode transition state machine 
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The state machine controller has three inputs: vehicle torque 

demand, 𝑇𝑑 , speed demand, 𝑛𝑑 , and battery state of charge, 

𝑆𝑜𝐶. The output of the state machine is a power-split vector: 

𝝃 = [𝑇𝑚𝑜𝑡 𝑛𝑚𝑜𝑡 𝑇𝑖𝑐𝑒 𝑛𝑖𝑐𝑒 𝑃𝑔𝑒𝑛]               (6) 
where 𝑇𝑚𝑜𝑡 and 𝑛𝑚𝑜𝑡 are the torque demand and speed demand 

of the trans-motor, respectively; and 𝑃𝑔𝑒𝑛 is the power demand 

of the ISG. 

In the EV mode (when 𝑆𝑜𝐶 > 0.5 or 𝑃𝑑 < 0), the PHEV 

will work like a battery electric vehicle, therefore, the power-

split vector under the EV mode is: 

𝝃 = [𝜏𝑑 𝑛𝑑 0 0 0]                           (7) 
In the series and parallel modes (when 𝑆𝑜𝐶 ≤ 0.5 and 𝑃𝑑 ≥

0), switching between series and parallel modes are governed 

by the power demand, 𝑃𝑑, and a control parameter, 𝜙𝑚𝑜𝑑𝑒 . If 

𝑃𝑑 > 𝜙𝑚𝑜𝑑𝑒 , the vehicle will work on parallel mode otherwise 

the vehicle will work on series mode. The power-split vector 

for series mode is: 

𝝃 = [𝜏𝑑 𝑛𝑑 𝜏𝑖𝑐𝑒
′ (𝑃𝑔𝑒𝑛) 𝑛𝑖𝑐𝑒

′ (𝑃𝑔𝑒𝑛) 𝑃𝑔𝑒𝑛+ ∙ 𝜒2]     (8) 

The power-split vector for parallel mode is: 

𝝃 = [𝜏𝑑 𝑛𝑑 ∙ (1 − 𝜒1) 𝑇𝑑 𝑛𝑑 ∙ 𝜒1 0]             (9) 
where, 𝜏𝑖𝑐𝑒

′  and 𝑛𝑖𝑐𝑒
′  are optimal torque and speed of the ICE, in 

which they are retrieved based on the location of demand power 

of the ISG 𝑃𝑔𝑒𝑛 in the optimal efficiency curve of the ICE; 𝑃𝑔𝑒𝑛
+  

is the maximum power of the ISG;  𝜒𝑖  ( 𝑖 =1 or 2) is a 

proportionality factor determined by SoC as follows, 𝜒1 and 𝜒2 

are for ICE control and ISG control, respectively [3]. 

𝜒𝑖(𝑆𝑜𝐶) = 

=

{
 

 
1, 𝑆𝑜𝐶 ∈ [0,0.2]

{1 + exp [(
𝑆𝑜𝐶

𝑆𝑜𝐶∗
+ 𝜙𝑖,𝛽)𝜙𝑖,𝛼]}

−1

, 𝑆𝑜𝐶 ∈ (0.2,0.5]

0, 𝑆𝑜𝐶 ∈ (0.5,1]

(10) 

where, 𝑆𝑜𝐶∗  is a scaling coefficient of the battery module’s 

SoC to ensure search efficiency of parameters 𝜙𝑖,𝛽 and 𝜙𝑖,𝛼 in 

the PHEV modular design; and 𝜙𝑖,𝛼 (𝑖=1 or 2) ∈ [0.01,50] and 

𝜙𝑖,𝛽  (𝑖=1 or 2) ∈ [−6,6] are four control parameters introduced 

here to enable optimization of cut-in timing and conversion 

speed of the ICE and ISG. They separately define the position 

and slope of the curve in this logistic function. 

III.  PROBLEM FORMULATION 

This research focuses on three optimization objectives: 1) the 

final energy consumption from the fuel tank and the battery 

module; 2) total cost of the ICE and battery module; and 3) 

integral squared error (ISE) of average temperature of battery 

cells and the ambient temperature. The definition of each 

objective is given in order as follows. Considering energy-

saving efficiency, the first objective is formulated as: 

𝐽1 = ∫ (𝑃𝑓,𝐿𝑖𝑐𝑒 + Num𝑏𝑐 ∙ 𝑉𝑜𝑐(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑐)𝑑𝑡
𝑡

0

        (11) 

where, 𝑃𝑓,𝐿𝑖𝑐𝑒 is the equivalent power of the fuel consumption; 

Num𝑏𝑐 is the number of battery cells; 𝑉𝑜𝑐  is open circuit voltage 

and 𝐼𝑏𝑐  is the current. The cost of components is the second 

objective that directly affects the final pricing of the vehicle and 

further customers’ acceptance. It can be described as: 

𝐽2 = 12𝑃𝑖𝑐𝑒
𝑚𝑎𝑥(𝐿𝑖𝑐𝑒) + 424 + 𝐶𝑐𝑒𝑙𝑙 ∙ Num𝑏𝑐        (12) 

where, the cost estimation method for a regular engine is 

adopted from EPRI and Golbuff’s study [35], [36], wherein 𝐶𝑖𝑐𝑒  

is the cost (USD) of the engine whose maximum power is 

𝑃𝑖𝑐𝑒
𝑚𝑎𝑥; 424 (USD) is a baseline coefficient for regular engine 

cost; 𝐶𝑐𝑒𝑙𝑙  is the cost of one battery cell and its number Num𝑏𝑐 . 

In real battery applications, the temperature difference with 

the ambient temperature is an important indicator to reflect 

battery temperature rise, which could further benefit the 

evaluation of the battery thermal characteristics, as considered 

in [26]. To ensure safe and efficient use of the battery module, 

the third objective is formulated as ISE of the average 

temperature of battery cells and the ambient temperature. Since 

ISE can penalize large errors more than smaller ones, control 

systems specified to minimize ISE of average temperature of 

battery cells and the ambient temperature will tend to eliminate 

large overshooting over a safe threshold quickly but will 

tolerate small oscillation persisting for a long period of time. 

𝐽3 = ∫ (𝑇𝑎𝑣𝑔(𝑡) − 𝑇𝑎𝑚𝑏)
2
𝑑𝑡

𝑡𝑒𝑛𝑑

0

                (13) 

where, 𝑇𝑎𝑚𝑏  is the ambient temperature and 𝑇𝑎𝑣𝑔 is the average 

temperature of battery cells. Consequently, the many-objective 

design problem of the studied PHEV is described by: 
[𝜽𝑠𝑖𝑧𝑒

∗ 𝜽𝑒𝑚𝑠
∗ ] = argmin(𝐽1 𝐽2 𝐽3)            (14) 

in which 
𝜽𝑠𝑖𝑧𝑒
∗ = [𝐿𝑖𝑐𝑒

∗ Num𝑏𝑐
∗ ]

𝜽𝑒𝑚𝑠
∗ = [𝜙1,𝛼

∗ 𝜙
1,𝛽
∗ 𝜙

2,𝛼
∗

𝜙
2,𝛽
∗ 𝜙

𝑚𝑜𝑑𝑒
∗ ]

}        (15) 

where, 𝜽𝑠𝑖𝑧𝑒
∗  indicates a vector of component sizing parameters; 

and 𝜽𝑒𝑚𝑠
∗  indicate a vector of power-split control parameters. 

To ensure the convergence speed of each objective at the same 

scale, all input variables need to be normalized first. During the 

optimization process, the system must obey the following 

constraints. 

𝑠. 𝑡.

{
 
 

 
 

𝑆𝑜𝐶 ∈ [0.2,0.8]

𝑛𝑚𝑜𝑡 ∈ [0, 𝑛𝑚𝑜𝑡+]

𝜏𝑚𝑜𝑡 ∈ [𝜏𝑚𝑜𝑡−, 𝜏𝑚𝑜𝑡+]

𝑃𝑖𝑐𝑒 ∈ [0, 𝑃𝑖𝑐𝑒+]

𝑃𝑔𝑒𝑛 ∈ [0, 𝑃𝑔𝑒𝑛+  ]

                      (16) 

where the SoC must be regulated in [0.2,0.8] for safe and 

efficient use; 𝑛𝑚𝑜𝑡+  is the maximum speed of the traction 

motor; 𝑇𝑚𝑜𝑡− and 𝑇𝑚𝑜𝑡+ are minimum and maximum torque of 

the traction motor, respectively. 𝑃𝑖𝑐𝑒+ is the maximum power 

of the ICE; and 𝑃𝑔𝑒𝑛+ is the maximum power of the ISG. All 

power machines should operate in their working ranges. 

IV.  ELECTROTHERMAL DYNAMICS-CONSCIOUS MANY-

OBJECTIVE MODULAR DESIGN 

The working principle of the many-objective modular design 

methodology with electrothermal dynamics-conscious in this 

study is illustrated in Fig. 4.  

The block of inputs, as presented in Fig. 4(a), provides 

information from the real-world measurements, standards, and 

requirements, for the formulation of the many-objective 

optimization problem. The driving cycle used for optimization 

is two consecutive repetitions of the worldwide harmonized 

light vehicle test cycle (2×WLTC). The block of the 

optimization, given in Fig. 4(b), is the flow chart of the Pareto-

augmented collaborative optimization (PACO) scheme that 

integrates three benchmarking many-objective evolutionary 

algorithms (MOEAs) to co-solve the formulated many-
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objective optimization problem. The block of Pareto analysis 

and result verification presented in Fig. 4(c), utilizes the 

desirability function to derive the best compromise solution 

from the approximated Pareto frontier resulting from the 

PACO. Finally, the optimized system adaptability will be 

evaluated by using the laboratory-made WLTCs, in which the 

collection process is elaborated in the next section. 

 
Fig. 4. Working principle of the improved modular design methodology with 
electrothermal dynamics conscious 

A.  Pareto-Augmented Collaborative Optimization 

It is well acknowledged that combining or integrating 

optimization algorithms, especially ones with large differences 

in computing mechanism could greatly improve the Pareto 

frontier [37], [38]. In light of this, the PACO scheme is designed 

with integrating three benchmarking many-objective 

evolutionary algorithms (MOEAs) to expand the distribution of 

an approximated Pareto frontier composed of the best solution 

set. They are the elitist non-dominated sorting genetic algorithm 

(NSGA2) which introduces a selection operator that creates a 

mating pool by combining the parent and offspring populations 

and selecting the best solutions, improved strength Pareto 

evolutionary algorithm (SPEA2) which incorporates a fine-

grained fitness assignment strategy, a density estimation 

technique, and an enhanced archive truncation method, and 

MOEA based on decomposition (MOEA/D) which explicitly 

decomposes the many-objective optimization problem into 

scalar optimization subproblems and solves these subproblems 

simultaneously by evolving a population of solutions. With help 

of the PACO scheme, the approximated PF is determined by 

sorting three individual estimated PFs calculated by NSGA2, 

SPEA2, and MOEA/D, respectively. 

B.  Desirability Function Approach 

To determine module specifications and control parameters, 

the desirability function is employed to obtain the best 

compromise solution from the Pareto frontier based on decision 

makers, as shown in Fig. 4(c). The method adopted by 

Pasandideh et al. [43] computes a penalty score α for each 

objective vector in a set of the approximated PF. Consequently, 

the solution with the minimum α is the best compromise. The 

expressions of the desirability function are presented as follows. 

min
𝐾∈𝑃𝐹

𝛼(𝐽(𝐾)) = min
𝐾∈𝑃𝐹

∑ 𝑤𝑖
𝐽𝑖(𝐾) − 𝐽𝑖

min

𝐽𝑖
max − 𝐽𝑖

min

3

𝑖=1
       (17) 

{
 

 
𝐽 = [𝐽1 𝐽2 𝐽3]

𝐾 = [𝜽𝑠𝑖𝑧𝑒
∗ 𝜽𝑒𝑚𝑠

∗ ]

∑ 𝑤𝑖
3

𝑖=1
= 1 and 𝑤𝑖 ≥ 0

                    (18) 

where 𝐽𝑖
max  and 𝐽𝑖

min  denote the maximum and minimum 

values of the objective function 𝐽𝑖 on the approximated PF; 𝐾 is 

the variable vector; 𝑤𝑖  stands for a weight factor given by the 

decision-maker. 

V.  RESULTS AND DISCUSSION 

For evaluation purposes, this research adopts two realistic 

WLTCs separately reproduced by two trained drivers on a 

chassis dynamometer, as illustrated in Fig. 5(a), which is 

located at China Automotive Technology & Research Center. 

 
Fig. 5. Realistic WLTC reproduction process: a) chassis dynamometer testing 

bench; b) tolerance standard for driving tests; c) driving cycle profiles; and d) 
velocity-acceleration distribution 

 

During the test, the driver should strictly abide by the 

tolerance standard promulgated by ‘Limits and measurement 

methods for emissions from light-duty vehicles’ (GB 18352.6). 

The allowable tolerance, as illustrated in Fig. 5(b), between the 

actual speed of the vehicle and the speed specified in the test is: 
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1) upper tolerance limit, +2km/h, time is within 1s and 2) lower 

tolerance limit, -2km/h, time is within 1s. The allowable speed 

error can be greater than the specified requirements, but the 

over-tolerance time must not exceed 1s. In addition, such out-

of-tolerance cases must not exceed 10 times. Fig. 5(d) displays 

velocity-acceleration distribution comparison of one original 

(cycle #1) and two reproduced cycles (cycle #2, cycle #3). In 

the medium-speed and high-speed areas (70-130km/h), the 

acceleration of reproduction cycles is more aggressive, 

especially cycle #3. 

A.  Pareto Analysis for Many-objective Optimization 

Fig. 6(a) presents the estimated PFs obtained with the PACO 

integrated with NSGA2, SPEA2, and MOEA/D, in which an 

approximated PF is obtained by calculating the nondominated 

set from all the estimated PF. A desirable solution (marked in a 

light blue circle) is calculated based on the desirability function 

approach with the weight factor 𝑤 = [0.4 0.4 0.2]. For a fair 

comparison, all optimization algorithms set to the same 

population size, i.e., 𝑁 = 20,50,100, same archive size, i.e., 

𝑁 =  50, same probability of crossover and mutation rates, i.e., 

𝑝𝑐𝑟𝑜 = 0.7  and 𝑝𝑚𝑢𝑡 = 0.3 , and same termination criterion, 

i.e., no more than 100 iterations. 

 
Fig. 6. Pareto frontier comparison of using three evolutionary optimization 

algorithms: a) estimated and approximated Pareto frontiers; and b) distribution 

of number of non-dominated solutions. 

 

From the results of the scatter plot, the estimated PFs 

obtained by NSGA2 (marked in blue) show a smaller spread 

and distribution compared to those obtained by SPEA2 and 

MOEA/D. In conjunction with Fig. 6(b), the PACO collects 

more non-dominated solutions, in which there is at least 28% of 

the increase compared to every single algorithm. Furthermore, 

the MOEA/D occupies 72% non-dominated solutions in total, 

and SPEA2 occupies the remaining 28%, but NSGA2 does not 

own any non-dominated solutions in this case. In terms of 

population sizes, applying 50 populations in studied 

optimization algorithms achieves 66% dominion in the 

approximated PF, contrasted to those using 20 populations 

(23%) or 100 populations (31%). 
TABLE II 

OPTIMIZATION PERFORMANCE COMPARISON OVER THREE EVOLUTIONARY 

ALGORITHMS 

Population Optimization GD HV 

 algorithm Mean SD Mean SD 

20 

NSGA2 3.42e+7 9.91e+14 2.00e-3 3.27e-6 

SPEA2 5.88e+6 2.98e+13 2.36e-1 4.87e-2 
MOEA/D 1.02e+6 9.40e+11 3.11e-1 8.56e-2 

50 

NSGA2 1.28e+7 1.43e+14 1.30e-2 1.46e-6 

SPEA2 1.82e+6 3.07e+12 2.62e-1 6.18e-2 
MOEA/D 1.77e+6 2.82e+12 3.08e-1 8.67e-2 

100 

NSGA2 4.63e+6 1.97e+13 6.10e-2 3.30e-3 

SPEA2 3.47e+6 1.14e+13 2.82e-1 1.06e-1 

MOEA/D 1.63e+6 2.51e+12 3.34e-1 7.51e-2 

 

To quantitatively evaluate convergence and estimated PF set 

distribution of three studied algorithms, two commonly used 

optimization metrics of the generational distance (GD) [39] and 

hypervolume (HV) [40] are involved. Their definitions are 

presented in Appendix. Table II summarizes the optimization 

indicator performance of GD and HV over three evolutionary 

algorithms. Compared to NSGA2 and SPEA2, MOEA/D with 

better convergence and PF set distribution achieves the lowest 

mean value of the GD and the highest mean value of the HV for 

each population size. It should be noted that there are orders of 

magnitude gaps in the performance of NSGA2 in the mean 

value of the HV from the other two. This conclusion is 

consistent with an illustration in Fig. 6(a). Compared to NSGA2 

and SPEA2, MOEA/D can lessen the generational distance by 

at least 2.7% and enlarge the hypervolume by at least 17.6%. 

Therefore, MOEA/D is a desirable solver for such a complex 

nonlinear optimization problem. 

B.  Vehicle System Performance and Robustness 

Driving behavior is a primary factor that would affect fuel 

economy [41]. This section further examines the robustness of 

the vehicle system optimized by the PACO against laboratory 

cycles generated by different human drivers. Each case runs 

under the original Worldwide Harmonized Light Vehicle Test 

Cycle (WLTC) repeatedly for two rounds with an initial battery 

SoC of 0.8. The optimal results will be applied in the PHEV 

system for different driving scenarios i.e., Cycle #1 to #3. 

Table III organizes vehicle system performance in four 

aspects of: 1) weighted-sum value of cost functions; 2) cost of 

the ICE and battery cells; 3) energy consumption; and 4) ISE of 

battery cell temperature. It should be noted that the weighted-

sum value of cost functions is calculated based on the 

desirability function approach as Eq. (17). Three levels of the 

ambient temperature, 𝑇𝑎𝑚𝑏 = 15°C, 25°C, 35°C  have been 

investigated. From the result of cost function values, the 

MOEA/D wins first place eight times in nine testing scenarios 

(3 testing cycles * 3 levels of the ambient temperature), wherein 

on the basis of the NSGA2 and the SPEA2, the MOEA/D 

respectively reduces the cost function values by 22.23% and 

9.44% on average. In the robustness testing of the PHEV 

system against Cycle #2 and #3, using parameters optimized by 

MOEA/D controls an increase of the cost function value within 

31.0%. That is much lower than increases of the cost function 

values using parameters optimized by NSGA2 (62.9%) and 

SPEA2 (77.1%). In conjunction with Fig. 5(d), with an increase 
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in driving aggressiveness (i.e., from Cycle #1 to Cycle #3), the 

vehicle configuration derived from MOEA/D can better 

suppress the increase in energy consumption. Compared to an 

increase of energy consumption derived from NSGA2 (up to 

101.7%) and SPEA2 (up to 224.7%), MOEA/D can limit the 

increase to 10.6%. It is worth mentioning that over the 

aggressive Cycle #3, the vehicle system improved by MOEA/D 

still can regulate cell temperature ISE well at different levels of 

the ambient temperature, while the other two algorithms are 

difficult to suppress. 

 
Fig. 7. Vehicle system performance over Cycle #3 with ambient temperature, 

𝑇𝑎𝑚𝑏 = 25°C 

 

To further explore the reasons behind this phenomenon, Fig. 

7 presents representative time-dependent variables of the 

vehicle system over Cycle #3 with ambient temperature, 

𝑇𝑎𝑚𝑏 = 25°C. Under the hybrid mode, the trends of energy flow 

of PHEV systems optimized by NSGA2, SPEA2, and MOEA/D 

are similar. When there is high power demand 𝑡 ∈
[1700,1800] ∪ [3500,3600] , the system with the proposed 

methodology will arrange for more power demand to be 

provided by the ICE, thereby reducing the peak power demand 

of the motor in this event. In this way, a transient surge of the 

cell temperature caused by the high-power demand of the motor 

can be avoided. Figs. 7(d)-(e) display the detailed real-time 

performance in one of peak power demand events 𝑡 ∈
[3400,3600]. The overshooting of current of battery cells in the 

PHEV system optimized by SPEA2 is detected that would 

result in two potential problems. The first is continued battery 

high temperature may accelerate aging and reduce the 

efficiency of charge or discharge. The second is the low SoC 

may reduce the flexibility of energy-flow allocation to reduce 

the efficiency of the entire hybrid system. The PHEV system 

with MOEA/D (𝑇𝑎𝑣𝑔
max = 28.8℃, 𝑆𝑜𝐶𝑒𝑛𝑑 = 0.46) can address 

these two problems much better than those with NSGA2 

(𝑇𝑎𝑣𝑔
max = 34.8℃, 𝑆𝑜𝐶𝑒𝑛𝑑 = 0.41) and SPEA2 (𝑇𝑎𝑣𝑔

max = 40.0℃, 

𝑆𝑜𝐶𝑒𝑛𝑑 = 0.40). 

C.  Modular Adaptation for Different Type Users 

The mobility behavior within the population is extremely 

diverse. This section investigates the impact of different user 

types on the modular design and provides them with selection 

guidance. For the following analysis, three representative cases 

are selected as considered in [42]: user B has an annual mileage 

of 15,000 km, which is close to the German average. user C, as 

a frequent driver, travels double of this distance (30,000 km) 

and user A only half of this distance (7500 km), in which their 

speed trajectories are cropped in sequence by using repeated 

WLTCs (Cycle #1). Considering the daily commuting distance 

of the three user types, the studied vehicle system is modularly 

adapted to the desired component sizes and control parameters. 

In addition, the equivalent fuel consumption and maximum cell 

temperature of three user types are also explored under the 

different initial values of SoC. 
TABLE IV  

OPTIMIZED RESULT OF CONTROL PARAMETERS USED IN THE SYSTEM 

User Power-split control parameters 

type 𝜙1,𝛼
∗  𝜙1,𝛽

∗  𝜙2,𝛼
∗  𝜙2,𝛼

∗  𝜙𝑚𝑜𝑑𝑒
∗  

A 24.09 0.2688 0.1934 -1.195 5.822e+4 
B 41.88 -2.794 8.201 -5.785 6.134e+4 

C 11.61 0.5193 2.284 -5.456 4.712e+4 

 
TABLE V  

VEHICLE ADAPTABILITY PERFORMANCE OVER DIFFERENT TEST ENVIRONMENT 

User 
type 

Annual 
mileage (km) 

Component size EV range 
(km/d) 

Hybrid range 
(km/d) ICE Cells 

A 7500 2.0L 5000 13.34 7.30 

B 15000 2.4L 4980 13.32 27.78 

C 30000 1.8L 6034 23.55 58.64 

TABLE III 
VEHICLE SYSTEM PERFORMANCE COMPARISON  

Testing 

cycle 

Optimization 

algorithm 

Weighted-sum value of 

cost functions 

Cost of the ICE and battery 

cells (104 USD) 

Energy consumption 

(107J) 

ISE of battery cell 

temperature (104℃2) 

  15°C 25°C 35°C 15°C 25°C 35°C 15°C 25°C 35°C 15°C 25°C 35°C 

 NSGA2 0.614 0.687 0.602 2.021 2.403 2.329 3.234 2.499 2.930 17.27 1.668 0.496 

Cycle #1 SPEA2 0.496 0.646 0.507 1.616 2.361 2.223 2.656 2.288 1.795 4.675 1.081 0.625 

 MOEA/D 0.434 0.604 0.506 1.600 2.354 1.768 1.776 1.900 2.860 15.79 0.971 1.378 

 NSGA2 0.654 0.692 0.648 2.021 2.403 2.329 3.835 2.692 3.627 11.27 0.969 0.357 

Cycle #2 SPEA2 0.538 0.692 0.551 1.616 2.361 2.223 3.288 2.756 3.504 3.505 1.027 1.600 

 MOEA/D 0.483 0.688 0.539 1.600 2.354 1.768 2.510 2.703 2.285 24.47 1.141 0.417 

 NSGA2 1 0.983 0.818 2.021 2.403 2.329 6.037 3.884 5.909 69.77 9.449 2.784 
Cycle #3 SPEA2 0.518 0.906 0.898 1.616 2.361 2.223 2.960 3.970 5.827 54.99 5.350 30.677 

 MOEA/D 0.563 0.791 0.601 1.600 2.354 1.768 3.722 3.501 3.164 31.77 1.805 0.832 

Note: 15°C, 25°C, 35°C indicate the ambient temperature, 𝑇𝑎𝑚𝑏. All optimized parameters are obtained based on a weight factor 𝑤 = [0.4 0.4 0.2] under 

Cycle #1. 
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Table IV & V organize optimized results of control and 

sizing parameters in modular adaptation with the PACO for 

three user types. For determining component sizes, on the 

premise of safe and efficient use of the PHEV system, we are 

trying to control the budget of the components (i.e., engine and 

battery pack) at a similar level, rather than blindly increase the 

size of energy resources. As an increase of annual mileage, the 

proportion of daily mileages in the hybrid mode grows 

gradually, ending at 71.3%. Compared with user type A, user 

type B utilizes a larger engine. The authors think the reason 

behind this is that the WLTC cycle used for user type A does 

not fully cover the ultra-high-speed section. User type B 

contains the entire complete speed sections, so increasing the 

size of the ICE allows doing more power compensation in the 

ultra-high-speed section. Since the daily mileage of user type C 

is twice that of user type B, a smaller ICE and more battery cells 

are employed for long mileage so that the rising rate of cell 

temperature during long-term driving can be reduced. 

 
Fig. 8. Modular adaptation result of three different user types under the different 

initial values of SoC 
 

Fig. 8 shows modular adaptation results including equivalent 

fuel consumption and maximum values of cell temperature 

under the different initial values of SoC, in which the sampling 

interval of the initial SoC is 0.1, 𝑆𝑜𝐶 ∈ [0.2,0.8]. Generally, 

equivalent fuel consumption is decreasing as increasing the 

initial value of SoC. Specifically, the lowest equivalent fuel 

consumption is 0.4 L/100km  for the user type A with the 

initial value of SoC at 0.8; the highest one is 5.8 L/100km for 

the user type B with the initial value of SoC at 0.2. In terms of 

maximum values of cell temperature, they linearly decrease to 

near the initial value of SoC at 0.4 at first and then stabilize until 

the initial value of SoC at 0.8. This is because before the 

inflection point occurs, the ICE needs to fast charge the battery 

to reach the safe and efficient operating range of SoC. Although 

the maximum value of cell temperature rises to a certain extent 

when the initial value of SoC is low, all the vehicle system 

optimized by the proposed methodology can regulate their cell 

temperatures ( 27.5 − 38.3℃ ) within a safe and efficient 

working zone (0 − 55℃). Considering the reliability of the 

optimized parameters, we are planning to conduct battery-in-

the-loop experiments in the next stage for further evaluation. 

VI.  CONCLUSIONS 

This paper proposes an improved modular design 

methodology with electrothermal dynamics conscious for a 

power-split PHEV. By introducing an advanced electrothermal 

battery model and a temperature-related sub-objective, this 

methodology simultaneously reveals battery thermal and 

electrical dynamics in the PHEV modular design. Validated by 

extensive numerical simulation with laboratory-made WLTCs, 

the performance of the proposed methodology is evaluated in 

terms of many-objective optimization, vehicle system 

robustness, and modular adaptation for different types of users. 

The conclusions drawn from the investigation are as follows:  

1) For PHEV modular design, the PACO collects more non-

dominated solutions, in which there is at least 28% of the 

increase compared to each single algorithm. 

2) In the PACO, the MOEA/D is the main contributor because 

it lessens the generational distance by at least 2.7% and 

enlarges the hypervolume by at least 17.6%, compared to 

NSGA2 and SPEA2. 

3) In the robustness testing of Cycle #2 and #3, the PHEV 

system using parameters optimized by MOEA/D controls 

an increase of the cost function value within 31.0%. That 

is much lower than increases of the cost function values 

using parameters optimized by NSGA2 (62.9%) and 

SPEA2 (77.1%). 

4) In the modular adaptation for different user types, the 

PHEV system optimized by MOEA/D can regulate cell 

temperatures (27.5 − 38.3℃) of all user types within a safe 

and efficient working zone (0 − 55℃).  

APPENDIX 

The definitions of two used optimization metrics of the 

generational distance (GD) and hypervolume (HV) are 

presented, respectively. GD is used to evaluate the distance 

between estimated Pareto frontiers and their approximated 

Pareto frontier, which is calculated by [39]: 

GD =
√∑ 𝑦𝑚 ∙ dis

2(𝑦𝑚 , 𝑺aPF)
𝑁
𝑚=1

𝑁
                  (𝐴1) 

where 𝑁  is the member of elements in the ePF ; 𝑦𝑚  is the 

individual value in the ePF  sets; 𝑺aPF  is the Pareto front 

approximation; dis(𝑦𝑚, 𝑺aPF) is the shortest distance between 

the element 𝑦𝑚 and the approximated Pareto frontier. 

The HV indicator is described as the volume of the space in 

the objective space dominated by the Pareto front 

approximation 𝑺aPF and delimited from above by a reference 

point 𝑟 ∈ 𝑅  m such that for all 𝑧 ∈ 𝑺aPF, 𝑧 ≺ 𝑟 . The HV 

indicator is given by [40]: 

HV = Λ𝑚 (⋃ [𝑧; 𝑟]
𝑧∈𝑺aPF

)                     (𝐴2) 

where, Λ𝑚  is the m-dimensional Lebesgue measure. The 

optimization problem has been stated in Section III for the 

three-objective case (𝑚 = 3). 
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