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a b s t r a c t 

Magnetoencephalography (MEG) allows for quantifying modulations of human neuronal activity on a millisec- 
ond time scale while also making it possible to estimate the location of the underlying neuronal sources. The 
technique relies heavily on signal processing and source modelling. To this end, there are several open-source 
toolboxes developed by the community. While these toolboxes are powerful as they provide a wealth of options 
for analyses, the many options also pose a challenge for reproducible research as well as for researchers new to 
the field. The FLUX pipeline aims to make the analyses steps and setting explicit for standard analysis done in 
cognitive neuroscience. It focuses on quantifying and source localization of oscillatory brain activity, but it can 
also be used for event-related fields and multivariate pattern analysis. The pipeline is derived from the Cogitate 
consortium addressing a set of concrete cognitive neuroscience questions. Specifically, the pipeline including doc- 
umented code is defined for MNE Python (a Python toolbox) and FieldTrip (a Matlab toolbox), and a data set on 
visuospatial attention is used to illustrate the steps. The scripts are provided as notebooks implemented in Jupyter 
Notebook and MATLAB Live Editor providing explanations, justifications and graphical outputs for the essential 
steps. Furthermore, we also provide suggestions for text and parameter settings to be used in registrations and 
publications to improve replicability and facilitate pre-registrations. The FLUX can be used for education either in 
self-studies or guided workshops. We expect that the FLUX pipeline will strengthen the field of MEG by providing 
some standardization on the basic analysis steps and by aligning approaches across toolboxes. Furthermore, we 
also aim to support new researchers entering the field by providing education and training. The FLUX pipeline is 
not meant to be static; it will evolve with the development of the toolboxes and with new insights. Furthermore, 
with the anticipated increase in MEG systems based on the Optically Pumped Magnetometers, the pipeline will 
also evolve to embrace these developments. 
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. Introduction 

Magnetoencephalography (MEG) has become an important tool in
ognitive and clinical neuroscience ( Baillet, 2017 ). Research involving
EG relies heavily on data analysis for quantifying the signals in the

ime and frequency domains, as well as for source modelling. MEG
esearch has strongly benefited from open source toolboxes facilitat-
ng the analysis ( Baillet, 2017 ; Gramfort, 2013 ; Hinkley et al., 2020 ;
itvak et al., 2011 ; Oostenveld et al., 2011 ); however, many analysis
ptions both within and across toolboxes present several challenges. As
uch, there is not a common consensus on how best to perform basic
teps such as artifact rejection or source modelling and in which order
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he steps of these analyses should be performed. Even within a given
oolbox, several approaches can be taken to perform a specific analysis
tep and there are multiple parameters to be adjusted. While the many
egrees of freedom allow for optimizing the analysis in the context of a
iven paradigm, it may be at the expense of a ‘best-practice approach’
nd it complicates matters for new researchers entering the field. This
aper aims to define an analysis pipeline – termed FLUX – which is
n attempt to work towards a best practice. The pipeline is compati-
le with more general guidelines for MEG research (e.g., Hari et al.,
018 ). The pipeline has been implemented using two toolboxes namely
NE-Python ( Gramfort, 2013 ) and FieldTrip ( Oostenveld et al., 2011 );

owever, the steps and recommendations do apply to any other toolbox.
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One key motivation for the proposed pipeline is to facilitate open
cience with the larger aim of improving the replicability of MEG re-
earch. If different approaches are used to address similar questions, this
ight hamper reproducibility. Also, when research is published, there

s a great variation in details provided in the method section. Relying
n a standard pipeline will make it simpler to describe the methodol-
gy and therefore facilitate future research building on the published
ndings. Pre-registrations are becoming increasingly important for em-
irical research ( Shrout and Rodgers, 2018 ); however, they can be quite
umbersome due to the necessity of defining the analysis details before
he study. The proposed FLUX pipeline will help this process and lower
he threshold when researchers decide to pre-register a given study. The
LUX pipeline will also provide concrete parameter settings and text
uggestions to be included in the Method sections of publication and
re-registrations (see Supplementary Material). Finally, we also provide
 standard operation procedure (SOP) for the recording of MEG data.
his will further facilitate pre-registrations as well as promote standard-

zation across laboratories. 
Over the years several guidelines and recommendations for MEG re-

earch have been published. The FLUX pipeline we are proposing is well
ligned with the suggestions on pre-preprocessing and basic analyses
s outlined in various papers (Andersen, 2018 ; Bigdely-Shamlo et al.,
015 ; Meunier et al., 2020 Meunier et al., 2020; Niso et al., 2019) ) as
ell as the guidelines described to ensure reproducible MEG research
 Gross et al., 2013 ; Hari et al., 2018 ; Pernet et al., 2020 ). In terms
f source modelling our approach is consistent with the guidance for
orward modelling and beamforming described in recent publications
 Jaiswal et al., 2020 ; Jas et al., 2018 ; Westner et al., 2021 ). What we pro-
ide in addition to these papers is a specific pipeline with documented
ode taking the raw data to sources analysis. We also provide concrete
uggestions for what to report in publications and registered reports.
he FLUX pipeline is implemented as specific code with documented tu-
orials and an example data set ( https://neuosc.com/flux/ ). We find it
mportant to define a full pipeline including as the pre-processing strat-
gy will impact the details of the subsequent analyses. For instance, the
ank deduction resulting from signal-space suppression impacts the pa-
ameters used in the source modelling. 

There is a strong trend towards acquiring large datasets in cogni-
ive and clinical neuroscience collected over multiple sites ( Niso et al.,
016 ; Poldrack and Gorgolewski, 2014 ). The FLUX pipeline is devel-
ped as part of the Cogitate Consortium and it is based on an adversar-
al collaboration investigation conscious by collecting a large data set
 Melloni et al., 2021 ). The consortium is developed in the context of
pen science with the aim of acquiring high-quality data using state-of-
he-art analyses approach. The FLUX pipeline is derived from the best
ractice developed in the Cogitate Consortium. As learned from the con-
ortium, efforts on big data as well as cross-group collaborations will
enefit from the FLUX pipeline as it will provide a standard analysis ap-
roach that can be used across sites. In the FLUX pipeline we will make
xplicit which analysis steps can be done automatically and which re-
uire visual inspection and interactions of the data. These steps will
acilitate the development of a fully automated pipeline benefitting the
nalysis of large datasets. 

Finally, education is an important motivation for the FLUX pipeline.
he research field of MEG is constantly growing as more systems are
eing installed around the world. Moreover, the advent of OPM-MEG
ystems ( Boto et al., 2018 ; Hill et al., 2019 ) is thought to be less ex-
ensive and more versatile catalysing an even faster expansion on the
umber of MEG laboratories. In parallel, there is a strong push to share
lready recorded MEG data ( Niso et al., 2016 ) meaning that a wider
roup of researchers will be able to analyse existing datasets. In sum,
hese developments will result in an influx of researchers that need to
e trained in MEG analysis. We have therefore made the FLUX pipeline
vailable to the community via a GitHub repository ( https://github.
om/Neuronal-Oscillations/FLUX/ ) organized in an open access website
 https://neuosc.com/flux/ ) together with an example dataset. To facil-
2 
tate the integration with education, the FLUX pipeline is implemented
nd shared through Jupyter notebooks for MNE-Python and Matlab Live
ditor for the FieldTrip toolbox. 

. Approach 

.1. The FLUX pipeline provided via Jupyter notebooks and Matlab Live 

ditor 

The FLUX pipelines have been developed using MNE-Python
 Gramfort, 2013 ) and FieldTrip ( Oostenveld et al., 2011 ) which are
pen-source toolboxes implemented in Python and Matlab, respec-
ively. Both toolboxes are widely used by the MEG community.
here are other excellent toolboxes such as BrainStorm ( Tadel et al.,
011 ), SPM ( Litvak et al., 2011 ) and NUTMEG ( Hinkley et al., 2020 )
nd the FLUX pipeline could be expanded in the future to include
hose as well. The FLUX pipelines can be accessed via a website
 https://neuosc.com/flux/ ) and the scripts themselves are maintained
n a GitHub repository ( https://github.com/Neuronal-Oscillations/
LUX/ ). While the pipeline will evolve with time, the aim is to keep
t fairly constrained and have basic functionality relatively static albeit
ubject to refinements. With time, new sections will be included to add
unctionalities. The pipeline for MNE Python is defined using Jupyter
otebooks as this allows for easy integration of the code in combination
ith descriptions, as well as textual and graphical outputs. The FieldTrip
ipeline is defined using the Matlab Live Editor for the same reasons.
he code from the notebooks can be copied and integrated into standard
cripts. 

.2. The dataset 

To demonstrate the functionality of the pipeline we will be using
n MEG dataset based on a spatial attention paradigm ( Fig. 1 ). The
aradigm is derived from a study involving moving gratings and the
etection of subtle dots (based on; see also Hoogenboom et al., 2006 ).
he dataset was recorded using the MEGIN Triux system at the MEG fa-
ility of the Centre for Human Brain Health, University of Birmingham,
K. Each trial in the paradigm started with a fixation dot followed by a
ue pointing either to the left or right. This indicated to the participants
hich of the two upcoming stimuli to attend. After a 1 s inter-stimulus

nterval, two inward moving circular gratings were shown in both hemi-
elds. After a random interval (1–3.5 s) a white dot was presented for
0 ms at the centre of the grating in the cued hemifield. Participants
ere instructed to press a button (right index finger) as soon as they
etected the dot. The stimulus presentation was implemented in Mat-
ab using the Psychophysics Toolbox ( Brainard, 1997 ) and the code be
ound on the website. The main advantage of this task is that it produces
obust modulations in the 8–12 Hz alpha band during the cue-grating
nterval. Furthermore, the moving gratings will induce strong activity in
he 60–90 Hz gamma band. A single data set is used in the FLUX pipeline
hich is publicly available via https://www.neuosc.com . It will later
e augmented to include more data sets for group analysis. 

While the FLUX pipeline is developed for the analysis of MEG data,
ost of the steps can also be applied for the analysis of EEG data. Addi-

ional steps include re-references as well as different tools for detecting
ased sensors as described in detail in Bigdely-Shamlo et al. (2015) . In
erms of source modelling, a multi-shell forward model is required for
EG. If the intent is to combine EEG and MEG data for source modelling,
re-whitening is required in order to bring the data on the same scale.
e will make this explicit below when relevant. 

.3. A standard operation procedure for data collection 

The website includes a standard operation procedure (SOP) for MEG
ata acquisition. It is important to integrate the SOP with the data anal-
sis pipeline. This will for instance allow for using a consistent naming

https://neuosc.com/flux/
https://github.com/Neuronal-Oscillations/FLUX/
https://neuosc.com/flux/
https://neuosc.com/flux/
https://github.com/Neuronal-Oscillations/FLUX/
https://www.neuosc.com
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Fig. 1. The paradigm used for the MEG data 
collection in the FLUX pipeline. A cue di- 
rects the participants to attend left or right. 
This results in strong hemispheric lateraliza- 
tion of the posterior alpha power (8–12 Hz). 
Then follows the presentation of the mov- 
ing gratings which will induce strong gamma 
power (60–90 Hz) in the visual cortex as 
well as visual evoked fields. Finally, the but- 
ton response to the dot flash will result in 
gamma band activity in the motor cortex 
followed by suppression in the beta band 
(15–40 Hz). Since the task produces robust 
and well-documented modulations in the al- 
pha, beta and gamma band as well as event- 
related fields it is well suited for the FLUX 
pipeline with a focus on the characterization 
of oscillatory brain activity and source mod- 
elling. 
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onvention for the EOG and ECG channels; this is important when iden-
ifying these channels in the analysis pipeline. The SOP also allows for
aking explicit the anatomical landmarks used for co-registering the
EG data with the structural MRI. Finally, some source modelling ap-

roaches will benefit from empty room data to be recorded in order
o calculate the covariance matrix associated with the environmental
oise. 

.3.1. Ocular and cardiac artifacts 

Is it recommended to acquire the electrocardiogram (ECG) as well
s the horizontal and vertical electrooculogram (hEOG and vEOG). The
CG can be useful for procedures to automatically attenuate cardiobal-
istic activity. The hEOG and vEOG can be used to identify saccadic and
ye-blink artifacts, respectively. This information may seem redundant
ith the eye-tracker recordings; however, the EOG signal can be used to

ully automatize the rejection of ocular artifacts during ICA. Moreover,
his information could be important in case the eye-tracker fails or the
ignal quality is poor. It should also be mentioned that attaching ECG
nd EOG electrodes is relatively fast and uncomplicated and that most
EG devices already have a built-in system for them. 

We also recommended using a fast eye-tracker (sampling at 300 Hz
r more) to monitor eye positions to ensure that the participants main-
ain fixation as well as to track fast saccades ( Juhola et al., 1985 ). To
etect micro-saccades, which might confound neuronal activity in the
amma band ( Yuval-Greenberg et al., 2008 ), binocular eye-tracking is
ecommended as it provides a better signal-to-noise ratio helping to de-
ect small eye movements. It will also allow for measuring convergence
ith further analysis. It is convenient to directly sample the eye-tracking
utput together with the MEG data using auxiliary data collection chan-
els on the acquisition system. 

.3.2. Combining MEG and EEG? 

Whether EEG is recorded together with the MEG data depends on the
pplication. The advantage is that the EEG will provide complementary
nformation to the MEG, as MEG for instance is blind to radial neu-
onal sources ( Hämäläinen et al., 1993 ). Furthermore, there is a large
stablished literature on event-related potentials (ERPs; e.g. the P300
nd N400) in relation to cognition ( Luck, 2014 ). To relate event-related
elds (ERFs) recorded with MEG to the ERP literature, it is of great value
3 
o have the EEG signal recorded concurrently with the MEG. Moreover,
EG and EEG can provide convergent and complementary information

n multivariate analyses ( Cichy and Pantazis, 2017 ). The disadvantage
f concurrent MEG and EEG recordings is that some participants’ heads
ill not fit in the MEG helmet after the EEG cap has been applied due to

he height of the EEG electrodes. Also, the EEG electrodes will increase
he distance between the MEG sensors and the scalp to a small degree,
hus slightly reducing the signal-to-noise ratio. Finally, it costs consider-
ble time to install the EEG cap (30–45 min for two trained researchers
or a 64-sensor cap). 

.3.3. Head position 

In a typical MEG system, several coils are attached on the scalp to
easure the head position. Their positions are digitized in 3D together
ith anatomical landmarks (including the periauricular points and the
asion) commonly using a Polhemus device. The location of these coils
ill be measured in the MEG system by passing high-frequency currents

hrough them such that they generate localisable magnetic fields. This
hould be done at least before and after data acquisition as well as in the
reaks between blocks. One can also perform continuous HPI measure-
ents; however, this might introduce artifacts in the MEG data that need

o be attenuated by a lowpass filter. We do not recommend this unless
here is a strong need to measure head position continuously as might
e the case in children or patients that move a lot. This will allow for
he later application of algorithms to compensate for head movements. 

.3.4. Active shielding and other artifacts 

Some MEG systems are located in noisy environments, which require
ctive shielding to attenuate external artifacts. It is recommended to
nly apply active shielding under these circumstances, as the approach
ould introduce unwanted artifacts. 

To avoid artifacts from the clothing (e.g. zippers, buttons, bras and
elts buckles) it is advisable to provide the participants with non-
agnetic clothing (e.g. scrubs). If time permits, it is also recommended

o record 5 min of resting-state data (eyes open) for each participant to
ssess the quality of the data as well as identify subject-specific artifacts
e.g. dental work and make-up). 
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Fig. 2. The flow-diagram representing the steps in the FLUX pipeline. First, the noisy sensors are marked for removal. MNE-Python then allows for annotating parts 
of the data with artifacts (e.g. due to saccades, muscle contraction, movements or sensor jumps). After, noise attenuations algorithms are applied (e.g. based on 
signal-space separation for MEGIN systems or the third-order gradient compensation for CTF systems). The ICA algorithm is applied for reducing ocular and cardiac 
artifacts. The data are segmented for trials specific for experimental conditions. At this stage trials with artifacts can be removed either based on the annotations or 
by semi-automatic threshold-based methods. Subsequently, the trial based data can be used to calculate event-related fields, time-frequency representation of power, 
or decoding using multivariate pattern analysis. Source modelling could then be performed to identify the sources responsible for producing the event-related fields 
or the modulations in power. These steps are detailed with documented scripts applied to a dataset in http://www.neuosc.com/flux/ . 
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.3.5. Empty room recordings 

Before an experiment, we recommend performing empty room
ecordings (2–3 min). This allows for identifying unknown environmen-
al artifacts as well as faulty or untuned sensors. It also allows for cal-
ulating the covariance matrix associated with the environmental noise
hich will benefit source modelling. 

.3.6. Structural imaging 

A T1 MRI should be recorded for each participant. This will al-
ow for later source modelling mapping the neural activity onto the
tructural brain image of each participant, improving spatial resolu-
ion. For the sequence, we recommend MPRAGE or ideally FLASH
ut it is not essential as long as the T1 scan is of good quality (e.g.
ee https://surfer.nmr.mgh.harvard.edu/ for details). It should be men-
ioned that for realistic forward models to be used for EEG, the MRI re-
uirements might be more demanding if one wants to construct a multi-
hell model. 

.4. Data analysis 

The flow of the data analysis is illustrated in Fig. 2 pro-
iding an overview of the pipeline. Below we describe the in-
ividual steps which are fully detailed on the FLUX website
 https://www.neuosc.com/flux/ ). 

.4.1. Pre-processing 

Pre-processing of the MEG data is an important step as it serves to
dentify artifacts and attenuates various sources of interference. There
re multiple paths for how to perform the pre-processing even within the
ame analysis toolboxes. Some of the options might be equally good, but
e here settled on one approach. 

.4.2. Noise reduction algorithms 

Most MEG manufactures have algorithms for suppressing external
oise sources that is applied in the pre-processing of the recorded data.
or instance, the CTF system has a third-order gradient compensation
lgorithm making use of a reference array of gradiometers and mag-
etometers for noise reduction ( Vrba and Robinson, 2001 ) whereas
he MEGIN system employs a Signal-Space Separation (SSS; Taulu and
imola, 2006 ) approach which separates magnetic signals coming from
4 
ithin the sensor array from those coming from outside the array
i.e., environmental noise). These noise suppression algorithms all in-
olve a linear transformation of the data. If one of the MEG sensors in
he array is malfunctioning, this step would serve to spread artifacts
rom the faulty sensor to the rest of the sensors. Therefore, the first
mportant step is to identify sensors with excessive noise as well as sen-
or producing signals with no signal variation (‘flat sensors’). After these
alfunctioning sensors have been removed through interpolation, noise

eduction algorithms can be employed. For the CTF system, it is recom-
ended to use the third-order gradient compensation algorithm. For
EGIN system, we recommend using the Signal-Space Separation (SSS)

nd Maxwell filtering approach; however, keep in mind that these al-
orithms apply a regularisation step which reduces the rank of the data
o 60–80 dimensions. This might cause problems later on, e.g. when
erforming the matrix inversion as done by some source modelling al-
orithms. As we will later address, this is best solved by calculated
seudo-inverse according to the reduced rank ( Jas et al., 2018 ). For the
EGIN system, spatiotemporal SSS (tSSS) is also an option ( Taulu and

imola, 2006 ). While this method can reduce head-movement artifacts,
t does require continuous HPI measurements to operate optimally and
everal parameters must be adjusted. We recommend relying on SSS un-
ess there are good arguments, such as excessive head movements, for
sing tSSS. 

.4.3. Annotation of artifacts 

The next step is to annotate artifacts in the MEG data to later remove
roblematic trials. This annotation is typically done by algorithms that
an identify ocular artifacts and muscle contractions. It is always rec-
mmended to visually verify these annotations using a data browser. It
hould be mentioned that this annotation can be done in MNE-Python,
hereas in FieldTrip artifacts typically are removed after trial segmen-

ation. The strongest artifacts typically stem from muscle contraction,
ody movements, eye-blinks, saccades and malfunctioning MEG sensors.
uscle artifacts can be identified as high-frequency broadband signals

typically ranging from 110 to 140 Hz) particularly in the sensor around
he rim. Saccades can be identified in the hEOG or from the eye-tracker
nd result in strong signals in frontal MEG sensors. Eye-blinks can be
dentified in the vEOG or the eye-tracker and likewise produce a strong
rontal signal. Movement artifacts are observed as relatively slow signals
hich are strongly correlated in a large set of sensors. MEG sensor arti-

http://www.neuosc.com/flux/
https://surfer.nmr.mgh.harvard.edu/
https://www.neuosc.com/flux/
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acts are typically observed as jumps in the ongoing signals and will be
ore frequent in some sensors than others. The section ‘artifact Anno-

ations’ on the FLUX website ( http://www.neuosc.com/flux ) provides
oncrete examples of some of these artifacts and how they appear in the
ata. We recommend filtering the EOG at 1–10 Hz and the MEG at 110–
40 prior to identifying respectively the ocular and muscle artifacts. Key
arameters are the thresholds for what to consider ocular and muscle
rtifacts quantified by z-scores. It is recommended to first annotate the
rtifacts and then later consider whether to reject trials with artifacts
epending on the research question. For instance, muscle artifacts are
roblematic when quantifying neuronal gamma-band activity due to the
pectral overlap; however, these artifacts might be less problematic for
ater event-related fields (e.g., the N400m). MNE-Python offers a well-
eveloped approach for artifact annotation. When using FieldTrip, an-
otations are typically not done first as artifact rejection is implemented
fter trial segmentation. 

.4.4. Independent component analysis applied to reduce cardiac and 

cular artifacts 

The contribution of ocular and cardiac artifacts can be reduced using
ndependent component analysis (ICA) ( Vigario et al., 2000 ). To reduce
he computation time, we recommend to down-sample a separate copy
f the data to 200 Hz and applying a 1–40 Hz band-pass filter before
pplying the ICA algorithm. In MNE Python we have employed the Fas-
ICA method ( Hyvärinen and Oja, 2000 ) and in FieldTrip the Infomax
lgorithm ( Bell and Sejnowski, 1995 ). Possibly when applying ICA to
EG data there might be a benefit to include data at higher frequency
anges to e.g. identify muscle artifact (this is less relevant for MEG as
he muscle artifacts are less spatially stable). When possible, it is ad-
isable to reject segments with major movement and sensors artifacts
efore running the ICA algorithm. This can be done by telling the ICA
lgorithm to ignore segments with annotated artifacts or by rejecting
he corresponding epochs. Subsequently, the ICA components reflecting
ye-blinks, saccades and cardiac artifact are identified in the respective
opographies and time-course by visual inspection. These artifacts typi-
ally appear in 3–5 components, but in some participants, they may not
e easy to detect. Although it is possible to detect these components au-
omatically (e.g., correlating their time course with the EOG/ECG sig-
al), we here recommend identifying the artifacts manually until we
etter have assessed the automatic approaches. We do not recommend
ejecting more components than a handful unless they are associated
ith a known artifact. After the artifactual ICA components have been

dentified, projections are made to attenuate the contributions of the re-
pective artifacts. Note that these projections will be applied to the raw
ata which are not downsampled or filtered. When should one reduce
cular artifacts by ICA as compared to rejecting trials with artifacts? This
ill depend on the experimental question. For instance, if a study is con-
ucted on covert spatial attention, it might be essential that participants
eep fixation at the centre of the screen. In this case it is advisable to
eject trials with saccades. However, in a study on auditory perception,
ne might choose to attenuate saccadic artifacts by ICA. 

.4.5. Epoching the data according to condition-specific events 

The next essential step is to segment the data according to the
ondition-specific events. This is typically done based on the informa-
ion in the trigger channel defining the trial conditions. Often the be-
avioural output, e.g. button responses, are also taken into account.
epending on the research question, a pre- and post-stimulus interval
ust be defined. When segmenting the data, the artifact annotation can

e applied to rejected trials in MNE-Python. When using FieldTrip, a
emi-automatic approach can be applied to reject segmented trials with
rtifacts. 

.4.6. Event-related fields 

When calculating event-related fields (ERFs) we recommend adapt-
ng – when possible – the guidelines for event-related potentials
5 
 Luck, 2014 ; Woodman, 2010 ). Typical settings for investigating cog-
itive event-related brain responses would involve a 30 Hz lowpass
lter and a 200 ms baseline. The length of the trials will depend on
he experimental question. The visualization of event-related fields de-
ends on the type of sensors in the system. The CTF system has axial
radiometers and fields can be visualized directly; however, it might
e advantageous to transform the fields to the combined planar gradi-

nt (see e.g Fournier et al., 2010 .). The combined planar gradient is
alculated as the root-mean-square of the spatial derivative estimated
or two orthogonal planar directions (however, for power estimates the
ombined planar gradients is typically calculated by summing the es-
imated power of the two orthogonal gradiometers). The MEGIN sys-
em has both magnetometers and planar gradiometers. When visualiz-
ng event-related fields of the planar gradiometers, the combined pla-
ar gradient might also be applied. When calculating the combined
lanar gradient for event-related fields, we recommend subtracting the
aseline just before performing the root-mean-square of the planar gra-
iometer signals. It should be noted that, unlike event-related fields,
he magnitude of the combined planar gradients is somewhat biased by
rial number. The main advantage of applying the combined planar gra-
ient is that the magnitude of this planar gradient signal is typically
he strongest directly above the neuronal source ( Hämäläinen et al.,
993 ). While this might aid interpretation for complex field pat-
erns, the disadvantage is that the combined planar gradient con-
eals the dipolar patterns thus removing information on e.g. source
rientation. 

.4.7. Time-frequency representations of power 

Over the years, there has been a growing interest in neuronal os-
illations and their mechanistic role in supporting cognitive functions
 Buzsáki, 2006 ; Hari, 1997 ; Jensen et al., 2007 ). Typically, modula-
ion of oscillatory brain activity is quantified using time-frequency rep-
esentations of power. While wavelet approaches initially were used
or this purpose ( Tallon-Baudry, 1999 ), Fourier-based approaches in-
luding Hilbert transforms have become increasingly used. These meth-
ds are not fundamentally different and will produce similar results
 Bruns, 2004 ; van Vugt et al., 2007 ). Nevertheless, it is essential to
et the parameters correctly for these methods to optimize the spec-
ral estimates. We here recommend a sliding time-window Fourier-
ased method for calculating time-frequency representations of power.
ased on empirical observations, brain oscillations at slower frequen-
ies (4–30 Hz; i.e. theta, alpha and beta band) are relatively narrow-
and whereas they are more broadband in the gamma range (defined
t 30–100 Hz). To accommodate these differences, we propose differ-
nt settings for quantifying slow and fast brain band oscillations in
he frequency domain. For slow activity ( < 30 Hz), we advise using a
T = 500 ms sliding time window. A single taper (also 500 ms) must
e applied prior to the Fourier transformation preceding the power
stimate. In FieldTrip, a 500 ms Hanning taper can be used while
n MNE-Python a single taper from the Slepian sequence is recom-
ended. These will result in about ∼3 Hz spectral smoothing. For the

aster frequency range ( > 30 Hz) we recommend a multitaper approach
 Percival and Walden, 1993 ) with a 250 ms sliding time window and
 = 5 Slepian tapers. This will result in ∼10 Hz spectral smoothing
as K < 2 ΔT ΔF). Time-frequency representations of power can be in-
pected either by performing a baseline subtraction or by comparing
onditions. For ΔT = 500 ms, the recommended baseline is − 750 to
 250 ms as it does not include the post-stimulus interval when consider-

ng the temporal smoothing from the sliding time window. The baseline
ime window may vary depending on the experimental design though.
enerally speaking, this time window should not overlap with stimu-

us presentation or response-related events. Typically spectral power is
hown as relative change with respect to the baseline, P relative = (P stim 

–
 baseline )/P baseline ( Pfurtscheller and Lopes da Silva, 1999 ) and when
omparing the difference between conditions, e.g. condition A and B:

http://www.neuosc.com/flux


O. Ferrante, L. Liu, T. Minarik et al. NeuroImage 253 (2022) 119047 

Fig. 3. An example of time-frequency representations of power calculated for faster frequencies using the FLUX pipe They were calculated using MNE Python (A) and 
FieldTrip (B) using similar settings and yielded very comparable results. Note the relative increase in gamma power (80–90 Hz) in response to the onset of the gratings 
( t = 0 s). Also, the corresponding topographies for gamma power in the 0–600 ms interval were similar (B and D). The power was estimated using multi-tapers to 
optimize spectral smoothing. In the FLUX pipeline, we provide concrete suggestions for the settings for optimizing quantifications of oscillatory power modulations 
for slow ( < 30 Hz) and fast ( > 30 Hz) frequencies. 
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 relative = (P A – P B )/(P A + P B ). The relative change in power provides an
ntuitive metric that is all well-normalized across participants. However,
here are also other options such as log-ratio (P log-ratio = log (P B /P A )) and
easures normalized by standard deviation such t-scores and z-scores.
hose should be used with great care as the distribution of power es-
imates is highly skewed resulting in large effect sizes being associated
ith a large standard deviation Fig. 3 . shows an example of the relative
odulation of power in the gamma band and the corresponding sensor

evel topography. Note that the power estimate for individual time-point
oints are a consequence of estimating the power using sliding time-
indow (being 250 ms for power estimates above 30 Hz and 500 ms
elow 30 Hz). This temporal smoothing must be considered when inter-
reting the power modulations. 

.4.8. Source modelling 

The topic of source modelling is complicated by the many ap-
roaches both in terms of forward as well as inverse modelling
 Baillet et al., 2001 ; Hämäläinen et al., 2020 ). While source modelling
n the past was done by dipole modelling estimating the location of
 few discrete sources, various kinds of distributed source estimation
ave become state-of-the-art. We will here focus on methodology suited
or localizing the sources of oscillatory brain activity, namely the Dy-
amical Imaging of Coherent Sources (DICS) approach ( Gross et al.,
001 ). In terms of forward modelling, a realistic subject-specific single-
hell model based on spherical harmonics fitted to the brain surface
rom the structural MRI ( Nolte, 2003 ) is typically used in FieldTrip. The
tructural MRI is aligned with the MEG data according to anatomical
6 
andmarks. A boundary element model (BEM) is used in MNE Python
 Gramfort et al., 2010 ) and it is constructed from brain-surface recon-
truction using FreeSurfer ( Dale et al., 1999 ; Fischl, 2012 ). Since the
ource modelling, in this case, is done on MEG data, a single-shell model
s sufficient. However, if EEG is applied, a three-layer model is typically
equired. Typically, the DICS approach is used to identify the modu-
ations of activity in frequency ranges identified using time-frequency
epresentations of power. Often one estimates the sources for a specific
ime window. We recommend using similar settings in terms of length
f time windows and tapers as used in the time-frequency analysis. This
ICS approach works by defining a grid in the full brain volume, which

hen is scanned. This spacing of the grid is dependant on the research
uestion and the point-spread function ( Liu et al., 2002 ) but typically
 mm is reasonable. Source estimates using beamforming approaches
LCMV and DICS) will have an increase in noise bias towards the centre
f the head ( Gross et al., 2001 ; Van Veen et al., 1997 ). This bias is best

subtracted out’ by comparing conditions relatively. This is typically the
elative difference between two conditions or the relative difference in
ost- versus pre-stimulus power. Since the DICS approach relies on a
patial filtering algorithm making use of the cross-spectral density, it is
mportant to use the joint cross-spectral density matrix for the condi-
ions being compared (‘common spatial filter’). Special care should be
aken when applying beamforming approaches to data on which the SSS
as been applied for noise reduction as this step massively reduces the
ank of the data (down to ∼70 for the MEGIN 306-sensors system) (see
aiswal et al., 2020 ; Westner et al., 2021 ). The solution is to calculate
he truncated pseudo-inverse ( 𝑋 

†) using singular value decomposition
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Fig. 4. An example of source modelling of the gamma-band activity (60–90 Hz, 
300–800 ms time window) was obtained using the DICS beamformer using MNE- 
Python (A) and FieldTrip (B). The results were very similar. We provide the 
scripts for obtaining the source modelling results including concrete sugges- 
tions for how to document the analysis path. In particular, we provide advice 
on how to reliably handle the rank reduction following the SSS. Note that for 
MNE Python both magnetometers and gradiometers after spatial prewhitening, 
whereas we FieldTrip we only used the gradiometers. 
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Fig. 5. An example of multi-variate pattern analysis of the MEG data using the 
FLUX pipeline. In this example, trials associated with left versus right allocation 
of attention were decoded using a support vector machine (SVM). We applied 
MNE Python which uses the powerful Scikit-learn machine learning library. The 
outcome demonstrates that left versus right attention can be decoded ∼200 ms 
after stimulus onset. 
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fter first estimating the rank ( k ) of the data ( 𝑋 ) : 

 = 𝑈Σ𝑉 𝑇 

 

† = 𝑉 Σ−1 
𝑘 
𝑈 

𝑇 

The truncation is implemented by considering the first k diagonal el-
ments in Σ as well as the first k columns of U and V. The pseudo-inverse
s then used in the beamforming algorithm. This approach efficiently
andles the rank deficient data and – according to our experience - no
urther regularization is required. Finally, we also provide the settings
or spatially pre-whitening the data. This can be done on either empty
oom data or data from the pre-stimulus interval. The pre-whitening
ims to transform the empty room data to reduce the correlation be-
ween sensors (i.e. driving the off-diagonal elements in the covariance
atrix towards zero). These steps also allow for bringing data from dif-

erent sensors types on the same scale. In the FLUX pipeline, this allows
or combining gradiometers and magnetometers for sources modelling,
ut it can also be used for combining MEG and EEG data. Subsequently,
he source results are mapped onto the structural MRI of the partici-
ant. As shown in Fig. 4 , the approach allows for localizing the increase
n gamma power with the onset of the moving gratings. 

In the future, we aim to expand the FLUX pipeline to include source
stimates based on minimum-norm estimates as this approach also has
roven very powerful in particular for event-related fields ( Hauk et al.,
011 ; Lin et al., 2006 ). 

.4.9. Multivariate pattern analysis (MVPA) 

Multivariate approaches are becoming increasingly important in the
eld of brain imaging including human electrophysiology ( King and
ehaene, 2014 ; Stokes et al., 2015 ). The main idea is to identify rep-

esentational specific patterns of brain activity by considering the ac-
ivity distributed over the sensor or in source space. One widely used
pproach to MVPA is decoding using machine learning-based classi-
ers, in which different classes are predicted based on the distributed
rain activity ( Stokes et al., 2015 ; van de Nieuwenhuijzen et al., 2013 ).
 second approach is representational similarity analysis (RSA) where
imilarity structures between stimuli or conditions are extracted from
he neural signal and compared with the similarity structures of a spe-
ific representational model ( Cichy et al., 2014 ; Cichy and Oliva, 2020 ;
uggenmos et al., 2018 ; King and Dehaene, 2014 ; Wang et al., 2018 ).
ne challenge of entering this research field is the many tools and
7 
ypes of classification approaches available. MNE-python offers many
ptions in terms of MVPA approaches, while the choice is currently
ore limited in FieldTrip. In the example pipeline, we outline a sim-
le approach based on classification utilizing support vector machines
SVM) ( Cortes and Vapnik, 1995 ). We apply the classification approach
o demonstrate that one can determine whether the participant is at-
ending left or right based on the distributed brain activity. After the
ata are filtered (30 Hz lowpass) the classifier is trained using a leave-
ne-out approach. The example demonstrates that it is possible to obtain
 reliable estimate of the attended direction (Fig. 5) . 

. Discussion 

We have here outlined the FLUX pipeline for the analysis of MEG
ata. The primary aim is to standardize analyses and parameter settings
cross toolboxes such as MNE-Python and FieldTrip to improve the re-
roducibility of MEG research. A second aim is to provide concrete rec-
mmendations for what to report in publications and pre-registered re-
orts. This will serve to increase rigour when reporting as well as lower
he threshold for pre-registering studies. Finally, the FLUX pipeline will
lso serve an important educational purpose. It is developed around a
est dataset that can be used in self-studies and educational settings. 

.1. Comparison between toolboxes 

Since the FLUX pipeline is implemented for both MNE-Python and
ieldTrip, it is of relevance to comparing the two toolboxes. One of the
ain advantages of MNE-Python is that it is written in Python. Python
as evolved into a widely-used programming language for novel data
cience approaches. Python modules are under constant development
y a huge open source community ensuring the availability of state-
f-the-art data science tools; in particular, the machine learning mod-
les are exceptional. These developments ensure that MNE Python is
uture-proof and will allow for further integration with novel machine
earning tools as multi-variate approaches are becoming increasingly
mportant. Since Python is free, MNE-Python can be used with no fi-
ancial constraints allowing academics with limited resources to con-
ribute to MEG analysis. The MNE-Python toolbox is well funded and
upported by an active and dynamic group of developers integrating the
atest analysis tools of the field. In terms of functionality, MNE-Python
as initially developed for data from the MEGIN system; this is con-
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enient when for instance applying the maxfilter (SSS) tools which are
ntegrated ( Taulu and Simola, 2006 ). However, there are no apparent
arriers to applying it to data from other devices such as the CTF MEG
ystem. One strong feature of the MNE-Python pipeline is the artifact-
nnotation of the data, which allows for performing the artifact identi-
cation only once even if the trial length or other factors are changed

ater. In terms of source modelling, the minimum-norm estimate is well-
ntegrated in the toolbox and it has been applied in numerous applica-
ions and is particularly suited for the analysis of event-related activity
nd decoding analysis. Finally, the MNE-Python toolbox is well inte-
rated with various multivariate tools ( Pedregosa et al., 2011 ). This is
ecoming increasingly important as multivariate classification and rep-
esentational similarity analysis approaches are becoming increasingly
opular ( Guggenmos et al., 2018 ; King and Dehaene, 2014 ; Stokes et al.,
015 ). Given that Python is widely taught in schools and universities
lso provide an argument for adapting MNE-Python ( Ozgur et al., 2021 ).

The FieldTrip toolbox was initially written for the CTF system. As
uch, some features associated with the MEGIN system are not imple-
ented as for instance the SSS algorithm. Although, it is still possi-

le to perform SSS as a preprocessing step using the Linux software
rovided by MEGIN. The FieldTrip toolbox has been developed with
 focus on examining oscillatory brain activity. As such, the spectral
eamforming tool such as DICS is well tested and has been used in nu-
erous publications; however, the minimum norm estimates geared to-
ards event-related fields are less developed. In terms of multivariate
nalysis, the Fieldtrip toolbox does offer some options based on MVPA-
ight ( Treder, 2020 ); however, the options are quite limited compared
o those offered by MNE-Python. The FieldTrip toolbox is implemented
n Matlab, which does limit the user community to researchers from
nstitutions making Matlab available. 

.2. The future of the FLUX pipeline 

We will keep evolving the FLUX pipeline, by improving and refin-
ng the already defined steps as well as the documentation. We will
lso add functionality, e.g., including a section on group-level analy-
is based on cluster randomization approaches and expanding on task-
ased connectivity analysis including measures on Granger causality
 Chen et al., 2006 ; Michalareas et al., 2016 ) and cross-frequency cou-
ling ( Hyafil et al., 2015 ; Jiang et al., 2015 ). To promote open science
nd data sharing, we will implement the functionality to convert the
EG data to the BIDS format, a standard format for the organisation

f neuroimaging data ( Niso et al., 2018 ). This will be done when the
erivatives (i.e., the data output conventions) of the MEG BIDS format
re further developed. We are also considering complementing the tuto-
ials ( https://www.neuosc.com/flux ) with JSON files defining the essen-
ial parameters for a given analysis. This would be important for setting
p large analyses involving many participants. This can easily be done
sing the code from the FLUX pipeline. Another important challenge
or the FLUX pipeline is the advent of MEG systems based on optically
umped magnetometer (OPM) sensors ( Boto et al., 2018 ; Tierney et al.,
019 ), which might be using different data formats as well as varying
ensor types and configurations. It would be important for the FLUX
ipeline and the toolboxes to keep up with these developments to avoid
ragmentation in the community. 

. Conclusion 

We here put forward a pipeline for MEG data analysis with a spe-
ific focus on cognitive neuroscience applications. The main aim of the
ipeline is to provide a guide for constraining the analysis path for a par-
icular project given the many options provided by existing toolboxes.
he pipeline will serve to improve the replicability of MEG research, as

t aims to standardize the analysis steps. Furthermore, it will facilitate
ell-documented publications and lower the threshold for preregistra-

ion of future studies as we provide concrete suggestions for what to
8 
eport. Finally, the pipeline can directly be used in educational settings
nd thus help to improve the standard in the research field of human
lectrophysiology. 
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