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Editorial on the Research Topic

Vitamin D and COVID-19: New Mechanistic and Therapeutic Insights

A PubMed search using the terms “vitamin D and COVID-19” reveals more than 1,000 papers. Mostly
they indicate a correlation between a low level of vitamin D and a severe outcome from COVID-19
disease (Grant et al., 2022). However, it is easy and quite common in medicine to confound causality
with a simple correlation. Moreover, such confusion is particularly plausible for vitamin D research.
The problem arises from naming vitamin D a “vitamin,” whereas, in fact, it is a hormone that is
produced when the human skin is exposed to sunlight. Therefore, vitamin D is more likely to be
produced in people who are fit enough to spend time outdoors. Consequently, a proper blood level of
vitamin D is much more likely in fit and healthy people than in sick people. The best means of
differentiating a random correlation from causal inference is to describe the underlying mechanism
(Pearl and Mackenzie, 2019).

The active metabolite of vitamin D is the steroid hormone 1,25-dihydroxyvitamin D (1,25D)
(Carlberg, 2014a). Vitamin D is produced from 7-dehydrocholesterol when the human skin is
exposed to UV light. Then, vitamin D activation occurs in two steps: 25-hydroxylation followed by
1α-hydroxylation (Prosser and Jones, 2004). The first step occurs in the liver, where vitamin D undergoes
hydroxylation to 25-hydroxyvitamin D (25D). 25D undergoes hydroxylation in the kidneys to the highly
active metabolite 1,25D. Both 25D and 1,25D circulate in the blood via the vitamin D binding protein
(DBP). 25D bound to DBP has a long half-life of around 2–3 weeks, whereas 1,25D has a short half-life of
10–20 h (Carter, 2011). Hence, serum 25D concentration is used routinely to measure the vitamin D
status in the human body (Sempos et al., 2012). Hydroxylation of 1,25D at carbon atom C-24, catalyzed
by 24-hydroxylase of 1,25D (CYP24A1), is the first step of its inactivation. A view is that the CYP24A1
level is downregulated by sex hormones and that a higher level of 17β-estradiol may enhance the actions
of 1,25D. Peruzzu et al. presented data to support this mechanism.

Vitamin D deficiency is perhaps the most common nutritional deficiency in the world. Recently,
there has been increasing awareness of vitamin D deficiency, and its supplementation is now much
more common, but seldom regularly controlled. Regarding vitamin D deficiency, the currently
agreed levels of serum 25D are deficiency at< 12 ng/ml, insufficiency at 12–20 ng/ml, and levels
between 20 and 50 ng/ml are considered to be adequate. In their article, Hafez et al. reported that
vitamin D deficiency does correlate significantly with higher mortality from COVID-19.

The receptor for 1,25D is the vitamin D receptor (VDR), which, upon binding to the ligand,
translocates from the cytoplasm to the cell nucleus. There, VDR acts as a ligand-activated
transcription factor to regulate the transcription of its target genes (Aranda and Pascual, 2001).
Hundreds of genes are regulated by VDR (Pike and Meyer, 2014); many of them are responsible for
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maintaining calcium-phosphate homeostasis (Holick, 1996).
However, it is also well known that 1,25D regulates genes
involved in the function of immune cells, for example, CD14,
which is the macrophage co-receptor for bacterial
lipopolysaccharide (LPS) (Carlberg et al., 2013). Recent
research has documented around 200 genes which are directly
regulated by liganded VDR in human blood cells, and around 500
secondary targets (Hanel and Carlberg, 2022). The cells that
appear to be the key targets of 1,25D regulation in the
immune system are macrophages and dendritic cells. They
have a high VDR expression level (Carlberg et al., 2013) and
can produce 1,25D from its precursor 25D (Dusso et al., 1991).
1,25D directly regulates the expression of genes that are crucial to
the functions of macrophages and dendritic cells, such as CD14
(Gombart et al., 2005; Carlberg, 2014b), cathelicidin (Liu et al.,
2007), and TNFα (Cohen et al., 2001). However, the influence of
1,25D on the human innate immune response is complex because
it has been shown that pre-treatment of human monocytes with
1,25D reduced their production of TNF-α and interleukin- (IL-) 6
in response to bacterial LPS (Zhang et al., 2012). Noteworthy, for
around 700 genes regulated by VDR in human blood cells, the
majority have been linked to downregulation of neutrophil
degranulation, chemokine production, IFNγ-mediated signal
transduction, and IL-6 production (Hanel and Carlberg, 2022).

When a virus infects the human body, the innate defenses are
activated. Infected cells produce interferons α and β, which
diffuse to neighboring cells to render them into an antiviral
state. The virus-infected cells downregulate MHC class I
molecules, whereby they are targets for killing by natural killer
cells. Eventually, macrophages, using their toll-like receptors,
may recognize the virus particles, phagocytose them, produce
nitric oxide within phagolysosomes, and secrete defensins,
cathelicidin, or TNFα into their environment. When innate

responses are insufficient to eliminate the virus, adaptive
immune mechanisms are activated. The most efficient process
is the destruction of virus-infected cells by cytotoxic T
lymphocytes, which recognize viral peptides that are presented
at the cell surface of infected cells by MHC class I molecules. In
addition, B lymphocytes may recognize certain patterns present
in the viral envelope and then differentiate into plasma cells to
produce a large number of antibodies. Both actions are under
tight control by T helper cells (Delves et al., 2017). However, viral
infections may lead to excessive immune responses, such as a
cytokine storm (CS). This is a dangerous immune condition
characterized by a release of about 150 inflammatory cytokines
and mediators of inflammation (Delves et al., 2017). CS can lead
to severe complications such as high fever, intravascular
coagulation, tissue damage, multiple organ failure, and death
(Wong et al., 2017). Walsh et al. examined how some of these life-
threatening events may be attenuated by a sufficient level
of 1,25D.

There are no unwanted side effects for taking vitamin D to
ensure a proper level of 25D. Accordingly, Walsh et al. published
their recommendations of “a vitamin D intake of 800–1000 IU
per day, with a higher and monitored dose, e.g., 1,500–2000 IU
per day, for vulnerable groups who have a confirmed or a likely
low vitamin D status”. Whether vitamin D can provide an adjunct
to therapy for patients who already have COVID-19 remains an
open question. The data discussed by Tomaszewska et al. indicate
that 25D (calcifediol), rather than vitamin D, should be used
therapeutically.
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