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Field Calibration and Evaluation of an
Internet-of-Things-Based Particulate
Matter Sensor
Nicole Cowell *, Lee Chapman, William Bloss and Francis Pope

School of Geography, Earth and Environmental Science, College of Life and Environmental Science, University of Birmingham,
Birmingham, United Kingdom

This paper presents a field evaluation of IoT-enabled Plantower PMS5003 particulate
matter sensors in Birmingham, United Kingdom. Commercial, off the shelf, sensors were
adapted to utilise Low Power Wide Area Network (LPWAN) IoT technology enabling
batteries to be used as a power source. The devices are capable of measuring and
communicating data to an online platform with a battery life of ~2 months, at a
measurement interval of 15 min, allowing for automated air quality monitoring for
extended periods at high density. The sensors demonstrate success at being
integrated into a wireless sensor network, with a high presence of readings. The
average correlation coefficients (r2) between raw PMS device data and reference
instrumentation are 0.718, 0.703, and 0.543 for PM1, PM2.5, and PM10, respectively.
The devices also demonstrate good intersensor consistency, with Pearson’s r values
between pairs ranging from 0.92 to 0.99 across all size ranges. Relative humidity (RH)
clearly influences the response of the sensors, especially for RH >85%, in keeping with
previous laboratory evaluations and evaluations of similar devices. The development of a
multi-linear correction factor that accounts for humidity effects on the performance of the
sensors is described; using this model, Pearson’s r values range from 0.81 to 0.91
compared to 0.73–0.85 from uncorrected values. There is also some evidence of drift at
high humidity over an 8-week period, suggesting that such sensors will (at least currently)
need recalibration approximately bimonthly. The limit of detection (LoD) (1.60–4.75 μgm−3)
calculated from this study also demonstrates that the sensors are suitable for capturing
concentrations typical of a moderately polluted United Kingdom urban
environment—LoDs of PM2.5 in this study would have allowed for capture of 94.7% of
the concentrations recorded at a typical United Kingdom urban roadside monitoring site
between 2017 and 2020.

Keywords: nephelometer, IoT—Internet of things, particulate matter, sensor networks, low-cost sensor, air quality

1 INTRODUCTION

There are estimated to be 4.2 million premature global deaths as a result of exposure to ambient air
pollution, specifically particulate matter (PM). PM is a major concern due to the adverse effects it has
on the respiratory, cardiovascular, and cognitive functions of exposed populations (Brook et al., 2010;
WHO 2019). Sources of particulate matter pollution and particle concentrations are spatio-
temporally variable leading, and the limited data available for PM [particularly away from urban
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centers due to the high financial cost of running monitoring sites
as well as a lack of space, security, and availability of trained staff
(Young et al., 2014)] makes drawing a clear understanding from
data challenging. Although high-income countries often have
small networks of monitoring sites across the larger cities and
conurbations, many low- and middle-income countries are still
developing air quality management and monitoring plans
(Castell et al., 2017; Gulia et al., 2020). Overall, large areas of
urban and rural environments are not covered by traditional,
reference-grade air quality monitors, and this increases the
challenge of measuring and hence managing human exposure
(De Nazelle et al., 2017).

With 80% of the population of Europe living within urban
areas, urban air quality policy and management is key to reducing
human exposure to pollutants (Dogeanu et al., 2019). Motor
vehicles are both a prominent primary source of particulate
matter from exhaust emission and mechanical wear and also a
contributor to secondary particulate sources within
photochemical smog, as the nitrous oxides and VOCs released
can contribute to ozone and secondary aerosol formation in
locations of favorable meteorology (Environment Protection
Authority, 2004). Air quality management often has a
multifaceted approach, including a range of hard and soft
measures: active and public transport initiatives, wood/coal
burning bans, green infrastructure, road/industry pollution
barriers, reduced road speed limits, car sharing schemes, and
low emission zones. Clean air or low emission zones are
becoming increasingly popular as an air quality management
technique, with cities across the United Kingdom and further
afield introducing charges and restrictions for combustion engine
vehicles driving within city centers (Pisoni et al., 2019; Quarmby,
Santos, and Mathias 2019). While low emission zones, frequently
mandated by exceedances of NO2 air quality standards, may
reduce gaseous and aerosol exhaust emissions, constraints by
vehicle age/EURO classification may have limited the impacts on
non-exhaust particulates despite research demonstrating that
non-exhaust emissions contributed 60 and 73% of primary
road traffic emissions in the United Kingdom for PM2.5 and
PM10, respectively (Air Quality Expert Group, 2019). The WHO
guidelines estimate that, by reducing potential PM2.5

concentrations from an annual average of 35 µg m−3 to a total
of 10 µg m−3, it could reduce deaths related to poor air quality by
~15% globally (WHO 2018). Therefore, as policies evolve to
encourage the uptake of lower emission combustion engine
vehicles as well as electric and hybrid power, there is potential
for PM emissions to become increasingly important as gaseous
emissions are reduced. Electric vehicles tend to be heavier and
thus generate greater non-exhaust emissions due to increased
mechanical wear, which may only be partially offset by reduced
brake wear through regenerative braking (Amato et al., 2014;
Timmers and Achten, 2016). Beddows and Harrison (2021)
found that, without the uptake of regenerative braking, there
would be no reduction to PM10 when changing from a Euro6 fleet
to a fully electric drive chain. Thus, it is becoming increasingly
important to focus on improving the monitoring capabilities of
PM, especially in heavy-traffic urban environments. Moreover,
road vehicles are not the only anthropogenic source of PM, with

combustion in homes, industry, and energy production,
agriculture, metalworks, quarries, and waste burning being just
some of the other activities contributing to particulate
concentrations (Air Quality Expert Group, 2012). All of these
sources will be contributing regional and wider PM
concentrations, highlighting the need for wider PM monitoring.

There has been a paradigm shift in pollutant monitoring in the
past decade, with low-cost (defined here as ~>£30–500) sensors
becoming increasingly prevalent (Lewis et al., 2016). The
decreased size and cost, compared to traditional monitoring
instrumentation, provide the potential to dramatically increase
the density of monitoring sites as well provide increasingly
portable monitoring solutions (Chong and Kumar, 2003;
Snyder et al., 2013). However, the decreasing cost of sensing
capabilities is only one part of the solution, and deployments are
still often limited by the availability of a reliable power source
needed to run both the sensor and communications, often
significantly adding to the cost of the device.

It is here where the Internet of Things (IoT) is potentially
revolutionary. The IoT refers to sensors or devices that are
connected via low-power, Internet-based communication
protocols. Representing a global information system comprised
of hundreds of millions of objects, IoT creates a smart
infrastructure by embedding sensors into objects such as
power grids, train lines, and buildings (Lavric and Valentin
2017; Brady et al., 2020). These “things” are becoming
increasingly critical to modern technological infrastructure,
and the IoT ecosystem can allow for processing of a “things”
state, thus providing decision making and management
opportunities (Zhu et al., 2010; Chapman et al., 2015). As the
IoT rapidly grows, wireless sensor networks are becoming
increasingly prominent in advancing monitoring approaches in
a range of applications. Importantly, most sensors can be run on
battery power alone, which can constrain the choice of sensor
(Sheng et al., 2015) but enable the sensors to be effectively
positioned anywhere with sufficient mobile data coverage.
Furthermore, the use of low-power wide-area networks has
become a significant enabling technology, allowing for
bidirectional communication on limited battery consumption,
often at low subscription costs, by limiting the message size and
frequency. This can allow for battery life to now extend for
months to years, depending on the device (Mekki et al., 2018),
which is more than adequate for the calibration cycle of
instrumentation.

However, although increasingly technologically feasible, the
scientific credibility of data from low-cost sensors has been
debated with multiple studies into their success varying in
findings (Wang et al., 2015; Crilley et al., 2018; Sayahi et al.,
2019; Zou et al., 2021). The current standards for monitoring
equipment are often not met by low-cost sensors as these
standards were created based on the high performance of
reference instrumentation. There is an increasing need for
further indicative standards for devices of low-cost caliber to
ensure quality when measuring with less consistent equipment.
The 2008 European Air Quality directive has data quality
objectives for fixed and indicative measurements of 25 and
50% uncertainty, respectively, with all measurements being
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expected to capture at least 90% of data for particulates. The
directive suggests reference-grade instruments as standard;
however, it permits the use of other methods if they can
demonstrate equivalence with the reference methods
(European Union, 2008 #179). Evaluations of low-cost sensors
are often based on precision alone and their ability to meet
equivalence standards, with many studies failing to acknowledge
the potential benefits of a spatial cloud of data, even if it is of lower
precision (Chapman et al., 2015). Table 1 presents an updated
key comparison between traditional monitoring and low-cost IoT
sensors from Kularatna and Sudantha (2008).

Guidance in what is to be expected and how to evaluate the
results from low-cost sensors has a wide range of advice covering
a range of potential issues from carefully considering siting,
evaluating the impact of meteorology, and evaluating the
results via linearity (Williams et al., 2014a; Williams et al.,
2014b). It is recommended that reference instruments and
low-cost sensors could share quality assurance frameworks
and standards, such as the Air Quality Directive 2008/50/EC
(European Union, 2008; Castell et al., 2017; Lewis et al., 2018).
However, it is argued that basic correlation evaluative measures
fail to represent all of the variability of performance between
low-cost sensors and reference instruments or potential
temporal changes in performance (Fishbain et al., 2017).
Fishbain et al. (2017) present a toolkit for evaluating low-
cost pollution sensors and suggest eight performance
measures which include a range of classic assessments, such
as correlations, alongside novel measures, such as percentage of
data that a sensor successfully captures (presence), which has
been drawn from in this paper.

It is clear from the literature that, in particular, the monitoring
capability of gaseous low-cost sensors is of the most concern (e.g.,
Lewis et al., 2018); however, studies involving PM sensors are
more encouraging (e.g., Crilley et al., 2018; Sayahi et al., 2019).
Past evaluations of a range of sensor models have exposed both
varying correlation strengths with reference instrumentation as
well as contrasting relationships with meteorology—with the
relative humidity impact being widely studied for optical
particle counters, in particular (Zheng et al., 2018). It is
suspected that measurements of the mass concentration of
hygroscopic particles by light scattering instruments are
influenced by relative humidity, particularly in instances of
high humidity when the particles will swell significantly as

they absorb water. Some optical particle counter (OPC)
studies have demonstrated over-reading due to this process.
Lasers within the OPCs struggle to distinguish the larger
particles individually and record greater particle concentration
values (Crilley et al., 2018; Sayahi et al., 2019; Zamora et al., 2019).
Hygroscopicity is determined by the chemical composition of
particles, and hence PM composition influences the ability of an
OPC to accurately measure—especially in the presence of more
hygroscopic particles such as nitrate and sulphate (Crilley et al.,
2020; Zou et al., 2021).

Despite these challenges, early scientific results indicate low-
cost instrumentation for PM to be consistent with reference
instruments and feasible for wider deployment, with available
sensors being sufficiently low-powered to be embedded into an
IoT solution (Crilley et al., 2018; Zamora et al., 2019; Tryner et al.,
2020a). This makes PM appear to be an ideal target for a
preliminary study into IoT-enabled AQ devices. This paper
presents a methodology to IoT-enable the Plantower PMS
5003 sensor, a popular optical particle counter that retails at
<£30, along with a field evaluation of its performance based on
methods drawn from across this literature.

2 METHODS AND MATERIALS

2.1 Instrumentation
2.1.1 Plantower PMS Sensor
The Plantower PMS5003 is an optical particle counter that uses a
light-scattering technique to determine the particle count and
size. A photo-diode detector converts light scattered by the
particles to a voltage pulse which, in turn, is converted into a
particle count using an undisclosed algorithm from the
manufacturer (Sayahi et al., 2019; He et al., 2020). The laser in
the PMS5003 operates at a wavelength of 680 ± 10 nm, and the
fan draws air through the sensor at 0.1 L m−1. The specification
states uncertainty of ±10 µg m−3 for the range of 0–100 µg m−3

and ±10% for the range of 100–500 µg m−3 for PM1, PM2.5, and
PM10, with two default correction factors available for mass
concentration: standard particles (indoor) or atmospheric
environment (Sayahi et al., 2019). Particles with diameters less
than 0.3 µm do not scatter the 680-nm laser light efficiently, and
particles with a diameter >10 µm are too large to draw into the
sensor easily. Thus, sensor detection efficiency falls outside of this

TABLE 1 | Comparison of low-cost sensors vs. traditional monitoring [edited from Kularatna and Sudantha (2008)].

Feature Traditional
monitoring equipment

Low-cost IoT sensors

Spatial resolution Low Dense
Cost High (capital purchase) Moderate-low (consumable)
Response Varies with instrument Quick
Rigidity Fragile Rigid
Mass production Difficult and costly Easy
Power requirements Mains or specialized power outlets Mains/USB/battery
Deployment Permanent Semi-mobile
Technical staff requirements for maintenance/installation High Not required
Unit maintenance Servicing, filter replacement, calibration Calibration with reference instrument, drift checks
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range (Bulot et al., 2019). The PMS5003 is specified to sense
particles of >0.5 µm in diameter.

While there are recent laboratory evaluations of Plantower
devices (Zamora et al., 2019; Tryner et al., 2020a; Zou et al., 2021),
recent in-field studies have used limited numbers of sensors or
have sensors spread widely across a study area, limiting the ability
to assess suitability for large-scale network deployment (Bulot
et al., 2019; Sayahi et al., 2019; Zou et al., 2021). Furthermore,
previous studies with older Plantower models do not fit the
environmental/meteorological context of which these sensors
will be placed long term (Zheng et al., 2018). Results from
recent studies on sensor performance can be contrasting in
their findings. Some suggest the existence of a correlation
between PM levels recorded by the PMS device and relative
humidity (RH), while others suggest that any correlation is
not significant (Bulot et al., 2019; Zamora et al., 2019)—for
example, one laboratory test demonstrated that the
performance of the PMS5003 for PM2.5 was weakened at
>74–80% humidity, depending on particulate composition
(Tryner et al., 2020b). It is unclear why this contrast of
findings exists, although the results could be impacted by the
environment in which they are sampled. Variance in error at high
PM concentrations has also been recorded at a different level to
the error reported by the manufacturer (Zheng et al., 2018).

The impact of the source of PM on accuracy has also been
discussed with laboratory results demonstrating that different
sources (and hence PM composition and morphology) can
impact the ability of the device to correctly measure
particulate concentrations (Zou et al., 2021). While this could
be due to varying chemical composition affecting the refractive
index of particles and thus the ability of sensors to detect them
using the light-scattering techniques, the composition of the
particulates was not measured. Laboratory tests have shown
that the PMS5003 underestimated PM mass concentrations
where PM primarily comprises ammonium sulphate and
Arizona road dust but correctly recorded “urban” PM
concentrations and over-estimated woodsmoke (Tryner et al.,
2020b). There have been suggestions that the size variation of
particulates from various sources can also impact the ability of the
light-scattering measurement, with Plantower sensors generally
detecting particles of larger diameters with better accuracy
(Tryner et al., 2020a; He et al., 2020; Zou et al., 2021). There
is contrast in the settings used on the PMS sensor, with Bulot et al.
(2019) focusing on the conversion process from particle count to
mass concentration and Sayahi et al. (2019) using the standard
particle correction factor setting rather than the atmospheric
environment setting designed for field use. The literature also
reports that this sensor may not be appropriate for monitoring at
>1 year of use, with laboratory-simulated aging of conditions
equivalent to continuous exposure of 15 µg m−3 of PM2.5 for
1 year causing the PMS5003 to report more extremely high
concentrations than at the beginning of the “year” despite the
median values remaining similar, with Interquartile range

Median increasing
from ~0.1 on day 1 to ~2 by day 365. This decrease in
performance starts to appear at around the 3- to 4-month
stage of simulated aging and worsens over a period of a year
(Tryner et al., 2020b).

This paper extends upon the research by performing an
assessment of four PMS5003 sensors, co-located at an urban
background monitoring site, for ~12 weeks against a PALAS
FIDAS 200e Dust Aerosol Spectrometer, with data recorded
using the “atmospheric environment” setting of the PMS. Data
are evaluated using a range of methods, including traditional
correlations and novel measures drawn from the literature
(Fishbain et al., 2017; Crilley et al., 2018). An evaluation of
external factors, such as humidity and particulate composition,
can also be conducted, and a calibration method developed for
the sensors can be used to ensure that they are suitable for
deployment in an ambient-air-quality network. This analysis is
performed in the context of the urban background of
Birmingham, as it is important to assess the applicability of
and calibrate these devices within realistic conditions which
are similar to the planned deployment conditions (Sayahi
et al., 2019).

2.1.2 IoT Sensor Design
In this study, the PMS5003 was adapted into a IoT-enabled device
(hereafter referred to as Altasense PM). This was achieved by
using an Arduino MKRFox1200 microcontroller, with data also
backed onto an SD card. The Arduino MKRFox1200 utilizes the
Sigfox network to send messages of up to 12 bytes to a backend.
Sigfox is a radio-based global network specializing in IoT data
transmission, which is operated byWND in the United Kingdom
(Sigfox 2020). Previous studies suggest that Sigfox
communications could be suitable for air quality
monitoring—if the message sizes are small and do not breach
the daily transmission limits set by the level of subscription (Knoll
et al., 2018). The hex string message contains temperature,
humidity, PM1, PM2.5, and PM10 data with a timestamp being
called from when the message was received (due to message
transmission being almost instantaneous when the values were
recorded). Messages are sent to the Sigfox backend before being
called by an API key to the Birmingham Urban Observatory
online platform (https://birminghamurbanobservatory.com/).
Tests of Sigfox in an environmental monitoring context
demonstrate extremely low power consumption, with a small
90-mAh coin battery capable of sending >1,000 Sigfox
transmissions (Joris et al., 2019). A further study shows that
the MKRFox1200 device has a battery life of 0.87 years when
transmitting 12-byte messages every 10 min and powered by a
2,400-mAh battery with a presumed self-discharge rate of 1%/
year (Gomez et al., 2019). The battery life will be dependent on
the other components/sensors which are connected to the
MKRFox1200; however, there is clear potential for mid– to
long-term field sampling campaigns as it could be self-
sufficient in the (seasonal) scale of 2 to 3 months in ideal
conditions.

The Altasense PM device was housed in a waterproof
enclosure with the PMS device inlets drawing in air from the
base of the enclosure. The PMS5003 intake inlet comprises four
small round holes arranged in a straight line; air is pulled through
by a fan which is located at the exhaust outlet. As the intake and
exhaust are on the same side of the PMS5003, the enclosure was
designed to feature a divider between the two to limit the mixing
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of the exhaust into the intake. To facilitate any needed corrections
for RH, a low-cost temperature and humidity sensor (Sensiron
SHT85) was attached near the air intake to ensure that the
humidity readings reflected the air being measured within the
sensor. This was to ensure that any humidity corrections replicate
the condition of the monitored air, not ambient, which may be
different due to warming of air from the mechanics of the PMS of
the casing in various weather conditions (Crilley et al., 2018). The
SHT85 is housed within a protective mesh which protects the
sensor from water-related damage. While the separate inlet
should limit the mixing of the intake and exhaust, some
mixing may still occur as the inlet and exhaust are situated

close together on the device. The sensor is programmed to
turn on every 15 min and operate for 1 min, with the minute
run time suggested by the manufacturer to allow for the fan to
stabilize ahead of taking the reading. This sampling frequency
utilizes nearly the entire allocation of Sigfox messages allowed per
day by the Sigfox network and created the best compromise of
data frequency and power consumption. The shutdown period
between readings utilizes the low power aspect of the Arduino
MKRFox1200 board via the Arduino Low Power Library deep
sleep function, completely powering down not only the Plantower
PMS but also all unnecessary functions on the board for a set
period until power up is required, thus allowing for a prolonged

FIGURE 1 | Hourly average time plot of low-cost sensors against the Birmingham Air Quality Supersite FIDAS.
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FIGURE 2 | Plots of particulate matter concentrations from low-cost sensor vs. FIDAS by humidity.

TABLE 2 | Correlation coefficients and statistics for low-cost devices (R, r2, and slope are in comparison to Birmingham Air Quality Supersite FIDAS).

Device Species Pearson’s r Slope r2 LoD (µg m−3) Mean y-intercept

A PM1 0.85 1.20 0.72 1.25 11.86 1.40
PM2.5 0.84 2.0 0.70 1.15 22.18 −0.23
PM10 0.74 1.90 0.54 1.75 27.49 −2.10

B PM1 0.84 1.0 0.71 2.60 11.14 1.70
PM2.5 0.84 1.70 0.70 2.47 19.84 0.61
PM10 0.74 1.50 0.55 2.22 23.31 −1.50

C PM1 0.85 0.98 0.72 2.22 10.34 1.50
PM2.5 0.83 1.70 0.71 1.59 18.79 0.20
PM10 0.73 1.50 0.55 1.73 22.96 −1.70

D PM1 0.85 1.10 0.72 1.50 11.26 1.80
PM2.5 0.84 1.70 0.70 1.46 19.97 0.40
PM10 0.74 1.50 0.53 1.46 23.36 −1.20
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battery life (Arduino 2020). The openair package in R assisted
with data analysis (Carslaw and Ropkins 2012).

2.2 Sampling Method
Data collection took place at the Birmingham Air Quality
Supersite (BAQS), which is based in the University of
Birmingham campus, United Kingdom. This is an urban
background monitoring site for the city of Birmingham, which
houses a state-of-the-art array of pollutant-monitoring
equipment as well as meteorology equipment. The research-
grade instrument co-located with the Altasense PM devices
consisted of a MCERTS (Monitoring Certification Scheme as
issued by the United Kingdom Environment Agency)-certified
PALAS, FIDAS 200E Dust Aerosol Spectrometer. The FIDAS
draws ambient air through an inlet and dryer system and uses
light-scattering techniques to detect PM. A LED light source
and detector measures pulses from light scattered at a 90° angle
to the source. Particle number concentration is calculated from
the number of scattered light impulses, and particle size
diameter is inferred by the intensity of the scattered light. A
proprietary algorithm converts the signal into particle counts

(spectra) and thus into mass concentrations. The FIDAS
samples air from a level approximately 2.5 m above the
ground, operates with a flow of 0.3 m3/h, and uses a drying
line to prevent condensation to affect the measurement. The
drying system removes volatile particles and compensates for
the condensation of water and the related particle growth if the
relative humidity is higher than 60%. It has a detection range of
0.18–100 µm and has accuracy defined as 9.7 and 7.5% for
PM2.5 and PM10, respectively (PALAS, 2020). While this is
research-grade instrumentation, local authority air quality
guidance suggests that the results for unusually heavy or
light particles may differ compared to results from
monitoring equipment with size-selective inlets (IAQM,
2018). An Aerodyne Aerosol Chemical Speciation Monitor
(ACSM) with a PM2.5 inlet is also located at BAQS and was
used to collect organic particulate concentrations for assessing
the impact of particulate composition on sensor performance.
The ACSM analysis determines NH4, SO4, NO3, Chl, and
organic mass loadings and has a volumetric sample flow of
85 cc min−1 and a detection limit of <0.2 µg m−3 for 30 min of
signal averaging.

FIGURE 3 | Correlation plot demonstrating inter-sensor correlation and correlation to reference instrumentation.
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Four Altasense PM devices were located at the BAQS site,
labeled A, B, C, and D within analysis to differentiate between
devices. They were installed at a height of ~1.5 m and attached to
an open mesh fence. Data for 8 weeks of measurement were
obtained and used for calibration, from February 24, 2021 to
April 22, 2021. There were two calibrations performed on the
FIDAS during this period, each lasting a few hours. Data from
these have been removed from the data set. The measurement
campaign was constrained by the battery life of the sensor, which
was found to be limited to around 9 to 10 weeks. The ACSM data
were obtained from March 1, 2021 onwards.

3 RESULTS AND DISCUSSION

3.1 Comparison to Reference
Instrumentation
Data presence can be an issue for low-cost sensors (Fishbain et al.,
2017; Rai et al., 2017; Crilley et al., 2018). However, the Altasense
PM devices performed well, capturing at least 95% of the total
expected measurement for the 8-week period of monitoring. Data
outages occurred due to a combination of power and
communication failures.

The time series plots in Figure 1 demonstrate the capability of
Altasense PM sensors in recording the broad trends in PM mass
concentration detected by the FIDAS. Values from a linear
regression model (Figure 2) are presented in Table 2 along
with limit of detection and mean concentrations. The average
correlation coefficients (r2) between PMS devices and BAQS are
0.718, 0.703, and 0.543 for PM1, PM2.5, and PM10, respectively.
The slope varies from 0.98–1.2, 1.7–2 and 1.5–1.9 for PM1, PM2.5,
and PM10, respectively. The Y intercept varies in the range
1.4–1.8, −0.23–0.61, and −2.1 −1.2 µg m−3 for PM1, PM2.5, and
PM10, respectively, sitting within the ±10 µg m−3 uncertainty
suggested by Plantower at the PM levels encountered during these
measurements (mean PM2.5 concentration detected by PMS5003
devices = 18.79–22.18). PM10 fits this model the least with low R
and r2. There is some variation that cannot be accounted for by
the linear model—for example, all sensors have periods of over-
reading, more so for PM2.5 and PM10. It is unclear why this occurs
exactly, but it is hypothesized that this is due to the challenges of
larger particles navigating the 90° angle at the entrance and exit
the PMS sampling chamber effectively (Sayahi et al., 2019). This
could vary temporally with changes in humidity and particle
composition. Both (some) reference instruments and low-cost
sensors measure concentration based on light-scattering
principles. Thus, deviations are not caused by a different
response to particles but due to an instrumental factor causing
differences in the implementation of the principles.

3.2 Device Consistency
An intercomparison between the low-cost devices demonstrates a
positive relationship with all measuring similar concentrations.
Good linearity between the devices is also demonstrated
(Figure 3), with Pearson’s r values between pairs ranging from
0.92 to 0.99 across all species (size ranges) and devices. The range
in mean concentration recorded by the devices is 1.52, 3.39, and
4.53 µg m−3 for PM1, PM2.5, and PM10, respectively. Low-cost
devices experience some extreme variations from the mean,
especially for PM1 and PM2.5 species, as can be seen in
Figure 4. The greatest variations in performance were related
to PM2.5, with a difference of maximum concentration recorded
between sensors of 47 µg m−3, which is greater than the
manufacturer specification of ±10 µg m−3 at <100 µg m−3 and
±10% at >100 µg m−3. The range in mean concentration recorded
by the devices is 1.52, 3.39, and 4.53 µg m−3 for PM1, PM2.5, and
PM10, respectively. Overall, although all size ranges show a good
inter-device concentration agreement, this generally decreases
with size, suggesting a size-dependent impact on sensor
performance. In contrast to Zou et al. (2021), it was found
that performance decreased with particle size in terms of both
inter-sensor precision and linearity with respect to the reference
instrument.

3.3 Impact of Relative Humidity and Particle
Composition
The relationship between PMS sensors and relative humidity was
investigated to see if the PMS data showed significant
dependencies upon humidity, especially during high humidity

FIGURE 4 | Box plot of particulate matter concentrations from low-cost
sensors and FIDAS for PM1, PM2.5, and PM10.
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episodes, as suggested by prior literature (Crilley et al., 2018;
Sayahi et al., 2019; Zamora et al., 2019). It is important to note
that particulate composition determines the hygroscopic
characteristics of PM, and this will vary between studies
(Crilley et al., 2018).

From an inspection of the ratio of Altasense PM device/FIDAS
PM mass concentration versus humidity in Figure 5, it appears
that there is a non-linear response at high relative humidity values
(~85%+). This behavior was also seen in other studies which used
an alternative low-cost PM sensor, Alphasense OPC-N2, and is
consistent with the trend expected from hygroscopic particle
growth curves (Pöschl 2005; Crilley et al., 2018). However, the
point of inflection appears higher than that of laboratory studies
of PMS5003, where humidity impacted the ratio of PMS/
reference at values of 74–80%, depending on the composition
of the particulate used (Tryner et al., 2020b). The higher humidity
threshold may be due to composition differences between the
literature lab assessments vs. this field evaluation or due to
differences in the reference instrument used. For information,
the ACSM at this study site during March and April 2021

recorded an average total organic mass of 1.71 µg m−3, with
average NH4, SO4, and NO3 values measured at 0.8 , 0.47, and
1.23 µg m−3, respectively.

As the composition of PMwill determine the hygroscopicity of
particles and therefore the relationship between the PM levels
recorded and humidity, the impact of composition was also
assessed (Figure 6).

At lower humidity, the ratio of Altasense PM/reference
increases rapidly with increased organic content, but this
increase slows down at moderate and high humidity. There is
some indication that RH dominates over organic content in
controlling the ratio, particularly at higher humidity. When
plotting the ratio of Altasense PM/reference vs. total organic
mass from the ACSM by humidity, it becomes clear that there is a
large variation in Altasense PM/reference for similar organic
concentrations. This suggests the importance of correcting for
humidity.

While it is expected that as the reference instrument and
PMS5003 may broadly react similarly to changing particle
composition as both are based on the same light-scattering

FIGURE 5 | Ratio of Altasense PM concentrations/FIDAS PM concentrations vs. humidity, with 85% humidity marked in red.
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principle, these findings further confirm the results of the
previous laboratory study of PMS5003 where varying the
composition of particulates changed the relationship with the
reference instrument (Tryner et al., 2020b).

3.4 Drift
It is suggested in the literature that some particles may struggle to
leave the chamber of the low-cost sensor due to the 90° angle of
the particle path (Sayahi et al., 2019). This may result in drift in
the form of increased ratio over time at higher humidity as
particle buildup in the sensor may swell at higher humidity,
thus leading to further over-reading. As particle buildup increases
over time, so could the amount of over-reading that occurs.
Previous research indicates that the low-cost sensor used will
experience a significant drift after 1 year of monitoring 15 µg m−3,
with the performance starting to decrease from around 120 days
at this concentration and significantly worsening by 20× by the
end of a year window, with drift being measured as an increase in
variation from a median in a simulated aging scenario (Tryner
et al., 2020b). However, with the battery life of the Altasense PM
sensor presently limited to just over 8 weeks, this would indicate
that drift should not be a significant problem during this
timeframe. When an Altasense PM has a battery change, it
should be collocated again with reference instrumentation to
not only update calibration equations but also assess for further
potential drift to see if the device is stable for a further 8 weeks of
data collection. The results of the weekly breakdown on the ratio
of Altasense PM/reference are shown in Figure 7. As expected,
the sensors demonstrated similar patterns—the slope varied

across the weeks, mostly increasing weekly when humidity was
over 85% and with a less clear pattern for lower-humidity periods.

3.5 Development of a Correction Factor for
RH Effects
These analyses highlight that the PMS5003 cannot be corrected
by a singular linear model alone and requires a more
comprehensive correction for the impact of humidity. Sensors
will be best calibrated in field sites near to their deployment so
that corrections are developed in areas with similar particulate
composition as future deployment sites to take into effect the
role of hygroscopic particles in influencing readings in different
meteorological environments (Crilley et al., 2018; Zusman et al.,
2020). Calibration modes may need reassessing over time, not
just due to potential drift but also since atmospheric
composition is unlikely to remain stable across seasons, and
thus models may change to reflect the altered chemical
composition and hygroscopic properties of particulates
(Sayahi et al., 2019).

There has been a development of correction factors in the
literature founded on κ-Köhler theory for the Alphasense OPC-
N2 sensor that requires either a reference instrument that can
measure dry particle mass or, failing that, that can draw a generic
κ value for the environment sampled from the literature (Crilley
et al., 2018; Di Antonio et al., 2018). The method from the OPC
evaluation of Crilley et al. (2018) suggests using a linear
correction when humidity is <85% and a correction factor
derived as detailed below when humidity is ≥85%:

FIGURE 6 | Examples of Altasense PM/reference PM concentrations from sensor A by organic concentrations from ACSM by humidity at different humidity
intervals. Linear equation of ratio by organic mass concentration is shown on the plot.
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C � 1 +
κ

1.65

−1 + 1
aw

(1)

PMCorrected � PMRaw

C
(2)

where aw (water activity) is defined as RH/100 and with κ = 0.36
[expected κ for Europe as drawn from Pringle et al. (2010) and
Crilley et al. (2018)].

However, when applying this method using either Europe- or
Birmingham-specific κ values drawn from the literature
(Table 3), the Altasense PM data becomes overcorrected and
loses the trends from the FIDAS (Figure 8). This methodmay not

work as it was developed using ambient RH, but this study uses
humidity values from the inlet of the sensor as this reflects the air
being sampled more closely. This is similar to the results found by
Tryner et al. (2020b) where Köhler-based corrections for the
Plantower cause an underestimation of the results—they suggest
that past literature with linear correction models demonstrate
better performance relative to reference instrumentation
(Zusman et al., 2020).

The final model uses one linear correction equation per PM
species (PM1, PM2.5, and PM10) for values when humidity is
recorded at <85% and another when humidity is ≥85% (as per
Figure 9 and Table 4 which outlines the results of sensor

FIGURE 7 | Slope of low-cost sensor PM concentrations vs. FIDAS by week, separated by readings that occurred when the sensor recorded <85% humidity and
≥85% humidity for sensor B.

TABLE 3 | κ values drawn from Pringle et al. (2010)—column 1 and from Crilley et al.(2018)—columns 2–5.

Europe Birmingham PM2.5 TEOM Birmingham PM2.5 GRIMM Birmingham PM10 TEOM Birmingham PM10 GRIMM

0.36 ± 0.16 0.38–0.41 0.41–0.44 0.48–0.51 0.38–0.41
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performance post-correction). Furthermore, 85% was selected as
this is the value not only at which hygroscopic growth curves
suggesting changes to response should be seen but also reflective
of our data as a slope of Altasense PM vs. FIDAS varies by an

average of 0.25, 0.2, and 0.15 for PM1, PM2.5, and PM10,
respectively, when plotting data from ≥85% humidity
compared to <85% (Pöschl 2005). Using this model, Pearson’s
r values range 0.81–0.91 vs. 0.73–0.85 from uncorrected values.

FIGURE 8 | Example of over-correction when using the K-Köhler method stated above for one of the Altasense PM units for PM10 concentrations.

FIGURE 9 | Time plots of hourly averaged PM concentrations for Altasense PM and FIDAS after correction using the multi-linear approach that differentiates
correction by humidity.
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Time series plots also demonstrate the ability of the sensor to
detect trends well after these corrections—there are no longer
extended periods of over-reading, with the majority of
concentrations sitting very close to the reference instrument
values. It is expected that, due to the drift indicators discussed
above, these linear models will need recalculating as part of the
8 weeks of service when the batteries are changed. Overall, this
method has promising results as well as reduces the need for
environment-specific composition data, making the low-cost
sensors more deployable in low/middle-income environments.

3.6 Limit of Detection
Limit of detection (LoD) identifies the lowest concentration that a
sensor can significantly differentiate from a true zero concentration
(Castell et al., 2017; Rai et al., 2017). It is calculated here using the
Kaiser and Specker (1956) method with definitions set as in Sayahi
et al. (2019) and Wang et al. (2015):

LOD � 3σblk
k

(3)

where σblk is the standard deviation of a PMS sensor output at
blank conditions. The definition of blank conditions is when the
co-located FIDAS reads PM as <1 µg m−3 for each species of PM,
respectively. k is the slope of the linear relationship of each
corrected PMS device with the FIDAS. LoD calculations are based
on three co-located sensors over a 3-week period post-correction.
Unfortunately, LoD could only be reliably calculated for PM1 and
PM2.5, as during this period there were too few instances when the
FIDAS recorded PM10 <1 µg m−3. Table 5 displays the LoDs.

The literature suggests that higher LoDs may be expected with
smaller particle sizes due to their inability to scatter light
efficiently, causing under-reading, and this is reflected within
these results, with PM1 experiencing larger LoDs than PM2.5

(Bulot et al., 2019). The LoDs found here are much lower than
those reported by Sayahi et al. (2019) which reported up to

5.37 µg m−3 for PM2.5. Indeed LoD values also sit lower than the
ranges reported for other low-cost PM devices (Wang et al.,
2015). This suggests that the ability of the sensors to detect PM at
extremely low concentrations may be limited; however, given the
application for urban monitoring [the 2016 average PM2.5

concentration in London was 13.3 µg m−3 (Greater London
Authority 2019), whereas Delhi has experienced monthly PM2.5

averages >200 µg m−3 (Gorai et al., 2018)], this is not seen as a
significant concern. In the context of Birmingham, the average
PM2.5 LoD for the Altasense PM device would have been able to
capture 94.7% PM2.5 of concentrations recorded at the
Birmingham A4540 ring road DEFRA site between 2017 and 2020.

4 CONCLUSION

The Plantower PMS5003, modified as an IoT-capable device,
provides the opportunity to monitor air quality at a low cost. The
underpinning IoT philosophy enables this device to be deployed in
large networks and provides an opportunity to monitor particulates
at an unprecedented spatial resolution. The simple design of the
sensors allows for a semi-permanent approach, with the sensors
being able to be easily moved and the networks adjusted according to
end-user requirements. The low power aspect of the IoT Sigfox
integration and the ability to limit power draw from the PMS5003
with shutdown time allow for frequent communication of near-real-
time data to an online platform, without compromising location by
requiring main power. Data can be accessed and assessed remotely
and instantly, without the need for staff at an air quality station. This
means that, with the correct data contract, units can be deployed
anywhere with a Sigfox connection—currently, over 80 countries
worldwide, including low-, middle-, and high-income countries,
enable low-cost PM monitoring in many different environmental
and anthropogenic contexts.

The results from this study demonstrates the ability of the
Plantower PMS5003 to detect PM trends and concentrations
relative to the research-grade PALAS FIDAS instrumentation
over an 8-week period and with improvements after applying a
correction factor. The inter-sensor variability is low, and there are
strong correlations between the reference instrument and low-
cost units, as expected from instruments based on the same light-
scattering principle. It has been demonstrated that humidity and
particulate composition play a role in sensor performance, but the
results can be improved by minimal calibration efforts. After
correction, the low-cost devices perform well, particularly at
recording peaks in particulate concentrations when they match
extremely well with the reference measurements. This may be

TABLE 4 | Correlation results for Altasense PM vs. FIDAS for the period
23.04.21–27.04.21 after correction using the multi-linear approach. One
device (B) has a tendency to underestimate compared to the other sensors. This
device has performed slightly worse than the others in linearity correlations, and
this demonstrates some of the concerns about the replicability of data
between low-cost sensors due to the unknown manufacturing standards.
Despite this, it still generally performs well.

Device Species R Slope r2

A PM1 0.90 0.64 0.80
PM2.5 0.87 0.70 0.76
PM10 0.81 0.53 0.66

B PM1 0.86 0.74 0.74
PM2.5 0.84 0.74 0.71
PM10 0.83 0.57 0.68

C PM1 0.91 0.75 0.84
PM2.5 0.90 0.79 0.80
PM10 0.86 0.59 0.74

D PM1 0.91 0.94 0.83
PM2.5 0.88 0.89 0.78
PM10 0.82 0.68 0.67

TABLE 5 | LoDs for corrected data for Altasense PM devices A, B, and C for PM2.5

and PM1 (LoD for PM10 was not calculated due to the limited number of
instances where the FIDAS concentration was <1 µg m−3).

C, µg m−3 B, µg m−3 A, µg m−3 Number of instances
where FIDAS concentration

<1 µg m−3

PM1 4.75 4.36 2.50 161
PM2.5 2.92 2.63 1.60 52
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because the data used to train the model experienced several
periods of higher concentrations (>20 µg m−3), generating a
correction that is favorable to these conditions. This is also
highlighted by Zusman et al. (2020). It is important that
sensors are calibrated in an environment similar to which they
will be deployed to allow for corrections to be appropriate for the
particulate composition and environmental factors.

Future work designing a custom PCB to increase the durability
and replicability of the unit will allow for easier deployment of large
numbers of sensing units. Extending the battery life will also be a
key priority, after which it will be imperative to revisit drift
assessments to take into account the extended monitoring
periods (Sayahi et al., 2019). Overall, this study has highlighted
the feasibility of using the IoT for dense sensor networks to
monitor PM. Once deployed at scale, longitudinal studies will
provide unprecedented insights into the spatial distribution of PM.
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