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ABSTRACT We propose a self-supervised visual learning method by predicting the variable playback
speeds of a video. Without semantic labels, we learn the spatio-temporal visual representation of the video
by leveraging the variations in the visual appearance according to different playback speeds under the
assumption of temporal coherence. To learn the spatio-temporal visual variations in the entire video, we have
not only predicted a single playback speed but also generated clips of various playback speeds and directions
with randomized starting points. Hence the visual representation can be successfully learned from the meta
information (playback speeds and directions) of the video.We also propose a new layer-dependable temporal
group normalization method that can be applied to 3D convolutional networks to improve the representation
learning performance where we divide the temporal features into several groups and normalize each one
using the different corresponding parameters. We validate the effectiveness of our method by fine-tuning it
to the action recognition and video retrieval tasks on UCF-101 and HMDB-51. a

aAll the source code is released in https://github.com/hyeon-jo/PSPNet.

INDEX TERMS Action recognition, representation learning, self-supervised learning.

I. INTRODUCTION
The outstanding performance of image-based applications
such as image recognition [1], object detection [2], and image
segmentation [3] rely on large amounts of annotated data; for
example, ImageNet [4], is used to train the deep-stacked lay-
ers of a convolutional neural network (CNN). However, when
studying video recognition using deep learning, the avail-
ability of large sets of annotated data, such as Kinetics [5],
is extremely costly and laborious. Therefore, an increasing
need has arisen for a method that can be adapted to new
domains without leveraging a huge amount of expensive
supervision.

Recently, self-supervised learning has attracted increas-
ing attention in many classification tasks such as image

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinjia Zhou .

classification using a jigsaw puzzle [6], predicting the rota-
tion of images [7], video classification based on prediction of
the frame order [8] and clip order [9], and domain adaptation
using self-supervised learning instead of the gradient reversal
layer [10]. The self-supervised learning is a common learning
framework that makes use of surrogate tasks that can be
formulated without supervision by corresponding labels. The
data itself could provide the supervisory signal for learning
the image representation via self-supervised learning.

From the viewpoint of video classification, video data
has its inherent characteristics such as spatial and temporal
coherence, andmost of the video-based self-supervised learn-
ing methods leverage spatio-temporal representation learning
based on the steady chronological order of video data to
understand the underlying temporal dynamics [8], [9], [11].
Specifically, the frames selected at equal temporal inter-
vals are shuffled and their chronological order predicted [8],
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whereas clips instead of video frames are used to lever-
age the inner steady temporal dynamics [9]. However, these
previous methods have learned the visual representation of
video via the temporal dynamics, but they make use limited
data randomly selected from the entire video. Although this
approach is advantageous in that it strengthens learning effi-
ciency without supervision, the reliance on limited data is a
constraint that has hampered further improvements in video
classification performance.

In this paper, we propose a new RGB-based pretext task
of self-supervised learning that predicts the order of various
speeds and directions of video. In addition, we also suggest
layer-dependable temporal group normalization (TGN) that
helps 3DConvNets learn better temporal dynamics by replac-
ing vanilla batch normalization (BN). First, the video data
are played repeatedly from the random start points at various
predefined speeds including fast forward playback or back-
ward playback. Each time the selected frames are collected to
create a fixed-length clip. By recognizing the relative speeds
of the clips, the variations in appearance and temporal coher-
ence can be learned efficiently in the video over time without
the semantic labels. Specifically, as shown in Fig 1, rather
than simply predicting the chronological order of the frames,
we formulate a task that predicts multiple playback speeds
and then sorts the clips according to the playback speed. This
approach enables the proposed method to learn the temporal
video dynamics using as much frame data as possible from
the video.

FIGURE 1. Conceptual illustration of the proposed method. We play
back the video at variable speeds such as −4x, −1x, 1x and 4x with
randomized starting points to create three clips. After shuffling the clips,
we predict the playback speed of each clip and sort them according to
the correct playback speeds. Once 3D ConvNets are able to solve this
surrogate task without additional information, the network is ready to
understand the temporal dynamics of the videos.

The main contributions of this paper can be summarized as
follows:

• We introduce a self-supervised spatio-temporal rep-
resentation learning via predicting the order of the
multiple forward and backward playback speeds,
which plays a pivotal role in generating many
types of clips from videos and learning the spatio-
temporal structure of videos without any manual
annotations.

• We propose a new layer-dependable temporal group nor-
malization method which enables efficient 3D ConvNet
learning under the large variations of appearance and
temporal coherence at videos.

• We show that using the proposed method improves the
self-supervised learning performance for action recog-
nition and video retrieval tasks through the extensive
experiments on various 3D ConvNet architectures and
datasets.

II. RELATED WORK
In this section, we review relevant literature on self-
supervised learning and batch normalization. Self-supervised
learning representation [6], [7], [12]–[15] has been studied
for leveraging large-scaled training data without the label
information in many vision applications such as image classi-
fication [6], Generative Adversarial Network [16] or Domain
Adaptation [10] and video classification [9]. For this purpose,
the surrogate tasks are formulated such that an inherent visual
representation needs to be learned without a supervisory
signal, and it plays a pivotal role in the accuracy of the vision
applications.

A. SELF-SUPERVISED LEARNING FOR STATIC IMAGES
Self-supervised learning representation [6], [7], [12]–[15]
has been studied for leveraging large-scaled training data
without the label information in many vision applications
such as image classification [6], Generative Adversarial Net-
work [16] or Domain Adaptation [10] and video classifica-
tion [9]. For this purpose, the surrogate tasks are formulated
such that an inherent image representation needs to be learned
without a supervisory signal, and it plays a pivotal role in
the accuracy of the vision applications. Doersch et al. [12]
designed a method to learn the representation of images by
predicting the relative locations of two randomly sampled
image patches. The rule of the jigsaw puzzle [6] has been
generally employed for predicting a permutation of multiple
randomly sampled patches. Another approach is identifying
the randomly shuffled channels of the color image for image
colorization [13]. The cue of the transitive in variance [14]
could be used to match the patches of an image as for another
self-supervised learning trial. Recently, Gidaris et al. [7] pro-
posed a straightforward self-supervised learning method
for predicting the angle of the random rotation transfor-
mation of an image and achieved good results in many
ways.

B. SELF-SUPERVISED LEARNING FOR VIDEOS
Looking at the video-based self-supervised learning-based
methods, temporal order verification [17] was early proposed
for leveraging the temporal order of the sequential images
because the video frames are stored in chronological order.
It simply checked whether the temporal order is correct or not
without the semantic labels. Soon after, Lee et al. [8] pro-
posed the frame order sorting method, which increased the
performance of the self-supervised learning method in video
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recognition. They formulated the sequence sorting task as
revealing the underlying chronological order of the sam-
pled frames. In [18], the odd-one-out network has been
proposed for self-supervised video representation learning,
which identifies the odd temporal order of frames among
some trials. Wang et al. [19] proposed the self-supervised
learning method that learns visual features by regressing
both motion and appearance statics along the spatial and
temporal dimension. The jigsaw puzzle [6] was extended
to the space-time cubic puzzles for training a 3D ConvNet
in [20]. Xu et al. [9] have efficiently improved the frame
order prediction method [8] by sorting the order of the
neighboring clips as known as video clip order prediction
(VCOP), where the clips are consistent with the video dynam-
ics. In [11], the video cloze procedure (VCP) was proposed
to learn the spatial-temporal representation of video data
based on a method that uses spatial rotations and temporal
shuffling method, which enhanced the accuracy in action
recognition. Our proposed method is inspired by [8] and [9],
but we make use of the playback speeds of the videos, not the
correct sequential order of sampled frames [8] or clips [9].
This approach provides rich self-supervision to improve the
learning performance based on the use of video. Inspired by
SlowFast Network [21], the latest studies [22]–[24] on video
speed have been conducted. [22] proposed a pretext method
to predict the normal video speed to detect an unintentional
event. In [23], they introduced a pretext for predicting the
binary speediness (e.g., fast or normal speed) of moving
objects in videos. Jenni et al. [24] showed a pretext learning
not only the video speed but also temporal transformations.
On the other hand, we design a pretext based on the fun-
damental temporal features of video playback speeds order
prediction, e.g., playback speeds and directions.

C. NORMALIZATION METHODS
Batch normalization has shown considerable progress from
the viewpoint of efficient learning of deep learning. After the
success of batch normalization [25], [26], where the mean
and variance are used for global normalization along the batch
dimension, many normalizationmethods [27]–[30] have been
proposed to improve the performance. First, weight normal-
ization [29] is suggested normalizing the filter weights, and
layer normalization [27] performed the normalization along
the channel dimension only. Instance normalization [28]
operates along with each instance sample. Group normaliza-
tion [30] (GN) is a compromise between layer normalization
and instance normalization where they proposed a layer that
divides channels into groups and normalizes the features
within each group. However, all these studies have limited
performance in terms of the normalization along with chan-
nel, layer, or instance features, without deep consideration of
the temporal features in the video. In this respect, we extend
the group normalization to the layer-dependable TGN for
video recognition with a novel task of self-supervised
learning.

III. OUR APPROACH
We propose a surrogate task using variable playback speed
prediction and 3D ConvNet using layer-dependable TGN
to enable a large number of unlabeled videos to be used
for efficient learning. When a 3D ConvNet is used to solve
the Playback Speed Prediction (PSP) task, the 3D ConvNet
successfully learns the fundamental visual representation of
videos by understanding the temporal coherence changes
according to the different playback speeds. For this purpose,
as summarized in Fig 2, the proposed method consists of data
sampling using playback speeds, the feature extraction with
the proposed layer-dependable TGN, and the PSP network.

A. DATA SAMPLING USING VARIABLE PLAYBACK SPEEDS
From a single video, we sample frames based on the different
playback speeds (e.g., from -5× to 5×) and generate clips
of the various playback speeds with the sampled frames.
Subsequently, the clips are randomly shuffled as inputs of
the 3D ConvNet. Note that the starting frame is always set
to an arbitrary position during sampling so that more diverse
frames can be selected from one video. As described in
[21], the multiple clips with different playback speeds could
potentially allow the spatial semantics to be learned at slow
speed and the motion dynamics to be learned at fast speed.
Besides, because the clips are made by playing forward and
backward at different speeds, it is possible to learn the tempo-
ral dynamics successfully even if the directional movements
(e.g., push or pull) of the target in the video are fast or slow.

We define a tuple of n clips as Ln as follows:

Ln =


{l+3, l−3} if n = 2⋃(n−1)/2

i=1 {l+1, l+(2i+1), l−(2i+1)} if n is odd
Ln−1 ∪ {l−1} if n is even

(1)

where n is the number of clips, and the subscript s of the clip
ls is the playback speed or the frame rate. Positive playback
speed indicates fast forward playing, and negative speed is
reverse playing or rewinding. When constructing a tuple of
clips, we always ensure that half of the clips have positive
speed and the other half have negative speed. Therefore,
our formulation can accurately represent the direction of
dynamics. In particular, our proposing method can distin-
guish between open and close dynamics which has been
difficult to achieve so far [8]. In the order prediction, there
are n! (n factorial) possibilities in total. The clip, l, consists
of m frames from random initial frame, fi, (where fi is the ith

frame of the original video), which is derived by

l+s = {fi, fi+s, fi+2s, . . . , , fi+(m−1)s}, (2)

l−s = {fi−(m−1)s, fi−(m−2)s, . . . , , fi}. (3)

Unlike [9] we allow the same frames to be selected between
the clips because of random initialization and the different
frame rate associated with the clips. This allowance gives us
a higher degree of freedom in using videos, so that more video
clips can be used for learning a network model.
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FIGURE 2. The overall framework of the proposed method. (a) Data sampling using playback speeds. We sample frames
according to the different playback speeds from the random initial points to form a clip and randomly shuffle them for 3D
ConvNet. (b) Feature extraction with layer-dependable TGN. For efficient video learning, we train a 3D ConvNet using the
proposed TGN instead of batch normalization. (c) Playback speed prediction. The extracted features are concatenated
pairwise. The fully connected layers are used to encode the features, and the final layer uses these features to predict the
playback speeds of the input clips. The dashed lines indicate that the network weights are shared with the straight lines.

B. FEATURE EXTRACTION USING LAYER-DEPENDABLE
TGN
1) FEATURE EXTRACTION
The features of each sample clip are extracted by 3DConvNet
with shared parameters. We use three backbones as feature
extractors, C3D [31], R3D, and R(2+1)D [32] to learn the
spatio-temporal features effectively.

Our approach is to stack nine convolution layers in C3D
and use the output of the Conv5b layer as a feature. The
size of the 3D kernel is 3 × 3×3. Both R3D and R(2+1)D
consist of five blocks of convolution layers. The convolution
block of R3D comprises two convolution layers with batch
normalization and ReLU activation, respectively. The con-
volution block of R(2+1)D is similar to that of R3D except
for the number of convolution layers. The last layer of the
two models uses global adaptive pooling to extract spatio-
temporal features.

2) LAYER-DEPENDABLE TGN
In video processing, the dependence between frames is not
the same at all times. For example, the frame fi at a specific
time i has a higher correlation with f(i+1) than f(i+k) when
k � 1. In other words, as time passes, the correlation of
the preceding frame with the current frame is reduced and
this characteristic is clearer when the video playback speed
is fast. Note that our method uses fast playback as a task of
self-supervised learning.

As shown in Fig 3 (a), the original batch normalization now
obtains the mean and variance from each batch without con-
sidering frame changes over time thereby ignoring inherent

TABLE 1. C3D consists of five layers and the temporal group feature size
is g = 2. After Conv1, Conv2, and Conv 3, each max pooling layer reduces
the temporal feature size by half. t is a temporal feature size and p is a
number of groups.

spatio-temporal characteristics of the video. However, in this
paper, we propose a layer-dependable temporal groups nor-
malization method that normalizes individual groups divided
along with temporal features, as shown in Fig 3 (b). Note that
the number of temporal groups, p, depends on the depth of
the corresponding layers, as shown in Table 1. Because we
use the fixed temporal group feature size, g, and the temporal
feature size, t , is expected to change according to the depth
of the layers. In detail, The number of the temporal groups
is decreased according to the increasing depth of the layers.
From this scheme, we consider the many groups of features
at the lower layers and the small groups of the feature at the
higher layers when learning the 3D ConvNet. The features
of the lower layers change with time while the features of
the higher layer are processed for the target loss of action
recognition. Its formulations for each channel indexed by α
are as follows:

µ
(α)
i =

1
bgihw

∑
j∈{B,Gi,H ,W }

Xj, (4)

σ
(α)
i =

√√√√ 1
bgihw

∑
j∈{B,Gi,H ,W }

(xj − µi), (5)
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FIGURE 3. Network comparison. (a) Original batch normalization in
video processing, and (b) proposed layer-dependable temporal groups
normalization.

where X ∈ <b×gi×c×h×w is the feature computed by a layer
which is a 5D vector indexing the features in (B, Gi, C , H ,
W ), and b, gi, c, h,w denote the feature size of the mini-batch,
ith temporal group, channel, height, and width, respectively.
Furthermore, T = {G1, . . . ,Gp} when T is the temporal
feature, Gi is ith temporal group feature, and p is the total
number of temporal groups. Our proposed TGN computes
µ and σ along the (B, Gi, H , W ) axes for each channel.
The general formulation of TGN feature normalization is as
follows:

y(α)i = γ
(α)
i x̂i + β

(α)
j , (6)

where X̂i
(α)
=

(Xi−µ
(α)
i )

σ
(α)
i

. Specifically, pixels in the same group

are normalized together by µ and σ . The TGN also learns the
values of γ and β for each channel.

C. PLAYBACK SPEED ORDER PREDICTION
After extracting the features from the 3D ConvNet and the
proposed TGN method, they are concatenated pairwise as
shown in Fig 2 (c). We use a multi-layer perceptron to encode
the pairwise concatenated features, which is a straightforward
architecture for solving the order prediction problem [8], [9].
The final order prediction is then formulated using the soft-
max function with the concatenation of all pairwise features.
We follow the protocol in [8] and in a single optimization step
we always apply and predict all combinations for every clip in
a mini-batch. Compared with [8], [9], the main difference is
that we predict the order of multiple playback speeds instead
of the order of frames or clips.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASETS
We evaluate our methods on two action recognition datasets,
UCF-101 [33] and HMDB-51 [34] from the viewpoint
of classification accuracy and retrieval performance. The
UCF-101 dataset consists of 13,320 videos obtained from
YouTube. These videos are classified into 101 classes.
HMDB-51 is a dataset that expresses 51 human actions at
least 101 times per class and consists of the total 6,849 clips.
In this paper, we verify our method by using the clips
for pre-training to compare the performance of the self-
supervised learning methods [8], [9], [11]. Specifically,
we train a 3D ConvNet using UCF-101 without label infor-
mation first and fine-tune themodel using labeled videos such

as UCF-101 andHMDB-51, respectively. The network output
is a 512-dimensional vector after the global spatio-temporal
pooling layer, to which we append a fully-connected layer
with softmax on top of it, as in [9] in the action recognition.
The appended layer is only randomly initialized and the other
layers are initialized from the self-supervised learning task.

1) IMPLEMENTATION DETAILS
All experiments are conducted using PyTorch [35].
We employ three well-known backbones, that is, C3D, R3D,
and R(2+1)D. The input clips are resized and randomly
cropped to 112 × 112. The clips are cropped in the center
during the test procedure. When sampling the frames from
a video, the starting position is set randomly and a total of
m = 16 frames are extracted. To ensure that the 3D ConvNet
is efficiently trained, which may be problematic in terms of
memory consumption, we adopt SGD training on one GPU.
The mini-batch size is 8×n, where n denotes the number
of clips. The process of training the proposed PSP network
continue for 300 epochs, following by another 150 epochs of
fine-tuning to train the network to perform action recognition
at a learning rate of 0.001. We use the momentum of 0.9, and
weight decay of 0.0005. A dropout rate of 0.5 is used before
the final fully connected layer.

B. ABLATION TEST
This section describes the validation of our method based on
the C3D CNN using split 1 of UCF-101 for classification.

1) PLAYBACK SPEED PREDICTION NETWORK
We first investigate whether the prediction of the order of
the variable playback speed clips differed from simple speed
prediction. The simple speed prediction is performed using
softmax, and a method of which the backbone architecture
is the same as that of the proposed method is used. The
total number of different speeds is three and the target speed
ranging from −3× to 3× is set randomly each iteration.
Our method uses three different playback speeds such as
{−3×, 1×, 3×}. Table 2 compares the performance of two
tasks. The accuracy of the proposed method is 5% higher as
a result of learning more spatio-temporal information using
several clips per iteration. Note that we cannot accurately
predict the playback speed of the video by just watching the
video; however, if the playback speeds of videos were to
differ, we would easily be able to determine which video is
faster or slower. In this respect, order prediction is a more
appropriate task than speed prediction for self-supervised
learning.

Next, we aim to explore the interrelation between playback
direction and performance. The action recognition accuracy
for the fast forward (67.25%), rewind (67.75%), and the
combination of both (69.47%) of these playback methods in
both directions are listed in Table 3. These results indicate
that learning only single direction provide a similar accuracy,
but the combined result is superior. Therefore, we can infer
that the different playback directions provide a chance to
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TABLE 2. Performance comparison between simple speed prediction and
multiple playback speed order prediction. Both methods use three
different speeds.

TABLE 3. Ablation study of playback directions. We use C3D with BN as
the backbone. The model learns to predict the order of clips played at
three different playback speeds. The clips were played back by using fast
forward (FF) and rewind (RW) at three different speeds s ∈ {1, 3, 5} in
each playback direction.

TABLE 4. Comparison of action recognition accuracy by the playback
speeds, s. In order to explore this ablation study, we set n = 3 and
combination of two direction.

TABLE 5. Performance changes with the number of clips. We use both
forward and backward playback directions. VCOP is Video Clip Order
Prediction [9]. For example, 2, 3, 4, 5, and 6 clips have {−3×, 3×},
{−3×, 1×, 3×}, {−3×,−1×, 1×, 3×}, {−5×,−3×, 1×, 3×, 5×}, and
{−5×,−3×,−1×, 1×, 3×, 5×}, respectively.

learn different visual dynamics during training. For example,
because walking backward involves the use of different mus-
cles compared to walking forward [39], rewinding a video
in which a person is walking forward would be different
from playing a video in which someone is walking backward.
In other words, rewinding the video could provide richer
visual information by playing the fast forward. Consequently,
our proposed method offers a way to learn more information
at once by learning in both directions at the same time.

We test the effect of different playback speeds to determine
the greatest relative speed difference for the best perfor-
mance. As is clear from Table 4, an extremely small dif-
ference between playback speeds results in poor accuracy
because the temporal dynamics are not significantly different
between the 1× and 2× playback speeds. Moreover, learning
from an excessively large difference in speed also does not
benefit. Our method performs optimally when s = 3.
Finally, we evaluate different methods to understand the

effect of the number of clips to determine the effect of
variable n. The results in Table 5 indicate that the pro-
posed method, the accuracy increased as the number of clips
increased, but decreased again when six clips were used. This
is largely because the number of possible orders in which
the clips are arranged increased significantly; for example,
for five and six clips have 5! = 120 and 6! = 720,
respectively, in which case the complexity of the task is
too large to train the model successfully. Compared with
the VCOP method [9], The performance of the proposed
method is superior ranging from 2 to 5 clips as a tuple set.

TABLE 6. Performance variation according to the number of elements
in each groups. m = 16 and 3 clips are used.

TABLE 7. Performance variation according to the number of clips. The
effect of increasing the number of clips on the performance for g = 2 is
determined.

TABLE 8. Action recognition accuracy of variant 3D ConvNet based
methods on HMDB-51 and UCF-101. The average accuracy is measured
over three splits.

Specifically, the best accuracy, 67.93%, of VCOP at three
clips is approximately 3.77% lower than the best performance
overall, 71.70%, achieved by the proposed method for five
clips. On the basis of this result, we conclude that the pro-
posed method is more effective than the previous methods
for different numbers of clips.

2) LAYER-DEPENDABLE TGN
We evaluate the performance improvement by the proposed
TGN using backbones. We determine the optimal number
of elements in the groups, and the results are presented
in Table 6. All backbones achieve the best accuracy with
g = 2 to normalize the output of each layer. Most of the
results in Table 6 are higher (i.e., more accurate) than the BN
baseline except for g = 1. Note that, at R(2+1)D, the pro-
posed TGN improved the accuracy by 2.18% compared with
the BN baseline. However, in case of C3D, performance
improvement is marginal compared to R3D and R(2+1)D.
C3D is difficult to train temporal representation because
appearance and dynamics are jointly intertwined [32]. There-
fore, TGN is more effective for R3D and R(2+1)D that
can extract appearance and dynamics separately because
TGN emphasizes temporal representation but cannot extract
features.

Table 7 lists the effect of the number of clips on the action
recognition performance, and the accuracy of the task using
five clips is superior compared with that using three clips
for backbones. Notably, the performance is saturated when
the number of clips is over 5. The reason is that as the
number of clips increases, the burden on the order prediction
network increases. In conclusion, the proposed TGN if more
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TABLE 9. Comparison with the published works on self-supervised learning using visual information. We indicate random cropping, scaling, random
horizontal flip, and color jittering abbreviated as RC, S, HF, and CJ in the augmentation column, respectively. The number after the R3D is the number of
the layers. The highest accuracy in each backbone architecture is indicated in bold.

effective for larger variations in the dynamics and appearance
of the sampled clips, which is the consequence of the task
responsible for the proposed PSP network.

C. ACTION RECOGNITION
In this section, we shows the effectiveness of our method in
action recognition. We conduct experiments on UCF-101 and
HMDB-51 and results are measured over three split of each
dataset. In Table 8, we compare the proposed method with
the latest self-supervised learning methods such as VCOP [9]
and VCP [11] for both UCF-101 and HMDB-51. To validate
the generality of the proposed method, we evaluate three
backbone networks: C3D, R3D, and R(2+1)D in these exper-
iments. Compared with random initialization (e.g., training
from scratch) for 3D ConvNets, all self-supervision methods
including ours exhibit superior performance. However, our
method always outperforms the two other methods such as
VCOP and VCP regardless of the 3D ConvNet models.

From table 9, our method shows a comparable results com-
pared to the state-of-the-art (SOTA) self-supervised methods
such as VCOP, VCP, Dense Predictive Coding (DPC) [38],
SpeedNet [23], Temporal Transformation (TT) [24], Pace
Prediction (PP) [36], and CoCLR [37]. Since each method
has different backbone architecture, hyper-parameter setting,
and augmentation method, we compare the performance of
each backbone and augmentation setting to ensure fair com-
parison. Our method achieves the best results on almost back-
bones and augmentation settings over two datasets. The use
of random crop only as an augmentation method is difficult
to show good performance because of the high possibility

of training shortcut, but our method shows about 2% to 5%
improvement in all backbone compared to VCOP or VCP.
In addition, our method shows higher accuracy than other
methods using the same augmentation even when training
shortcut is removed using color jittering or horizontal flip.
To be noticed, our performance of R3D-18 as backbone is
close to the supervised model using the pretrained on Kinet-
ics. In addition, we make the best accuracy using S3D on
UCF-101 and HMDB-51.

D. VIDEO CLIP RETRIEVAL
The performance of our method is confirmed by searching
for nearest-neighbor video retrieval. The overall process of
video retrieval used in the experiment followed that of [9],
[40] and was evaluated with the split 1 of UCF-101 and
HMDB-51 as in the previous papers. The first step of the
entire experimental process entailed loading the weight of the
trained model by using the training protocol presented in this
paper. At this time, the feature was extracted by using 3Dmax
pooling instead of the pre-existing global spatio-temporal
pooling after passing through the final convolutional layer
of the weight-loaded model. To measure the retrieval perfor-
mance, we calculate the cosine distance between the testing
and training video sets. The shortest nearest-neighbor video
clip of k is found among the calculated cosine distances.
If the correct answer is included among the k nearest neighbor
video clips, the result is considered to be successful. After the
video retrieval is performed for all test video sets, the accu-
racy is calculated by obtaining the number of correct answers
divided by the total. In Fig 4, selected results of the video
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FIGURE 4. Samples of video clip retrieval results. The labels highlighted in red indicate that this video clip is in the same category as the test
video clip.

FIGURE 5. Results of video retrieval. Our performances are compared
with those of VCOP for C3D, R3D, and R(2+1)D networks.

clip retrieval through samples are shown. Compared with
the VCOP method, the qualitative results obtained with our
method for the direction dynamics of videos such as bowling,
fencing, and skydiving are more accurate.

The quantitative results are shown in Table 10. The pro-
posed method achieves the highest accuracy among the

TABLE 10. Video clip retrieval results on UCF-101 and HMDB-51. The
backbone architectures of VCOP, VCP, and ours are 3D ConvNet based on
the self-supervised learning method and we chose the best accurate
network among C3D, R3D, and R(2+1)D.

well-known self-supervised methods [6], [8], [9], [11], [40]
through most ranks ranging from 1 to 50 at both UCF-101
and HMDB-51 databases. Specifically, the proposed method
shows up to 5.7% and 2.8% higher accuracy than the
state-of-the-art methods at the top-5 rank of UCF-101 and
HMDB-51 datasets, respectively. Regardless of the types
of the 3D ConvNets, this superiority is also confirmed by
the ROC curves in Fig 5. We compared the results with
VCOP for various 3D ConvNet architectures, the solid line
is the PSP results that we propose, and the dotted line is the
VCOP results. (a) shows a visualize for the top-k retrieval
result in UCF-101 database and (b) shows a visualize for the
top-k retrieval result in HMDB-51 database. From this result,
we conclude that the proposed method works better than the
well-known methods in the video retrieval task.

V. CONCLUSION
In this paper, We propose a various playback speed prediction
network as a salient surrogate of the self-supervised learning
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and a layer-dependable temporal group normalization for 3D
ConvNet. Our method is able to train the natural visual tem-
poral flow of videos as a pre-trained model by ordering the
different fast forward playback speeds as well as the rewind
speeds and designed the novel temporal group normalization
for efficient visual representation learning at action recogni-
tion and video retrieval task. In the end, we have verified the
superiority of our method by the extensive experiments.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[5] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new
model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6299–6308.

[6] M. Noroozi and P. Favaro, ‘‘Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2016, pp. 69–84.

[7] S. Gidaris, P. Singh, and N. Komodakis, ‘‘Unsupervised representa-
tion learning by predicting image rotations,’’ 2018, arXiv:1803.07728.
[Online]. Available: http://arxiv.org/abs/1803.07728

[8] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, ‘‘Unsupervised repre-
sentation learning by sorting sequences,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 667–676.

[9] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang, ‘‘Self-
supervised spatiotemporal learning via video clip order prediction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10334–10343.

[10] Y. Sun, E. Tzeng, T. Darrell, and A. A. Efros, ‘‘Unsupervised domain
adaptation through self-supervision,’’ 2019, arXiv:1909.11825. [Online].
Available: http://arxiv.org/abs/1909.11825

[11] D. Luo, C. Liu, Y. Zhou, D. Yang, C. Ma, Q. Ye, and W. Wang, ‘‘Video
cloze procedure for self-supervised spatio-temporal learning,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, pp. 11701–11708.

[12] C. Doersch, A. Gupta, and A. A. Efros, ‘‘Unsupervised visual representa-
tion learning by context prediction,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1422–1430.

[13] R. Zhang, P. Isola, and A. A. Efros, ‘‘Colorful image colorization,’’ inProc.
Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 649–666.

[14] X. Wang, K. He, and A. Gupta, ‘‘Transitive invariance for self-supervised
visual representation learning,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 1329–1338.

[15] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, andA.A. Efros, ‘‘Context
encoders: Feature learning by inpainting,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–2544.

[16] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby, ‘‘Self-supervised
GANs via auxiliary rotation loss,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 12154–12163.

[17] I. Misra, C. L. Zitnick, and M. Hebert, ‘‘Shuffle and learn: Unsupervised
learning using temporal order verification,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2016, pp. 527–544.

[18] B. Fernando, H. Bilen, E. Gavves, and S. Gould, ‘‘Self-supervised video
representation learning with odd-one-out networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3636–3645.

[19] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, and W. Liu, ‘‘Self-supervised
spatio-temporal representation learning for videos by predicting motion
and appearance statistics,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 4006–4015.

[20] D. Kim, D. Cho, and I. S. Kweon, ‘‘Self-supervised video representation
learning with space-time cubic puzzles,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 8545–8552.

[21] C. Feichtenhofer, H. Fan, J. Malik, and K. He, ‘‘SlowFast networks for
video recognition,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 6202–6211.

[22] D. Epstein, B. Chen, and C. Vondrick, ‘‘Oops! Predicting unintentional
action in video,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 919–929.

[23] S. Benaim, A. Ephrat, O. Lang, I. Mosseri, W. T. Freeman, M. Rubinstein,
M. Irani, and T. Dekel, ‘‘SpeedNet: Learning the speediness in videos,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 9922–9931.

[24] S. Jenni, G. Meishvili, and P. Favaro, ‘‘Video representation learning by
recognizing temporal transformations,’’ in Proc. Eur. Conf. Comput. Vis.,
Aug. 2020.

[25] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[26] S.-A. Rebuffi, H. Bilen, andA.Vedaldi, ‘‘Learningmultiple visual domains
with residual adapters,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 506–516.

[27] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ 2016,
arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[28] D. Ulyanov, A. Vedaldi, and V. Lempitsky, ‘‘Instance normalization:
The missing ingredient for fast stylization,’’ 2016, arXiv:1607.08022.
[Online]. Available: http://arxiv.org/abs/1607.08022

[29] T. Salimans and D. P. Kingma, ‘‘Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 901–909.

[30] Y.Wu and K. He, ‘‘Group normalization,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 3–19.

[31] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learning
spatiotemporal features with 3D convolutional networks,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489–4497.

[32] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri,
‘‘A closer look at spatiotemporal convolutions for action recognition,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6450–6459.

[33] K. Soomro, A. R. Zamir, and M. Shah, ‘‘UCF101: A dataset of 101 human
actions classes from videos in the wild,’’ 2012, arXiv:1212.0402. [Online].
Available: http://arxiv.org/abs/1212.0402

[34] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, ‘‘HMDB:
A large video database for human motion recognition,’’ in Proc. Int. Conf.
Comput. Vis., Nov. 2011, pp. 2556–2563.

[35] P. Adam, G. Sam, C. Soumith, C. Gregory, Y. Edward, D. Zachary,
L. Zeming, D. Alban, A. Luca, and L. Adam, ‘‘Automatic differentiation
in PyTorch,’’ in Proc. Neural Inf. Process. Syst., 2017.

[36] J. Wang, J. Jiao, and Y.-H. Liu, ‘‘Self-supervised video representation
learning by pace prediction,’’ 2020, arXiv:2008.05861. [Online]. Avail-
able: http://arxiv.org/abs/2008.05861

[37] T. Han, W. Xie, and A. Zisserman, ‘‘Self-supervised co-training for video
representation learning,’’ 2020, arXiv:2010.09709. [Online]. Available:
http://arxiv.org/abs/2010.09709

[38] T. Han,W. Xie, andA. Zisserman, ‘‘Video representation learning by dense
predictive coding,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop
(ICCVW), Oct. 2019.

[39] M. Lee, J. Kim, J. Son, and Y. Kim, ‘‘Kinematic and kinetic analysis during
forward and backward walking,’’Gait Posture, vol. 38, no. 4, pp. 674–678,
Sep. 2013.

[40] U. Buchler, B. Brattoli, and B. Ommer, ‘‘Improving spatiotemporal self-
supervision by deep reinforcement learning,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 770–786.

HYEON CHO received the B.S. degree from the
Department of Software and Computer Engineer-
ing, Ajou University, South Korea, in 2018, where
he is currently pursuing the Ph.D. degree. He is
also studying on improving the performance of
the action recognition model. His current research
interests include computer vision, pattern recogni-
tion, and deep learning.

79570 VOLUME 9, 2021



H. Cho et al.: Self-Supervised Visual Learning by Variable Playback Speeds Prediction of Video

TAEHOON KIM received the B.S. degree from
the Department of Software and Computer Engi-
neering, Ajou University, South Korea, in 2020,
where he is currently pursuing the master’s degree.
He is also studying on video recognition using self-
supervision manners. His current research inter-
ests include computer vision, pattern recognition,
and deep learning.

HYUNG JIN CHANG (Member, IEEE) received
the B.S. and Ph.D. degrees from the School of
Electrical Engineering and Computer Science,
Seoul National University, Seoul, South Korea.
He was a Postdoctoral Researcher with the Impe-
rial Computer Vision and Learning Laboratory
and the Personal Robotics Laboratory, Department
of Electrical and Electronic Engineering, Imperial
College London. He is currently a Lecturer (equiv-
alent to an Assistant Professor) with the School of

Computer Science, University of Birmingham. His current research inter-
ests include human understanding through visual data analysis including
human/hand pose estimation, eye gaze tracking, articulated structure learn-
ing, human–robot interaction, 6D object pose tracking, human action under-
standing, and user modeling.

WONJUN HWANG (Member, IEEE) received the
B.S. and M.S. degrees from the Department of
Electronics Engineering, Korea University, South
Korea, in 1999 and 2001, respectively, and the
Ph.D. degree from the School of Electrical Engi-
neering, Korea Advanced Institute of Science and
Technology (KAIST), South Korea, in 2016. From
2001 to 2008, he was a Research Staff Member
with the Samsung Advanced Institute of Technol-
ogy (SAIT), South Korea. He contributed to the

promotion of Advanced Face Descriptor, Samsung and NEC joint proposal,
to MPEG-7 international standardization, in 2004. He proposed the SAIT
face recognition method which achieved the best accuracy under the uncon-
trolled illumination situation at Face Recognition Grand Challenge (FRGC)
and Face Recognition Vendor Test (FRVT), in 2006. He developed the real-
time face recognition engine for the Samsung cellular phone, SGH-V920,
in 2006. From 2009 to 2011, he was a Senior Engineer with Samsung
Electronics, South Korea, where he worked on developing face and ges-
ture recognition methods for Samsung humanoid robot, a.k.a RoboRay.
He rejoined the SAIT, as a Research Staff Member, in 2011. From 2011 to
2014, he worked for a 3D medical image processing with Samsung surgical
robot. From 2014 to 2016, he worked on developing deep learning-based face
detection and recognition methods with Samsung Galaxy series. He joined
the Department of Software and Computer Engineering, Ajou University,
South Korea, in 2016, where he is currently an Associate Professor. His
research interests include computer vision, pattern recognition, and deep
learning.

VOLUME 9, 2021 79571


