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Abstract
Rehren proved in Axial algebras. Ph.D. thesis, University of Birmingham (2015), Trans 
Am Math Soc 369:6953–6986 (2017) that a primitive 2-generated axial algebra of Mon-
ster type (�, �) , over a field of characteristic other than 2, has dimension at most 8 if 
� ∉ {2�, 4�} . In this note, we show that Rehren’s bound does not hold in the case � = 4� 
by providing an example (essentially the unique one) of an infinite-dimensional 2-gener-
ated primitive axial algebra of Monster type (2, 1

2
) over an arbitrary field �  of characteristic 

other than 2 and 3. We further determine its group of automorphisms and describe some of 
its relevant features.

Keywords  Axial algebras · Finite simple groups · Monster group · Jordan algebras · Baric 
algebras

Mathematics Subject Classification  20D08 · 17C27 · 17Dxx

1  Introduction

This note is part of a project of the authors aimed at classifying all 2-generated primi-
tive axial algebras of Monster type. Axial algebras were introduced by Hall, Rehren 
and Shpectorov [6, 7] in order to axiomatize some key features, that are relevant for 
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the study of finite simple groups, of certain classes of algebras, such as the weight-2 
components of OZ-type vertex operator algebras, Jordan algebras, Matsuo algebras, 
and Majorana algebras (see [8] and the introductions of [6] and [16]). In this paper, we 
assume that the underlying field �  has characteristic different from 2, being the case of 
characteristic 2 somehow degenerate because the algebra turns out to be associative 
(Lemma 2.1). On the other hand, the case of characteristic other than 2 is of particular 
interest, since most of the finite simple groups can be faithfully represented as groups 
generated by special involutory automorphisms, called Miyamoto involutions [13], of 
such algebras. In particular, the Griess algebra (see [4]) is a real axial algebra of Mon-
ster type ( 1

4
,

1

32
) and the Miyamoto involutions of this algebra (also called Majorana 

involutions) are precisely the involutions of type 2A in the Monster, i.e., those whose 
centralizer is the double cover of the Baby Monster.

The classification of 2-generated axial algebras has a fundamental rôle in the devel-
opment of the theory of axial algebras and of the representations of the finite groups 
on them (see [2, 3, 9–12]). In a pioneering work [14], Norton classified subalgebras of 
the Griess algebra generated by two axes. Norton showed that there are exactly nine 
isomorphism classes of such subalgebras, corresponding to the nine conjugacy classes 
of dihedral subgroups of the Monster generated by two involutions of type 2A. These 
algebras have been proven to be, up to isomorphisms, the only 2-generated primitive 
real axial algebras of Monster type ( 1

4
,

1

32
) and are now known as Norton–Sakuma alge-

bras [6, 9, 17]. In the minimal non-associative case of axial algebras of Jordan type 
� , the classification has been obtained by Hall, Rehren and Shpectorov in [7]. Note 
that axial algebras of Jordan type � are also axial algebras of Monster type (�, �) when 
� ∈ {�, �} . In [15] and [16], Rehren started a systematic study of axial algebras of 
Monster type (�, �) . In particular, he showed that, when � ∉ {2�, 4�} every 2-generated 
primitive axial algebra of Monster type (�, �) has dimension at most 8.

In an unpublished work (arXiv:2101.10315, Jan. 25th 2021), the authors extend 
Rehren’s result showing that, if (�, �) ≠ (2,

1

2
) , then any symmetric 2-generated primi-

tive axial algebra of Monster type (�, �) has dimension at most 8 (symmetric means that 
the algebra has an automorphism that swaps the generating axes). Still, the question of 
the existence of 2-generated axial algebras of infinite dimension has been around for 
some years. Here we give an elementary construction of such an example, proving that 
the case (�, �) = (2,

1

2
) is indeed an exception.

Theorem 1.1  For every field �  of characteristic different from 2 and 3, there exists an 
infinite-dimensional 2-generated symmetric primitive axial algebra of Monster type (2, 1

2
) 

over � .

We would like to mention that a few weeks after this paper was posted in arXiv 
(arXiv:2007.02430, Jul. 5th 2020), another independent paper by Takahiro Yabe was 
submitted in that repository (arXiv:2008.01871, Aug. 4th 2020), where the same alge-
bra appears (though with no details apart from the multiplication table) within a gen-
eral result on 2-generated symmetric primitive axial algebras of Monster type. From 
Yabe’s results, it would follow that in characteristic other than 5, any infinite-dimen-
sional example of such algebras must be a quotient of this one.
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2 � The algebra H

We first recall the definition of axial algebras of Monster type. Let �  be a field and let S be 
a finite subset of �  with 1 ∈ S . A fusion law on S is a map

An axial algebra over �  with spectrum S and fusion law ⋆ is a commutative non-associ-
ative �-algebra V generated by a set A of nonzero idempotents (called axes) such that, for 
each a ∈ A , 

(Ax1)	� ada ∶ v ↦ av is a semisimple endomorphism of V with spectrum contained in S;
(Ax2)	� for every �,� ∈ S , the product of a �-eigenvector and a �-eigenvector of ada is the 

sum of �-eigenvectors, for 𝛿 ∈ 𝜆 ⋆ 𝜇.

 Furthermore, V is called primitive if, for all a ∈ A , 

(Ax3)	� the 1-eigenspace of ada is ⟨a⟩.

 An axial algebra over �  is said to be of Monster type (�, �) if it satisfies the fusion law 
M(�, �) given in Table 1, with �, � ∈ ��{0, 1} , with � ≠ �.

Note that, given an axial algebra A of Monster type (�, �) , every axis a induces an 
obvious ℤ2-grading A = A+

a
⊕ A−

a
 , where A+

a
 is the sum of the 0-, 1-, �-eigenspaces of ada 

and A−
a
 is the �-eigenspace of ada . Furthermore, we have a ℤ2-grading A+

a
= A++

a
⊕ A+−

a
 

of A+
a
 , where A++

a
 is the sum of the 0- and 1-eigenspaces of ada and A+−

a
 is the �-eigens-

pace of ada . An easy argument due to Mathias Stout (see p. 59 in Modular representa-
tion theory and applications to decomposition algebras, master thesis Gent University 
2021, https://algebra.ugent.be/ ̃ tdemedts/research-students.php#), who kindly allowed 
us to include it here, shows that

Lemma 2.1  If A is a primitive axial algebra of Monster type (�, �) over a field of charac-
teristic 2, then A is associative.

Proof  Let b be an axis and assume b = b+ + b− , with b+ ∈ A+
a
 and b− ∈ A−

a
 . Then, by the 

fusion law,

⋆ ∶ S × S → 2S.

b = b2 = (b+ + b−)
2 = b2

+
+ b2

−
∈ A+

a
.

Table 1   Fusion law M(�, �)

� 1 0 α β

1 1 α β

0 0 α β

α α α 1, 0 β

β β β β 1, 0, α
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So all axes lie in A+
a
 , whence A = A+

a
 . Now, the same argument on A+

a
 shows that also the 

�-eigenspace of ada is trivial. Thus, the adjoint of every axis has spectrum {1, 0} , which is 
equivalent to the algebra being associative (see [6]). 	�  ◻

Therefore, from now on we assume that �  is a field of characteristic other than 2. A 
straightforward computation shows that the map that negates A−

a
 and induces the identity 

on A+
a
 is an involutory algebra automorphism called Miyamoto involution (see [9, 13]).

Let H be the infinite-dimensional �-vector space with basis {ai, �j ∣ i ∈ ℤ, j ∈ ℤ+},

Set �0 = 0 . Define a commutative non-associative product on H by linearly extending the 
following values on the basis elements: 

(H1)	� aiaj ∶=
1

2
(ai + aj) + �|i−j|;

(H2)	� ai�j ∶= −
3

4
ai +

3

8
(ai−j + ai+j) +

3

2
�j;

(H3)	� �i�j ∶=
3

4
(�i + �j) −

3

8
(�|i−j| + �i+j).

In particular, a2
i
=

1

2
(ai + ai) + �0 = ai , so each ai is an idempotent.

We call H the Highwater algebra because it was discovered in Venice during the dis-
astrous floods in November 2019. In what follows, double angular brackets denote algebra 
generation while single brackets denote linear span.

Theorem 2.2  If char(� ) ≠ 3 then H = ⟨⟨a0, a1⟩⟩ is a symmetric primitive axial algebra of 
Monster type (2, 1

2
).

Manifestly, this result implies Theorem 1.1.
If char(� ) = 3 then 2 =

1

2
 and so the concept of an algebra of Monster type (2, 1

2
) is not 

defined. However, the four-term decomposition typical for algebras of Monster type still 
exists, and so H in characteristic 3 is an example of an axial decomposition algebra as 
defined in [1]. We also prove that H in this case is a Jordan algebra. Note, however, that 
because a lot of structure constants in H become zero in characteristic 3, H is no longer 
generated by a0 and a1 . In fact, every pair of distinct axes ai, aj generates a 3-dimensional 
subalgebra, linearly spanned by ai , aj , and �|i−j| , and isomorphic to the 3-dimensional Jor-
dan algebra denoted by Cl00(� 2, b2) in [7, Theorem (1.1)].

We start with a number of observations concerning the properties of H . First of all, we 
show that it is not a simple algebra. Consider the linear map � ∶ H → �  defined on the 
basis of H as follows: �(ai) = 1 for all i ∈ ℤ and �(�j) = 0 for all j ∈ ℤ+.

Lemma 2.3  The map � is a homomorphism of algebras.

Proof  It suffices to show that � is multiplicative, i.e., �(uv) = �(u)�(v) 
for all u, v ∈ H . Since this equality is linear in both u and v, it suf-
fices to check it for the elements of the basis. If u = ai and v = aj then 
�(aiaj) = �(

1

2
(ai + aj) + �|i−j|) =

1

2
+

1

2
= 1 = 1 ⋅ 1 = �(ai)�(aj) . If u = ai and v = �j then 

�(ai�j) = �(−
3

4
ai +

3

8
(ai−j + ai+j) +

3

2
�j) = −

3

4
+

3

8
+

3

8
= 0 = 1 ⋅ 0 = �(ai)�(�j) . Finally, 

H ∶=
⨁
i∈ℤ

𝔽ai ⊕
⨁
j∈ℤ+

𝔽𝜎j.
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if u = �i and v = �j then �(�i�j) = �(
3

4
(�i + �j) −

3

8
(�|i−j| + �i+j)) = 0 = �(�i)�(�j) . So the 

equality holds in all cases and so � is indeed an algebra homomorphism. 	�  ◻

An �-algebra homomorphism from an �-algebra A to �  is called a weight function and 
an algebra admitting a weight function is called a baric (or weighted) algebra. Note that, 
if A is an axial algebra with a weight function � , then the axes, being idempotents, have 
weights 0 or 1 and, since the axes generate the whole algebra, at least one axis has weight 
1. We say that A is a baric axial algebra if all axes have weight 1. So H is a baric axial 
algebra with weight function � . Clearly its kernel J is an ideal of codimension 1.

Using � , we can also define a bilinear form on H . Namely, for u, v ∈ H , 
we set (u, v) ∶= �(u)�(v) . It is immediate that this is a bilinear form; further-
more, it associates with the algebra product. Indeed, for u, v,w ∈ H , we have 
(uv,w) = �(uv)�(w) = �(u)�(v)�(w) = �(u)�(vw) = (u, vw) . In the theory of axial algebras 
such forms are called Frobenius forms. The form (⋅, ⋅) further satisfies the property that 
(ai, ai) = �(ai)�(ai) = 1 ⋅ 1 = 1 , which is often required in the definition of a Frobenius 
form.

Lemma 2.4  If char(� ) ≠ 3 , the only nonzero finite-dimensional subalgebras of H are the 
1-dimensional ones generated by axes.

Proof  Let L ≠ 0 be a finite-dimensional subalgebra of H . Every element e of L can be 
written uniquely as

with the coefficients ri(e) and the sj(e) in �  and only finitely many of them being nonzero. 
Let

and

Since L is finite dimensional, both R and S are finite sets. Also, since L ≠ 0 , at least 
one of the two sets is nonempty. If both R and S are nonempty, let n ∶= max(R) and 
m ∶= max(S) . Select e ∈ L such that rn(e) ≠ 0 . If also sm(e) ≠ 0 then observe that, by ( H
2), rn+m(e2) = 2 ⋅

3

8
rn(e)sm(e) ≠ 0 , a contradiction, since n + m > n . So sm(e) = 0 . Now 

select e� ∈ L such that sm(e�) ≠ 0 . Again, by ( H2), rn+m(ee�) =
3

8
rn(e)sm(e

�) ≠ 0 . The con-
tradiction shows that R and S cannot both be nonempty.

If R is empty and S is not, choose e ∈ L with sm(e) ≠ 0 , where again m = max(S) . 
By ( H3), s2m(e2) = −

3

8
sm(e)

2 ≠ 0 ; which is a contradiction. Finally, if S is empty and R 
is not, let n ∶= max(R) and k ∶= min(R) . If n = k , then L is 1-dimensional generated by 
an . So suppose that k < n . Again, select e ∈ L such that rn(e) ≠ 0 . If also rk(e) ≠ 0 then 
sn−k(e

2) = 2rn(e)rk(e) ≠ 0 by ( H1). This is a contradiction since S = � . Finally, if rk(e) = 0 , 
choose e� ∈ L with rk(e�) ≠ 0 . Now sn−k(ee�) = rn(e)rk(e

�) ≠ 0 by ( H1), and this is a con-
tradiction in this final case. 	� ◻

e =
∑
i∈ℤ

ri(e)ai +
∑
j∈ℤ+

sj(e)�j

R ∶= {i ∈ ℤ ∣ ri(e) ≠ 0 for some e ∈ L}

S ∶= {j ∈ ℤ+ ∣ sj(e) ≠ 0 for some e ∈ L}.
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Corollary 2.5  If char(� ) ≠ 3 , the elements {ai | i ∈ ℤ} are the only nontrivial idempotents 
in H.

The next observation to make is that H is quite symmetric. Let D ∶= ⟨�,�⟩ be 
the infinite dihedral group acting naturally on ℤ , where, for all i ∈ ℤ , � ∶ i ↦ −i and 
� ∶ i ↦ −i + 1 . For � ∈ D , let �� be the linear map that fixes all �j and sends ai to ai� . Then 
�� is an automorphism of H and, since the map � ↦ �� defines a faithful representation of 
D as an automorphism group of H , with an abuse of notation, from now on we identify �� 
with � . In particular,

Proposition 2.6  If char(� ) ≠ 3 , then Aut(H) ≅ D.

Proof  Let � ∈ Aut(H) . By Corollary 2.5, � induces a permutation on the set {ai ∣ i ∈ ℤ} . 
Let j ∈ ℤ+ and set ah ∶= a

�

0
 and ak ∶= a

�

j
 . Then, by (H1),

whence � induces a permutation also on the set {�j ∣ j ∈ ℤ+} . Now observe that the action 
on the latter set has to be trivial. Indeed, for j ∈ ℤ+ , define the graph Γj with vertices 
{ai, ∣ i ∈ ℤ} , where ai is adjacent to al if and only if �j = aial −

1

2
(ai + al) . Thus, for all 

h, k ∈ ℤ+ such that (�h)� = �k , � induces a graph isomorphism from Γh to Γk . On the other 
hand, by (H1) , ai is adjacent to al in Γj if and only if |i − l| = j . Hence, Γj has exactly j 
distinct connected components, corresponding to the congruence classes of ℤ modulo j. In 
particular, the graph Γh is isomorphic to Γk if and only if h = k.

In particular, the entire group Aut(H) fixes �1 , and so it acts on the infinite string graph 
Γ1 . Since this action is faithful, we conclude that Aut(H) ≅ D . 	�  ◻

We are aiming to show that the ai ’s are axes satisfying the fusion law M(2,
1

2
) . Since D 

is transitive on the ai’s, it suffices to check this for just one of them, say a = a0 . We start 
with the eigenvalues and eigenspaces of ada.

Select j ∈ ℤ+ and set U = ⟨a, a−j, aj, �j⟩ . It is immediate to see that U is invariant under 
ada and, with respect to the basis (a, a−j, aj, �j) the restriction of ada to U is represented by 
the following matrix:

This has characteristic polynomial x4 − 7

2
x3 +

7

2
x2 − x = (x − 1)x(x − 2)(x −

1

2
) and eigens-

paces U1 = ⟨a⟩ , U0 = ⟨uj⟩ , U2 = ⟨vj⟩ , U 1

2

= ⟨wj⟩ , where

�
�

j
=

(
a0aj −

1

2
(a0 + aj)

)�

= a
�

0
a
�

j
−

1

2
(a

�

0
+ a

�

j
) = ahak −

1

2
(ah + ak) = �|h−k|,

⎛
⎜⎜⎜⎜⎝

1 0 0 0
1

2

1

2
0 1

1

2
0

1

2
1

−
3

4

3

8

3

8

3

2

⎞⎟⎟⎟⎟⎠

(1)

uj ∶= 6a − 3(a−j + aj) + 4�j

vj ∶= 2a − (a−j + aj) − 4�j

wj ∶= a−j − aj.



An infinite‑dimensional 2‑generated primitive axial algebra…

1 3

The only exception to this statement arises when char(� ) = 3 . In this case, 2 =
1

2
 and so U2 

and U 1

2

 merge into a single 2-dimensional eigenspace U2 = U 1

2

= ⟨vj,wj⟩.
In all cases, we can write that U = ⟨a, uj, vj,wj⟩ , that is, a−j , aj and �j can be expressed 

via these vectors. From this, we deduce the following.

Lemma 2.7  The adjoint map ada is semisimple on H and

(a)	 if char(� ) ≠ 3 then the spectrum of ada is {1, 0, 2, 1
2
} and the eigenspaces are H1 = ⟨a⟩ , 

H0 = ⟨uj ∣ j ∈ ℤ+⟩ , H2 = ⟨vj ∣ j ∈ ℤ+⟩ , and H 1

2

= ⟨wj ∣ j ∈ ℤ+⟩;
(b)	 if char(� ) = 3 then the spectrum is {1, 0, 1

2
} and the eigenspaces are H1 = ⟨a⟩ , 

H0 = ⟨uj ∣ j ∈ ℤ+⟩ , and H 1

2

= ⟨vj,wj ∣ j ∈ ℤ+⟩.

In order to avoid the complication arising in characteristic 3, we will use the notation 
Hu ∶= ⟨uj ∣ j ∈ ℤ+⟩ , Hv ∶= ⟨vj ∣ j ∈ ℤ+⟩ , and Hw = ⟨wj ∣ j ∈ ℤ+⟩ calling these subspaces 
the u-, v-, and w-parts of H , respectively. A similar terminology will be used for sums of these 
subspaces. Thus, in all characteristics, we have the decomposition

Let us relate this decomposition to the ideal J.

Lemma 2.8  J = Hu ⊕Hv ⊕Hw.

Proof  By inspection, the weight function is zero on Hu ⊕Hv ⊕Hw , so this sum is con-
tained in J. Now, the equality is forced because both J and Hu ⊕Hv ⊕Hw have codimen-
sion 1 in H . 	�  ◻

The stabilizer Da of a in D has order 2, and it is generated by the involution � sending every 
ai to a−i (and fixing every �j ). From this and Eq. (1), it follows that

Lemma 2.9  The involution � acts as identity on ⟨a⟩⊕Hu ⊕Hv and as minus identity on 
Hw . In particular, H𝜏 ∶= ⟨a⟩⊕Hu ⊕Hv is the fixed subalgebra of �.

Clearly, � will turn out to be the Miyamoto involution associated to the axis a.
We find a further subalgebra by intersecting H� with the ideal J. Namely, we set 

V ∶= H𝜏 ∩ J = Hu ⊕Hv , the uv-part of H . Clearly, V is an ideal of H�.
We want now to determine the fusion law in the subalgebra V with respect to its basis con-

sisting of the vectors uj and vj . To this aim, it is convenient to use a second basis, given by the 
elements �j and

for all j ∈ ℤ+ . From the definitions, we immediately get that, for all j ∈ ℤ+,

and

H = ⟨a⟩⊕Hu ⊕Hv ⊕Hw.

(2)cj ∶= 2a − (a−j + aj),

(3)uj = 3cj + 4�j and vj = cj − 4�j
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In particular, this means that the set of all vectors cj and �j is a basis of V. In the follow-
ing lemma, we compute the products for this basis. Note that we only need to compute the 
products cicj and ci�j , because �i�j are given in ( H3). It will be convenient to use the fol-
lowing notation: we set c0 ∶= 0 , and, for i, j ∈ ℤ+ , we let ci,j ∶= −2ci − 2cj + c|i−j| + ci+j 
and �i,j ∶= −2�i − 2�j + �|i−j| + �i+j . For example, ( H 3) can now be restated as follows: 
�i�j = −

3

8
�i,j.

Lemma 2.10  For i, j ∈ ℤ+ , we have cicj = 2�i,j and ci�j =
3

8
ci,j.

Proof  For i ∈ ℤ+ , set c±
i
∶= a − a±i . Then, by Eq. (2), ci = c+

i
+ c−

i
 and, for �, � ∈ {+,−} , 

using (H1) , resp. (H2) , we get

In particular, for all i, j ∈ ℤ+ , c+
i
c+
j
= c−

i
c−
j
 and c+

i
c−
j
= c+

j
c−
i
 . Thus

Similarly

	�  ◻

Manifestly, all these products have a very uniform structure. Note that both ci,j and �i,j 
are symmetric in i and j. In particular, it follows that ci�j =

3

8
ci,j =

3

8
cj,i = cj�i.

Similarly to the above, for i, j ∈ ℤ+ , we introduce ui,j ∶= −2ui − 2uj + u|i−j| + ui+j and 
vi,j ∶= −2vi − 2vj + v|i−j| + vi+j , where also u0 ∶= 0, v0 ∶= 0 . By Eq. (3) we have

Now we compute the products of the vectors uj and vj.

Lemma 2.11  For all i, j ∈ ℤ+ , we have that uiuj = 3ui,j , uivj = −3vi,j , and vivj = −ui,j.

Proof  By Eq. (3),

By Lemma 2.10, this becomes

(4)cj =
1

4
(uj + vj) and �j =

1

16
uj −

3

16
vj.

c�
i
c�
j
= −�i − �j + �|�i−�j|, resp. c�

i
�j = −

3

4
c�
i
+

3

8
(−cj + c�

i+j
+ c�|i−j|).

cicj = (c+
i
+ c−

i
)(c+

j
+ c−

j
) = 2(c+

i
c+
j
+ c+

i
c−
j
)

= 2(−�i − �j + �|i−j| − �i − �j + �i+j) = 2�i,j.

ci�j = (c+
i
+ c−

i
)�j

= −
3

4
c+
i
+

3

8
(−cj + c+

i+j
+ c+|i−j|) −

3

4
c−
i
+

3

8
(−cj + c−

i+j
+ c−|i−j|)

= −
3

4
ci −

3

4
cj +

3

8
(ci+j + c|i−j|) =

3

8
ci,j.

(5)ui,j = 3ci,j + 4�i,j and vi,j = ci,j − 4�i,j.

uiuj = (3ci + 4�i)(3cj + 4�j) = 9cici + 12ci�j + 12�icj + 16�i�j.
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Similarly,

and

	�  ◻

We are now ready to establish the fusion law for the axis a.
Proof of Theorem2.2 Recall that, when char(� ) ≠ 3 , we have ⟨a⟩ = H1 , Hu = H0 , 

Hv = H2 , and Hw = H 1

2

 are the eigenspaces of ada . So we need to see how these subspaces 
behave under the product in H.

First of all, clearly, ⟨a⟩Hu = 0 , ⟨a⟩Hv = Hv and ⟨a⟩Hw = Hw . Now focus on the prod-
ucts of the u-, v-, and w-parts. These parts are all contained in J, and so their products 
are also contained in J, avoiding ⟨a⟩ . Furthermore, the involution � induces a grading on 
J, under which V = Hu ⊕Hv is the even part and Hw is the odd part. Hence, HuHw and 
HvHw are contained in Hw , while HwHw ⊆ V = Hu ⊕Hv . It remains to check the products 
within V. As can be seen from Lemma 2.11, HuHu ⊆ Hu , HuHv ⊆ Hv , and HvHv ⊆ Hu . 
Hence, when char(� ) ≠ 3 , a satisfies the fusion law of Table 2, which is slightly stricter 
than the fusion law M(2,

1

2
).

Since D is transitive on the ai , all of them are axes satisfying the law in Table 2. To com-
plete the proof of Theorem 2.2, it remains to show that H = ⟨⟨a0, a1⟩⟩ . Let H ∶= ⟨⟨a0, a1⟩⟩ . 
Note that �1 = a0a1 −

1

2
(a0 + a1) ∈ H . Also, 3

8
a−1 = a0�1 +

3

4
a0 −

3

8
a1 −

3

2
�1 ∈ H . 

Assuming that char(� ) ≠ 3 , this gives us that a−1 ∈ H . Clearly, ⟨⟨a0, a1⟩⟩ is invariant under 
the involution � ∈ D switching a0 and a1 . Now, we also see that H = ⟨⟨a−1, a0, a1⟩⟩ is invar-
iant under the involution � ∈ Da . Since D = ⟨�,�⟩ , this makes H invariant under all of D, 
and so H contains all axes ai . Clearly, this means that H = H . This completes the proof of 
Theorem 2.2.	�  ◻

9(2�i,j) + 12
(
3

8
ci,j

)
+ 12

(
3

8
ci,j

)
+ 16

(
−
3

8
�i,j

)
= 9ci,j + 12�i,j = 3ui,j.

uivj = (3ci + 4�i)(cj − 4�j) = 3cicj + 4�icj − 12ci�j − 16�i�j

= 3(2�i,j) + 4
(
3

8
ci,j

)
− 12

(
3

8
ci,j

)
− 16

(
−
3

8
�i,j

)
= −3ci,j + 12�i,j = −3vi,j

vivj = (ci − 4�i)(cj − 4�j) = cicj − 4�icj − 4ci�j + 16�i�j

= 2�i,j − 4
(
3

8
ci,j

)
− 4

(
3

8
ci,j

)
+ 16

(
−
3

8
�i,j

)
= −3ci,j − 4�i,j = −ui,j.

Table 2   Fusion law for H

� 1 0 2 1
2

1 1 2 1
2

0 0 2 1
2

2 2 2 0 1
2

1
2

1
2

1
2

1
2 0, 2
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Note that, if char(� ) ≠ 3 , then, for any two distinct i and j in ℤ , the subalgebra ⟨⟨ai, aj⟩⟩ 
is linearly spanned by the set {an, �n|n is a multiple of g.c.d. (i, j)} . In particular ⟨⟨ai, aj⟩⟩ 
is isomorphic to H.

3 � The characteristic 3 case

Let us discuss what happens when char(� ) = 3 . The fusion that we established for the 
decomposition H = ⟨a⟩⊕Hu ⊕Hv ⊕Hw remains true, but it becomes even stricter 
because so many coefficients are multiples of 3. For example, HuHu = 0 = HuHv . On the 
other hand, 2 =

1

2
 in characteristic 3, so we need to merge Hv and Hw into a single eigens-

pace H 1

2

= Hv ⊕Hw . Let us see what fusion we get inside this eigenspace. We already 
know that HvHv ⊆ Hu.

Lemma 3.1  If char(� ) = 3 then HvHw = 0 and HwHw ⊆ Hu.

Proof  Indeed, for i, j ∈ ℤ+ , viwj = (2a − (a−i + ai) − 4�i)(a−j − aj) . Taking into account 
that awj =

1

2
wj and that �iwj = 0 when char(� ) = 3 [see ( H2)], we obtain that

Also,

The last equality holds because uk = 4�k when char(� ) = 3 [see Eq. (1)]. 	�  ◻

So we can see now that in characteristic 3 the axes ai in H satisfy the fusion law in 
Table 3.

In particular, H is an algebra of Jordan type 1
2
 . Let us prove that, in fact, H is a Jordan 

algebra when char(� ) = 3 . For this, we need to verify the Jordan identity x(yx2) = (xy)x2 
for all x, y ∈ H . We obtain this from the following more general result.

viwj = (a−j − aj) − (a−i + ai)(a−j − aj)

= (a−j − aj) − (
1

2
(a−i + a−j) + �|i−j|) −

(
1

2
(ai + a−j) + �i+j

)

+

(
1

2
(a−i + aj) + �i+j

)
+

(
1

2
(ai + aj) + �|i−j|

)
= 0.

wiwj = (a−i − ai)(a−j − aj) =
(
1

2
(a−i + a−j) + �|i−j|

)
−

(
1

2
(ai + a−j) + �i+j

)

−

(
1

2
(a−i + aj) + �i+j

)
+

(
1

2
(ai + aj) + �|i−j|

)
= 2�|i−j| − 2�i+j

=
1

2
u|i−j| −

1

2
ui+j.

Table 3   Fusion law for H in characteristic 3

� 1 0 1
2

1 1 1
2

0 1
2

1
2

1
2

1
2 0
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Proposition 3.2  Let B be a commutative baric algebra over a field of characteristic other 
than 2, with weight function � . Suppose that

(a)	 B = A⊕ I , , where A is a subspace and I is an ideal,
(b)	 IB = 0 , and
(c)	 for all a, b ∈ A , ab − 1

2
(�(b)a + �(a)b) ∈ I.

Then, B is a Jordan algebra.
Proof  Let � ∶ B → A be the projection onto A with respect to the decomposition 
B = A⊕ I . Then, every x ∈ B can be written in a unique way as x = �(x) + xI , where 
�(x) ∈ A and xI ∈ I . Let x, y ∈ B . By hypothesis (b), xy = �(x)�(y) = �(x)y and, by 
hypothesis (c), �(x2) = �(x)�(x) . Hence, using the commutativity of B, we have

Therefore B is a Jordan algebra. 	�  ◻

Corollary 3.3  Let A and I be vector spaces over a field �  of characteristic other 
than 2, let � ∶ A → �  be a linear map and � ∶ A × A → I a symmetric bilinear map. 
Let B ∶= A⊕ I and define an algebra product on B by BI = 0 and, for a, b ∈ A , 
ab ∶=

1

2
(�(b)a + �(a)b) + �(a, b) . Then B is a baric Jordan algebra.

Proof  Define � ∶ B → �  by �(a + i) = �(a) , for every a ∈ A , i ∈ I . Then, � is a weight 
function on B (note that it may not be the only choice for a weight function) and B satisfies 
the hypotheses of Proposition 3.2. The claim follows. 	�  ◻

Theorem 3.4  If char(� ) = 3 then H is a baric Jordan algebra.

Proof  It is enough to show that H satisfies the hypotheses of Proposition  3.2. We let 
A ∶= ⟨ai � i ∈ ℤ⟩ and I ∶= ⟨�j � j ∈ ℤ+⟩ . Then clearly H is the direct sum of A and I 
and, by ( H 2) and ( H3), since char(� ) = 3 , we have IH = 0 (in particular I is an ideal). 
Let � ∶ H → A be the projection onto A with respect to the decomposition H = A⊕ I . 
Let x, y ∈ A and write x =

∑
i∈ℤ riai and y =

∑
i∈ℤ tiai . Note that �(x) =

∑
i∈ℤ ri and 

�(y) =
∑

i∈ℤ ti . By ( H1), we have

This proves that xy − 1

2
(�(y)x + �(x)y) belongs to I. 	�  ◻

x(yx2) = �(x)(�(y)�(x2)) = �(x)(�(y)�(x)�(x)) = �(x)�(x)(�(y)�(x))

= (�(x)�(y))�(x)�(x) = (�(x)�(y))�(x2) = (xy)x2.

�(xy) =
∑
i,j∈ℤ

ritj
1

2
(ai + aj)

=
∑
i,j∈ℤ

ritj
1

2
ai +

∑
i,j∈ℤ

ritj
1

2
aj

=
1

2

(∑
j∈ℤ

tj

)(∑
i∈ℤ

riai

)
+

1

2

(∑
i∈ℤ

ri

)(∑
j∈ℤ

tjaj

)

=
�(y)

2
x +

�(x)

2
y.
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4 � Final remarks

Now that we have proved our main results, let us tie the loose ends. In this section, �  is a 
field of characteristic other than 2.

4.1 � Frobenius form

We refer to [5] for a detailed discussion of the radical of an axial algebra, projection form and 
projection graph.

Proposition 4.1 

(a)	 The form (⋅, ⋅) is, up to a scalar factor, the only Frobenius form on H.
(b)	 Every proper ideal of H is contained in J, which is the radical of H.

Proof  The form (⋅, ⋅) that we introduced on H is a projection form, because it is a Frobe-
nius form satisfying (ai, ai) = 1 for all i ∈ ℤ . The projection graph has all ai as vertices 
with an edge between ai and aj , i ≠ j , whenever (ai, aj) ≠ 0 . In fact, since (ai, aj) = 1 for all 
i, j ∈ ℤ , the projection graph of H is the complete graph. In particular, it is connected. It 
now follows from [5, Proposition 4.19] that H has only one Frobenius form up to a scalar 
factor. The same connectivity property implies, by [5, Corollary 4.15], that every proper 
ideal of H is contained in the radical of H (the largest ideal not containing axes). Finally, 
by [5, Corollary 4.11], the radical of H coincides with the radical of the projection form 
(⋅, ⋅) , and that is J. 	� ◻

4.2 � Automorphisms of the subalgebra V

Recall that in Section  2, we introduced the subalgebra V = Hu ⊕Hv and its two bases 
{ui, vj | i, j ∈ ℤ+} and {ci, �j | i, j ∈ ℤ+} . Let � and � be the linear transformations V → V  
defined by

and

Lemma 4.2  The linear transformations � and � defined above are automorphisms of V.

Proof  This follows from the formulae in Lemmas 2.10 and 2.11. 	�  ◻

It is clear that � has order 2. Note that � is also an involution, because the matrix

(uj)
� = uj, (vj)

� = −vj

(cj)
� =

1

2
vj =

1

2
cj − 2�j, (�j)

� = −
1

8
uj = −

3

8
cj −

1

2
�j.
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squares to identity, and also that �� is an element of order 3. This means that 
T ∶= ⟨�,�⟩ ≅ D6 . It is interesting that the subalgebra V has symmetries independent of the 
entire algebra H . Indeed, we claim that only the identity element from T extends to an ele-
ment of Aut(H) = D . Define the support of an element

as {i ∈ ℤ ∣ ri(e) ≠ 0} . The orbit under T of c1 = 2a − (a−1 + a1) consists of the six ele-
ments ±c1 , ±

1

2
v1 = ±(

1

2
c1 − 2�1) and ±( 1

2
c1 + 2�1) . All these elements have support  

{−1, 0, 1} . Hence if t ∈ T  extends to an element of d ∈ D , then d, as an automorphism of 
ℤ , must preserve the set {−1, 0, 1} . Manifestly, since the automorphisms of ℤ are either 
translations or reflections, the identity 1D and � are the only elements of D preserving this 
set. Both 1D and � act trivially on V, so t = 1T , as claimed.

5 � Discussion

In this final section, we pose some questions related to H . We have to warn the reader that 
there is a lot of work in progress on this topic and many results quoted in this section have not 
yet been published nor undergone a blind refereeing process.

By Yabe’s results, or by the preprint of the authors mentioned in the introduction, every 
symmetric 2-generated primitive algebra of Monster type (�, �) over a field of characteristic 
other than 2 is at most 8-dimensional unless (�, �) = (2,

1

2
) . In the non-symmetric case, such a 

bound has been proved only for � ≠ 4� (see [16] and the paper by the authors posted in Math-
ematics arXiv:2101.10379).

Question 5.1  Is H the only infinite-dimensional primitive algebra of Monster type? Is it 
the only such algebra having dimension greater than 8?

In characteristic other than 5, by Yabe’s result, for the symmetric case, the answer to this 
question depends on the knowledge of the ideals of H . In characteristic 5, the first two authors 
have shown that the algebra H admits a proper cover which is still a symmetric primitive alge-
bra of Monster type (2, 1

2
) (Mathematics arXiv:2101.09506).

Question 5.2  Does H contain any nonzero ideal of infinite codimension? Is it possible to 
classify all ideals in H?

Note that, if char(� ) ≠ 3 , J is not the only proper nonzero ideal of H . For example, the 
ideal I generated by all elements �j has codimension 1 in J (and hence codimension 2 in H ). 
Indeed, from (H2) we get that, for all i ∈ ℤ+,

whence ci ∈ I , and ui, vi ∈ I . Further, again by (H2) , we have

(
1

2
− 2

−
3

8
−

1

2

)

e =
∑
i∈ℤ

ri(e)ai +
∑
j∈ℤ+

sj(e)�j

a0�i = −
3

8
ci +

3

2
�i,
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thus, recursively, we get that wi ∈ ⟨w1⟩ + I for all i ∈ ℤ+ . Hence I has codimension at most 
1 in J. On the other hand, consider the 2-dimensional commutative algebra � ā0 ⊕ � ā1 with 
multiplication defined by āiāi = āi , i = 0, 1 and ā0ā1 =

1

2
(ā0 + ā1) and let � be the linear 

map sending ai to iā1 − (i − 1)ā0 , for all i ∈ ℤ , and �j to 0, for all j ∈ ℤ+ . Then � is a sur-
jective algebra homomorphism with I ≤ ker� , whence, by comparing the codimensions, 
I = ker� has codimension 2 in H.

In addition to finding all ideals of H , it is also interesting to find all of its subalgebras 
and their automorphisms.

Question 5.3  Which is the full automorphism group of H in characteristic 3? In any char-
acteristic other than 2, which is the automorphism group of V? Which automorphisms of V 
extend to larger subalgebras of H?

Finally, the fact that H is a baric algebra looks exciting. A baric axial algebra of Mon-
ster type (�, �) satisfies the fusion law as in Table 2, but with 2 and 1

2
 substituted with arbi-

trary � and � . Indeed, for every � ∈ {0, �, �} and for every �-eigenvector v, the linearity of 
the weight function forces v to be in the kernel of the weight function and the claim follows 
since the kernel is an ideal.

Question 5.4  Are there examples of baric algebras of Monster type (�, �) for other values 
of � and � ? Is it possible to classify all such algebras?
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