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A B S T R A C T   

Reinforcement learning has been gaining attention in energy management of hybrid power systems for its low 
computation cost and great energy saving performance. However, the potential of reinforcement learning (RL) 
has not been fully explored in electric vehicle (EV) applications because most studies on RL only focused on 
single design targets. This paper studied on online optimization of the supervisory control system of an EV 
(powered by battery and ultracapacitor) with two design targets, maximizing energy efficiency and battery life. 
Based on a widely used reinforcement learning method, Q-learning, a hierarchical learning network is proposed. 
Within the hierarchical Q-learning network, two independent Q tables, Q1 and Q2, are allocated in two control 
layers. In addition to the baseline power-split layer, which determines the power split ratio between battery and 
ultracapacitor based on the knowledge stored in Q1, an upper layer is developed to trigger the engagement of the 
ultracapacitor based on Q2. In the learning process, Q1 and Q2 are updated during the real driving using the 
measured signals of states, actions, and rewards. The hierarchical Q-learning network is developed and evaluated 
following a full propulsion system model. By introducing the single-layer Q-learning based method and the rule- 
based method as two baselines, performance of the EV with the three control methods (i.e., two baseline and one 
proposed) are simulated under different driving cycles. The results show that the addition of an ultracapacitor in 
the electric vehicle reduces the battery capacity loss by 12%. The proposed hierarchical Q-learning network is 
shown superior to the two baseline methods by reducing 8% battery capacity loss. The vehicle range is slightly 
extended along with the battery life extension. Moreover, the proposed strategy is validated by considering 
different driving cycle and measurement noise. The proposed hierarchical strategy can be adapted and applied to 
reinforcement learning based energy management in different hybrid power systems.   

1. Introduction 

Over the past a few years, vehicle electrification has gained mo-
mentum in the automotive field for the perspective of energy saving [1] 
and environmental protection [2]. Electric car companies like Tesla are 
leading the electrification revolution, which pressures giant Original 
Equipment Manufacturers (OEMs) like General Motors to shift from 
internal combustion engine cars to electric cars as General Motors 
announced new brand logo advocating for vehicle electrification. 

As the main power source for the electric vehicle (EV), battery is 
facing many challenges in real-world operations, such as long charging 

time [3], high replacement cost [4], short range [5], and lack of 
charging infrastructures [6]. To reduce the battery replacement cost, an 
effective way is to regulate the battery usage profile to extend battery 
life. According to the mechanism of battery degradation, battery should 
reduce the operation at high current charging/discharging, high tem-
perature, and high state-of-charge (SOC) [7]. Ultracapacitor is used as 
the second power source of electric vehicle to improve vehicle acceler-
ation performance and reduce battery charging/discharging current [8]. 
Ultracapacitor is a type of energy storage device with high power den-
sity and low energy density [9]. The high-power density characteristic 
can compensate the low power density of lithium-ion battery at high 
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power demand driving scenarios during vehicle acceleration and 
braking. The peak power reduction can effectively slows down 
lithium-ion battery degradation [10] and thus possibly avoids battery 
replacement over the vehicle life span. In addition, ultracapacitor has 
long cycle life up to 1 millions cycles [11] and its aging effect is usually 
not considered in vehicle application [8]. 

Energy management, which controls the onboard energy flows, is 
one of the key functionalities in EVs and a bad energy management 
system could lead to discounted performance [12]. For battery electric 
vehicles (BEV), all the traction power and regenerative braking power 
are supplied and absorbed by the lithium-ion battery. Different from 
BEV, the addition of the ultracapacitor increases flexibility in energy 
management of the battery/ultracapacitor electric vehicle (BUEV). 
Derived from expert knowledge or heuristic rules, rule-based methods 
are commonly used in vehicle energy management [13]. Rule-based 
methods are computationally efficient, but their performance are not 
optimal and highly dependent on the developers’ experience [14]. They 
can only achieve acceptable performance under given conditions at 
early-stage proof-of-concept but hardly be optimal to various driving 
conditions that beyond the developers’ experience [15]. 

Optimization-based methods are shown to be superior to the rule- 
based methods and can be obtained offline or online. Offline optimiza-
tion (e.g., dynamic programming [16]) can determine the theoretical 
global optimum solution in given driving cycles but are computational 
costly and cannot be directly used for real-time control [17], whereas it 
requires prior knowledge of the driving cycle and is computationally 
intense. Zhou et al. developed parametric [32] and non-parametric 
models [33] to implement dynamic programming results into 
real-time control. Online optimization (e.g., Equivalent consumption 
minimization strategy [18], Q-learning [19][34]) requires less compu-
tational cost and is capable of achieving nearly global optimal solutions 
in real-time [20,21]. Nassef et al. implemented the equivalent con-
sumption minimization strategy (ECMS) and the mine blast optimization 
in a battery/ ultracapacitor/ fuel cell system to minimize the energy 
consumption [12]. Sun et al. applied Q-learning in online optimization 
of the energy management strategy for a battery-ultracapacitor-fuel cell 
vehicle [22]. Compared to the same vehicle controlled by ECMS, 7–10% 
hydrogen can be saved via Q-learning under highway and city driving 
cycles. In summary, most of the existing literatures in 
battery-ultracapacitor electric vehicle area focused on saving of energy 
or fuel but have not paid sufficient attention on maximization of battery 
life which is also an important design target in EV. 

A new hierarchical Q-learning network is proposed in this paper to 
enable online simultaneous optimization of energy efficiency and bat-
tery life of the BUEV. It allocates two independent Q tables, Q1 and Q2, 
in two control layers for control action execution and reinforcement 
learning. In addition to the power-split layer, which determines the 
power split ratio between battery and ultracapacitor based on the 
knowledge stored in Q1, an upper layer is developed to trigger the 
engagement of the ultracapacitor based on Q2. The engagement layer 

provides extra control over the ultracapacitor and adds more flexibility 
in the energy management system, which has the potential to improve 
the energy efficiency and battery life for the electric vehicle. In the 
learning process, Q1 and Q2 are updated during the real driving using 
the measured signals of vehicle states, actions, and rewards. The 
research is based on a full set of propulsion system model including the 
battery aging model that was identified with experimental data. The 
proposed hierarchical Q-learning framework is compared with a single- 
layer Q-learning and a rule-based strategy for benchmarking. The aca-
demic contributions of this paper are summarized as follows,  

1) A new optimization-based energy management strategy is developed 
based on the hierarchical Q-learning network including two Q- 
learning agents, which can develop their optimal policies in a way 
like human learning but more computational accurate in action 
execution to ensure the control performance.  

2) By interpreting the hierarchical Q-learning with optimal policy map 
extracted from Q values, the optimal vehicle operating settings, 
including vehicle speed, EM torque, battery power and SOC, ultra-
capacitor power and SOC, are obtained for different driving cycles. 

The rest of the paper is organized as follows: the propulsion system 
model is presented in Section 2, followed by the introduction of the 
hierarchical Q-learning framework in Section 3. Section 4 details the 
hierarchical Q-learning interpretation, comparative study of three stra-
tegies and validation of the proposed strategy. Finally, the paper ends 
with conclusion in Section 5. 

2. Vehicle and propulsion system model 

The vehicle of interest in this study is a passenger electric vehicle 
powered by lithium-ion battery and ultracapacitor. Ultracapacitor adds 
flexibility in the power sources and shares the power demand with the 
battery. The topology of the battery/ ultracapacitor electric vehicle is 
shown in Fig. 1. Both the ultracapacitor and battery connect to the AC/ 
DC converter, which supplies power for the electric motor in propulsion 
mode and absorbs power from the electric motor in regenerating braking 
mode. The electric motor connects to the differential, via which the 
power is transmitted to/ from the wheels. In this section, the models of 
the components shown in Fig. 1 are presented, including ultracapacitor, 
battery, AC/DC converter, DC/DC converter, and electric motor. Addi-
tionally, vehicle dynamics model is presented for the calculation of 
vehicle speed and driver model is presented for the calculation of ac-
celeration/ braking pedal positions. 

2.1. Ultracapacitor 

Given the power demand Pcap [W], the terminal voltage Ucap,t [V] 
and current Icap [A] of the ultracapacitor can be calculated using (1) and 
(2) [20]. Ucap,oc [V] is open circuit voltage, and Rcap [Ω] is the capacitor 
resistance. 

Ucap,t = Ucap,oc − IcapRcap (1)  

Icap =
Pcap

Ucap,t
(2)  

The current of the ultracapacitor can also be expressed as a function of 
capacitance Ccap [Ah], maximum voltage Ucap,max [V] and state-of- 
charge SOCcap [%] as shown in (3), which derives the SOC in (4) 
using integration. SOCcap(0) [%] is the initial charge of the ultra-
capacitor. 

Icap = CcapUcap,maxSȮCcap (3)  

Fig. 1. Configuration of the vehicle powertrain.  
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SOCcap(t) = SOCcap(0) −
∫ t

0 Icap(τ)dτ
CcapUcap,max

(4)  

2.2. Battery 

Given the power demand Pbat [W], the terminal voltage Ubat,t [V] and 
current Ibat [A] of the battery are calculated using (5) and (6). Rbat [Ω] is 

the internal resistance of the battery. 

Ubat,t = Ubat,oc − IbatRbat (5)  

Ibat =
Pbat

Ubat,t
(6)  

The battery current can also be expressed as a function of battery 
nominal capacity Qbat [Ah] and battery SOC as shown in (7) [21], using 
which the battery SOC can be derived in (8). SOCbat(0) is the initial 
charge of the battery. 

Ibat = QbatSȮCbat (7)  

SOCbat(t) = SOCbat(0) −
∫ t

0 Ibat(τ)dτ
Qbat

(8)  

Battery degradation is discussed in this study, thus an empirical battery 
capacity loss model (severity factor model) is adopted [22]. The capacity 
loss Qloss [Ah] is expressed as a function of severity factor σ and 
Ah-throughput in (9). z is a coefficient to be identified. 

Qloss
(
SOCbat, Ibat,c,Tbat,Ah

)
= σ

(
SOCbat, Ibat,c,Tbat

)
Ahz (9)  

The expression of severity factor is shown in (10), which is a function of 
battery SOC, C-rate Ibat,c and temperature Tbat [K]. α, β, δ are the co-
efficients to be identified. E is the activation energy, which is 31,500 
[Jmol− 1]. R is the universal gas constant, which is 8.3145 [JK− 1mol− 1]. 

σ
(
SOCbat, Ibat,c,Tbat

)
= (αSOCbat + β)exp

(
− E + δIbat,c

RTbat

)

(10)  

The C-rate is calculated using battery current and battery nominal ca-
pacity as follows: 

Ibat,c =
|Ibat|

Qbat
(11)  

Using experimental data from [23] and [24], the coefficients of the 
severity factor model are identified. For the identification results, z is 
0.5715, α is 2.0161, β is 4398.5, and δ is 112. The results from the 
identified model and the experimental data are shown in Fig. 2. The R 
squared values for the three curves are 0.9085, 0.9458 and 0.9871, 
respectively. 

2.3. Converters 

In this study, there are two converters: AC/DC converter and DC/DC 
converter. The efficiency map of the DC/DC converter is shown in Fig. 3 
[20]. The efficiency of the AC/DC converter is assumed to be 92%. 

2.4. Electric motor 

The electric motor has two modes: traction and generation. The ef-
ficiency map of the electric motor is shown in Fig. 4. The electric motor 
is in traction mode when the torque is positive and in generation mode 
when the torque is negative. 

2.5. Driver 

The driver model determines the acceleration pedal position θacc [%] 
and braking pedal position θbrk [%] as follows: 

θacc= {
min(1.0, udriver) ∗ 100%, if udriver > 0

0, if udriver ≤ 0 (12)  

θbrk= {
min(1.0, − udriver) ∗ 100%, if udriver < 0

0, if udriver ≥ 0 (13)  

Fig. 2. Comparison of experimental data and the results from identified model.  

Fig. 3. DC/DC converter efficiency map.  

Fig. 4. Electric motor (EM) efficiency map.  
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where udriver is the output of the driver control. The aim of the driver 
control is to follow the vehicle of the driving cycle. The control is 
composed of a feedforward term uff and a feedback term ufb. The feed-
back term is shown in (14) and it is a PI control using vehicle tracking 
error ev [m/s] as the input. P and I gains kp,ki are 0.25 and 0.03. The 
feedforward term is shown in (15), which is mainly a function of vehicle 
speed. TEM,max/ TEM,min [Nm] are boundaries of electric motor torque. E 

is the vehicle static weight distribution, which is 49%/51%. HCG is the 
height of vehicle central gravity, which is 0.5 [m]. m is the vehicle curb 
weight, which is 1620 [kg]. g is the gravity constant. rwhl is the wheel 
radius, which is 0.25 [m], Bw is the wheelbase, which is 2.55 [m], Jv is 
the vehicle inertia, which is 150 [kgm2], c0, c1, c2 are the road law co-
efficients, which are 105.95, 0.01 and 0.434, respectively. 

ufb = kpev(t) + ki

∫t

0

ev(τ)dτ (14)  

uff= {

T1

TEM,max
, T1 ≥ 0,

[

(1 − E ) −
HCG

mgrwhlBw

]
T1

− TEM,min
, T1 < 0

(15)  

T1 =
v̇Jv

rwhl
+ rwhl

(
c0 + c1v+ c2v2) (16)  

The pedal positions from the driver model are used to calculate the 
vehicle torque and power demand as follows: 

Tdmd = θaccTEM,max + θbrakeTEM,min (17)  

Pdmd = ωEMTdmd (18)  

2.6. Vehicle dynamics 

The force provided for vehicle acceleration ma [N] is the combina-
tion of four forces: aerodynamic force 12 ρCdAv2

veh, rolling resistance force 
cos(β)frollmg, gravitational force sin(β)mg and traction force Ftrc, which 
is shown in (19). In the equation, ρ [kg/m3] is the air density. Cd is the 
aerodynamic drag coefficient. A [m2] is the frontal projection area of the 
vehicle. β is the slop of the road. froll is the rolling resistance coefficient. 

ma =
1
2

ρCdAv2 + cos(β)frollmg + sin(β)mg + Ftrc (19)  

The traction force is connected to the electric motor torque TEM [Nm] in 
(20). Twhl [Nm] is the torque applied to the wheels. rEM is the gear 
reduction ratio of the electric motor. 

Ftrc =
Twhl

rwhl
=

TEMrEM

rwhl
(20)  

The electric motor speed is calculated using vehicle speed as follows: 

ωEM = ωwhlrEM =
v

rwhl
rEM (21)  

The electric motor power is calculated in (22) based on the electric 

motor torque, which equals to the torque demand calculated in (17). ηEM 
is the electric motor efficiency shown in Fig. 4. 

PEM= {

ωEMTEM

ηEM
, discharge

ωEMTEMηEM, charge
(22)  

The power of ultracapacitor and battery are calculated using following 
two equations: 

Pcap= {
rcapPEM, qcap = 1

0, qcap = 0 (23)  

Pbat = PEM − Pcap (24)  

where qcap is the ultracapacitor engage signal, rcap is the power split ratio 
for ultracapacitor. The specification of the energy storage systems are 
listed in Table 1. 

3. Supervisory control strategies 

In this section, three supervisory control strategies are introduced 
and the diagram of the three strategies are shown in Fig. 5. Hierarchical 
Q-learning strategy has two layers, which are centered around Q1 table 
and Q2 table respectively, as illustrated in Fig. 5(a). Layer one de-
termines the engagement of ultracapacitor and layer two determines the 
power split between battery and ultracapacitor. On the bottom of Fig. 5 
(a), it shows the update of two Q tables utilize state, reward, and action 
information. In comparison, a single-layer Q-learning strategy that only 
considers power split ratio but with the engagement of ultracapacitor is 
developed in Fig. 5(b). The third strategy is a baseline strategy that does 
not consider ultracapacitor in the vehicle and all the power is supplied 
by battery. The comparison between Q-learning and rule-based in BUEV 
has been well studied and some details can be found in [25, 26]. 

3.1. Hierarchical Q-learning 

The proposed hierarchical Q-learning strategy is a model-free strat-
egy, which does not require a control-oriented model. It learns to control 
the usage of battery and ultracapacitor by interacting with the plant 
model. Due to the only reward, state and action information exchange 
between the strategy and the plant model and no physics principles are 
needed by the strategy, the plant model is regarded as a black box. Thus, 
once it is developed for one type of vehicle propulsion architecture, it 
can be easily adapted for different type of architectures. The diagram of 
the black box vehicle model and the hierarchical Q-learning is shown in 
Fig. 5. The black box model takes the two actions (i.e., ultracapacitor 
engage signal and ultracapacitor power split ratio) and outputs state and 
reward information to the hierarchical Q-learning strategy. In the mid-
dle of vehicle simulation, the Q-learning strategy only takes the state 
information form the vehicle model and output action. After the vehicle 
simulation, the state and reward information from the vehicle model 
and the corresponding action are utilized to update two Q tables. The 
updated Q tables are then applied to the next round of vehicle 
simulation. 

In this study, the ultracapacitor engagement signal (qcap) and ultra-
capacitor power split ratio (rcap) are selected as the action space. The 
engagement signal is chosen between two values 0 and 1, whereas 
power split is chosen in the range of 0 and 1. Discretization detail is 
given later. Vehicle power demand (Pdmd) and ultracapacitor SOC 
(SOCcap) are selected to form a two-dimensional state space. The lower 
and upper boundaries of the vehicle power demand are set to be − 30 kW 
and 50 kW in this paper. The lower and upper boundaries of the ultra-
capacitor SOC are set to be 0%, and 100%, respectively. 

The reward function in the reinforcement learning has the similar 
effect as the cost function in conventional optimal controls. In this 
vehicle propulsion system supervisory control problem, the energy 

Table 1 
Specification of the vehicle and energy storage units.  

Parameters Values 

Vehicle curb weight 1722 kg 
Number of batteries in series connection 98 
Number of batteries in parallel connection 60 
Rated capacity of a single battery cell 2.4 Ah 
Number of ultracapacitor cells in series 50 
Number of ultracapacitor cells in parallel 1 
Ultracapacitor capacitance (single unit) 1200 F  
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consumption of the battery and the ultracapacitor and the battery aging 
are considered in the reward function as follows: 

R = − wE

(
Pbat + Pcap

)
Δt

Ebat,norm + Ecap,norm
− (1 − wE)

σ
σnorm

+ b (25)  

where wE represents the weighting factor of energy consumption, 
Ebat,norm, Ecap,norm are used to normalize the energy consumption by the 
battery and ultracapacitor at Δt duration, σnorm is used to normalize the 
severity factor, b is a constant positive bias to ensure a positive reward. 

There are two types of Q-learning methods based on the way Q value 
information storage: approximate method and tabular method. 
Approximate Q-learning method stores the Q value information in linear 

Fig. 5. Diagram of the three strategies used in this study: a) hierarchical Q-learning strategy; b) Q-learning strategy; and c) baseline strategy without ultracapacitor.  

Table 2 
Pseudocode of the hierarchical Q-learning algorithm.  

Hierarchical Q-learning Algorithm 

1 Initialize Q1(s, a1), Q2(s, a2) with zeros, for all s ∈ S, (a1, a2) ∈ A(s). 
Initialize Rtot with zero. 
2 for i ∈ (1,…,N) do (for each episode): 
3 Experience exploration: 
4 Initialize s 
5 for j ∈ (1,…,M) do (for each time step of episode): 
6 Choose action (a1,j ,a2,j) at state s using policy derived from Q1,Q2 

(ε-greedy action selection method and ε is constant at 0.05) 
7 Take action (a1,j, a2,j), observe Rj, sj+1 from environment 
8 end for 
9 Experience evaluation: 
10 if 

∑M
1 Rj > Rtot do 

11 Q value function update: 
12 for j ∈ (1,…,M) do (for each time step of episode): 

13 Q1(sj ,a1,j)←(1 − μ1)Q1(sj ,a1,j)+ μ1

[

Rj + γ1max
a1

Q1(sj+1 ,a1)

]

Q2(sj ,a2,j)←(1 − μ2)Q2(sj, a2,j)+ μ2

[

Rj + γ2max
a2

Q2(sj+1 ,a2)

]

14 end for 
15 Experience evaluation criteria update: 
16 Initialize s 
17 for j ∈ (1,…,M) do (for each time step of episode): 
18 Choose action (a1,j, a2,j) at state s using policy derived from 
Q1,Q2 (ε-greedy action selection method, ε = 0) 
19 Take action (a1,j ,a2,j), observe Rj, sj+1 from environment 
20 end for 
21 Rtot←

∑M
1 Rj 

22 end if 
23 end for   

Fig. 6. Driving cycle speed profiles: (a) UDDS, and (b) WLTP.  

Fig. 7. The highest accumulated rewards along the iterations. (Each iteration is 
an entire UDDS driving cycle and the sum of rewards are calculated from the 
entire driving cycle. The curve is the average of 5 run). 
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Fig. 8. Results from UDDS simulation using hierarchical Q-learning strategy: (a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, (d) 
ultracapacitor SOC, (e) Q-learning action, and (f) battery SOC. (cap engage: ultracapacitor engagement. 1 - engage, 0 – disengage.). 

Fig. 9. Results from UDDS simulation using Q-learning strategy: (a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, (d) ultracapacitor 
SOC, (e) Q-learning action, and (f) battery SOC. 
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or nonlinear correlations. During the learning process, the coefficients of 
the correlations are updated. Tabular Q-learning method directly stores 
the Q value information in lookup tables. Sutton et al. stated in a book 
that the approximate method only finds approximate value function 
[27]. This contrasts with the tabular method, which finds the exact 
optimal value function. Thus, this study focuses on the tabular 
Q-learning method. In this study, for each action, the Q values are stored 
as a vector, whose size is determined by the discretization dimension of 
state and action. The state discretization dimension is 5 for each state 
and action discretization dimension is 100. The detail of state and action 
discretization dimension study can be found in [28]. Therefore, for each 
action, the Q value vector size is 2500 (i.e., 5 × 5 × 100). 

In this study, the pseudo-code of the hierarchical Q-learning algo-
rithm is shown in Table 2. For the proposed hierarchical Q-learning 
strategy, the two Q vectors are firstly initialized with zeros. Then a full 
UDDS simulation is conducted, during which the two actions are taken 
by the Q-learning using ε-greedy policy method [29]. In the 
decision-making of each action, there is (1- ε) possibility that the action 
pointing to the largest Q value in the current state is chosen and there is ε 
possibility that the action is randomly selected within the upper and 
lower boundaries. ε is set as 0.05 in this study and the details of ε 
optimization can be found in [28]. After the two actions are decided and 

taken for one time step, an experience vector (si,ai,Ri, si+1) is collected, 
where si is the state before the action taken, ai is the action, Ri is the 
reward obtained in the state transition,si+1 is the new state after action 
taken. Over the 1369s of UDDS driving cycle, 1369 sets of experience 
vector are collected. After the experience evaluation, the two Q tables 
are updated based on the following equations: 

Q1
(
sj, a1,j

)
←(1 − μ1)Q1

(
sj, a1,j

)
+ μ1

[

Rj + γ1max
a1

Q1
(
sj+1, a1

)
]

(26)  

Q2
(
sj, a2,j

)
←(1 − μ2)Q2

(
sj, a2,j

)
+ μ2

[

Rj + γ2max
a2

Q2
(
sj+1, a2

)
]

(27)  

where μ1, μ2 are the learning rates, γ1, γ2 are the discount factors for the 
two actions of the hierarchical Q-learning. After the Q table update, the 
experience evaluation criteria is updated and another episode is con-
ducted for a new round of action exploration. The learning process 
stopped when the number of predefined episodes is reached. 

3.2. Q-learning and rule-based baseline without ultracapacitor 

For the Q-learning strategy, the entire process is the same as the 

Fig. 10. Zoom-in of hierarchical Q-learning simulation results in Fig. 8:(a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, and (d) 
ultracapacitor SOC. (The highlighted green section is between 217 s and 222 s). 

Fig. 11. Zoom-in of Q-learning simulation results in Fig. 9:(a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, and (d) ultracapacitor 
SOC. (The highlighted green section is between 217 s and 222 s). 
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hierarchical Q-learning, except it only has one Q table and only makes 
one action decision (i.e., ultracapacitor power split ratio). The Q- 
learning strategy does not make decision on the high level ultracapacitor 
engage signal like the hierarchical Q-learning does. In this case, the 
ultracapacitor engage signal is always on. 

For the rule-based baseline strategy without ultracapacitor, no 
ultracapacitor is considered in the vehicle propulsion system. All the 
power to the electric motor is provided by the battery. This purpose of 
this strategy is to reveal the benefits of adding the ultracapacitor to the 
propulsion system. 

4. Results analysis 

Two driving cycles are considered in this study as shown in Fig. 6. 
Urban Dynamometer Driving Schedule (UDDS) driving cycle [30] is 
used in the proposed strategy training, while Worldwide Harmonized 
Light Vehicles Test Procedure (WLTP) driving cycle [31] is used in 

proposed strategy validation. The vehicle model and control strategies 
are built upon Matlab/Simulink environment. 

4.1. Hierarchical Q-learning results 

Over the 30,000 iterations, the highest sum of rewards is shown in 
Fig. 7, which presents the best result from the first iteration. 30,000 is 
selected based on the preliminary simulation results to ensure conver-
gence. It takes around 5500 iterations for the sum of rewards to 
converge, and the sum of rewards does not increase significantly over 
the next 4500 iterations. In this study, the training process only occurs 
once and then the Q-learning parameters are fixed for aging and range 
simulation. To further improve the Q-learning performance, the training 
process can be re-activated after certain battery aging is detected, which 
makes Q-learning as an adaptive control. Details of adaptiveness anal-
ysis can be found in [15]. 

The key signals of the vehicle system obtained by the hierarchical Q- 

Fig. 12. Optimal policy map from the hierarchical Q-learning after the training: (a) ultracapacitor engage action from the layer 1, and (b) power split ratio between 
ultracapacitor and battery from the layer 2. 
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learning energy management strategy under the UDDS driving cycle are 
shown in Fig. 8, where Fig. 8(a) illustrates how the vehicle is controlled 
by the virtual driver to follow the velocity trajectory defined in UDDS 
cycle; Fig. 8(b) compares the power allocation between battery and 
ultracapacitor based on the control signals shown in Fig. 8(c); Fig. 8(d) 
shows the change of ultracapacitor SOC vs. time while providing the 
upper and lower SOC boundaries; and Fig. 8(e) and Fig. 8(f) show the 
power demand at electric power and the battery SOC, respectively. It 
indicated that the battery is mainly working in discharging conditions, 
while the ultracapacitor is working with similar charging and dis-
charging power during the driving under UDDS cycle. That means the 
ultracapacitor takes charge of most regenerative braking and its SOC 
bounces back every time vehicle experiences a braking event. On the 
contrary, battery SOC keeps dropping due to lack of regenerative 
braking by the battery. Based on the control outputs shown in Fig. 8(c), 
the ultracapacitor is engaged at most of time and the power split ratio 
varies significantly across the entire driving cycle. 

For the same vehicle driving under UDDS cycle, the vehicle perfor-
mances obtained by single-layer Q-learning are shown in Fig. 9. One 

noticeable difference between the results obtained by hierarchical Q- 
learning and single-layer Q-learning can be found in the trajectories of 
ultracapacitor SOC. For the vehicle controlled by single-layer Q 
learning, the ultracapacitor SOC drops below the minimum threshold for 
several times, while it maintains above 50% in hierarchical Q-learning 
simulation. In addition, the power split ratio curve is not the same be-
tween the two strategies, which leads to the different ultracapacitor 
usage. The ultracapacitor power output in the positive region in the 
single-layer Q-learning is smaller than that in the hierarchical Q- 
learning. Zoom-in windows will be utilized later to analyze the SOC and 
power output difference between the single-layer and the hierarchical 
Q-learning. 

For better visualization, the zoom-in plots for the vehicle perfor-
mance from 150 s to 250 s are shown in Figs. 10 and 11, respectively. 
During this period, vehicle accelerates between 40 mph and 60 mph as 
shown in Fig. 10(a). A shorter time window is highlighted with green 
background between 217 s and 222 s. During this 5 s, ultracapacitor 
power is close to zero in Fig. 10(b) due to the engagement signal is zero 
as shown in Fig. 10(c). On the contrary, the ultracapacitor in single-layer 

Fig. 13. Optimal policy map from the Q-learning after the training: power split ratio between ultracapacitor and battery.  

Fig. 14. Zoom-in of hierarchical Q-learning simulation results in Fig. 8:(a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, and (d) 
ultracapacitor SOC. (The highlighted green section is between 1172 s and 1178 s). 
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Q-learning keeps outputting power until ultracapacitor SOC drops to 
minimum threshold as shown in Fig. 11(b). The main difference is the 
ultracapacitor disengagement by the hierarchical Q-learning during the 
5 s period, which avoids the drop SOC. Besides the SOC difference, the 
ultracapacitor output power in the hierarchical Q-learning is greater 
than that in the single-layer Q-learning in the scenarios of 175 s, 180 s 
and 190 s in Fig. 10(b) and Fig. 11(b). The greater ultracapacitor output 
power is the result of larger power split ratio at those three scenarios as 
shown in Figs. 10(c) and 11(c). 

For the hierarchical Q-learning, the two-layer actions between 217 s 
and 222 s are shown in the optimal policy maps in Fig. 12. The optimal 
policy maps are generated by choosing the action corresponding to the 
maximum Q value in each state and the color of each region is mapped to 
the value in the color bar. As shown in Fig. 12(a), the ultracapacitor 
engage drops from 1 to 0 during the 217 s and 222 s. The Fig. 12(b) 
shows the trajectory of power split ratio from 0.2 to 0.6 in the same 
period. These two subplots explain the two actions shown in Fig. 10(c). 
The optimal policy map from Q-learning is shown in Fig. 13. It shows the 
detail trajectory of the power split ratio increases from 0.2 to 0.9 during 
217 s and 222 s. 

Another zoom-in window of Figs. 8 and 9 are shown in Figs. 14 and 
15, respectively. The vehicle has three stops within the 100 s window. A 
5 s section (1172 s - 1177 s) is highlighted with green background. The 
vehicle accelerates from 12 mph to 22 mph. The ultracapacitor SOC 
drops nearly 50% in the Q-learning strategy simulation (Fig. 15(d)), 
while it only drops 20% in the hierarchical Q-learning strategy simula-
tion (Fig. 14(d)). The disengagement of ultracapacitor at 1175s help 
reduce the SOC drop in the hierarchical Q-learning. Again, the ultra-
capacitor power output in the hierarchical Q-learning at around 1150s is 
greater than that in the single Q-learning. Even though the ultra-
capacitor power output in the hierarchical Q-learning in the highlighted 
region (1175s) is smaller than that in the single-layer Q-learning, this 
occurs much less frequently as shown in Figs. 8(b) and 9(b). 

The difference of the ultracapacitor output power leads to different 
battery aging effect of the two Q-learning, which can be explained by 
Fig. 16. The severity factor of the single-layer Q-learning is larger than 
that of the hierarchical Q-learning at most of the peaks. The larger 
severity factor leads to faster aging and larger battery capacity loss. The 
severity factor is defined in Eq. (10) and it mainly determined by battery 
C rate in this study as shown in Fig. 16(b). The trend of the two subplots 
in Fig. 16 is similar. Battery C rate is proportional to battery current, 
which is proportional to battery power output at a given battery voltage. 
Based on earlier analysis, ultracapacitor power output in the hierar-
chical Q-learning in most peaks are greater than that in the single-layer 
Q-learning, which means the battery power output of the two Q-learning 
have the reverse effect. Therefore, the battery C rate difference between 
two Q-learning is the result of the different ultracapacitor power output 
or battery power output. 

4.2. Comparison of three energy management strategies 

The vehicle single charge range and battery capacity loss generated 
from vehicle simulation using three strategies are summarized in 

Fig. 15. Zoom-in of Q-learning simulation results in Fig. 9:(a) Vehicle speed, (b) Output power of battery and ultracapacitor, (c) EM power, and (d) ultracapacitor 
SOC. (The highlighted green section is between 1172 s and 1178 s). 

Fig. 16. Battery severity factor and C rate comparison of single-layer Q- 
learning and hierarchical Q-learning. 

Table 3 
Range, 500 driving cycle capacity loss and Ah-throughput comparison among 
three methods.    

Rule-based without 
ultracapacitor 

Q- 
learning 

Hierarchical Q- 
learning 

UDDS Range [miles] 251.78 253.30 255.35 
500 cycles 
capacity loss [%] 

0.41 0.36 0.33 

Ah-throughput 
[Ah] 

84.34 67.17 59.48  

B. Xu et al.                                                                                                                                                                                                                                       



Journal of Energy Storage 46 (2022) 103925

11

Table 3. From the range results, it is observed that the addition of 
ultracapacitor slightly increases the range. Using Q-learning and hier-
archical Q-learning with the ultracapacitor, the range increases by 1.5 
mile and 3.5 mile, respectively. More importantly, the addition of 
ultracapacitor substantially reduces the battery capacity loss. Ultra-
capacitor plus the single-layer Q-learning, the battery capacity loss 
drops from 0.41% to 0.36% over the 500 UDDS driving cycles, which is 
12% reduction. The hierarchical Q-learning strategy reduces the ca-
pacity loss from 0.41% to only 0.33%, which is 20% reduction. 

Compared with the vehicle equipped only battery, the vehicle 
equipped with battery and ultracapacitor reduces the overall Ah- 
throughput of the battery and reduces the peak power during 

acceleration and braking events (Fig. 17). The battery Ah-throughput 
from two reinforcement learning strategies is close to each other, but 
far below the battery Ah-throughput from the vehicle simulation 
without ultracapacitor. The difference in battery capacity loss among 
the three energy management strategies are similar to the difference in 
battery Ah-throughput. In addition to the Ah-throughput, the battery 
peak power also indicates the battery capacity loss difference. At a fixed 
voltage, the battery output power is proportional to the battery current. 
Large current leads to high severity factor and fast battery degradation. 
Thus, reduction of large battery output power slows down battery 
degradation. In Fig. 17(b), when the vehicle accelerates, the battery 
power curve from hierarchical Q-learning stays in the high-power areas 
shorter than the other two strategies. When the vehicle brakes, battery 
recovers the energy when ultracapacitor is not equipped, otherwise 
ultracapacitor recovers most of the energy. 

4.3. Validation 

In this subsection, the hierarchical Q-learning strategy is validated in 
two aspects: i) different driving cycle, ii) measurement noise. First, 
WLTP driving cycle is used in the simulation of each strategy. For the Q- 
learning strategy and hierarchical Q-learning strategy, the Q tables are 
trained in the UDDS driving cycle. Then, the optimal action are taken 
based on the trained Q tables in the validation simulation. The results of 
the validation are summarized in Table 4. Similar to the results in UDDS 
driving cycle, Hierarchical Q-learning shows substantial battery capac-
ity loss reduction compared to the other two strategies in WLTP driving 
cycle. Additionally, Hierarchical Q-learning strategy slightly leads the 
range with the 218.51 miles. Therefore, the observation from WLTP 
driving cycle results is then consistent with the observation from UDDS 
driving cycle results. 

Uncertainty usually exists in signal measurement, which is consid-
ered in the validation of the hierarchical Q-learning strategy. Vehicle 

Fig. 17. Comparison of three energy management strategies using UDDS simulation results: (a) vehicle speed, (b) battery output power, and (c) ultracapacitor 
output power. 

Table 4 
Energy management strategies validation at WLTP driving cycle.   

No 
ultracapacitor 

Q- 
learning 

Hierarchical Q- 
learning 

Range [miles] 216.53 216.92 218.51 
500 cycles capacity loss 

[%] 
0.61 0.56 0.53 

1200 cycles capacity loss 
[%] 

1.32 1.21 1.14  

Table 5 
Hierarchical Q-learning strategy validation considering velocity measurement 
noise.   

UDDS WLTP 
w/o noise w/ noise w/o noise w/ noise 

Range [miles] 255.35 255.30 218.51 217.61 
500 cycles capacity loss [%] 0.33 0.34 0.53 0.55 
1200 cycles capacity loss [%] 0.71 0.73 1.14 1.19  
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velocity is one of the key parameters in the energy management. A noise 
with a normal distribution is added to the velocity signal, where the 
mean value μ is 0 and the standard deviation σ is 0.2. The validation 
results are summarized in Table 5. The results show that the consider-
ation of measurement noise slightly affects the range and battery ca-
pacity loss. The range merely changes, while the 500 cycles capacity loss 
increases 0.01% and 0.02% for UDDS and WLTP driving cycles, 
respectively. Overall, the impacts of measurement noise are not 
significant. 

5. Conclusion 

A hierarchical Q-learning strategy is proposed for the supervisory 
control of a battery/ ultracapacitor electric vehicle. It considers a high 
layer ultracapacitor engage control and a low layer ultracapacitor power 
split ratio. The proposed strategy converges after 5000 iterations during 
the learning process. Compared to a baseline strategy without ultra-
capacitor, the proposed strategy reduces the battery capacity loss by 
20% and increases the range by 1.5%. Compared to a single-layer Q- 
learning strategy, the proposed hierarchical Q-learning reduces the 
battery capacity loss by 12% and slightly increases the range. The pro-
posed strategy is also validated in a different driving cycle. Compared 
with the baseline strategy without ultracapacitor and the single-layer Q- 
learning strategy, the proposed strategy reduces the battery capacity loss 
by 13% and 5%, respectively and maintains slightly longer range. 
Additionally, the proposed strategy is validated considering vehicle 
velocity measurement noise and the result is not significantly impacted 
by the addition of the measurement noise. Due to the model-free char-
acteristics of the hierarchical Q-learning algorithm, the proposed strat-
egy can be easily adapted for different hybrid power system 
applications. 

In this study, some models are built with experimental data. How-
ever, the proposed strategy is not validated in experiments, which will 
be one of future research tasks. Additionally, the approximate Q- 
learning algorithm has the potential to improve the proposed strategy by 
considering more state variables and is worth exploration. 
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