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Few-shot Breast Cancer Metastases Classification
via Unsupervised Cell Ranking

Jiaojiao Chen, Jianbo Jiao, Shengfeng He, Guoqiang Han, and Jing Qin

Abstract—Tumor metastases detection is of great importance
for the treatment of breast cancer patients. Various CNN
(Convolutional Neural Network) based methods get excellent
performance in object detection/segmentation. However, the de-
tection of metastases in hematoxylin and eosin (H&E) stained
whole-slide images (WSI) is still challenging mainly due to two
aspects: (1) The resolution of the image is too large. (2) lacking
labeled training data. Whole-slide images generally stored in a
multi-resolution structure with multiple downsampled tiles. It is
difficult to feed the whole image into memory without compres-
sion. Moreover, labeling images for the pathologists are time-
consuming and expensive. In this paper, we study the problem
of detecting breast cancer metastases in the pathological image
on patch level. To address the abovementioned challenges, we
propose a few-shot learning method to classify whether an image
patch contains tumor cells. Specifically, we propose a patch-level
unsupervised cell ranking approach, which only relies on images
with limited labels. The main idea of the proposed method is that
when cropping a patch A from the WSI and further cropping a
sub-patch B from A, the cell number of A is always larger than
that of B. Based on this observation, we make use of the unlabeled
images to learn the ranking information of cell counting to extract
the abstract features. Experimental results show that our method
is effective to improve the patch-level classification accuracy,
compared to the traditional supervised method. The source code
is publicly available at https://github.com/fewshot-camelyon.

Index Terms—Few-shot Learning, Metastases Classification,
Unsupervised Learning

I. INTRODUCTION

Cancer is a disease that cells divide without stopping.
In general, the earlier cancer diagnosed, the more powerful
effect the treatment could be. A complete process of breast
cancer diagnose on pathological images contains cancer clas-
sification/detection [1], [2], grading(cell analysis) [3], [4], and
staging (the extent of the disease) [5], [6], [7], according to the
TNM (Tumor, Node, Metastasis) staging system. In this paper,
we study the breast cancer whole-slide pathological image of
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Fig. 1: The main idea of our work. The right images are
cropped patches from the left one, in the corresponding square
regions. We first crop a patch A from the original slide image.
Then we further crop a sub-patch B from A. It can be observed
that the number of cells in A is always larger than that in B.
By setting patch A as the positive sample and B the negative
sample, we learn a binary classifier to extract the ranking
features, in a unsupervised manner. Consequently, a binary
classifier is fine-tuned based on the above features to detect
the metastases.

lymph node sections that is adjacent to the breast, to detect
the breast cancer metastases.

Before machine learning methods appear, pathologists diag-
nose cancer metastases by scanning the pathological images
of the patients under the microscopes. However, it is time-
consuming and even the skilled pathologists are still error-
prone. Moreover, skilled pathologists are scarce especially
for those remote areas. With the development of machine
learning, various CNN-based methods are proposed to solve
the problems of image recognition [8], [9], [10], image
semantic segmentation [11], [12], [13], etc., which show
promising performance. In medical imaging domain, there are
also many attempts of applying machine learning methods
on pathological images. Moreover, with the great progress
of machine learning, using auto-classification [14], [15], [16]
and detection methods [17], [18] to analyse breast cancer
has become the mainstream. All these methods are time-
saving and labor-saving. However, almost all these methods
are data-driven which relies on a large number of labeled
training data. As discussed above, it is difficult and time-

https://github.com/jiaojiao-Chen/fewshot-camelyon
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consuming for pathologists to scan and label the medical
images, especially for the gigapixel pathology images. In order
to deal with the problem of lacking training data, some deep
learning methods [19], [20] train on other larger datasets and
finetune with the target one. Other methods [21], [15] use data
augmentation strategies to expand the dataset. Chang et al.[19]
propose a transfer learning method to detect breast cancer,
which trained on non-medical images first and transferred
to the histopathology images. Samala et al.[20] develop a
deep CNN using a multi-stage transfer learning approach that
utilized data from similar auxiliary domains. Bayramoglu et
al.[21] use multi-scale images as inputs of CNN, and Motlagh
et al.[15] use random resizing, rotating, cropping and flipping
methods to augment the breast cancer sub-type classes. In a
word, abundant dataset or other data expansion methods are
used in the works described above.

In this paper, we propose a few-shot classification method
that utilizes cell counting as an auxiliary task. The main idea is
that even though the exact counting C(A) of a cell image A is
unknown, the counting C(B) of a sub-image B (cropped from
A) is less or equal to C(A) (see Figure 1). In our work, we do
not have abundant labeled data for training, but we can get rich
unlabeled samples from the hospital and other organizations.
So in our task, we crop a pair of patches from the original
input and resize them to the same size. We can know that
the cell number of the small patch is less or equal to the
original (Figure 1). The auxiliary ranking task can learn more
abstract features and boost the performance of the supervised
classification method with insufficient data.

In summary, the main contributions of this paper are three-
fold.

• We address the breast cancer metastases classification
problem in an unsupervised manner.

• We propose a few-shot learning method that takes cell
ranking as an auxiliary task.

• The proposed approach is shown to perform better than
the traditional supervised methods trained with the same
amount of labeled data.

The rest of the paper is organized as follows. In the
next section we briefly describes the recent work of cancer
metastases classification and detection. In section III, we
describe the proposed method in detail. In section IV we show
the performance of our method with extensive experiments.
Finally in section V, we conclude our work.

II. RELATED WORK

Traditional machine learning method. Breast cancer is the
most common cancer among women. Before machine learning
appears, pathologists judge breast cancer by scanning the
pathologist images through the microscopes [22]. Later on,
machine learning based methods [23], [24] appear to perform
computer assisted diagnosis. In [23], the authors present naive
Bayes classifier and k-neareast neighbor classifier for breast
cancer classification. Random Forests classifier with feature
combination of Gabor and gray-level co-occurrence matrix
methods is used in [14] to perform texture analysis. Support
vector machine is used in [24] for breast cancer classification

Fig. 2: The seventh downsampled tile of the lymph node
pathology tissue. The cells marked with the blue line are tumor
metastases.

Fig. 3: Some normal (top) and tumor (bottom) patches cropped
from the whole-slide pathological tissue in the biggest tile.

with gene expression data. However, these methods use hand-
crafted features which cannot fully represent the intrinsic
properties of breast cancer histology images.

Deep learning method. Recently, convolution neural net-
works have achieved great success in object classification
and detection. There are also some attempts [21] [18], [20],
[25], [26] proposeed to deal with breast cancer classification
and detection. Bayramoglu et al.[21] propose to use CNNs
to classify breast cancer histopathology images independent
of their magnification. Spanhol et al.[16] propose a method
based on the extraction of image patches for training the
CNN to classify breast cancer. This method allowed using
the high resolution histopathological images as input, and
the performance is better when compared to other machine
learning models trained with hand-crafted image descriptors.
Deep max-pooling CNNs is proposed in [4] to detect mitosis
in breast cancer histology images. Aresta et al. [27] propose
to classify normal, benign, in situ carcinoma and invasive
carcinoma of breast cancer on the whole-slide level. A method
with anchor layers scanning the whole-slide image to predict
micro- and macro-metastases is proposed in [28]. van Diest
et al. [29] summarize the performance of deep learning
algorithms for detecting metastases in H&E images of lymph
of women with breast cancer. Wang et al.[30] achieve the
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Fig. 4: The framework of our few-shot classification method. The main procedure contains ranking and classification. The
ranking step learns from cell ranking with the pairs of patches cropped from the unlabeled WSI. The unsupervised ranking
knowledge is then transferred to the classification network, followed by a finetuning step using the labeled training data cropped
from the labeled WSI in a supervised manner.

best performance on CAMELYON161 (Cancer Metastasis in
Lymph Nodes Challenge 2016) for breast cancer detection.
The result in [31] shows that categories of false positives,
e.g. , nerves or contamination, could be further optimized.
These methods achieved promising results in breast cancer
classification and detection. However, they rely heavily on
large amount of annotated training data.

Semi-supervised learning method. To deal with the problem
of lacking training data, some few-shot learning methods [32],
[33] are proposed. In [32], SVM classifier is employed to mask
unlabeled data, followed by a decision tree that is learned with
masked unlabeled data and real-labeled data for diagnosis of
ultrasound breast tumor. Oliver et al.[33] propose a one-shot
learning method to segment the breast, pectoral muscle, and
background in digitized mammograms with position, intensity
and texture information. On the other hand, semi-supervised
method is used in [34], [35], [36]. Sun et al.[35] make full
use of the unlabeled data and proposed a graph based semi-
supervised learning scheme using deep conventional neural
network for breast cancer diagnosis. Li et al.[36] present a
semi-supervised locality discriminant projections with kernels
for breast cancer classification. However, the above mentioned
methods either fine-tuned with large dataset that unrelated to
the origin, or reply on data expansion method. In our work,
we leverage limited labeled data and make full use of the

1https://camelyon16.grand-challenge.org/

unlabeled original data.

III. FEW-SHOT CANCER METASTASES CLASSIFICATION

A. Overview

Our work aims to detect the breast cancer metastases
with the gigapixel pathology images of lymph node sections
adjacent to the breast. As discussed in the introduction part, the
whole-slide images are stored in a multi-resolution structure
with multiple downsampled tiles which are hard to feed into
the memory. As a result, our work is carried out on the
patch-level and the patch is cropped at the largest layer.
The whole work contains two steps: 1) training patch-level
classifier. 2) Detection (mask generation). Based on the patch-
level classification of whether a patch contains tumor, we can
generate the tumor metastases area of the whole-slide image.
Figure 2 shows an example of the seventh down-sampled
layer of the pathology image. Some example patches are
shown in Figure 3. In our patch-level classification, we use the
tumor/normal patches cropped from the labeled WSI to train a
binary classifier. As mentioned above, acquiring labeled data
in the medical domain is costly. Although supervised learning
is available using the patches cropped from the labeled whole-
slide tissue, it is difficult to get satisfied result because of
limited data. While the unlabeled data is relatively easier to
obtain. So in order to get more representative features, we
take an auxiliary unsupervised cell ranking method which
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Fig. 5: Example cell images with different dense levels.

proposed to use the unlabeled dataset to improve the patch-
level classification accuracy. So training patch-level classifier
contains two steps: 1) Supervised patch classification with
tumor/normal patches cropped from the WSI. 2) Unsupervised
cell ranking with pairs of patches cropped from the unlabeled
WSI. Figure 4 shows the pipeline of the proposed method.

B. Supervised Patch Classification

In the supervised patch-level classification, the inputs are
patches cropped from the gigapixel pathology whole-slide
images with a sliding window, and outputs are the probability
of normal or tumor class the patches belong to. It is a binary
classification problem and cross entropy loss is used as the
training objective. In our work, we use the Inception [37]
as our classification network. In addition, we also utilize the
VGG [38] and ResNet [39] to verify the effectiveness of our
method. Specifically, we choose resnet50 and vgg19 for our
verification work. Both the ranking task and the classification
task are binary classification problems. And supervised patch
classification is shown in the bottom of Figure 4. For the
supervised classification phase, the loss function is defined
as:

Lossc = −(1/N)

N∑
i=1

M∑
j=1

yij log(pij), (1)

where N denotes the number of training samples, M denotes
the number of classes. pij is the probability of image i belongs
to class j, while yij is the ground truth probability.

C. Unsupervised Cell Ranking

Learning an automatic diagnose system in a supervised
manner with limited data is a challenging problem. Our main
idea is to use unlabeled data for cell counting by learning to
rank. It is natural for an image patch within a larger patch
should have fewer or equal number of elements compared to
the larger one. In our scenario, when cropping a patch from a
larger pathology patch, the cell counting of the larger patch is
bigger than the small patch (Figure 1). Figure 5 shows some
cell images in which each patch has a different number of
cells. In the phase of unsupervised cell ranking, we assign a
positive label one to the larger patch while a negative label to
the smaller one. These patches are then used to train a binary
classifier. The framework of the unsupervised cell ranking is
shown in the top of Figure 4. To present the model from
learning only the magnification information, we randomly crop
the larger patch within the width range between 400 and 800,
and the smaller patch with a random ratio between 0.4 to
0.9 of the bigger one. Then all the patches are resized to the

Fig. 6: Three methods of combining the unsupervised ranking
task and the patch-level classification task. (a) learns ranking
task and classification task in sequential order. (b) learns two
tasks iteratively. (c) learns two tasks simultaneously.

same size. By this way, each pair of patches are independent,
although the small patch selected from one pair A may have
more cells than another big patch selected from pair B. In the
ranking phase, the loss is defined as:

Lossr = −(1/2K)

K∑
i=1

L∑
j=1

yij log(pij), (2)

where K denotes the number of training pairs, L denotes the
positive and negative class. pij predicted the probability of
patch i belongs to class j, and yij means the ground truth that
patch i belongs to class j.

There are three possible ways to combine the ranking
task and supervised classification task (Figure 6): 1) Do cell
ranking first and classification next. 2) Do two task iteratively
or 3) two task learn simultaneously. Learning these two tasks
simultaneously with weight sharing requires large amount
of data in both tasks, which is not applicable for few shot
learning. On the other hand, iteratively training two tasks can
easily lead to overfitting. As a result, in our work, we model
our method as a sequential one. We use the unsupervised cell
ranking task as pre-training stage to extract common features,
then finetune the low-level features and the final classifier.

D. Detection (Mask Generation)

Different from the natural image detection or localization
methods that input the whole image into network, we feed
small patches into our classification network. These small
patches are extracted in the sliding window fashion on the
pathology image. Then we combine the predicted results of
those small patches into a two-dimensional matrix accord-
ing to the order. The matrix is further transformed into a
heatmap. The final detection result is achieved by comparing
the heatmap with the ground truth binary map labeled by the
pathologist. Some post-processing techniques are also applied
in the heatmap, e.g. removing those probabilities less than
0.5 in the two-dimensional matrix and merge two tumor areas
that are too closed in the heatmap. The framework of mask
generation is shown in Figure 7.

Next, we describe how to generate the heatmap and binary
diagram in detail. The method is illustrated in Figure 8. The
pathological images are stored with multiple down-sampled
layers of scale 2 spatially. Our detection result is generated in
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Fig. 7: The framework of metastases detection (mask generation). Patches are first extracted from the whole-slide tissue image
with a sliding window. Then the patches are fed into a pre-trained CNN model. A two dimensional matrix is generated from
the prediction of the CNN model and finally the detection mask is achieved from the matrix. The CNN model is the patch-level
classifier and the step length of the sliding window with overlapping is 128.

Fig. 8: Patches cropped by the sliding window in detail and
the heatmap generated from the two-dimensional matrix. Each
point in the 7th layer corresponds to a patch in the first layer.

the seventh layer, and we use a sliding window with a step
length of 128 to crop patch (with overlapping). Each point
in the 7th layer corresponds to a patch of 128*128 in the
first layer. Different networks with different input sizes but all
the input we used is larger than 128. As shown in Figure 8,
when cropping a patch with sliding window and feed it into
the classifier, the classifier outputs the predicted probability of
tumor and fill it in the corresponding position of the matrix
with the same size of the 7th layer.

IV. EXPERIMENTS

A. Implementation Details

Our experiments are performed on the CAMELYON16
dataset. It is collected from two independent breast cancer
datasets which contain 270 training WSI and 130 test WSI.
We use the patch-level classification accuracy as our crite-
rion. We randomly selected two tumor samples (because it
contains not only tumor cells but also normal cells) and the
corresponding masks from the training set as our training data.
With the samples selected, we crop approximately 30k training

TABLE I: The number of whole-slide images and patches
cropped from the WSI about the supervised learning with the
labeled samples and the data of cells counting for ranking.
The number of patches for ranking is in pairs.

Num.
Phase

Train Val Test Rank

num. of WSI 2 2 130 266
patches 30925 19799 3.8m 60k

samples (the normal samples and tumor sample is at a one-
to-one scale) and 20k validation samples. We then use the
other 266 images selected from the CAMELYON dataset as
the unlabeled dataset and crop approximately 60k pairs of
patches for learning the ranking task. In order to evaluate the
effectiveness of our work, we test the proposed method using
the testing set of CAMELYON, which contains 130 images
(we crop approximately 3.8 million patches). In each ranking
epoch, 2k batches (batch size of 16) are randomly selected
for training and validation. We trained our networks with
stochastic gradient descent in Pytorch and the loss function is
cross entropy loss. Unless otherwise stated, the weight decay
is 0.05. To combine the classification and the ranking modules,
we first pre-train on the ranking data to extract common
features, and then finetune the model on the classification
data. In the finetuning phase, the learning rate of the fully
connected layers is ten times of the convolutional layers.
The training data distribution is described in Table I and the
training parameters are described in Table II.

B. Ablation Studies and Quantitative Evaluations

In this section, we perform an ablation study on the CAME-
LYON16 dataset. We first compare the proposed few-shot
classification with state-of-the-art fully-supervised method.
The results are shown in Table III. The work by Wang et
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TABLE II: Parameters details. This table shows the learning
rate and batch size used in the ranking and classification phase.

Method
Model

Resnet VGG Inception

learning rate(lr) 1e-05 1e-05 1e-04
ranking lr 5e-04 1e-04 1e-03
batch size(bs) 32 32 32
ranking bs 12 10 16

al.[30] is the winner of the camelyon16 challenge. They use
all the 270 labeled whole-slide images to perform a fully-
supervised learning and trained with multiple GPUs. We see
that the proposed method is trained with only 2 labeled images,
while still achieves reasonable results compared to the state-
of-the-art fully-supervised method.

We also compare the differences between the proposed ap-
proach that uses the auxiliary task with training from scratch,
and we use training from scratch in a supervised manner as the
baseline. The results are shown in Table IV. We can see that
for each model, there is an significant improvement for patch-
level classification accuracy. It validates the effectiveness of
the proposed ranking task in our work.

After comparing the performance of training from scratch
and pre-trained with the ranking information, we also analyze
the influence of ranking with different training dataset size. For
this evaluation, we get two large and small training datasets
of approximately 100k and 5k patches for training (compared
to the original 30k patches). The validation data size and test
data size are 20k and 3.8m, respectively. The result is shown in
Table V. From the table we can see that even for a much small
training data, ranking task provides an obvious improvement
of classification accuracy. It reveals the same conclusion of the
ablation studies. In addition, we can see that the improvement
of the 30k data size is larger than that of the 5k size. This
is because the small dataset has much less training samples
that are insufficient for learning representative features. On the
other hand, using a large data with 100k patches can obtain a
much better performance, and the ranking strategy still boosts
the classification accuracy for such a large number of training
samples. All other settings are similar, except the data size for
training between three experiments.

Finally, we compare the performance of our proposed
method with the leaderboard2 of the CAMELYON16 chal-
lenge. The CAMELYON16 challenge contains two tasks: Iden-
tification of individual metastases in WSI and Classification of
slides containing metastases and normal sildes.

Identification of individual metastases in WSI: In this task,
free-response receiver operating characteristic (FROC) curve
is used. The FROC curve is defined as the plot of true-
positive fraction versus the average number of false-positive
per WSI. The scoring matrix of CAMELYON16 is defined as
the average sensitivity at 6 predefined false positive rates: 1/4,
1/2, 1, 2, 4 and 8 false positives per WSI. At this stage, all
the probability heatmaps of test set are generated using the

2https://camelyon16.grand-challenge.org/Results/

trained patch-level CNN, and binarized with a threshold value
of 0.9. Finally, all the predicted regions are post-processed
with morphological operators to connect neighboring regions.
The centroids of the connected regions are selected as the
candidate lesion location and the probability of the centroids
are used as the lesion scores. The result is shown in Figure 9.
We can see that our method ranks at 11th among 32 algorithms
with just 2 pixel-level labeled WSI. Moreover, we can see that
the scores of each algorithm varied significantly despite the use
of advanced CNN architectures. As discussed in paper[29],
the classification performance is largely influence by different
auxiliary strategies (e.g. , standardization technique, network
ensemble and hard-negative mining). In here we do not further
delve into these tricks, but to only show the effectiveness of
our ranking model. However, the proposed few-shot model
achieves reasonable results, and even outperforms some deep
learning based fully supervised model (e.g. , DeepCare).

Classification of slides containing metastases and normal
sildes: For this task, a single probability of tumor for the entire
WSI is predicted. At this stage, HMS & MIT (I & II) extract a
28-length feature vectors from the heatmaps to train a random
forest classifier, and use this classifier to assign the slide level
score. HMS & MGH(I, II & III) are also extracted higher level
features from the heatmaps to train a random forest classifier,
and we use the classifier to produce the probability score for
each slide. Some teams use the maximum lesion score in the
first task as the slide score like CULab(I, II & III) and ExB. In
our work, we also extract 30 geometrical and morphological
features from the heatmaps of all training data. They include
the total number of tumor regions per WSI, percentage of
tumor region over the whole tissue region, the area of largest
tumor region, the longest axis in the largest tumor region,
average prediction across tumor region, max, mean, variance,
skewness, kurtosis of area, perimeter, compactness, rectangular
and solidity. We use these features to build a random forest
classifier to predict the WSI score of the test set. The result
is shown in Figure 10. On the test phase, our slide-level
classification method achieves an AUC of 0.883.

C. Qualitative Evaluation
In this part, we qualitatively compare our method with the

baseline and the labeled ground truth segmentation. As shown
in Figure 11, the third column is the results of our cancer
segmentation, while the fourth column is the baseline that is
trained from scratch on the patch-level. In the segmentation
results, blue region indicates normal and background, while
red means tumor. The color between red and blue means the
different probability of tumor. From the result, we can see that
our method can well detect the metastases, and the proposed
method performs much better than the baseline. For example,
it is obviously that our method has less noise then the baseline
in the ambiguous regions. It also indicates that the proposed
learning to rank is effective for learning representative features.

D. Limitation and Discussion
In our work, we proposed a method that utilizes the easily

accessible unlabeled data, to promote the breast cancer metas-
tases segmentation with limited labeled data. The proposed
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TABLE III: Patch-level classification accuracy of fully-supervised method used in the challenge winner [30] and our method.

Method few-shot fully-supervised

Resnet50 VGG19 InceptionV3 VGG16 InceptionV1

[30] - - - 0.9790 0.9840
Ours 0.8601 0.8720 0.8961 - -

TABLE IV: Evaluation on the patch-level. The numbers are
the final patch-level classification accuracy of the proposed
method with different models on the testset. Base CNN means
train from scratch in the training set cropped from the two
whole-slide images. Finetune means pretraining on the ranking
dataset and finetuning it with the training dataset. Improvement
means the efficiency of using ranking task compared to the
base CNN.

Method
Model

Resnet VGG Inception

Base CNN 0.7965 0.8040 0.8680
Finetune 0.8601 0.8720 0.8961
Improvement 0.0636 0.0680 0.0281

TABLE V: Performance improvement of patch-level classifi-
cation accuracy of the proposed method with different size of
training data. 5k, 30k, and 100k indicate the training samples
used for training. The first line of each size means train from
scratch, while the second line means pre-trained with learning
to rank.

data size
Model

Resnet VGG Inception

100k samples 0.9012 0.9115 0.9356
0.9305 0.9401 0.9522

Improvement 0.0293 0.0286 0.0166

30k samples 0.7965 0.8040 0.8680
0.8601 0.8720 0.8961

Improvement 0.0636 0.0680 0.0281

5k samples 0.8034 0.8185 0.8571
0.8763 0.8688 0.8752

Improvement 0.0639 0.0503 0.0181

method achieved a better result compared to traditional super-
vised learning methods and got closed to the fully-supervised
method training with enough data. One limitation of our work
is that some noise exists in the result, mainly caused by the
lacking of training data and inadequate annotations. As shown
in Figure 12, although our method has less noise then the
baseline, there are also much uncertain like the yellow area.
The reason is the false prediction of the patch-level classifier,
which may be caused by the new type of tumor cells that have
not appeared in the training phase. Another limitation of our
work is that for small metastases area, especially for isolated
tumor cells, it is difficult to detect (e.g. , Figure 13). In Figure
13, the area contoured by the red line have not been detected.
We may focus on these two main limitations in our future

Fig. 9: FROC curves of the Top algorithms for the Metastases
Identification Task From the CAMELYON16 Competition.

Fig. 10: ROC curves of the Top Algorithms for the Metastases
Classification Task From the CAMELYON16 Competition.

work, by proposing a better solution to incorporate unlabeled
data. On the other hand, our learning to rank idea is general
and can be applied to other types medical images. It will leaves
as one of our future works.

V. CONCLUSION

In this paper, we proposed a few-shot learning method
to detect the cancer metastases on patch-level. Our method
takes full advantage of the unlabeled data to learn ranking
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Fig. 11: Some tumor segmentation results of Inception. The first column shows the downsampled pathological images and the
area contoured by the blue line is a tumor cell. GT is the ground truth of cancer metastases labeled by the pathologist. The
third column shows examples of our detect results. Baseline is the results of training from scratch.
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Fig. 12: Failure cases. Few-shot learning still suffers from lack of training data.

Fig. 13: Ground truth (left) and our detection example (right). The result shows that those small metastases areas are difficult
to detect.

information and achieves a better result compared to the
supervised method. The proposed method only require slide-
level annotations thus we believe it will also benefits those
tasks that labeled data is difficult to acquire.
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