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Abstract
1.	 Spatial models of variation in the isotopic composition of structural nutrients across 

habitats (isoscapes) offer information on physical, biogeochemical and anthropo-
genic processes occurring across space, and provide a tool for retrospective assign-
ment of animals or animal products to their foraging area or geographic origin. The 
isotopic differences among reference samples used to construct isoscapes may 
vary spatially and according to non-spatial terms (e.g. sampling date, or among indi-
vidual or species effects). Partitioning variance between spatially dependent and 
spatially independent terms is a critical but overlooked aspect of isoscape creation 
with important consequences for the design of studies collecting reference data 
for isoscape creation and the accuracy and precision of isoscape models.

2.	 We introduce the use of integrated nested Laplace approximation (INLA) to 
construct isoscape models. Integrated nested Laplace approximation provides a 
computationally efficient framework to construct spatial models of isotopic vari-
ability explicitly addressing additional variation introduced by including multiple 
reference species (or other recognized sources of variance).

3.	 We present carbon, nitrogen and sulphur isoscape models extending over c. 1 mil-
lion km2 of the UK shelf seas. Models were built using seven different species of 
jellyfish as spatial reference data and a suite of environmental correlates. Compared 
to alternative isoscape prediction methods, INLA-spatial isotope models show high 
spatial precision and reduced variance. We briefly discuss the likely biogeochemical 
explanations for the observed spatial isotope distributions. We show for the first 
time that sulphur isotopes display systematic spatial variation across open marine 
shelf seas and may therefore be a useful additional tool for marine spatial ecology.

4.	 The INLA technique provides a promising tool for generating isoscape models and 
associated uncertainty surfaces where reference data are accompanied by multi-
ple, quantifiable sources of uncertainty.
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Bayesian spatial modelling, carbon, isoscape, jellyfish, nitrogen, stable isotopes, sulphur, UK 
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1  | INTRODUC TION

The isotopic ratio of elements such as hydrogen, oxygen, carbon, 
nitrogen and sulphur varies systematically across the natural envi-
ronment. Modelling these spatial differences through mechanistic 
or statistical models (isoscapes [West, Bowen, Dawson, & Tu, 2010]) 
offers insight into the biogeochemical processes leading to spatial 
variation in isotopic expressions, and provides a tool for the retro-
spective assignment of animals or animal products back to their ori-
gin or foraging area (Hobson, Wassenaar, & Taylor, 1999), with broad 
uses in animal and human migration and tracking (Ehleringer et al., 
2008; Hobson, 1999; Hobson, Barnett-Johnson, & Cerling, 2010), 
trophic ecology (Jennings & van der Molen, 2015; Olson et al., 2010) 
and traceability within consumer goods supply chains (Chesson, 
Valenzuela, O'Grady, Cerling, & Ehleringer, 2010; Kelly, Heaton, & 
Hoogewerff, 2005). Isoscapes have been used extensively in ter-
restrial ecological and forensic applications, particularly isoscapes 
describing spatial variations in hydrogen and oxygen isotopes of 
precipitation (Bowen, 2010). Spatial variation in isotopic composi-
tions in marine systems has also been explored (Cherel & Hobson, 
2007; Schell, Saupe, & Haubenstock, 1989). However, relatively 
few continuous surface isoscapes have been published in marine 
compared to terrestrial systems, probably due to the difficulty in 
obtaining sufficient reference samples over appropriate spatial and 
temporal scales.

To construct a continuous surface isoscape model, isotopic 
compositions of reference materials or organisms are typically 
projected across space using either spatial interpolation methods 
(Trueman, MacKenzie, & St John Glew, 2017; Vander Zanden et al., 
2015), by statistical inference based on correspondence between 
measured data and environmental correlates (Bowen & Wilkinson, 
2002; Courtiol & Rousset, 2017; Jennings & Warr, 2003) or a com-
bination of both (MacKenzie, Longmore, Preece, Lucas, & Trueman, 
2014; Wunder, 2010). Ideally, the isotopic composition of reference 
samples should vary only according to spatially dependent effects. 
However, additional isotopic variance among reference samples is 
commonly introduced through processes such as collection of sam-
ples over different time-scales or differences in ecology or physiol-
ogy among individuals or species. As the spatial scale of a study area 
increases, the ease of collecting uniform reference samples gener-
ally decreases, especially where isoscape reference data are com-
piled from opportunistically collected samples. Accounting for and 
quantifying spatially dependent and spatially independent variance 
is a key component of isoscape model creation. In simple interpola-
tion models, the variance associated with the prediction of expected 
isotopic compositions at any point in space increases with distance 
from discrete sampling points; therefore, irregular spacing of ref-
erence samples produces spatial gradients in isoscape uncertainty, 
which may bias interpretations. When environmental correlates 
are introduced, estimating variance becomes more complex due to 
error associated with the relationship between measured data and 
environmental correlates, which is itself spatially varying, but rarely 
quantified across space (Bowen & Revenaugh, 2003; Courtiol & 

Rousset, 2017). To date, many isoscape models either assume spa-
tially invariant uncertainty in the relationship between measured 
data and environmental correlates (Jennings & Warr, 2003), infer 
spatial variance by interpolating residuals from regression models 
(MacKenzie et al., 2014) or draw on resampling methods to estimate 
spatially varying uncertainty (Wunder & Norris, 2008). Courtiol and 
Rousset (2017) introduced a frequentist mixed modelling approach 
that enables spatially explicit variance surfaces to be calculated by 
including location as a random effect but at the cost of slow com-
putational processing. Here, we introduce an alternative approach 
to isoscape generation based on integrated nested Laplace approx-
imations (INLAs). We aim to address the common issue of limited 
sample availability by modelling isoscapes using multiple species and 
explicitly addressing spatial isotopic variation due to mixed sample 
sources. Many commonly used isoscape prediction methods are un-
able to incorporate multiple sample sources while quantifying asso-
ciated spatial variance and including boundary effects (Table 1). We 
explore the use of recently developed Bayesian hierarchical model-
ling techniques using INLA. We firstly produce isoscape models for 
a restricted region, the North Sea, using a single jellyfish species as a 
spatial reference dataset, and compare the assignment accuracy and 
precision associated with INLA-produced and alternative North Sea 
isoscape models (Trueman et al., 2017). Secondly, we predict isos-
capes for carbon, nitrogen and sulphur across the wider UK shelf sea 
area using multiple reference jellyfish species.

The North Sea and wider UK shelf seas host some of the most 
globally productive fisheries, regionally significant oil, gas and re-
newable energy resources and infrastructure and intensive ship-
ping activity. The UK shelf region has received extensive detailed 
investigation into spatial isotopic variability, with carbon and nitro-
gen isoscape models previously produced using purpose collected 
baseline samples, rather than commonly adopted opportunistic sam-
pling. Barnes, Jennings, and Barry (2009b) and Jennings and Warr 
(2003) and Jennings and van der Molen (2015) used queen scallops 
Aequipecten opercularis from known catch locations as reference 
samples, coupled with environmental variables; however, variance 
surfaces were only calculated by Jennings and van der Molen (2015). 
High resolution, in situ sample-based isoscapes have been modelled 
for the North Sea using lion's mane jellyfish Cyanea capillata as ref-
erence organisms through ordinary kriging of evenly spaced samples 
(Trueman et al., 2017) and with additional environmental variables 
(MacKenzie et al., 2014). Spatially explicit variance surfaces were 
calculated in both examples and initial assignments of invertebrate, 
fish and seabird samples have proven successful (St John Glew et al., 
2018; Trueman et al., 2017). However, this approach is constrained 
by the availability and distribution of a single reference species 
across the region of interest, limiting marine isoscape modelling ca-
pabilities across larger spatial scales, as no single jellyfish species is 
distributed across the entire range of the UK shelf seas. In addition, 
barrier effects (e.g. uneven coastlines) are particularly important in 
basin scale marine isoscape predictions, yet many existing model-
ling techniques do not enable easy incorporation of coastlines and 
boundaries (Table 1).
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2  | MATERIAL S AND METHODS

2.1 | Data collection and stable isotope analysis

To construct isoscape models of UK shelf seas, we collected 627 
jellyfish samples of seven different species (Barrel Rhizostoma 
pulmo, Blue Cyanea lamarckii, Compass Chrysaora hysoscella, Crystal 
Aequorea victoria, Lion's Mane Cyanea capillata, Mauve stinger Pelagia 
noctiluca and Moon Aurelia aurita) from 308 stations across the UK 
shelf between August 2015 and December 2016 (Figure 1). Samples 
were collected on board the RV Cefas Endeavour (Cefas), MRVs 
Scotia (Marine Scotland), Thalassa (Ifremer) and RV Celtic Explorer 
(Marine Institute) during annual fisheries surveys. We opportunis-
tically collected further samples from small commercial fisheries, 
research and private vessels. Jellyfish were collected, identified, 
weighed and measured on-board before thorough washing with salt 
water and immediately freezing to −20°C. In the laboratory, sam-
ples were thawed, washed repeatedly (Mackenzie, Trueman, Lucas, 
& Bortoluzzi, 2017) and a section of bell tissue (mesoglea) removed 
and refrozen prior to freeze-drying for 24 hr, subsampling and sub-
mission for isotopic analysis.

We analysed all 627 samples across the UK shelf sea for δ13C, 
δ15N and δ34S at the Life Sciences Mass Spectrometry Facility 
(LSMSF), East Kilbride, United Kingdom, in autumn 2017. A subset 
of North Sea lion's mane jellyfish samples (57) from 51 stations was 
also analysed for δ13C and δ15N at Elemtex laboratories, Cornwall, 
United Kingdom, in autumn 2015. Accuracy and precision were 
monitored through laboratory internal standards (LSMSF: MSAG, 
M2 and SAAG2) and an in-house comparison standard (ARCOS glu-
tamic acid) nested within samples. We compared North Sea sam-
ples analysed in both laboratories for consistency and no significant 

differences were observed between results (δ13C: t = −0.38, p > 0.05, 
δ15N: t = 0.31, p > 0.05).

Jellyfish bell tissue δ13C values showed a significant negative linear 
relationship with C:N ratios (p < 0.005, slope = −2.22, adjusted R2 = 0.06). 
To correct for lipid-related variance in δ13C values, we applied an algebraic 
correction (Kiljunen et al. (2006)). Lipid-corrected carbon and nitrogen 
isotopic data from Queen scallops of known location were taken from 
Jennings and Warr (2003) and Barnes et al. (2009b), for scallops collected 
between 25 July and 29 September 2001 and from Barnes, Jennings, and 
Barry (2009a) for scallops collected in 2010.

We estimated within-species variation in jellyfish stable isotope 
compositions by averaging (mean) the among-individual standard 
deviation of the same species occurring at the same sampling lo-
cation. We calculated among-species average isotopic differences 
by calculating the mean isotopic difference between species at the 
same location and then averaging across all locations.

2.2 | Environmental data

We downloaded chlorophyll (Chl-a) and night-time short-wave length 
sea surface temperature (SST) level three (instrument calibrated) 
monthly average data from the MODISA satellite (NASA Goddard 
Space Flight Center, 2014) between March and September in 2015 and 
2016 over the spatial range of the UK shelf seas at 4-km resolution 
(Figure 2). We downloaded bottom temperature (BT), surface salinity 
and mixed layer depth (MLD) daily mean data from the Forecasting 
Ocean Assimilation Model 7 km Atlantic Margin model (FOAM AMM7) 
at a 0.11 by 0.07 degree resolution across the UK shelf seas between 
March and September in 2015 and 2016 (CMEMS, 2017). We calcu-
lated 2-year median spring–summer raster surfaces for each variable 

TABLE  1 Comparison of isoscape prediction methods and their ability to incorporate multiple species sources, environmental data, and 
boundary effects while explicitly quantifying spatial variance

Method
Able to incorporate 
multiple species?

Able to incorporate 
environmental 
data?

Able to take into 
account boundary 
effects?

Able to quantify 
spatial variance 
due to species 
random effect?

Fast 
processing 
time?

Simple interpolation/kriging of sample 
data

X X X X Y

Linear regression models of sample 
data (with species as a random effect) 
and additional environmental 
variables, followed by interpolation

Y Y X X Y

General additive models of sample 
data (with species as a random effect) 
and additional environmental 
variables, followed by interpolation

Y Y X X Y

Ocean Data View: Data Interpolating 
Variation Analysis

X X Y X Y

Mixed modelling with spatial 
dependency term.

Y Y X Y X

Bayesian hierarchical spatial modelling 
(integrated nested Laplace 
approximation)

Y Y Y Y Y
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(Figure 2) and a temperature difference (Tdiff) surface by subtracting 
bottom temperature from SST raster surfaces. We acquired water 
column depths from NOAA bathymetry database at 1o resolution 
(Figure 2). Raster surfaces were resampled to 0.1 × 0.1o resolution over 
the coordinates (−13, 8, 48, 62). We extracted covariate values at jel-
lyfish sampling points and scaled the data by subtracting the variable 
mean from each value and dividing by the variable standard deviation 
(Figure 2).

2.3 | Model formation

We describe a Bayesian hierarchical spatial modelling framework for 
the shelf seas, predicting δ13C, δ15N and δ34S values using INLA via 
the r-inla package (http://www.r-inla.org) (Rue, Martino, & Chopin, 
2009). This approach differs from the frequentist mixed modelling 
approach introduced by Courtiol and Rousset (2017) by adopting a 
Bayesian framework enabling uncertainty to be more easily inter-
pretable, allowing the inclusion of boundary effects and solving the 
spatial dependency term in an alternative and faster way.

When modelling across a spatial range, ordinary linear regression 
ignores spatial dependency between sampling locations. Through 
the latent Gaussian field with Matérn correlation, r-inla provides a 
means to explicitly incorporate spatial dependency: 

where y(si) are the response values at all sampling locations which 
are assumed to be normally distributed with mean x(si) and variance 
σ
2. u(si) is the spatial dependency random effect. r-inla includes a sto-

chastic partial differential equation (SPDE) approach that allows fast 
modelling of Gaussian Random Fields (GRFs) similar to kriging ap-
proaches, but is better adapted to handling data with complex spatial 
structures (Lindgren, Rue, & Lindström, 2011). The SPDE approach 

enables the covariance matrix of the Gaussian field to be approxi-
mated as a Gaussian Markov Random Field (GMRF) using a Matérn 
covariance structure and Delaunay triangulation to create prediction 
locations in the form of a mesh (Figure 3). Observations are treated 
as initial vertices; then, further vertices are added with the aim of 
reducing the number of triangles required, but including all observa-
tions in denser sampled areas.

To compare between isoscape models created through INLA and 
previously described kriging approaches (Trueman et al., 2017), we 
developed an INLA North Sea model using reference data from lion's 
mane jellyfish. For the UK shelf sea model, we included observations 
of all seven jellyfish species and species identity was a random ef-
fect. All individual jellyfish data were included in the model, includ-
ing in locations where multiple individuals of the same or different 
species were sampled at the same location. Put simply, we modelled 
each isotope value as a function of a set of covariates Xi where spe-
cies and the underlying spatial structure were included as random 
effects. Models were specified as:

where Yi is the isotope value (δ13C, δ15N or δ34S) at location i, Xi is 
a vector containing the environmental covariates as linear fixed 
effects, βi is a vector of parameters to be estimated, Ui is the 
species random effect with assumed Gaussian distribution, Wi 
represents the smooth spatial effect, linking each observation 
with a spatial location, with the elements of Ω estimated using 

y(si)∼N(x(si),σ
2), x(si)=covariates(si)+u(si),

Yi∼ Intercept+�iXi+ f(Ui)+ f(Ui)+ f(Wi)+�i,

Ui∼N(0, σ2
species

),

Wi∼N(0,Ω),

�i∼N(0, σ2),

F IGURE  1  Jellyfish sampling locations 
around the UK shelf seas and a summary 
of the number of each individuals of each 
species collected within the North Sea 
(diamond), English Channel (square), Celtic 
and Irish Seas (triangle) and off West 
Scotland and Ireland (cross)

http://www.r-inla.org
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the Matérn correlation, and εi contains the independently dis-
tributed residuals. Full global models including all environmental 
covariates, specifying no interaction terms and first-order inter-
action terms were tested (Table 3), as we had no prior expec-
tations of covariate or interaction significance. Model selection 
and inclusion or exclusion of interactions were based on devi-
ance information criterion (DIC) and model fit (Pearson correla-
tion between predicted and observed values). Within the North 

Sea, we also compared models with and without a spatial effect. 
When similar DIC values were observed (within 2), the simpler 
model was selected (Burnham & Anderson, 2003). We only com-
pared spatial models within the shelf seas to capture and model 
isotopic spatial variation driven both by the larger spatial extent 
of the UK shelf study area, and additional variance introduced 
by multispecies reference samples. We used non-informative  
default priors for each model.

F IGURE  2 Scaled environmental 
covariate raster surfaces (depth, sea 
surface temperature (SST), bottom 
temperature (BT), mixed layer depth 
(MLD), salinity and chlorophyll (Chl))
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We used the best model for each isotope to predict isotopic com-
positions across the whole spatial domain using continuous raster 
surfaces of scaled environmental variables as predictors. Response 
variables were estimated at all mesh vertices, which were then 
linearly interpolated within each triangle into a finer regular grid 
(0.2 × 0.2o) via Bayesian kriging. To avoid extrapolating beyond the 
environmental covariates range, we masked grid cells where predic-
tor covariate values fell largely outside the range of values observed 
at jellyfish sampling locations. This was particularly important when 
incorporating depth as a covariate. All jellyfish samples were col-
lected on the UK continental shelf; therefore, the prediction area 
was also limited to the shallower shelf sea range, in order to prevent 
skewed isotope predictions in deeper unsampled regions. Mean and 
variance predictions were obtained for each grid cell and isotope and 
mapped to produce isoscapes and model variance surfaces repre-
senting expected isotopic compositions for jellyfish (or a similar pe-
lagic generalist consumer) accounting for the species random effect.

2.4 | Comparing INLA and kriging isoscape models 
for single species isoscapes

To assess the differences between the traditional ordinary krig-
ing and the INLA isoscape prediction approaches, we compared 
North Sea carbon and nitrogen isotope prediction and variance sur-
faces (Figure 4). INLA prediction surfaces were subtracted from the 
Trueman et al. (2017) North Sea isoscapes and results are displayed 
as difference surfaces. Following the methods described in Trueman 
et al. (2017), we assigned scallops from known locations to their most 
likely origin within the North Sea (Figure 5) based on similarity be-
tween measured isotopic compositions and isoscape predictions using 
multivariate normal probability distributions. Assignments were made 
by estimating the likelihood that each raster cell of the carbon and 
nitrogen isoscapes represented the origin of each individual. We dis-
played assignment accuracy and precision results as per Trueman et al. 
(2017) using odds ratios to set probability threshold values to differen-
tiate between cells of likely and unlikely origin. Assignment precision 

was defined by the odds ratio threshold and represents the proportion 
of the surface area with probability values above this set threshold, 
and assignment accuracy is defined as the proportion of individuals 
where the true location falls within the assigned area (Trueman et al., 
2017; Vander Zanden et al., 2015). We compared accuracy and preci-
sion of known-origin scallops assignments sampled in 2001 and 2010 
between INLA-predicted North Sea isoscapes and ordinary kriging 
isoscapes produced by Trueman et al. (2017). We performed all analy-
ses using r 3.4.2 (R Core Development Team, 2016).

3  | RESULTS

3.1 | Within- and between-species variability

The variations in average stable isotope ratios within species sam-
pled at the same locations were relatively consistent across species 
in both carbon (0.37–0.62‰) and sulphur (0.41–0.63‰) apart from 
crystal jellyfish where among-individual variation was higher for 
both δ13C (1.08‰) and δ34S (0.75‰) (Table 2). Within-species dif-
ferences in nitrogen were more variable ranging from 0.44‰ in blue 
jellyfish to 1.65‰ in crystal jellyfish (Table 2). Among-species dif-
ferences ranged considerably between species and isotope (Table 2). 
δ34S differences were relatively constrained with differences rang-
ing from 0.01 to 1.45‰ whereas δ13C differences ranged from 
0.03‰ (between mauve stingers and compass jellyfish) to 3‰ (be-
tween barrel and compass jellyfish). Among-species differences in 
δ15N varied over the largest range, from 0.02‰ between lion's mane 
and blue jellyfish up to 7.1‰ between barrel and mauve jellyfish.

3.2 | The North Sea isoscape models

The best-fit carbon and nitrogen isoscape models for the North Sea 
were non-spatial models excluding interaction terms (Table 3):

In both cases, interaction and spatial dependency terms did not 
improve model fit; therefore, the simplest models were selected 
(Table 3).

Broad spatial patterns in δ13C and δ15N ranges (Figure 4a,c, respec-
tively) are consistent with previous studies (Jennings & van der Molen, 
2015; Trueman et al., 2017), indicating that isoscape surfaces predicted 
within an INLA modelling framework are comparable with more tradi-
tional ordinary kriging approaches. Associated variance surface values 
for carbon and nitrogen (Figure 4b,d) are considerably lower than those 
calculated using ordinary kriging approaches (Trueman et al., 2017), with 
both carbon and nitrogen variance values predominately below 1‰.

3.3 | Method comparison and scallop assignment

Both the INLA approach and the Trueman et al. (2017) ordinary 
kriging approach predicted similar carbon and nitrogen isoscape 

y∼1+X+SST+BT+Tdiff+Chl+MLD+Sal+Depth.

F IGURE  3 Delaunay triangulation mesh designs for the UK shelf 
sea model. Sampling locations are indicated in red
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surfaces for the North Sea, with isotopic differences in each grid 
cell primarily falling between ±1—1.5‰ (Figure 5). The regions 
where isotopic difference is seen to be greater (2–4‰) are the 
areas where no jellyfish samples occur, such as the southern 
North Sea. Larger differences in nitrogen isotope predictions 
are also seen across the central North Sea (Figure 5b), demon-
strating the strong depth influence on INLA-predicted isotope 
value. Minimal differences were observed in the carbon and ni-
trogen variance surfaces (Figure 5c,d) in the range where sam-
ples were collected.

Accuracy and precision of known catch location scallop assign-
ments to the original Trueman et al. (2017) North Sea isoscapes 
and the INLA-modelled isoscapes were compared over a range of 
odds ratio threshold values (Figure 6). Assignment accuracy to the 
new INLA-modelled isoscapes was better than random at all preci-
sion values (Figure 6). Assignment accuracy for scallops sampled in 
2001 and 2010 was over 90% when assigning to areas representing 
on average over 40% of the total North Sea isoscape area. When 
precision was increased to an area representing 20% of the isos-
cape, assignment accuracy was greater than 70% for both scallop 

F IGURE  4 North Sea carbon (a) and nitrogen (c) isoscape models and associated variance of the posterior predicted distribution surfaces 
(b, d). Values based on Cyanea capillata sampled in August 2015. Filled circles represent sampling locations

F IGURE  5 Difference between 
integrated nested Laplace approximation 
(INLA) predicted and Trueman et al. (2017) 
kriging predicted carbon (a) and nitrogen 
(b) isoscape surfaces (kriging—INLA), and 
the respective difference between the 
variance surfaces (c, d)
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datasets. At higher precision values, assignment of the 2001 data-
set to the INLA-modelled isoscapes appears more accurate than as-
signment to the kriging isoscapes by Trueman et al. (2017), whereas 
the opposite is observed with the 2010 scallop dataset. Overall as-
signment to the original kriging isoscapes is slightly more accurate 
than to the INLA-modelled isoscapes, but both methods are largely 
comparable.

3.4 | UK shelf sea isoscape models

Global models, including first-order interaction terms, were the best-
fit for carbon, nitrogen and sulphur isoscapes;

Best-fit models for carbon and sulphur UK shelf sea isoscapes 
had moderate fit (R = 0.47, p < 0.05 and R = 0.50, p < 0.05 respec-
tively) (Table 3). The best fitting nitrogen isoscape model had a 
stronger fit (R = 0.80, p < 0.05) (Table 3).

Minimal residual isotopic variability between species remained 
with the chosen carbon and sulphur isoscape prediction models, 
indicating that the majority of species isotopic variability was able 
to be explained by the combination of covariates, and interactions 
between these covariates, included within the models (Figure 7a,c). 
Residual nitrogen isotopic variability has a larger range between spe-
cies (c. 6‰), particularly between mauve stinger jellyfish depleted 
in 15N and crystal jellyfish displaying relatively high δ15N values 
(Figure 7b, Table 1).

Spatial distributions of δ13C values within the North Sea are 
consistent with previous findings showing relatively low δ13C val-
ues (−18 to −17‰) in the central North Sea and higher δ13C val-
ues in the northern and southern North Sea (Figure 8a). Similar 
δ13C values of between −17 and −16‰ are predicted within the 
western English Channel and into the Celtic and Irish Seas. Higher 
δ13C values (−15.5 to −14.5‰) are predicted along the French and 
Belgian coasts of the English Channel and southern North Sea, 
off the southwest coasts of Cornwall and north of the Irish Sea 
(Figure 8a). Spatial distributions of δ15N values are also consis-
tent with previous North Sea predictions, with a strong isotopic 
gradient between the northern (8–10‰) and southern (11–13‰) 
North Sea (Figure 8c). Higher δ15N values are also observed into 
the English Channel and within the Irish Sea, whereas lower δ15N 
values are predicted around north and west Scotland and Ireland  

y∼1+X+SST+BT+Tdiff+Chl+MLD+Sal+Depth

+SST:BT+SST:Tdiff+SST:MLD+SST:Depth+SST:Chl+SST:Sal

+BT:Tdiff+BT:MLD+BT:Depth+BT:Chl+BT:Sal+Tdiff:MLD

+Tdiff:Depth+Tdiff:Chl+TDiff:Sal+MLD:Depth

+MLD:Chl+MLD:Sal+Depth:Chl+Depth:Sal+Chl:Sal

+ f(Species)+ f(Spatial)

Barrel Blue Compass Crystal Lion’s mane Mauve Moon

Carbon (‰)

Barrel 0.37 NA −3.0 −2.16 −2.73 −0.93 −2.34

Blue 0 0.62 1.14 −0.40 0.26 2.22 2.27

Compass 5 11 0.59 0.74 0.63 −0.03 0.63

Crystal 8 5 16 1.08 1.05 0.71 0.06

Lion’s Mane 4 24 9 10 0.60 0.84 0.39

Mauve 1 1 7 30 1 0.48 −0.71

Moon 5 9 11 21 8 14 0.46

Nitrogen (‰)

Barrel 0.79 NA −2.08 −1.85 −1.37 7.10 −0.60

Blue 0.44 0.49 −1.47 0.02 1.63 0.78

Compass 0.52 −3.55 −0.30 −0.19 −3.68

Crystal 1.65 1.34 5.22 2.54

Lion’s Mane 0.62 2.97 0.32

Mauve 0.95 −5.25

Moon 0.63

Sulphur (‰)

Barrel 0.45 NA 0.13 0.37 0.83 1.45 0.88

Blue 0.62 −0.74 0.65 −0.1 −0.01 −0.49

Compass 0.41 0.15 0.53 −0.19 −0.39

Crystal 0.75 −0.62 0.50 −0.34

Lion’s Mane 0.44 0.29 −0.47

Mauve 0.59 −0.03

Moon 0.63

TABLE  2 Within (red)- and between 
(row 1 - column 1)-species isotopic 
differences (black). Calculated at locations 
where multiple individuals of the same 
species or multiple species occur and 
averaged across locations. Within-species 
isotopic difference is the among-individual 
standard deviation of the same species 
occurring at the same sampling locations 
and averaged across all locations. 
Between-species isotopic difference is the 
difference between different species 
sampled at the same locations and 
averaged across all locations. Blue 
numbers indicate the number of locations 
where pairs of species were sampled
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(Figure 8c). The isotopic range in sulphur is relatively small across 
the shelf, with the majority of cells falling between values of 20.5 
and 22.5‰, in comparison to the large variability observed in 
carbon and nitrogen isotope ratios (Figure 8e). The highest δ34S 
values (>21.5‰) are observed in the northern North Sea, north 
Scotland and Ireland into the northwest Irish Sea (Figure 8e). A 
clear isotopic gradient is predicted between the northern and 
southern North Sea, with decreasing values into the southwest 
North Sea. Lowest δ34S values are predicted off the southwest 
coast of the United Kingdom and into the Celtic Sea (Figure 8e).

Variance surfaces show broadly similar patterns for each iso-
tope element, with low variance values (<2‰) across the majority 
of the shelf, and increased variance values observed within the 
eastern English Channel, eastern Irish Sea and in coastal regions 
(Figure 8b,d,f).

4  | DISCUSSION

This study has two main aims to introduce INLA as a powerful tool 
for creating isoscape models incorporating environmental correlates 
as predictors and where reference samples contain a source of vari-
ance that is not spatially dependent and to describe the spatial varia-
tion in δ13C, δ15N and δ34S values across the shelf seas of the British 
Isles. We have shown that INLA-generated isoscape models have 

comparable accuracy and precision to simple kriging where refer-
ence samples are evenly distributed and common form (in our case 
the same species). We then extended the approach to draw isoscape 
models and uncertainty surfaces across a wide shelf sea area where 
collection of reference samples from a single species would be 
impossible.

4.1 | INLA as a tool for creating isoscape models

Creating isoscape models with associated uncertainty surfaces 
in regions where reference samples are either irregularly spaced 
and/or contain additional sources of isotopic variability is chal-
lenging (Courtiol & Rousset, 2017). Spatial modelling using the 
INLA approach addresses many common constraints. By using 
the INLA approach, we are able to incorporate environmental 
data and a species random effect into our isoscape prediction 
models. Although this can also be achieved by using a mixed 
effects model approach (Courtiol & Rousset, 2017), the INLA 
approach is unique in that it provides a computationally rapid 
technique to quantify the spatial variance due to the species 
random effect, which is essential for accurate measures of vari-
ance and subsequent isoscape assignments. In addition, INLA 
enables the incorporation of boundary effects, to model and 
predict around physical barriers, which is particularly useful in 
marine environments.

TABLE  3 Model fit results for the carbon and nitrogen North Sea, and carbon, nitrogen, and sulphur UK shelf sea isoscape prediction 
models. Global models excluding and including first-order interaction terms were tested. Inclusion of the spatial term was also tested within 
the North Sea models. Model fit was tested using the deviance information criteria (DIC), and assessing the Pearson correlation between 
observed and fitted values. The t, R, 95% confidence intervals around R, and the degrees of freedom (df) are reported. The models displayed 
in red were the chosen models for isoscape predictions

Region Isoscape Model DIC t R 95% df

NS Nitrogen No interactions 207.5 8.3 0.75 0.60,0.84 55

NS Nitrogen First-order interactions 220.2 11.8 0.85 0.75,0.90 55

NS Nitrogen No interactions + spatial 207.2 8.3 0.75 0.60,0.84 55

NS Nitrogen First-order interactions + spatial 219.2 11.8 0.85 0.75,0.91 55

NS Carbon No interactions 176.7 5.5 0.59 0.39,0.74 55

NS Carbon First-order interactions 194.4 8.3 0.75 0.60,0.84 55

NS Carbon No interactions + spatial 176.5 5.5 0.60 0.40, 0.74 55

NS Carbon First-order interactions + spatial 193.4 8.3 0.75 0.60,0.84 55

UK Shelf Nitrogen No interactions + spatial  
+ f(species)

2,411.8 31.0 0.78 0.75,0.81 604

UK Shelf Nitrogen First-order interactions + spatial  
+ f(species)

2,398.6 32.9 0.80 0.77,0.82 604

UK Shelf Carbon No interactions + spatial  
+ f(species)

2,109.4 10.3 0.38 0.32,0.45 604

UK Shelf Carbon First-order interactions + spatial  
+ f(species)

2,090.4 13.0 0.47 0.40,0.53 604

UK Shelf Sulphur No interactions + spatial  
+ f(species)

1,469.8 11.9 0.43 0.36,0.50 604

UK Shelf Sulphur First-order interactions + spatial  
+ f(species)

1,458.1 14.2 0.50 0.44,0.56 604
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The INLA-predicted North Sea δ13C and δ15N isoscapes (Figure 4) 
are broadly similar to isoscapes produced from ordinary kriging of 
identical lion's mane jellyfish data (Trueman et al., 2017) (Figure 5), 
with similar low variance estimates within the spatial confines of the 
reference sample (Figure 5c,d). Accordingly, the accuracy and pre-
cision by which scallops of known origin could be assigned back to 
origin were also comparable to that demonstrated by Trueman et al. 
(2017) (Figure 6). However, it must be noted that accuracy and pre-
cision results cannot be extrapolated outside the North Sea range 
and do not reflect wider shelf sea isoscape accuracy and precision. 
Given that the INLA approach draws on environmental correlates 
to predict isotopic compositions, one might expect simple kriging 
to produce more accurate isoscape models where reference sample 
collection is evenly spaced and dense compared to the spatial scale 
of isotopic gradients. The similarity in uncertainty between the two 
methods found here reflects the relatively strong statistical relation-
ships between environmental correlates and reference isotope data. 
Where evenly spaced reference samples cannot be recovered across 
the entire region of interest, or where spatial variation in isotope 
values is expected to occur at smaller spatial scales than the spacing 

between reference samples, isoscapes drawn from environmental 
predictors may produce more accurate and precise assignments.

One significant benefit of the spatial INLA approach is the ability 
to account for sources of isotopic variance in the reference data other 

F IGURE  6 Accuracy (the proportion correctly assigned) and 
precision (proportion of the total surface area) of assignment to 
both the original North Sea kriging isoscape models (Trueman 
et al., 2017) shown in black, and the new integrated nested Laplace 
approximation (INLA) modelled North Sea isoscapes shown in blue 
for the 2001 and 2010 scallop datasets. The red line represents the 
accuracy and precision values if assignments were no better than 
random

F IGURE  7 Marginal posterior distributions of the species 
random effect for the chosen carbon, nitrogen and sulphur isoscape 
prediction models. π is the species-level deviation from the overall 
mean isotope value, and D is the data. Distributions represent the 
probability density of a given isotopic difference, given the data 
and represents species differences that remain after the models 
have been applied. Differences between species represent isotopic 
differences unable to be explained by environmental variables
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than spatially varying terms. In our case, INLA allowed us to identify 
and account for large, among species isotopic differences, ranging 
between 0.03–3.0‰ in δ13C, 0.02–7.1‰ in δ15N and 0.01–1.45‰ in 
δ34S (Table 2) into the spatial model. The ‘species effects’ are quan-
tified as residual differences unaccounted for by the environmental 
predictors within the final models and displayed as marginal distri-
butions in Figure 7. Both carbon and sulphur ‘best-fit’ models were 
able to explain all isotopic differences between species, whereas 
residual nitrogen isotopic differences were still observed. Mauve 
stinger and crystal jellyfish had markedly different δ15N values with 
mauve stingers displaying consistently low and crystal jellyfish con-
sistently high δ15N values. Isotopic variation among different species 
is expected, likely due to different diets, habitat uses and metabolic 
processes. Deciphering the reasons behind these species isotopic 
differences is beyond the scope of this study, but we emphasize the 

importance of treating gelatinous zooplankton as separate species 
in any isotopic study.

In this example, we use INLA to incorporate isotopic differences 
between species; however, the same concept applies whenever 
data with known, or assumed, differences must be combined. For 
example, in isoscape models where plankton or zooplankton are 
sampled and grouped (McMahon, Hamady, & Thorrold, 2013; Schell, 
Barnett, & Vinette, 1998); where data have been collected from 
multiple sources (Bataille et al., 2018); or where different sampling 
techniques have been adopted. The same approach could also be 
used to incorporate temporal variability in sample collection (Bowen 
& Revenaugh, 2003; Flockhart et al., 2013). While samples in the 
current study were collected over 2 years, sampling locations did 
not overlap across different times, so temporal effects could not be 
explicitly quantified.

F IGURE  8 UK shelf sea carbon, 
nitrogen and sulphur isoscape models 
(a, c, e) and associated variance of the 
posterior predicted distribution, after 
species random effects have been 
accounted for (b, d, f). Values based on 
seven species of jellyfish (Barrel, Blue, 
Crystal, Compass, Lion's mane, Mauve and 
Moon) sampled between August 2015 and 
December 2016. Filled circles represent 
sampling locations
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4.2 | Isotopic variability across the UK shelf seas

Stratification and mixing extent are strong drivers of spatial isotopic 
variability, with front locations closely matching isotope ratio bound-
aries in carbon, nitrogen and sulphur (Miller & Christodoulou, 2014). 
In shallow well-mixed regions, (e.g. Irish Sea and southern North Sea), 
isotopically heavy nutrients become resuspended (MacKenzie et al., 
2014; Miller & Christodoulou, 2014) (Figure 8), whereas deeper, sea-
sonally stratified regions (e.g. northern North Sea and Celtic Sea), 
experience nutrient limitation and reduced fractionation (Goericke 
& Fry, 1994), resulting in higher δ13C values (Figure 8).

Isotopic ratios are also strongly influenced by freshwater and 
terrestrial inputs. Freshwater has a lower δ34S ratio compared 
to seawater (Fry, 2002), reducing δ34S values in regions with high 
freshwater input (e.g. eastern Irish Sea, southern North Sea and 
English Channel and areas off West Scotland) (Painting et al., 2013) 
(Figure 8). Anthropogenic nutrient sources enter the marine environ-
ment through estuaries (Howarth, 1998) and influence productivity 
causing increased δ13C and δ15N values in coastal and estuarine envi-
ronments (e.g. southern North Sea, eastern English Channel, eastern 
Irish Sea) (Painting et al., 2013).

Production source also influences isotopic variability, with phy-
toplankton community structure differing between the northern and 
southern North Sea (Ford et al., 2016), the presence of cyanobacteria 
within the western English Channel (Rees, Gilbert, & Kelly-Gerreyn, 
2009) decreasing δ15N but increasing δ13C values due to nitrogen fix-
ation (Levitan et al., 2007) and influence of microalgae increasing δ13C 
and δ15N values around the East Anglian coast and into the southern 
North Sea (Bristow et al., 2013) (Figure 8). Variance surfaces are simi-
lar for each isoscape, with uniform variance across the majority of the 
UK shelf, but greater values found within more dynamic regions such 
as the eastern English Channel and eastern Irish Sea.

5  | CONCLUSION

The principle reason for adopting an INLA (or mixed model) approach 
to generate an isoscape is to account for variance in reference sam-
ples that is not explicitly spatial in origin. Where reference datasets 
can be assembled from the same species, collected at the same time 
and processed in the same way, simpler spatial modelling or kriging 
interpolation approaches may be favoured; however, in many cases, 
some extra non-spatially dependent variance terms are introduced 
because of the difficulty of obtaining uniform reference samples. In 
our example, jellyfish species have varying distributions across the 
spatial range, so to generate a single isoscape model required use 
of multiple species and therefore the introduction of random effect 
of species. The INLA approach is a promising method for account-
ing for additional non-spatially dependent isotopic variance within 
reference samples. Although our study focuses on marine carbon 
and nitrogen and the newly introduced sulphur isotopes, the same 
methods and benefits and limitations are applicable across all envi-
ronments and isotope systems.
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