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Abstract 37 

Surface modification of nano-catalyst got significant attention due its outstanding 38 

photocatalytic performance with minimum secondary pollution. Photocatalytic oxidation (PCO) is 39 

a promising technology for removing volatile organic compounds (VOCs) due to its higher activity 40 

with minimum secondary pollution. In this review, we have selected literature from the Web of 41 

Science database for nearly 10 years, with most of our sources spanning the past 5 years. Current 42 

review study summarizes the recent reports of nano-catalyst surface modification technology, 43 

including overcoming the internal and external limitations of nano-catalyst, and improving the 44 

method of photocatalytic degradation of VOCs. Additionally, we found that surface modification 45 

greatly enhances the catalytic performance of the nano-catalyst, which is beneficial for the 46 

degradation of VOCs. There are some limitations including low catalytic activity and catalyst 47 

stability. So, in future research, new methods of preparing catalysts and improving their overall 48 

catalyst performance should be managed and paid more attention. 49 

Keywords: Photocatalytic oxidation; Nano-catalyst; Surface modification; Volatile organic  50 

compounds; Surface chemistry; 51 
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1.Introduction  53 

Air quality has received a widespread attention due to its injurious effects on living organism. 54 

Industries, such as petroleum refining 1, chemical production 2, synthetic resin 3, clothing dyeing 4-55 

6, leather processing 7, pharmaceutical industry 2, 8, insecticide production 9, coating and adhesive 56 

manufacturing 10, spraying 11, printing 4, 12, electronic component manufacturing 2, 5, 13 releasing 57 

significant amount of volatile organic compound (VOC) which ultimately effects the air quality (Fig. 58 

1). Due to easy diffusivity, toxicity and volatility, VOCs can cause irreversible damage to human 59 

health 14-16. The adverse effects of VOCs on human health include not only acute irritation to the 60 

eyes and lung but also chronic diseases such as asthma, gastrointestinal diseases, cardiovascular 61 

diseases and cancer 17-20. 62 

To overcome devastating effects of VOCs, several efficient purification techniques of VOCs 63 

has been developed. Such as incineration, condensation, adsorption, photocatalytic oxidation (PCO), 64 

ozone-catalytic oxidation and membrane separation 21. Comparing with these techniques, PCO has 65 

many advantages such as room-temperature operation, high activity, and no secondary pollution 66 

which made PCO an auspicious technique22. Besides, PCO is a powerful air purification technology 67 

that destroys VOCs, by photocatalysis under the irradiation of ultraviolet (UV) and sunlight, 68 

converting them to water, carbon dioxide and detritus. 69 

Commonly used photocatalysts material for purification of VOCs includes TiO2, ZnO, WO3, 70 

V2O5, ZnS and CdS 23-25. To date, nanotechnology has made exponential progress 26-28. 71 

Nanomaterials (NMs) are widely used in the field of environmental remediation 29. Nowadays, TiO2 72 

has a large number of applications photocatalysis 30-33, due to its high photocatalytic efficiency, 73 

stability under extreme conditions, and suitable edge potential to act as active centers for catalytic 74 

reactions 34-36. However, the performance of these nano-catalyst is not efficient. For example, 75 

compared with other semiconductor materials, TiO2 has a wider band gap and higher carrier 76 

recombination rate which limit the photocatalytic process to the UV region of the spectrum 31, 37.  77 

Recently, the techniques of modifying nano-catalyst include (i) the use of compound 78 

semiconductors i.e., semiconductors made from two or more elements, (ii) catalyst immobilization 79 

on solids such as silica or polymeric supports, (iii) use of co-catalysts, (iv) dye sensitization, and (v) 80 

surface doping is being applied to fill the shortcomings of nano-catalyst. These techniques not only 81 

enable catalyst to increase visible light utilization efficiency but also increase the lifetime of 82 

photoexcited carrier pairs 38-42. 83 

Previously published articles give a detailed introduction to the processes for modification of 84 

various nano-catalysts 43-46. However, there is no comprehensive review on the impact of 85 

modification of nano-catalysts by the different methods on their efficiency and capability to 86 

eliminate VOCs. The purpose of this review is thus to classify the techniques according to the 87 

surface modification method and review the new features of the modified photocatalyst. 88 

Furthermore, new features of the modified photocatalyst are briefly discussed. Photocatalysis 89 

fundamentals, factors that affect the catalytic performance of the photocatalyst, and the modification 90 



technology has been illustrated. Through these studies, we can explore the limitations of the current 91 

catalysts and use this to further improve the performance of the catalysts, with the overarching goal 92 

of contributing to the improved elimination of environmental VOC pollution by nano-catalysis in 93 

the future. 94 

95 

Fig 1. Illustration of industries releasing VOCs in air, concentration obtained from 47-57. 96 

2. Mechanism behind photocatalytic oxidation of VOCs 97 

The photocatalytic reaction is a complex process, which begins with the absorption of a large 98 

amount of visible light on the surface of the material. When the energy of the absorbed photon is 99 

not less than the energy of the semiconductor band gap photon (Eg), the electrons existing in valence 100 

bands (VB) will be excited into the empty conduction bands (CB), such that holes are left behind in 101 

the VB 58. The following uses TiO2 as an example to analyze the electrons and holes generation 102 

process: 103 

𝑻𝒊𝑶𝟐 + 𝒉𝒗 → 𝒆−(𝑻𝒊𝑶𝟐) + 𝒉+(𝑻𝒊𝑶𝟐)(1) 104 

There are three possible processes for electrons and holes :(1) Separate and move to the surface 105 

of the material to have an opportunity to participate in redox reaction (2) Trapped by defect sites. 106 

(3) Recombine and release energy. However, the second and the third process do not promote the 107 

photocatalytic reaction, and only the first process can drive reduction and oxidation 59. Before 108 

driving the redox reaction, the charge needs to undergo separation, thermalization, trapping, 109 

recombination, and transport 60 (Fig. 2). Interfacial charge transfer may directly eliminate VOCs 110 

through oxidation or generate hydroxyl radicals and superoxides 61. The process can be depicted as 111 

follows equations (2)-(8) 62: 112 

 113 
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𝒉+(𝑻𝒊𝑶𝟐) + 𝑯𝟐𝑶 → 𝑻𝒊𝑶𝟐 + 𝑯+𝑶𝑯• (2) 119 

𝒉+(𝑻𝒊𝑶𝟐) + 𝑶𝑯− → 𝑻𝒊𝑶𝟐 + 𝑶𝑯•   (3) 120 

𝒆−(𝑻𝒊𝑶𝟐) + 𝑶𝟐 → 𝑻𝒊𝑶𝟐 + 𝑶𝟐
•−            (4) 121 

𝑶𝟐
•− + 𝑯+ → 𝑯𝟐

•                                         (5) 122 

𝑯𝑶𝟐
• +𝑯𝑶𝟐

• → 𝑯𝟐𝑶𝟐 + 𝑶𝟐                      (6) 123 

𝒆−(𝑻𝒊𝑶𝟐) + 𝑯𝟐𝑶𝟐 → 𝑶𝑯− + 𝑶𝑯•      (7) 124 

𝑽𝑶𝑪 + 𝑶𝟐 + 𝑶𝑯• → 𝑯𝟐𝑶 + 𝑪𝑶𝟐 + 𝒐𝒕𝒉𝒆𝒓 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒔 (8) 125 

Current model is difficult to explain due to the complex charge transfer process. Understanding 126 

the underlying mechanisms, will help us to find new photocatalysts for application in VOCs 127 

degradation. 128 

129 

Fig 2. Schematic illustration of basic mechanism of photocatalysis. 130 

3. Factors affecting the photocatalytic activity 131 

The photocatalytic performance affected by intrinsic and extrinsic factors (Fig. 3). Intrinsic 132 

factors affecting the photocatalytic ability and VOC degradation has been briefly discussed below 133 

63-65. 134 



 135 

Fig 3. Illustration of factors affecting the photocatalytic activity. 136 

3.1 Influence of catalyst characteristics (intrinsic factors) on VOCs degradation 137 

3.1.1 Crystallinity and crystal size 138 

The presence of defects in crystal lattice and impurities in the catalyst accelerates the 139 

recombination process. To improve the efficiency of photocatalysis, the design and research of high 140 

bulk crystallinity have received extensive attention 66. 141 

Leite et al. 67claimed that the property of high crystallinity has advantages over disordered 142 

polymers in photocatalytic applications. Pleskunov et al. 68used a single-step plasma-based 143 

technique to synthesize Ta3NyOx nanoparticles(NPs) with controllable crystallinity. In the visible 144 

light range, Ta3NyOx exhibits plasmonic and photoluminescent properties. Katsuki et al. 69found that 145 

α-Fe2O3 NPs with high crystallinity are more efficient in PCO. A similar finding was also reported 146 

by Li et al. 70, they found that the nanorod-shaped photoactive COF containing benzothiadiazole 147 

and triazine with good crystallinity exhibited excellent comprehensive performance and good cycle 148 

performance in the photocatalytic oxidation reaction. Curtis et al. 71used the two-temperature 149 

method to prepare mesoporous silicon NPs. The initial temperature of the reaction is 650℃ and 150 

lasted for 0.5h, and then in the second heating process at 100°C, 200°C and 300°C for 6h. They 151 

found that the mesoporous silicon NPs prepared at 300°C have the best photocatalytic performance 152 

because of the higher crystallinity of catalyst. Li et al. 72and Zhang et al. 73 pointed out that 153 

synthesizing a new heterogeneous photocatalyst has uniform crystal size and high crystallinity. 154 

These advantages accelerate the separation and transfer efficiency of electron-hole pairs.  155 

Besides crystallinity, crystal size also affects photocatalytic activity. Alonso-Tellez et al. 74 found 156 

that the smaller crystal size of UV100 is the main reason why it is superior to P25 in terms of 157 

photocatalytic oxidation. Generally speaking, higher crystallinity and smaller crystal size can 158 

promote the reaction rate.  159 

3.1.2 Surface area 160 

Surface area is an important structural feature of photocatalysts, which has a great influence on 161 

photocatalysis 75. The larger surface area, the more accessible active sites, and the higher the 162 

photocatalytic efficiency 76. 163 

Hajaghazadeh et al. 77found that under steady-state conditions, the conversion rate of methyl 164 



ethyl ketone (MEK) using PC500 catalyst was higher than that of PC50 and P25. The experimental 165 

results show that the lower surface area of PC50 and P25 makes the activity decrease over time. 166 

However, PC500 has a high surface area, and its positive impact offsets the negative impact of 167 

electron and holes on rapid recombination. This finding was also reported by Monteiro’s group. 168 

During the degradation of perchloroethylene by P25 and PC500, it was also noticed that the surface 169 

area has a greater impact on the conversion of pollutants 78. Liu et al. 79 found that Ag-ZnO NPs 170 

have super high photocatalytic efficiency compared with pure ZnO. Researchers speculate that it 171 

may be because the Ag NPs are uniformly distributed and have a large specific surface area. Similar 172 

results were also reflected in another experiment. Rajca’s group tested the removal efficiency of 173 

organic substances in the photocatalytic process of commercial nano-catalysts with different 174 

accessible surface areas. The results show that because P90 has a larger surface area, the 175 

photocatalytic efficiency of P90 is higher than P25 80. 176 

3.1.3 Pore volume and porosity 177 

In addition to the surface area, another structural feature pore volume of the photocatalyst also 178 

has a profound effect on the catalytic efficiency74. Chen et al.81designed Pt nanoclusters similar to 179 

1.8 nm. The catalytic performance of C/Pt@TiO2-3% containing 0.54 wt% Pt is greatly improved 180 

because of its maximum total pore volume and the average pore diameter is approximately 3 nm. In 181 

addition, the mesoporous structure also helps to expose more active sites of the nano-catalyst to 182 

promote surface reactions 81.  183 

While achieving porous structure, crystallinity will not be lost. Therefore, the general view is 184 

that porous structure is more important catalyst characteristics than crystallinity 62. 185 

Porous materials with superior performance are very suitable for capturing aromatic VOCs in 186 

ambient air. In recent years, due to high porosity and strong customization, metal organic 187 

frameworks (MOFs) have been studied extensively 82-86. MOFs are rich in organic contents, which 188 

makes them have superior inherent advantages in adsorbing aromatic VOCs 87. 189 

Xie et al. 87designed and synthesized two MOFs, among which [Zr6(μ3-O)4(μ3-OH)4(BDB)6] 190 

(BUT-66) shows superior adsorption performance of benzene. Single-crystal structure analysis 191 

shows that the small hydrophobic pores and the small interaction between the adsorption sites make 192 

BUT-66 have the high performance of capturing benzene. Wu et al. 88 used lab-on-fiber technology 193 

and nanotechnology to monitor surface nano-functionalization of VOC adsorption/desorption in 194 

zeolitic imidazole frameworks (ZIF)-8. The high porosity plays an important role in VOC sensors. 195 

This finding was also reported by Wang et al. 89They found that the shape and size of the porous 196 

Co3O4 derived from Co-MOF would significantly affect its sensing performance. Besides, the more 197 

NPs on the surface, the better the VOC sensing performance. Yu et al. 90 proposed a two-step method 198 

to prepare In/Ni MOF-derived mesoporous In2O3-NiO composites with a nanosheet hollow sphere 199 

(NHS) structure. They observed that mesoporous In2O3-NiO NHS has a high porosity, this 200 

advantage provides sufficient permeation pathways for VOC, a large number of active sites, and the 201 

capacity to capture VOC. 202 



Table 1 Summary of different photocatalysts affect the photoactivity 203 

Photocatalyst Surface area Pore volume Compound Photo activity Ref. 

TiO2 USprec 326 m2/g 0.484 cm3/g Benzyl alcohol Conversion 

61% 

91 

P25 - - Benzyl alcohol Conversion 

100% 

91 

Brookite/anatase 

TiO2/g-C3N4 

37.1 m2/g 0.2 cm3/g Phenol Degradation 

rate 5-fold 

increase over 

CN 

92 

CN 45.8 m2/g 0.29 cm3/g Phenol - 92 

Ti3+doped 

TiO2/SiO2 

300 m2/g 0.35 cm3/g Methyl orange 31.5% 93 

TiO2 56.8 m2/g - Methyl orange 8% 93 

TiO2/SiO2 228 m2/g 0.27 cm3/g Methyl orange 16.6% 93 

 204 

3.1.4 Surface density 205 

Surface density is a key factor as increasing the thickness of the nano-catalyst coating can 206 

increase the surface area of the catalyst and reduce competitive adsorption between reactants, 207 

thereby increasing the removal rate and the degree of mineralization of the catalyst 94.  208 

Singh et al. 95 used atomic layer deposition method coating TiO2 on fibrous nanosilica (KCC-209 

1). They observed that the KCC-1/TiO2 catalyst coated with TiO2 NPs has a more uniform coating, 210 

a higher loading of TiO2, a smaller loss of surface area, and higher active site accessibility than 211 

traditional silica catalysts. Wang et al. 96confined the dense Au nanoparticles to a bowl-shaped TiO2 212 

nanoarray doped with N. By adjusting the absorption of light by TiO2 and fully overlapping the 213 

plasma band of Au NPs, the photocatalytic efficiency is greatly improved. Roldan et al. 97researched 214 

a new type of nanostructured coating system, which includes a layer of SiO2 and a layer of dense 215 

anatase TiO2 doped with Ag NPs. The photocatalytic activity has been improved All in all, 216 

increasing the surface density of the nano-catalyst can greatly increase the conversion of VOCs. 217 

However, an excessive amount of catalyst will result in a decrease in catalytic efficiency. 218 

3.1.5 Support material 219 

Fixing the nano photocatalyst on a suitable carrier material can reduce their aggregation of the 220 

NPs, thereby increasing the catalytic efficiency, adsorption capacity and prolonging the effective 221 

life of the photocatalyst 62. In recent years, engineered carbon has been applied to catalyst support 222 

due to its high surface area, porous structure, high-performance adsorption of VOCs 21. Activated 223 

carbon (AC) has been applied to the adsorption and recovery of most VOCs. However, AC has some 224 

shortcomings that affect its ability to adsorb VOCs: AC is an inherently non-polar adsorbent, which 225 

will hinder the adsorption of hydrophilic particles 22. Furthermore, the porous structure of activated 226 



carbon is microporous (pore size < 2nm), which makes it difficult for molecules with larger 227 

molecular diameters to enter the pores. Furthermore, due to the strong diffusion resistance due to 228 

irregular pore structure, the adsorption equilibrium is prolonged due to the disordered pores 229 

possessed by AC. Zhang et al. 98 prepared a new nano-β-FeOOH/Fe3O4/biochar composite material. 230 

Through XPS characterization, it is proved that there are Fe-OC bonds between β-FeOOH and 231 

biochar. These bonds facilitated the transfer of photo-generated electrons. The connection promotes 232 

the rapid interface transfer of light energy electrons between biochar and β-FeOOH. Zhang et al.99 233 

prepared N-doped nano-TiO2-carbon fiber composite material. After TiO2 NPs are irradiated by 234 

microwaves, they generate a large number of hydroxyl adsorption sites. Due to the interface formed 235 

between TiO2 and carbon fiber, this carbon fiber composite material can effectively catalyze the 236 

oxidation reaction of phenol. Graphene has the characteristics of inhibiting the annihilation of 237 

electrons and holes and exhibits excellent photoactivity, so it is widely used in photocatalysis100-102. 238 

Saima et al.103 used graphene oxide(GO) as the support material and randomly dispersed TiO2 and 239 

NiO NPS on it. The GO provides fast electronic conductivity and strong oxidation characteristics, 240 

which facilitates the separation of carriers.  241 

As can be seen, the support material of the nano-catalyst will affect the removal of VOCs. In 242 

short, a suitable carrier can effectively increase the accessible surface area, mechanical strength and 243 

stability of the nano-catalyst. 244 

3.2 Effects of environmental conditions (external factors) on POC of VOCs 245 

The multi-factor synergistic mechanism of photocatalytic degradation of VOCs by adsorption 246 

is controlled by two aspects: thermodynamics and dynamics. Considering the complexity of the 247 

environment, we briefly review the effects of humidity, airflow rate, light irradiation, concentration 248 

of pollutants and temperature on the photocatalytic degradation of VOCs (Fig. 4). The factors 249 

influencing the comprehensive adsorption and photocatalysis capability of modified NMs are 250 

discussed in Table 2.  251 

 252 



 253 

Fig 4. Illustration of external factors and mechanism of action. 254 

3.2.1 Relative humidity and temperature 255 

Water vapor plays a double-sided role in the process of photocatalysis of VOCs and their 256 

adsorption onto/interactions with modified NMs 104, 105. As a polar molecule, water can provide 257 

hydroxyl radicals, which is conducive to the adsorption of more hydrophilic VOCs molecules onto 258 

the photocatalyst surface through hydrogen bonds. However, if the moisture content is too high, it 259 

will compete with VOCs for the adsorption sites. For some pollutants, the presence of moisture can 260 

promote mineralization of the pollutants, but excessive moisture will be adsorbed onto the active 261 

sites of the catalyst, thereby reducing the catalytic efficiency of the catalyst 106. Regarding air 262 

humidity, modification of the nano-catalyst can reduce the degree of competition between water 263 

molecules and VOCs; for example, doped TiO2 has a higher catalytic efficiency than undoped TiO2 264 

because the introduction of dopants resulting in more oxidant 107-111. 265 

Temperature is another key factor affecting photocatalysis. In the adsorption process of VOCs 266 

onto the photocatalytic material, low temperature is conducive to adsorption processes dominated 267 

by exothermic reactions, but it reduces the diffusion rate of adsorbate molecules. Huang et al. 112 268 

pointed out that the efficiency of PCO of formaldehyde is higher at 60°C than at 30°C. This 269 

phenomenon shows that higher temperature promotes the photocatalytic process. At lower 270 

temperatures, the VOC adsorption process is dominant, and the rate is higher than the photocatalytic 271 

oxidation rate113. 272 

3.2.2 Airflow rate and contaminant concentration 273 

The airflow rate affects the photocatalytic oxidation process of VOCs, and similar to 274 

temperature bring advantages and disadvantages. Increasing the airflow rate will increase the 275 

transfer rate of VOCs and increase the conversion rate of pollutants. On the contrary, too high air 276 

flow rate will reduce the residence time of VOCs and thus reduce the photodegradation efficiency 277 

114-116. Therefore, optimizing the air flow rate is essential: low air flow rate can increase the residence 278 



time of VOCs so that they can be fully adsorbed on the catalyst surface. Under high flow rates, the 279 

residence time is reduced so the removal rate will be reduced. Thus, flow rate should be optimized 280 

for each catalyst-VOC pair to determine the optimal flow rate and maximize the PCO efficiency.  281 

The adsorption capacity of the catalyst is related to the number of active sites. When the 282 

concentration of VOCs is low (located in the appropriate range) and the adsorption capacity can 283 

meet the adsorption demand, the removal efficiency will be improved. Since the by-products 284 

produced by catalysis compete for adsorption sites, PCO is more suitable for the degradation of low 285 

concentration pollutants 117, 118. An area for future development is a means to remove the by-products 286 

from the adsorption sites, or to ensure they have a lower binding affinity for the sites than the target 287 

VOC pollutants. 288 

3.2.3 Light irradiation 289 

It is worth mentioning that light irradiation (wavelength and intensity of light) has a greater 290 

impact on the photocatalytic process than adsorption process. On the one hand, the wavelength of 291 

light is related to Eg and the energy of the band gap photon. If Eg is too low (less than the energy 292 

band of the catalyst) so that the electrons will not be excited and the oxidation process of VOCs on 293 

the catalyst surface is difficult to occur. On the other hand, under low light intensity conditions, the 294 

light intensity is related to the photocatalytic rate, and as the light intensity increases, the rate and 295 

light intensity show a power-law relationship 119. However, in PCO, the energy loss caused by light 296 

reflection and transmission is inevitable. Therefore, researchers have used modification methods 297 

such as doping, use of compound semiconductor, and surface modification to use energy as much 298 

as possible 106, 120-122. 299 



Table 2 The key factors affecting VOC photocatalytic performances. 300 

Factors VOCs Humidity Temperatur

e 

Airflow rate Light Inlet concentration Removal effificiency Ref. 

Humidity MEK 

 

 

 

2-ethyl-1-

hexanol 

0% 

20% 

40% 

60 ± 1% 

20% 

50% 

80% 

23 ± 1 ᵒC 

 

 

 

- 

0.015 m3/min 

 

 

 

- 

UV 

 

 

 

visible light 

2.65 ± 0.3 mg/m3 

 

 

 

0.1 ppm 

41% 

46% 

44% 

41% 

89% 

85% 

70% 

123 

 

 

 
124 

Temperature toluene 

toluene 

- 

 

- 

155-160 ᵒC 

220-230 ᵒC 

130ᵒC 

180ᵒC 

30,000mL/g h 

40,000mL/g h 

650mW/cm2 

- 

200ppm 

- 

40-50% 

90-95% 

18-20% 

57-60% 

125 

 
126 

Airflow rate acetaldehyde 20 ± 1% 25ᵒC 20L/min 

40L/min 

UV lamps 15 ppm 35-40% 

20% 

127 

Light  MEK 

 

1-propanol 

0% 

 

10% 

23 ± 1 ᵒC 

24 ± 2 ᵒC 

30 ᵒC 

0.015 m3/min 

 

320 mL/min 

UV 

visible light 

1.0 mW/cm2 

2.0 mW/cm2 

3.0 mW/cm2 

2.65 ± 0.3 mg/m3 

 

400 ppm 
 

 

60-70% 

40-50% 

45% 

55% 

65% 

123 

 
110 

Inlet 

concentration  

toluene - - - visible light 115 ppm 

230 ppm 

460 ppm 

690 ppm 

100% 

100% 

87.1% 

65.5% 

128 

  301 



4. Surface modification of nano-catalysts as a means to increase PCO efficiency for VOCs  302 

The intrinsic properties of the nanomaterial photocatalysts and the extrinsic factors effecting 303 

nano-catalysts have significant role on photocatalytic efficiency. Surface modification methods 304 

investigated to date include surface doping, the structure of surface heterojunctions, utilizing a 305 

supported co-catalyst, increasing the surface area, and ensuring high reaction surface exposure (Fig. 306 

5). These are discussed below. 307 

 308 

Fig 5. Schematic illustration of different surface modification methods effect on 309 

photocatalytic efficiency. 310 

4.1 Surface doping 311 

Surface doping can introduce electrons into the band gap of semiconductor, causing an optical 312 

response, which in turn produces a significant redshift. This two-step light excitation process excited 313 

by low-energy visible photons promote the visible light activity of the semiconductor 129. By doping 314 

with metal elements, Fang et al. 130 found that surface doping significantly improves the catalytic 315 

efficiency of the catalyst for refractory benzene. However, the lattice defects caused by doping can 316 

not only serve as the transfer medium of the interface charge but also become the complex center of 317 

electron-hole pairs, reducing the catalytic activity 129, 131. In addition to a single doped metal or non-318 

metal element, co-doping between metal ions, non-metal elements, or between metal ions and non-319 

metal elements can also effectively extend the wavelength of the photocatalyst excitation light. 320 

4.1.1 Metal doping 321 

At present, the research on doping of metal elements mainly includes noble metals, transition 322 

metals and rare earth metals. However, noble metals cannot be widely used in practice due to their 323 

high cost and scarcity of raw materials. Exploring the effects of different metal doping on 324 

photoactivity, optimal doping dose and preparing nano-catalysts with the best benefits and efficiency 325 

has become the focus of current research (Fig. 6). 326 

Generally, the preparation method of the doped catalyst will produce different crystal properties 327 



and change the morphology of the photocatalyst. The mechanism behind metal doping can be 328 

summarized as follows: (1) Noble metals have anti-oxidation and corrosion resistance properties 329 

even in humid air. Under the action of noble metal NPs, the recombination of carriers is reduced, 330 

which increases the photoactivity on the surface of the photocatalyst. (2) The type and doping 331 

amount of transition metals are two key factors that affect the PCO. If the doping amount is at the 332 

optimal value, the dopant can accelerate the separation of carriers. When the optimal value is 333 

exceeded, the dopant may become a recombination center, reducing the photocatalytic efficiency. 334 

(3) Rare earth metals have incomplete 4f and empty 5d orbitals, which can promote photocatalytic 335 

reactions. 336 

Noble metal elements such as platinum (Pt) 132, palladium (Pd) 133, ruthenium (Ru) 134, silver 337 

(Ag) 135. Because of noble metals, the recombination of carriers is reduced, which improve the 338 

photoactivity of the catalyst 136. In fact, the doping of noble metal NPs forms a medium for capturing 339 

and transferring electrons on the nano-catalyst surface 137. Meng et al.138 doped Pd/PdCl2 onto the 340 

surface of the nano-catalyst Bi2WO6 by photoreduction method. Compared with TiO2, the catalyst 341 

degrades phenol more efficiently. The researchers concluded that it may be due to the dual factors 342 

of the plasmon resonance and the suppression of photo-generated carrier recombination. Xue et al139. 343 

modified TiO2 doped with Ag and Ag2O. The efficiency of this catalyst to degrade toluene is 50%, 344 

which is about 9.7 times higher than TiO2. 345 

Transition metal doping can significantly extend visible light excitation, and more susceptible 346 

to doping by other transition metals because of the lower energy required for the substitution process. 347 

Thus, there has been extensive research on transition metal doping, such as manganese (Mn) 140, 141, 348 

iron (Fe) 142-144, copper (Cu) 145, vanadium (V) 146, 147, and nickel (Ni) 148. Afif et al. 149successfully 349 

synthesized a highly active Mn-doped Ag3PO4 photocatalyst using the co-precipitation method. Mn 350 

doping suppressed hydroxyl defects and oxygen vacancies, increased the atomic ratio of oxygen to 351 

silver, and improved the photocatalytic performance under visible light irradiation. Patrick et al. 150 352 

found that the photochemical properties of the Mn complex reached or approached the performance 353 

of Ru and Ir noble metal catalysts in terms of photon absorption. Devaraji group 151incorporated V 354 

into the TiO2 crystal lattice to make Ti0.98V0.02O2. Compared with pure TiO2, this catalyst embodies 355 

the quantum transition of benzene oxidation, highlighting the importance of V doping for benzene 356 

oxidation. Stucchi et al. 152 used Mn to replace noble metals such as Au and Ag. Through 357 

experiments, it was found that TiO2 doped with 20% Mn under visible light exposure for 24 h, the 358 

degradation efficiency of ethanol reached 35%, which is the peak degradation efficiency. The 359 

suppression of the defect sites on the catalyst surface and the reduction of electrons compound with 360 

holes that may be the reasons for the excellent photocatalytic activity. Li et al. 153 prepared Co-doped 361 

TiO2 nanorod array (Co-TiO2 @Ti(H2)) with good stability, and the energy barrier for desorption 362 

can be effectively reduced by introducing Co with abundant oxygen vacancies. Sajjad et al.154 used 363 

Si and Ti to modify the magnetic Fe3O4 NPs. It was found that the photodegradation effect was in 364 

the order of Ti modified Fe3O4>Si modified Fe3O4>Fe3O4. 365 



There are 17 kinds of lanthanides, collectively referred to as rare earth metals. Kumar et al. 39 366 

found that lanthanide ion dopants are beneficial to the optical properties of ZnO structure. 367 

Parameters such as material properties and pollutant degradation reaction conditions have influence 368 

on the performance of ZnO. Xiao et al. 155found that Ce-doped TiO2 shows the advantages of 369 

stability and higher surface area. Notable, the adsorption capacity of VOCs is also greatly enhanced. 370 

The same result also appeared in other experiments. Wang et al. 156 synthesized Ce-doped MoS2 371 

nanocomposite by hydrothermal method. Under visible light irradiation, it exhibits excellent 372 

photocatalytic activity. 373 

It is worth noting that different cationic dopants have individual effects on the nano-catalyst. 374 

Generally speaking, metal doping will produce different properties and also affect the morphology 375 

of the nano-catalyst. The lattice defects caused by doping may become the recombination center of 376 

carriers, thereby reducing the catalytic activity. Therefore, searching for the optimal amount of 377 

doping is still the focus of future work.  378 



379 

Fig 6. The effect of different doping amounts on the degradation of VOCs by photocatalyst. 380 

(a) acetaminophen, Sb-doped TiO2 157. (b) 4-chlorophenol, W-doped TiO2 158. (c) 4-381 

chlorophenol, Mo-doped TiO2 158. (d) 2,4-dichlorophenol, Ce-doped CuMgAl 159. (e) MEK, 382 

Ce-TiO2 160. (f) acetaldehyde, Cr-TiO2 161. 383 

 384 

4.1.2 Non-metal doping 385 

Non-metal doping such as nitrogen (N) 162-166, carbon (C) 167-169, sulfur (S) 170-173, boron (B) 174, 386 

175and fluorine (F) 176 has been extensively evaluated previously. In non-metal doping, dopants can 387 

change the morphology and improve photoactive performance of the catalyst. Because the doped 388 

state is close to the edge of VB and is not used as a carrier, the role of the recombination center will 389 

be weakened. When the oxygen atom is replaced by other non-metal element atoms, the top energy 390 

level of the VB of the oxide will increase, and the semiconductor band gap will be narrowed, thereby 391 

extending the excitation wavelength to improve catalytic efficiency.  392 

Table 3 summarizes metal and non-metal doped photocatalysts synthesized to improve 393 

photocatalytic degradation performance. A conclusion can be drawn that after doping, the catalytic 394 

efficiency of the catalyst has been improved. 395 

 396 
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Table 3. Summary of metal and non-metal doped photocatalysts. 403 

Awin et al.179 pointed out that the N-doped TiO2 on the Si-OCN support exhibited excellent 404 

adsorption properties and high catalytic activity under visible light. Sun et al.180 developed C-doped 405 

and oxygen vacancies Bi2WO6 nanospheres mediated by graphene oxide. C-doping can change the 406 

band gap structure and can also promote light absorption. This is because carbon doping in the 407 

catalyst acts as an acceptor and electron channel to promote the separation of carriers and the 408 

production of active substances. Diao et al.181 synthesized F-doped TiO2 by hydrothermal method 409 

and used EPR measurements to prove that F-doped TiO2 has superior degradability to formaldehyde 410 

due to the participation of superoxide radical and hydroxyl radical in the process of oxidizing 411 

formaldehyde into CO2 and H2O. Ramacharyulu et al. 182noted that compared with undoped TiO2, 412 

S-doped TiO2 had a lower band gap value and better photocatalytic activity. Among various doping 413 

materials, non-metallic element doping has been tested to be a better way to improve PCO activity183, 414 

184. 415 

4.2 Structure of surface heterojunction 416 

When two semiconductors with similar characteristics are in contact, an electric field is formed 417 

at the contact interface. The electric field provides the driving force for the directional migration of 418 

electron-hole pairs between different semiconductors, which can promote the effective separation. 419 

This promotes the oxidation-reduction reaction of the nano-catalyst, which in turn facilitates the 420 

degradation of VOC. In heterojunction photocatalysis, photogenerated electrons generally migrate 421 

from a semiconductor with a higher CB energy level, and a photogenerated hole will migrate from 422 

a semiconductor with a lower VB energy level. The mechanism of surface heterojunction is that a 423 

well-defined junction can effectively promote charge transfer and hinder the recombination of 424 

electrons and holes. Thus nano-catalysts shows high activity and stability.  425 

Table 4 shows surface heterojunction effect photoactivity. Obviously, the formation of 426 

heterojunction promotes the degradation efficiency of pollutants. 427 

 428 

 429 

 430 

 431 

Contaminant Photocatalyst Dopant Efficiency before 

doping 

Efficiency after 

doping 

Ref. 

Toluene TiO2 Ag/Ag2O 7.5% 23.3% 139 

Benzene OMS-2 Mg 68.4% 97.2% 130 

Benzene TiO2 V 0.3% 12.7% 151 

Benzene Ti0.98V0.02O2 Au 9% 18% 151 

Acetaldehyde TiO2 F 77.3% 81% 177 

Acetaldehyde TiO2 N 77.3% 92.1% 177 

Ethylbenzene TiO2 N 33% 38% 178 



Table 4. Heterostructure and degradation efficiency of photocatalyst. 432 

Heterostructure Photocatalyst Efficiency before  Efficiency after Ref. 

Z-Scheme LaFeO3/g-C3N4 37% 100% 185 

Z-Scheme Au-TiO2@NH2-

UiO-66 

10% 85% 186 

S-scheme Cu2S/SnO2 17.9 67.2% 187 

 433 

Dai et al. 188 used a new hydroxylation method to coat BiOI on the TiO2 wall to form the p-n 434 

junction of the BiOI/TiO2 nanotube array (Fig. 7A). They found the photo-electrocatalytic 435 

degradation efficiency of BiOI/TiO2 was increased by 3 times. Guo et al. 189 successfully prepared 436 

an Ag/Ag2O/PbBiO2Br photocatalyst with a broader spectral response through a series of plasma p-437 

n heterojunctions. Researchers have observed significantly accelerated charge separation, and the 438 

degradation efficiency of pollutants has also been significantly improved (Fig. 7B). Huang et al. 190 439 

developed the p-n junction BiOI@Bi12O17Cl2 heterostructure by depositing BiOI nanosheets in situ. 440 

Due to charge induction, BiOI@Bi12O17Cl2 forms a unique front-side coupling heterostructure. 441 

Compared with the pure sample, the obtained BiOI@Bi12O17Cl2 heterostructure can significantly 442 

enhance the catalytic performance and degradation of 2,4-Dichlorophenol. Anum et al.191 studied a 443 

new type heterojunction of Al2O3 and GO. FTIR examination showed that the density of hydroxyl 444 

on the surface of pure Al2O3 was lower, but after adding GO, the density increased (Fig. 7C). The 445 

reason may be related to the interaction between hydroxyl and light-generated holes, which 446 

promotes electron transfer and inhibits the recombination of carriers. Because of GO, the 447 

recombination of electron-hole pairs is reduced. Through the study of activity, it was found that 448 

15.0% GO/Al2O3 exhibits superior photocatalytic performance. In another study, the same result 449 

was observed192. Wu et al. 185 constructed a new p-type LaFeO3 microspheres coated with n-type 450 

nano-scale graphite carbon nitride nanosheets. The interface effect of charge carriers is separated 451 

and transferred more effectively through solid p-n heterojunction. Yao et al.193 prepared p-n 452 

heterojunction of Bi2MoO6/BiOBr which can promote the photocatalysis. In addition the UV-vis 453 

absorption edge of the BMOBB-2(The mole ratio of Na2MoO4·2H2O to Bi (NO3)3⋅5H2O is set as 454 

5%) sample has a significant red shift, which is related to the better visible light response of 455 

Bi2MoO6(Fig. 7D). Due to the strong interaction between BiOBr and Bi2MoO6, the binding energy 456 

changes in the XPS spectrum. It can be seen that there are carrier transfer and chemical bonds at the 457 

heterojunction interface between BiOBr and Bi2MoO6(Fig. 7E). Another study concluded that the 458 

Z-type heterojunction is the main reason for improving the photocatalytic performance of 459 

Ag3PO4/Ag/MoS2/TiO2 composites194.Wang et al.195 developed an electrochemically self-doped 460 

WO3/TiO2 nanotube composite film by doping oxygen vacancies into heterojunctions for 461 

photocatalytic degradation of exhaust gas. Ding et al.196 synthesized a CoO@TiO2/MXene hybrid 462 

with a double heterojunction structure. EPR measurements prove that SO4
·-, ·O2

- and 1O2 are the 463 

main reactive species involved in the photocatalytic degradation of phenol (Fig. 8). 464 



465 

Fig 7. (A) Schematic diagrams ofthe energy bands of p-BiOI and n-TiO2 before light 466 

irradiation and formation of a p–n junction under visible light irradiation. Adapted with 467 

permission from ref.188. Copyright 2011, American Chemical Society. (B) Photocatalytic 468 

degradation of tetracycline with obtained samples under NIR light (λ>800nm). Adapted with 469 

permission from ref.189. Copyright 2019, Elsevier. (C) FTIR spectra of various samples; (a) 470 

pure GO (b) pure γ-Al2O3 (c) 10.0% GO/Al2O3 composite. Adapted with permission from 471 

ref.191. Copyright 2018, American Chemical Society. (D) UV-vis diffuse reflectance spectra 472 

(DRS). Adapted with permission from ref.193. Copyright 2021, Elsevier. (E) (d) XPS survey 473 

spectra and high resolution XPS spectra of (e) Bi 4f, (f) Br 3d, (g) O 1 s of BiOBr and 474 

BMOBB-2. Adapted with permission from ref.193. Copyright 2021, Elsevier. 475 

 476 

Fig 8. EPR spectra of 10%CTM/PMS/Vis system for (a) 5,5-Dimethyl-1-pyrroline N-oxide 477 

(DMPO)- •OH and DMPO- SO4
•−, (b) DMPO- O2

•− and (c) TEMP- 1O2. Adapted with 478 

permission from ref.196. Copyright 2021, Elsevier. 479 

4.3 Supported co-catalyst 480 

The electron-hole transfer between co-catalyst and semiconductor not only accelerates the 481 

separation of carriers but also realizes the spatial separation of oxidation and reduction reactions so 482 

that both quantum efficiency and reaction efficiency are improved. In addition, the co-catalyst also 483 

has abundant surface active sites, which can cut back the overpotential of the surface reaction, 484 

thereby increasing the surface reaction rate.  485 



Wang et al. 197 found that WSe2/g-C3N4 prepared with WSe2 as a co-catalyst both promotes 486 

light absorption and improves charge transfer efficiency. Peng et al. 161 by comparing the amount of 487 

co-catalyst, found that the CrxO co-catalyst (3wt%) is beneficial to improve the removal efficiency 488 

of acetaldehyde. Shen et al. 198 used the organic molecule oxamide (OA) as a co-catalyst to prepare 489 

modified TiO2 samples through wet chemical methods to enhance electron-hole separation and 490 

photocatalytic H-2 precipitation on TiO2. Bai et al. 199 found that MoS2 as a TiO2 co-catalyst has the 491 

following characteristics: (1) No noble metals; (2) High charge transport mobility; (3) Many active 492 

sites. 493 

4.4 Exposure of highly reactive facets 494 

Crystals have different optical and electronic structures, so the crystals have unique properties, 495 

such as adsorption, high activity and selectivity. The crystal facet can also promote the separation 496 

of electrons and holes. Furthermore, the reactivity physical and chemical properties of surface facets 497 

are also critical to determine its workability 200.  498 

Liang et al. 201 prepared a high proportion of active (002) crystal planes (>90%) and high 499 

specific surface area ultra-thin WO3 nanosheets, which improved the performance of the catalyst to 500 

degrade pollutants. Yu et al. 202 synthesized TiO2 nanosheets. The exposed (001) crystal facets are 501 

beneficial for the reduction of NOx. The NO conversion rate of the hydrothermal method prepared 502 

TiO2 sheets is higher than the conversion rate of commercial P25 and TiO2 particles synthesized by 503 

the sol-gel method. Li et al.203 prepared Z-scheme rGO/Bi2S3-BiOBr heterojunction which has 504 

adjustable exposed BiOBr (102) crystal facet. The optimized catalyst has the best photocatalytic 505 

oxidation performance in a single system, and the degradation efficiency of 2-nitrophenol reaches 506 

92%. In different photocatalytic applications, the crystal facets promote the separation of carriers, 507 

exposing the highly reactive facets to improve the activity of the catalyst has become a promising 508 

method. 509 

5. Summary and outlook 510 

Rapid economic development has posed serious environment and health problems coming 511 

from VOCs. They come from a wide range of sources and can cause diseases and even 512 

carcinogenesis in the human body. In addition, under light exposure, VOCs generate photochemical 513 

smog, and certain halogenated hydrocarbons can cause the destruction of the ozone layer. Up to date, 514 

photocatalysis is being recognized as an effective and clean treatment method for VOC removal as 515 

it operates at room-temperature, produce no secondary pollution, and have high removal activity. 516 

Furthermore, the photocatalytic efficiency has been greatly improved by surface modification of the 517 

nano-catalysts. 518 

In this work, we reviewed the influence mechanism of the intrinsic and extrinsic factors of 519 

nano-catalysts on the catalytic degradation of VOCs. In addition, four nano-catalyst surface 520 

modification strategies are also discussed: surface doping, surface heterojunction, co-catalyst and 521 

exposure of highly reactive crystal facets. And analyze and evaluate these four methods respectively. 522 

From what was discussed, the following conclusions can be drawn: (1) By understanding the 523 



basic principles of photocatalysis, it was found that surface modification of the photocatalyst can 524 

reduce the recombination of the carrier and improve the photoactivity of the nano-catalyst. (2) The 525 

morphology of the catalyst affects the adsorption of VOCs, and the high surface area and porous 526 

structure are conducive to the adsorption of VOCs. (3) Temperature and humidity will seriously 527 

affect the adsorption of VOC. Low temperature is conducive to adsorption processes dominated by 528 

exothermic reactions. High humidity will reduce the adsorption capacity of VOCs. However, 529 

photocatalysis also has shortcomings: (1) The photocatalysis is limited to the treatment of low 530 

concentrations of pollutants. (2) The performance of the photocatalyst is affected by internal and 531 

external factors. (3) The lattice defects caused by doping can reduce the catalytic activity. Therefore, 532 

there is often an optimal amount of doping.  533 

Based on our current knowledge about the limitations of PCO technology in removing VOCs, 534 

we can make some suggestions for future research (Fig. 9) :(1) Improve the electronic and chemical 535 

properties of the nano-catalyst to improve its photocatalytic activity, adsorption of VOCs and 536 

resistance to deactivation. (2) Explore more stable and more efficient photocatalyst materials, 537 

combining different strategies such as facets, heterojunctions and co-catalysts. (3) Photocatalysts 538 

with the visible light response show enormous promise and should be widely researched. (4) More 539 

attention should be paid to development of synthesis methods that contribute to electron trapping 540 

mechanism, efficient structures and production methods. (5) Increase the rate of adsorption and 541 

reduce the competitive adsorption behavior of by-products. 542 

We hope that the presented overview can provide key research progress in the field of 543 

photocatalysis of the modified NMs, and expect to making greater progress in the design of nano-544 

catalysts in the near future. 545 

 546 

Fig 9. Prospects for future research.  547 
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