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Abstract
Dimension reduction is analytical methods for reconstructing high-order tensors that the
intrinsic rank of these tensor data is relatively much smaller than the dimension of the ambi-
ent measurement space. Typically, this is the case for most real world datasets in signals,
images and machine learning. The CANDECOMP/PARAFAC (CP, aka Canonical Polyadic)
tensor completion is a widely used approach to find a low-rank approximation for a given ten-
sor. In the tensor model (Sanogo and Navasca in 2018 52nd Asilomar conference on signals,
systems, and computers, pp 845–849, https://doi.org/10.1109/ACSSC.2018.8645405, 2018),
a sparse regularizationminimization problemvia �1 normwas formulatedwith an appropriate
choice of the regularization parameter. The choice of the regularization parameter is impor-
tant in the approximation accuracy. Due to the emergence of the massive data, one is faced
with an onerous computational burden for computing the regularization parameter via clas-
sical approaches (Gazzola and Sabaté Landman in GAMM-Mitteilungen 43:e202000017,
2020) such as the weighted generalized cross validation (WGCV) (Chung et al. in Electr
Trans Numer Anal 28:2008, 2008), the unbiased predictive risk estimator (Stein in Ann Stat
9:1135–1151, 1981; Vogel in Computational methods for inverse problems, 2002), and the
discrepancy principle (Morozov in Doklady Akademii Nauk, Russian Academy of Sciences,
pp 510–512, 1966). In order to improve the efficiency of choosing the regularization param-
eter and leverage the accuracy of the CP tensor, we propose a new algorithm for tensor
completion by embedding the flexible hybrid method (Gazzola in Flexible krylov methods
for lp regularization) into the framework of the CP tensor. The main benefits of this method
include incorporating the regularization automatically and efficiently as well as improving
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accuracy in the reconstruction and algorithmic robustness. Numerical examples from image
reconstruction andmodel order reduction demonstrate the efficacy of the proposed algorithm.

Keywords Tensor · Tensor completion · Model order reduction · Regularization · Hybrid
projection methods

1 Introduction

Tensor computations have become prevalent in across many fields in mathematics [16, 28],
computer science [9, 22, 35], engineering [14] and data science [1, 27]. In particular, tensor
methods are now ubiquitous in areas of numerical linear algebra [6, 7], imaging sciences
[21, 55] and applied algebraic geometry [29]. In addition, tensor based methods are gaining
grounds in solving complex problems in scientific computing. [11].

The tensor rank problem is crucial in reconstructing a given tensor T . The rank of tensor
is defined as the minimum number R of the summands in a sum of rank-one tensor product,∑R

r=1 αrar⊗br⊗cr . In practice, the columnvectors, ar ,br and cr , are concatenated intowhat
we call factor matrices, A, B and C. The elements of the vector α of size R are the scalings
of the rank-one tensors. This tensor factorization is the well-known canonical polyadic or
CANDECOMP/PARAFAC (CP) decomposition. Optimization techniques, namely themulti-
block alternating methods are standard methods for finding the factor matrices of a given
tensor and its rank.

A tensor model [45] which incorporates tensor rank approximation is

min
A,B,C,α

‖T − S‖F + λ‖α‖�1 ,

where λ is a regularization parameter and S = ∑U
r=1 αrar ⊗ br ⊗ cr with an upper bound

tensor rank R. This sparse optimization problem is solved iteratively and the vector α reveals
an approximated tensor rank R where R << U . The main drawback of this model is
that the accuracy of the computational results highly relies on an appropriate value of the
regularization parameter λ. In [54], the choice of the regularization parameter is tied to
two intrinsic parameters: variance of noise and incoherence of the given tensor data T .
One has to initialize λ from a bound based on these two parameters from the tensor data
with an upper bound rank R. In practice, a priori estimates of the variance and incoherence
parameters are required based on a CP decomposition of the given data with an initial tensor
rank guess R. Then λ can be chosen accordingly from an estimated bound. The advantage
of this approach is that it provides a theoretical bound for λ. However, it is not practical
enough for real data implementation; the choice of λ is only as good as the estimated intrinsic
parameter. Moreover, the accuracy level is only around 10−2. In this paper, we present a more
adaptive, practical and methodical way for calculating the regularization parameter λ using
the flexible hybridmethod, which is tailored for the use in the canonical CP tensor framework.
The flexible hybrid method is capable of computing the regularized solutions to large-scale
linear inverse problems more efficiently than classical approaches [20], since the original
regularized problem is iteratively projected onto small subspaces of increasing dimension
and the regularization parameter λ is estimated by implementing the standard regularization
techniques, such as weighted generalized cross validation (WGCV) [15], unbiased predictive
risk estimator [48, 51], and discrepancy principle [36], on the projected problem at each
iteration. Our numerical results show that this new iterativedt8;333 ‘method gives more
accurate results in tensor completion and model order reduction problems.
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We have two application areas in this paper: tensor completion in image restoration and
model order reduction. Matrix and tensor completion techniques provide major tools in
recommender systems in computer science and in general in data science; it is about filling
in missing entries from the partially observed entries of the matrix or tensor. The success
of matrix completion methods are attributed to sparse optimization methods in compressed
sensing [13]. These methods have been generalized iteratively to tensor completion problem
[33] via Tucker models [4, 52] where missing entries are predicted through the matrix trace
norm optimization. In fact, the tensor completion problem dates back as early as in 2000.
Bro [12] had one of the earliest work on demonstrating two ways to handle missing data
using CP. The first one is to estimate the model parameters iteratively while imputing the
missing data. Another approach called Missing-Skipping skips the missing value and builds
up the model based only on the observed part via a weighted least squares formulation in
the CP format [2]. Our proposed tensor completion gives more accurate results in capturing
more features in color images through low rank construction via our model and numerical
technique.

Furthermore, we show that recent effort in tensor-based model reduction such as Ran-
domized CP tensor decomposition [17] and tensor POD [56] have been rewarded with many
promising developments leverage the computational effort for many-query computations
and repeated output evaluations for different values of some inputs of interest where classical
model order reduction approaches [38, 39] such as ReducedBasisMethods [8, 44] and Proper
Orthogonal Decomposition (POD) faced with heavy computational burden. Compared with
the classical model order reduction approaches, tensor-based model reduction algorithms
allow us to achieve significant computational savings, especially for expensive high fidelity
numerical solvers.

The paper is organized as follows. In Sect. 2, we provide some tensor backgrounds and
basic tensor decomposition. Then, Sect. 3 deals with the derivations of the iterative equation
by alternating block optimization containing the unfolding of the tensors in each mode. The
proximal gradient formulation and the flexible hybrid method for the automatic selection
of the regularization parameter are discussed. Experimental results are in Sect. 4, and the
conclusions follow in Sect. 5.

2 Preliminaries

We denote a vector by a bold lower-case letter a. The bold upper-case letter A represents a
matrix and the symbol of tensor is a calligraphic letter A. Throughout this paper, we focus
on third-order tensors A = (ai jk) ∈ R

I×J×K of three indices 1 ≤ i ≤ I , 1 ≤ j ≤ J and
1 ≤ k ≤ K , but all are applicable to tensors of arbitrary order greater or equal to three.

A third-order tensor A has column, row and tube fibers, which are defined by fix-
ing every index but one and denoted by a: jk , ai :k and ai j : respectively. Correspondingly,
we can obtain three kinds A(1),A(2) and A(3) of matricization of A according to respec-
tively arranging the column, row, and tube fibers to be columns of matrices. We can
also consider the vectorization for A to obtain a row vector a such the elements of
A are arranged according to k varying faster than j and j varying faster than i , i.e.,
a = (a111, . . . , a11K , a121, . . . , a12K , . . . , a1J1, . . . , a1J K , . . .).

Henceforth, the outer product of a rank-one third order tensor is denoted as x ◦ y ◦ z ∈
R

I×J×K of three nonzero vectors x, y and z is a rank-one tensor with elements xi y j zk for
all the indices. A canonical polyadic decomposition of A ∈ R

I×J×K expresses A as a sum
of rank-one outer products:

123



   18 Page 4 of 20 Journal of Scientific Computing            (2022) 91:18 

A =
R∑

r=1

xr ◦ yr ◦ zr (2.1)

where xr ∈ R
I , yr ∈ R

J , zr ∈ R
K for 1 ≤ r ≤ R. Every outer product xr ◦ yr ◦ zr is called

as a rank-one component and the integer R is the number of rank-one components in tensor
A. The minimal number R such that the decomposition (2.1) holds is the rank of tensor A,
which is denoted by rank(A). For any tensor A ∈ R

I×J×K , rank(A) has an upper bound
min{I J , J K , I K } [30].

In this paper, we consider CP decomposition in the following form

T =
R∑

r=1

αrar ◦ br ◦ cr (2.2)

where αr ∈ R is a rescaling coefficient of rank-one tensor ar ◦ br ◦ cr for r = 1, . . . , R.
For convenience, we let α = (α1, . . . , αR) ∈ R

R and denote [α;A,B,C]R = ∑R
r=1 αrar ◦

br ◦ cr in (2.2) where A = (a1, . . . , aR) ∈ R
I×R,B = (b1, . . . ,bR) ∈ R

J×R and C =
(c1, . . . , cR) ∈ R

K×R are called the factor matrices of tensor A.
In most iterative techniques for tensor decompositions, the high order tensor matriciza-

tions are transformed from tensor equations into matrix equations via the standard unfolding
mechanishm. Here we describe a standard approach for a matricizing of a tensor. The Khatri-
Rao product [47] of two matrices X ∈ R

I×R and Y ∈ R
J×R is defined as

X � Y = (x1 ⊗ y1, . . . , xR ⊗ yR) ∈ RI J×R,

where the symbol “⊗” denotes the Kronecker product:

x ⊗ y = (x1y1, . . . , x1yJ , . . . , xI y1, . . . , xI yJ )
T .

Using the Khatri-Rao product, the CP model (2.2) can be written in three equivalent matrix
equations:

T(1) = ADiag(C � B)T , (2.3a)

T(2) = BDiag(C � A)T , (2.3b)

and

T(3) = CDiag(B � A)T (2.3c)

whereDiag is a diagonal matrix, where the diagonal entries are the elements of α. To achieve
CP decomposition of given tensor T with a known tensor rank R and an assumption that
D = I, the matrix equations Eqs. (2.3a)–(2.3c) are formulated into linear least-squares
subproblems to solve iteratively forA,B andC, respectively. Here are the linear least-squares
subproblems:

min
A

‖T(1) − ADiag(C � B)T ‖2F , (2.4a)

min
B

‖T(2) − BDiag(C � A)T ‖2F , (2.4b)

and

min
C

‖T(3) − CDiag(B � A)T ‖2F . (2.4c)

This technique is the well known Alternating Least-Squares (ALS) [12, 31]. Typically, a
normalization constraint on factor matrices such that each column is normalized to length
one [3, 50] is required for convergence, which we denote by N(A,B,C) = 1.
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3 Iterative Equations for Tensor Completion

Wewill describe our low rank tensor model of a given tensor in a CP format with an approxi-
mated tensor rank for tensor completion. Our goal is to fill in the missing entries from a given
tensor T with the partially observed entries by reconstructing a completed low rank tensor S.
To do so, we formulate a sparse optimization problem [45] for recovering CP decomposition
from tensor T ∈ R

I×J×K with partially observed entries on the index set �:

min
A,B,C,α

‖T − S‖F + λ‖α‖�1

subject to S(�) = T (�) (3.1a)

where λ is a constant regularization parameter and S = ∑
r αrar ◦ br ◦ cr .

We will now derive the iterative equations for A, B,C and α. The equations are typically
associated with Iterative Soft Thresholding Algorithm (ISTA) [5] whose derivation is based
on the Majorization-Minimization (MM) [18] method. ISTA (Iterative Soft-Thresholding
Algorithm) is a combination of the Landweber algorithm and soft-thresholding (so it is also
called the thresholded-Landweber algorithm).

Suppose we have a minimization problem:

min
x

f (x). (3.2)

By using the proximal operators formulation (see Appendix) and the MM approach, we first
find an upper bound for f (x):

f (x) ≤ f (y) + 〈∇x f (y), x − y〉 + γ ‖x − y‖22
Let g(x, y) = f (y) + 〈∇x f (y), x − y〉 + γ ‖x − y‖22. Note that f (x) ≤ g(x, y) for all x
and f (x) = g(x, y) when y = x . Thus, we can reformulate 3.2 as

min
x

f (y) + 〈∇x f (y), x − y〉 + γ ‖x − y‖22. (3.3)

Since this is a minimization over x , then 3.3 is equivalent to

min
x

〈∇x f (y), x − y〉 + γ ‖x − y‖22. (3.4)

By gathering the terms with respect to x , the objective function in 3.4 can be expressed as

γ (−2bT x + xT x) + c,

where c = γ (y)T y − ∇x f (y)T y and b = y − 1
2γ ∇x f (y). Since bT b − 2bT x + xT x =

‖b − x‖22, we have a new formulation:

min
x

γ ‖x − b‖22. (3.5)

Now from the least-squares problems (2.4a–2.4c) and using proximal gradient formulation,
we have the following new formulations:

A∗ = argmin
A

{〈A − An,∇A f (An,Bn,Cn, αn)〉 + sdn
2

‖A − An‖2F }
s.t. ‖ai‖ = 1, i = 1, . . . , R,

B∗ = argmin
B

{〈B − Bn,∇B f (An+1,Bn,Cn, αn)〉 + sen
2

‖B − Bn‖2F }
s.t. ‖bi‖ = 1, i = 1, . . . , R,
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and

C∗ = argmin
C

{〈C − Cn,∇C f (An+1,Bn+1,Cn, αn)〉 + s fn
2

‖C − Cn‖2F }
s.t. ‖ci‖ = 1, i = 1, . . . , R,

where dn = max{‖UnUnT ‖F , 1}, en = max{‖VnVnT ‖F , 1} and fn = max{‖WnWnT ‖F , 1}
with

U = Diag(C � B)T ,V = Diag(C � AT ),W = Diag(B � A)T . (3.6)

The gradients of f (A,B,C, α) = 1
2‖T − ∑R

r=1 αrar ◦ br ◦ cr‖2F on A,B,C are the
following in terms of the Khatri-Rao product via matricizations:

∇A f (A,B,C,α) = (ADiag(C � B) − T(1))(C � B)TDiagT , (3.7a)

∇B f (A,B,C,α) = (BDiag(C � A) − T(2))(C � A)TDiagT , (3.7b)

and

∇C f (A,B,C,α) = (CDiag(B � A) − T(3))(B � A)TDiagT . (3.7c)

The gradient of f (A,B,C, α) on α is described in Sect. 3.1. Based from the calculations
(3.3–3.5), we obtain the following iterative formula for A:

argmin
A

{‖A − Dn‖2F } s.t. ‖ai‖ = 1, i = 1, . . . , R.

where Dn = An − 1
sdn

∇A f (An,Bn,Cn, αn). We can break it further component-wise:

an+1
i = dni /‖dni ‖, i = 1, . . . , R,

where an+1
i and dni are the i-th columns of An+1 and Dn .

Similarly, the update of B is

argmin
Y

{‖B − En‖2F } s.t. ‖bi‖ = 1, i = 1, . . . , R.

where En = Bn − 1
sen

∇B f (An+1,Bn,Cn, αn). Column-wise, we have

bn+1
i = eni /‖eni ‖, i = 1, . . . , R,

where bn+1
i and eni are the i-th columns of Bn+1 and En .

Furthermore, the update of C is

argmin
C

{‖C − Fn‖2F } s.t. ‖ci‖ = 1, i = 1, . . . , R.

where Fn = Cn − 1
s fn

∇C f (An+1,Bn+1,Cn, αn). Also, we update vector-wise:

cn+1
i = fni /‖fni ‖, i = 1, . . . , R,

where cn+1
i and fni are the i-th columns of Cn+1 and Fn .

123



Journal of Scientific Computing            (2022) 91:18 Page 7 of 20    18 

3.1 Iterative Equation for˛

Using the vectorization of tensors in Sect. 2, we can vectorize every rank-one tensor of outer
product ar ◦ br ◦ cr into a row vector qr for 1 ≤ r ≤ R. We denote a matrix consisting of all
qr for 1 ≤ r ≤ R by

Q = (qT1 , . . . ,qTR)T . (3.8)

Thus the function 1
2‖T − ∑R

r=1 αrar ◦ br ◦ cr‖2F can be also written as 1
2‖t − αQ‖2F where

t is a vectorization for tensor T . Also, the gradient of f (•) on A,B,C, is the following in
terms of the Khatri-Rao product via matricizations:

∇α f (A,B,C,α) = (αQ − t)QT .

Then, the minimization problem for α is

min
α

1

2
‖t − αQ‖2F + λ‖α‖1. (3.9)

Efficiently and appropriately choosing the regularization parameter λ plays a crucial role in
solving (3.9). In the papers [53, 54], the proximal operators formulation (see Appendix) and
the MM approach are used to solve α iteratively via

αn+1 = argmin
α

{〈α − αn,∇α f (An+1,Bn+1,Cn+1, αn)〉 + sηn
2

‖α − αn‖2 + λ‖α‖1}.
which is equivalent to the following:

αn+1 = argmin
α

1

2

∥
∥
∥
∥α − αn + 1

sηn
∇α f (An+1,Bn+1,Cn+1, αn)

∥
∥
∥
∥

2

+ λ

sηn
‖α‖1 (3.10)

where ηn = max{‖Qn+1Qn+1T ‖F , 1}.
However, we found that the accuracy of these methods heavily depends on the choice of

the initial value of α, which reduces the robustness of the entire algorithm, especially for
practical problems. To address this problem, we embed the flexible hybridmethod introduced
in the following section into the CP completion framework.

3.2 The Flexible Hybrid Method for �1 Regularization

Efficiently and accurately solving (3.9) is important for the CP completion. Notice that (3.9)
is an inverse problem with �1 regularization. The iteratively reweighted norm (IRN) methods
[24, 43] are typical strategies for solving the �p− regularization inverse problem. However,
these methods assume that an appropriate value of the regularization parameter is known in
advance, which is hard oftentimes. Therefore, there have been some recent works [19, 23] on
selecting regularization parameters for �p . In this work, we focus on p = 1 and employing the
flexible method based on Golub–Kahan process [19] to solve the �1−regularized problem.
For the convenience of description, we rewrite problem (3.9) into a standard inverse problem
with �1 regularization as follows.

min
s

||Hs − d||22 + λ||s||1, (3.11)

where d ∈ R
m is the observed data, H ∈ R

m×n models the forward process, s ∈ R
n is the

approximation of the desired solution. The first step is to break the �1−regularized problem
(3.11) into a sequence of �2−norm problems,
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min
s

||Hs − d||22 + λ||L(s)s||22, (3.12)

where

L(s) = diag
((
1/

√
fτ ([|s|]i )

)
i=1,...,n

)
, (3.13)

and fτ ([|s|]i ) =
{

[|s|]i [|s|]i ≥ τ1

τ2 [|s|]i < τ1
. Here 0 < τ2 < τ1 are small thresholds enforcing

some additional sparsity in fτ ([|s|]i ). Since directly solving (3.12) is not possible in real
problems since the true s is not available. To avoid nonlinearities and follow the common
practice of iterative methods, L(s) can be approximated by L(sk), where sk is the numerical
solution at the (k − 1)-th iteration that can be treated as an approximation of the solution at
k-th iteration. Since directly choosing regularization parameters for large problems is quite
costly, the flexible hybrid approaches based on the flexible Golub–Kahan process[19] has
been developed to solve the following variable-preconditioned Tikhonov problem,

min
s

||Hs − d||22 + λ||Lk s||22, (3.14)

which is equivalent to

min
s

||HL−1
k ŝ − d||22 + λ||̂s||22, (3.15)

where ŝ = Lk s, and Lk = L(sk) may change at each iteration. To be able to incorporate
the changing preconditioner, the flexible Golub–Kahan process (FGK) is used to generate
the bases for the solution. Given H, d and changing preconditioner Lk , the FGK iterative
process can be described as follows. Let u1 = d/‖d‖2 and v1 = Hu1/

∥
∥Hu1

∥
∥
2. Then at

the k-th iteration, we generates vectors pk, vk and uk+1 such that

HPk = Uk+1Mk and HUk+1 = V k+1T k+1, (3.16)

where Pk = [
L−1
1 v1 . . . L−1

k vk
] ∈ R

n×k, Mk ∈ R
(k+1)×k is upper Hessenberg, T k+1 ∈

R
(k+1)×(k+1) is upper triangular, and Uk+1 = [

u1 . . . uk+1
] ∈ R

m×(k+1) and V k+1 =
[
v1 . . . vk+1

] ∈ R
n×(k+1) contain orthonormal columns. We remark that the column vec-

tors of Pk don’t span a Krylov subspace like conventional Golub–Kahan bidiagonalization
process[10, 40], but they do provide a basis for the solution sk at k-th iteration. Given the
relationships in (3.16), an approximate least-squares solution can be computed as sk = Pkqk ,
where qk is the solution to the projected least-squares problem,

min
sk∈R(Pk )

||Hsk − d||22 = min
qk

||Mkqk − β1e1||22, (3.17)

where R(Pk) denotes the range of Pk , e1 ∈ R
k+1 is the first column of (k + 1) by (k + 1)

identity matrix. However, it is well-known that, for inverse problems, standard iterative
methods, like LSQR, exhibit a semiconvergent behavior, whereby the solution improve in
early iterations but become contaminated with inverted noise in later iterations [25]. This
phenomennon, which is common for most ill-posed inverse problems, occurs also for the
flexible methods. Thus, it is desirable to consider including a standard regularization term
on the projected problem (3.17) to stabilize the reconstruction errors, so that

qk = argmin
q

||Mkq − β1e1||22 + λ||q||22. (3.18)

Henceforth, sk = Pkqk is the numerical solution at k-th iteration for the full problem. To
get a better regularized solution, we consider using weighted generalized crossed validation
(WGCV) method [15] to choose λ.
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3.3 Practical Regularization CP Tensor

Recall that the low-rank CP tensor completion requiring solving α in (3.9) each iteration, can
be computationally inaccurate and unstable since the forward matrix Q is ill-posed and that
the regularization parameter λ is hard to determine without enough prior knowledge. Our
proposed practial regularization CP tensor method implements the flexible hybrid method
in solving (3.9), which thus ameliorates the instability and improves the solution accuracy
without sacrificing too much in speed by using standard parameter selection techniques
such as WGCV to efficiently and automatically estimate the regularization parameter for the
projected problem during the iterative process.

Notice that in practical regularization CP tensor method, iteratively updating α and λ via
the flexible hybrid method is independent of their initial settings. Furthermore, the flexible
hybrid method has proven to be very effective for solving large linear inverse problems due
to its inherent regularization properties as well as the added flexibility to select regularization
parameters adaptively. Thus, compared with classical CP tensor, our proposed algorithm is
more accurate and stable without sacrificing much efficiency. A summary pseudocode of the
practical regularization CP tensor is provided in Algorithm 3.1, where diag(a1, . . . , an) in
the pseudocode denotes the diagonal matrix with the diagonal entries a1, . . . , an .

4 Numerical Results

In this section, we consider various scenarios where our proposed algorithm can enhance the
stability and accuracy compared with the classical CP tensor method. In all the simulations,
the initial guesses are randomly generated. The stopping criterion used in all experiments
depends on two parameters: one is the upper bound of the number of iterations mmax and
the other is the tolerance εtol of the relative difference between the observation and the
approximation. The regularization parameter λ is iteratively updated by the flexible Krylov
method with weight generalized cross validation method. These experiments ran on a laptop
computer with Intel i5 CPU 2GHz and 16G memory.

4.1 Image Recovering by Tensor Completion

For the first experiment, we test two cases for this example, where the missing pixels for
the first case are randomly chosen while the miss part for the second case is deterministic.
The reconstruction error is computed with the relative error ||An−A||2||A||2 , where An denotes
the approximated tensor at the nth iteration, and A represents the true tensor we want to
reconstruct.

Case 1We implemented our algorithm on a color imageA ∈ R
189×267×3 shown in Fig. 1.

We recovered an estimated color image after removing 30% of the entries from the origin
color image, which is shown in Fig. 1. The upper bound R of rank(A) is fixed to 50 in the
algorithm. The stopping criteria for this case are assumed to be mmax = 500 and the relative
error tolerance is εtol = 10−3.

The recovered images by original CP tensor with different choices of λ and practical
regularization CP tensor are provided in Fig. 2. The results of these two approaches both
correspond to 500 iterations. It is noted that, for the conventional CP tensor, the quality of
image recovery highly depends on the choice of the regularization parameter λ. Our proposed
practical regularization CP tensor produces recovered image that has much less noise than
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Algorithm 3.1 Practical regularization CP tensor
Input: A third order tensor A, an upper bound R of rank(A), a penalty parameter λ and a scale s > 1;
Output: An approximated tensor B̂ with an estimated rank R̂.

1. Give an initial tensor B0 = [
α0; A0, B0, C0

]
R .

2. Update step :
(a) Update matrices A,B,C:

i. Compute Un by (3.6) and let dn = max{
∥
∥
∥UnUn∥

∥
∥
F
, 1}.

ii. Compute Dn and An+1 by

Dn = An − 1

sdn
∇A f (An ,Bn ,Cn , αn),

An+1 = Dndiag(
∥
∥dn1

∥
∥
2 , . . . ,

∥
∥dnR

∥
∥
2)

−1,

where dni is the i−th column of Dn for i = 1, . . . , R.

iii. Compute Vn by (3.6) and let en = max{
∥
∥
∥VnVn∥

∥
∥
F
, 1}.

iv. Compute En and Bn+1 by

En = Bn − 1

sen
∇B f (An+1,Bn ,Cn , αn),

Bn+1 = Endiag(
∥
∥en1

∥
∥
2 , . . . ,

∥
∥enR

∥
∥
2)

−1,

where eni is the i−th column of En for i = 1, . . . , R.

v. ComputeWn by (3.6) and let fn = max{
∥
∥
∥WnWn∥

∥
∥
F
, 1}.

vi. Compute Fn and Cn+1 by

Fn = Cn − 1

s fn
∇C f (An+1,Bn+1,Cn , αn),

Cn+1 = Fndiag(
∥
∥fn1

∥
∥
2 , . . . ,

∥
∥fnR

∥
∥
2)

−1,

where fni is the i−th column of Fn for i = 1, . . . , R.
(b) Update the row vector α:

i. Compute Qn+1 by (3.8) and let ηn = max{‖Qn+1Qn+1T ‖F , 1}.
ii. Solve (3.9) for α by the flexible hybrid method introduced in Section 3.2 and let

αn+1 = α.

3. Denote the limitations by Â, B̂, Ĉ, α̂, compute B̂ = [
α̂; Â, B̂, Ĉ

]
R and count the number R̂ of nonzero

entries in α̂.
4. Impose constraints A(�) = B(�), if the information of missing entries of A is available and that �

denotes all the non-missing entries.
5. return The tensor B̂ with the estimated rank R̂.

classical CP tensor, demonstrating that using flexible Krylov method to determine different
regularization parameter for each iteration is beneficial. The comparison of the relative error
shown inFig. 2 also verifies the better performance of our practical regularizationCP tensor. In
terms of CPU time, original CP tensor with λ = 35 took 14.1 sec, and practical regularization
CP tensor took 43.4 sec, since the automatic regularization parameter selection by flexible
Krylov method is more expensive than predetermined regularization parameter that is cost-
free.

Case 2We consider recovering the imageA ∈ R
246×257×3 with the certain missing pixels

as shown in Fig. 3, associating with its true image. The upper bound R of rank (A) is chosen
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Fig. 1 True image (left) and observation (right)

to be 50. The stopping criteria are setup as mmax = 250 and the relative error tolerance is
εtol = 10−3. For the classical CP tensor, we choose λ = 35.

The recovered images are provided in Fig. 4. The original CP tensor reached the stopping
criteria at 12th iteration, and took 0.7s for the quick convergence. For our proposed practical
regularization CP tensor, the maximum number of iteration was reached, and the running
time of it is 26.1s. We observe that our algorithm provide more complete recovery than
conventional CP tensor, which is also demonstrated by the relative error. To avoid the prema-
ture convergence problem, the results of original CP tensor corresponding to the maximum
iterations has been checked, and is similar to the results at 12th iteration.

4.2 Model Order Reduction

Next we investigate a scenario in model order reduction where the key snapshots needs to be
obtained to capture the low rank structure of the solution manifold that has low Kolmogorov
width [34, 42]. This example demonstrates some advantages of our practical regularization
CP tensor.Model order reduction techniques such as the PODand theReducedBasisMethods
are typically used to solve the problems requiring one to query an expensive yet deterministic
computational solver once for each parameter node. We show that hybridizing our approach
with the regularized alternating block minimization method [32, 37] provides a novel way to
do model reduction and pattern extraction. More specifically, assumingA is the collection of
the solutions on sampled parameters. To select the snapshots (reduced bases) for the low rank
approximation of the solution manifold, we employ our algorithm to give a prior knowledge
of rank(A) denoted as R. Then we run the regularized alternating blockminimization method
according to the R to approximate A and construct the reduced bases, where the stopping
criteria for the outer ALS step are also defined by the maximum number of the iteration,
which we assume here to be 500, and a tolerance of the relative error ||An−A||2||A||2 , which we

assume to be εtol = 10−2.
In this experiment, we consider the following two-dimensional diffusion equation that

induces a solution manifold that requires many snapshots to achieve small error:

(1 + μ1x)uxx + (1 + μ2y)uyy = e4xy on �. (4.1)

The physical domain is � = [−1, 1] × [−1, 1] and we impose homogeneous Dirichlet
boundary conditions on ∂�. The truth approximation is a spectral Chebyshev collocation
method [26, 49] with Nx = 100 degrees of freedom in each direction. This means the truth
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CP tensor with λ = 1 (0.2308) CP tensor with λ = 10 (0.2025)

CP tensor with λ = 35 (0.1921) CP tensor with λ = 100 (0.1638)

CP tensor with λ = 150 (0.2881) practical regularization CP tensor (0.1296)

Fig. 2 Recovered color image with relative reconstruction error norms provided in the bracket

approximation has dimensionN = 10000(N = N 2
x ). The parameter domainD for (μ1, μ2)

is taken to be [−0.99, 0.99] × [−0.99, 0.99]. For the parameter sample set, we discretize
D using on a 9 × 9 cartesian grid, thus the size of training parameters is 81. The testing
set �test contains another 10 random samples in D. The resulting tensor A is of dimension
100 × 100 × 81. Given an initial value of the rank R0 = 50 and tolerance ε = 10−2, we
run our algorithm onA at first, then we sort the rescaling coefficients {αr }R0

r=1 in descending
order while discarding the coefficients below εαmax , where αmax is the maximum rescaling
coefficients. Assuming that the number of the coefficients we keep is R which is much

123



Journal of Scientific Computing            (2022) 91:18 Page 13 of 20    18 

true observation

Fig. 3 True image (left) and observation (right)

CP tensor (0.0950) practical regularization 
CP tensor(0.0743)

Fig. 4 Recovered color image with relative reconstruction error norms provided in the bracket

smaller than N , then we run the regularized alternating optimization method with rank R to
approximate

A ≈
R∑

r=1

αrxr ◦ yr ◦ zr , (4.2)

and build up the reduced bases {φr }Rr=1 by orthonormalizing {φ̂r }Rr=1, where φ̂r is created by
vectorizing xr ◦ yr .

4.2.1 Computational Performance

Given initial value of λ = 10, our proposed approach chooses R = 20 reduced bases,
while the classical CP tensor chooses R = 7 reduced bases with the same initialization. The
absolute value of the coefficients α is shown in Fig. 5. We can see that original CP tensor
does more rank reduction than practical regularization CP tensor. However, it is noted that,
in (3.9), larger regularization parameter λ always gives more sparse solution, which doesn’t
mean solving this inverse problemmore accurately. Thus, appropriate selection of λ is crucial
for solving (3.9), which is not easy if the prior knowledge or experience is not enough. In
addition, in this model reduction example, we found that the sparsity of α is very sensitive to
the choice of initial value of λ, that is, for classical CP tensor, much less(more) components of
α will be close to zeros if we increase(decrease) λ a little bit. To reduce the sensitivity caused
by the determination of the initial value of λ, our practical regularization CP tensor includes
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Fig. 5 Value of |α|: the comparison between practical regularization CP tensor and original CP tensor

the automatic regularization parameter selection, which is more robust than the conventional
CP tensor since it doesn’t rely on the empirical choice of λ.

To gain the understanding of the quality of the reduced bases our proposed approach, the
number of reduced bases constructed by the POD is also set to be 20 for comparative pur-
poses. The algorithmic accuracy is evaluated by approximating the u(x, μ1, μ2) via reduced
bases, where (μ1, μ2) ∈ �test and the error is measured by �2 norm. Fig. 6 displays the
approximation of the solution at two parameters drawn from the testing set for the practical
regularization CP tensor and the POD, since the 7 bases obtained by original CP tensor are
too less to capture the main pattern of the solution. We observe that our proposed algorithm
faithfully captures the feature of the solution, although the error is large compared to the POD.
The performance of approximating the solutions at all the parameters in the testing set for our
algorithm, canonical CP tensor and the POD is provided in Fig. 7. Table 1 further quantifies
the range of the approximation results as well as the computational time. Although our prac-
tical regularization CP tensor is more expensive, the approximation quality of this method
is better than original CP tensor since the automatic regularization parameter selection helps
to reduce dependence on the initial guess of the regularization parameter. However, it can
clearly be seen that POD is much faster and more accurate than the two CP tensor methods.
Compared with POD, the main attraction of CP tensor methods is the low-cost storage, which
is detailed in the following subsection.

4.2.2 A Note on Compression

For this model reduction problem, although both practical regularization CP tensor and CP
tensor provide a more parsimonious representation of the data than the POD, comparing the
compression ratios between the CP tensor techniques and the POD illustrates the difference
and the benefit of the CP tensor techniques. For a rank R = 20 tensor of dimension A =
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Practical regularization CP tensor
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Practical regularization CP tensor
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�2 error: 3.4 × 10−1 �2 error: 5.9 × 10−1

�2 error: 1.3 × 10−2 �2 error: 6.8 × 10−2

Fig. 6 The approximation of the solution of Two-dimensional diffusion equation at two parameters in the
testing set: μ1 = −0.9193, μ2 = 0.6913(left) and μ1 = −0.8986, μ2 = −0.7977(right)
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Fig. 7 The approximation of u(x, μ1, μ2)with (μ1, μ2) ∈ �test: CP tensor, practical regularization CP tensor
and POD

Table 1 Summary of the computational results for the model reduction problem

CP tensor practical regularization CP tensor POD

Error [0.36, 0.83] [0.24, 0.58] [0.003, 0.068]

Number of bases 7 20 20

Time (s) 70.4 119.0 0.03

The errors correspond to the approximation of u(x, μ1, μ2) with (μ1, μ2) ∈ �test

100 × 100 × 81, the compression, the compression ratios are

CPOD = I · J · K
R · (I · J + K + 1)

= 1002 · 81
20 · (1002 + 81 + 1)

≈ 4.02, (4.3)

CCP = I · J · K
R · (I+J + K + 1)

= 1002 · 81
20 · (100 + 100 + 81 + 1)

≈ 143.62. (4.4)

Notice that the POD requires the tensor to be reshaped in some direction. The comparison
illustrates the striking difference between the compression ratios. It is worth mentioning that
the CP tensor approaches requires much less memory to approximate the data. This can be
of importance if the online stage (approximating the data) is in limited storage situations and
that the accuracy requirement is not high.

5 Conclusion

In this paper,wehavepresented anew low-rankCP tensor completion algorithmbycombining
the flexible hybrid method and the CP tensor completion. A key advantage of this method
is that the regularization parameter can be easily and automatically estimated during the
iterative process, which substantially reduces the difficulty of initializing the regularization
parameter and improves the robustness of the algorithm. In addition to memory savings, our
proposed approach demonstrates outstanding performance on the model reduction example,
compared to the POD.Moreover, our image recovery experiments show that our algorithmhas
a practical advantage in capturing more details in image reconstruction over the conventional
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CP tensor due to a more optimal choice of the regularization parameter. In our future outlook,
wewill extend this hybrid approach in a tensor based total variation formulation for denoising
and deblurring multi-channel images and videos.
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Appendix A: Proximal Gradient

Recall g(σ ) = λ ‖ σ ‖1 is convex and non-differentiable. The function g can be turn into a
proximal operator to find its minimum using the definition [41, 46] below:

Definition A.1 Given a proper closed convex function f: Rn −→ R
⋃ ∞, the proximal

operator scaled by δ > 0, is a mapping from R
n −→ R defined by

proxδg(v) := argmin
y∈Rn

(

g(y) + 1

2δ
‖ y − v ‖2

)

.

Then the proximal operator for g(σ ) is,

proxg(v) = argmin
σ

(

g(σ ) + 1

2δ
‖ σ − v ‖22

)

= argmin
σ

(

λ ‖ σ ‖1 + 1

2δ
‖ σ − v ‖22

)

= argmin
σ

(

λ

n∑

i=1

| σi | + 1

2δ

n∑

i=1

(σi − v)2

)

For σ = (σ1, ..., σn)

(proxδg(v)i )i = argmin
σi

(

λ | σi | + 1

2δ
(σi − vi )

2
)
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= argmin
σi

⎧
⎪⎨

⎪⎩

(
λ − vi

δ

)
σi + 1

2δ σ 2
i , σi > 0

− (
λ + vi

δ

)
σi + 1

2δ σ 2
i , σi < 0

}

Hence,

proxg(v)i =
{
0, | vi |≤ λ

vi − λsign(vi ), | vi |> λ

with δ = 1

References

1. Acar, E., Çamtepe, S.A., Krishnamoorthy, M.S., Yener, B.: Modeling and multiway analysis of chatroom
tensors, ISI’05. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11427995_21

2. Acar, E., Dunlavy, D.M., Kolda, T.G.: A scalable optimization approach for fitting canonical tensor
decompositions. J. Chemom. 25, 67–86 (2011). https://doi.org/10.1002/cem.1335

3. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data.
Chemom. Intell. Lab. Syst. 106, 41–56 (2011). https://doi.org/10.1016/j.chemolab.2010.08.004

4. Andersson, C.A., Bro, R.: Improving the speed of multi-way algorithms: Part i. tucker3. Chemom. Intell.
Lab. Syst. 42, 93–103 (1998). https://doi.org/10.1016/S0169-7439(98)00010-0

5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2, 183–202 (2009)

6. Beckmann, C., Smith, S.: Tensorial extensions of independent component analysis for multisubject fmri
analysis. NeuroImage 25, 294–311 (2005). https://doi.org/10.1016/j.neuroimage.2004.10.043

7. Beylkin, G., Mohlenkamp, M.J.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci.
Comput. 26, 2133–2159 (2005)

8. Binev, P., Cohen, A., Dahmen,W., DeVore, R., Petrova, G.,Wojtaszczyk, P.: Convergence rates for greedy
algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)

9. Biswas, S.K., Milanfar, P.: Linear support tensor machine with lsk channels: pedestrian detection in
thermal infrared images. IEEE Trans. Image Process. 26, 4229–4242 (2017). https://doi.org/10.1109/
TIP.2017.2705426

10. Björck, Å.: A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equa-
tions. BIT Numer. Math. 28, 659–670 (1988)

11. Boelens, A.M., Venturi, D., Tartakovsky, D.M.: Tensor methods for the boltzmann-bgk equation. J. Com-
put. Phys. 421, 109744 (2020). https://doi.org/10.1016/j.jcp.2020.109744

12. Bro, R.: Parafac tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997). https://doi.
org/10.1016/S0169-7439(97)00032-4

13. Candes, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion.
arXiv:abs/0903.1476 (2009)

14. Chadwick, P.: Principles of continuum mechanics by m. n. l. narasimhan. John Wiley & Sons. 1993. 567
pp. isbn 0 471 54000 5. £48.95. Journal of Fluid Mechanics, 293, 404–404 (1995). https://doi.org/10.
1017/S0022112095211765

15. Chung, J., Nagy, J.G., O’leary, D.P.: A weighted gcv method for lanczos hybrid regularization. Electr.
Trans. Numer. Anal. 28, 2008 (2008)

16. de Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem.
arXiv Mathematics e-prints. arXiv:math/0607647 (2006)

17. Erichson, N.B., Manohar, K., Brunton, S.L., Kutz, J.N.: Randomized cp tensor decomposition. Mach.
Learn. Sci. Technol. 1, 025012 (2020)

18. Figueiredo, M.A.T., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for
wavelet-based image restoration. IEEE Trans. Image Process. 16, 2980–2991 (2007). https://doi.org/
10.1109/TIP.2007.909318

19. Gazzola, S.: Flexible krylov methods for lp regularization
20. Gazzola, S., Sabaté Landman, M.: Krylov methods for inverse problems: surveying classical, and intro-

ducing new, algorithmic approaches. GAMM-Mitteilungen 43, e202000017 (2020)

123

https://doi.org/10.1007/11427995_21
https://doi.org/10.1002/cem.1335
https://doi.org/10.1016/j.chemolab.2010.08.004
https://doi.org/10.1016/S0169-7439(98)00010-0
https://doi.org/10.1016/j.neuroimage.2004.10.043
https://doi.org/10.1109/TIP.2017.2705426
https://doi.org/10.1109/TIP.2017.2705426
https://doi.org/10.1016/j.jcp.2020.109744
https://doi.org/10.1016/S0169-7439(97)00032-4
https://doi.org/10.1016/S0169-7439(97)00032-4
http://arxiv.org/abs/0903.1476
https://doi.org/10.1017/S0022112095211765
https://doi.org/10.1017/S0022112095211765
http://arxiv.org/abs/math/0607647
https://doi.org/10.1109/TIP.2007.909318
https://doi.org/10.1109/TIP.2007.909318


Journal of Scientific Computing            (2022) 91:18 Page 19 of 20    18 

21. Geng, L., Nie, X., Niu, S., Yin,Y., Lin, J.: Structural compact core tensor dictionary learning formultispec-
tral remote sensing image deblurring. In: 2018 25th IEEE International Conference on Image Processing
(ICIP), pp. 2865–2869 (2018). https://doi.org/10.1109/ICIP.2018.8451531

22. Ghassemi,M., Shakeri, Z., Sarwate,A.D.,Bajwa,W.U.: STARK:StructuredDictionaryLearningThrough
Rank-one Tensor Recovery. arXiv:1711.04887 (2017)

23. Giryes, R., Elad,M., Eldar, Y.C.: The projected gsure for automatic parameter tuning in iterative shrinkage
methods. Appl. Comput. Harmon. Anal. 30, 407–422 (2011)

24. Gorodnitsky, I., Rao, B.: A new iterative weighted norm minimization algorithm and its applications. In:
[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing, pp. 412–415. IEEE (1992)

25. Hansen, P.C.: Discrete inverse problems: insight and algorithms. In: SIAM (2010)
26. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21.

Cambridge University Press, Cambridge (2007)
27. Hou, M.: Tensor-based regression models and applications (2017)
28. Knuth, D.E.: The Art of Computer Programming, Seminumerical Algorithms. Addison-Wesley Longman

Publishing Co., Inc, New York (1997)
29. Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis usingmultilinear algebra. In: ICDM

2005: Proceedings of the 5th IEEE International Conference on DataMining, pp. 242–249 (2005). https://
doi.org/10.1109/ICDM.2005.77

30. Kruskal, J.: Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to
arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)

31. Li, N., Kindermann, S., Navasca, C.: Some convergence results on the regularized alternating least-squares
method for tensor decomposition. arXiv:abs/1109.3831 (2011)

32. Li, N., Kindermann, S., Navasca, C.: Some convergence results on the regularized alternating least-squares
method for tensor decomposition. Linear Algebra Appl. 438, 796–812 (2013)

33. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013). https://doi.org/10.1109/TPAMI.2012.39

34. Lorentz, G.G., Golitschek, M.V., Makovoz, Y.: Constructive Approximation: Advanced Problems, vol.
304. Springer, Berlin (1996)

35. Makantasis, K., Doulamis, A.D., Doulamis, N.D., Nikitakis, A.: Tensor-based classification models for
hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 56, 6884–6898 (2018). https://doi.org/
10.1109/TGRS.2018.2845450

36. Morozov, V.A.: On the solution of functional equations by the method of regularization. In: Doklady
Akademii Nauk, vol. 167, pp. 510–512. Russian Academy of Sciences (1966)

37. Navasca, C., De Lathauwer, L., Kindermann, S.: reducing technique for tensor decomposition. In: 2008
16th European Signal Processing Conference, pp. 1–5. IEEE (2008)

38. Nouy, A.: Low-rank tensor methods for model order reduction. arXiv:1511.01555 (2015)
39. Ohlberger, M., Smetana, K.: Approximation of skewed interfaces with tensor-based model reduction

procedures: application to the reduced basis hierarchical model reduction approach. J. Comput. Phys.
321, 1185–1205 (2016)

40. O’Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large scale discretizations
of ill-posed problems. SIAM J. Sci. Stat. Comput. 2, 474–489 (1981)

41. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2014)
42. Pinkus, A.: N-widths in Approximation Theory, vol. 7. Springer, Berlin (2012)
43. Rodrıguez, P., Wohlberg, B.: An efficient algorithm for sparse representations with lp data fidelity term.

In: Proceedings of 4th IEEE Andean Technical Conference (ANDESCON) (2008)
44. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation

for affinely parametrized elliptic coercive partial differential equations. Archiv. Comput. Methods Eng.
15, 1 (2007)

45. Sanogo, F., Navasca, C.: Tensor completion via the cp decomposition. In: 2018 52ndAsilomar Conference
on Signals, Systems, andComputers, pp. 845–849 (2018). https://doi.org/10.1109/ACSSC.2018.8645405

46. Selesnick, I.: Sparse regularization via convex analysis. IEEE Trans. Signal Process. 65, 4481–4494
(2017). https://doi.org/10.1109/TSP.2017.2711501

47. Smilde, A., Bro, R., Geladi, P.: Multi-way analysis with applications in the chemical sciences (2004)
48. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9, 1135–1151 (1981)
49. Trefethen, L.N.: Spectral methods in MATLAB. In: SIAM (2000)
50. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approx-

imation. SIAM J. Matrix Anal. Appl. 33, 639–652 (2012). https://doi.org/10.1137/110843587
51. Vogel, C.R.: Computational methods for inverse problems. In: SIAM (2002)
52. Walczak, B., Massart, D.: Dealing with missing data: part i. Chemom. Intell. Lab. Syst. 58, 15–27 (2001).

https://doi.org/10.1016/S0169-7439(01)00131-9

123

https://doi.org/10.1109/ICIP.2018.8451531
http://arxiv.org/abs/1711.04887
https://doi.org/10.1109/ICDM.2005.77
https://doi.org/10.1109/ICDM.2005.77
http://arxiv.org/abs/1109.3831
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1109/TGRS.2018.2845450
https://doi.org/10.1109/TGRS.2018.2845450
http://arxiv.org/abs/1511.01555
https://doi.org/10.1109/ACSSC.2018.8645405
https://doi.org/10.1109/TSP.2017.2711501
https://doi.org/10.1137/110843587
https://doi.org/10.1016/S0169-7439(01)00131-9


   18 Page 20 of 20 Journal of Scientific Computing            (2022) 91:18 

53. Wang, X., Navasca, C.: Adaptive low rank approximation of tensors. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshop (ICCVW, Santiago, Chile, 2015)

54. Wang, X., Navasca, C.: Low-rank approximation of tensors via sparse optimization. Numer. Linear Alge-
bra Appl. 25, 2183–2202 (2018). https://doi.org/10.1002/andp.19053221004

55. Xu, X., Wu, Q., Wang, S., Liu, J., Sun, J., Cichocki, A.: Whole brain fmri pattern analysis based on tensor
neural network. IEEE Access 6, 29297–29305 (2018). https://doi.org/10.1109/ACCESS.2018.2815770

56. Zhang, J.: Design and Application of Tensor Decompositions to Problems in Model and Image Compres-
sion and Analysis, PhD thesis, Tufts University (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1002/andp.19053221004
https://doi.org/10.1109/ACCESS.2018.2815770

	Low-CP-Rank Tensor Completion via Practical Regularization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Iterative Equations for Tensor Completion
	3.1 Iterative Equation for α
	3.2 The Flexible Hybrid Method for ell1 Regularization
	3.3 Practical Regularization CP Tensor

	4 Numerical Results
	4.1 Image Recovering by Tensor Completion
	4.2 Model Order Reduction
	4.2.1 Computational Performance
	4.2.2 A Note on Compression


	5 Conclusion
	Acknowledgements
	Appendix A: Proximal Gradient
	References




