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Highlights: 18 

 Lab experiment and satellite-field measurements are used to build two IW datasets. 19 
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 A transfer-learning model was developed based on the datasets. 20 

 The model can retrieve IW amplitudes from satellite images. 21 

 The model’s MRE can be expected to be 10% for an IW amplitude of 100 m. 22 

 Application of the model in the Andaman Sea shows IW amplitude spatial variations.  23 
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Abstract  24 

Internal waves (IW) are characterized by a large-amplitude, long-wave crest, and long-propagation 25 

distance. They are widespread in the global ocean. Amplitude is an essential IW parameter and is 26 

difficult to derive from the IW surface signatures in satellite images. A laboratory experiment and 27 

combined satellite/in-situ measurements were carried out to build two internal wave datasets (888 28 

pairs of lab data and 121 pairs of synchronous in-situ data and satellite images). To efficiently use 29 

the lab data, we implemented a transfer learning model to retrieve IW amplitude from satellite 30 

images. The model is a purely data-driven model pre-trained with lab data and re-trained with 31 

satellite/in-situ data. A short connection was incorporated into the transfer learning framework to 32 

reduce information loss. Bias correction was adopted to improve the model performance. After the 33 

correction, the root mean square error (RMSE) of the estimated IW amplitude decreased from 12.09 34 

m (17.84 m) to 9.59 m (11.59 m), the mean relative error decreased from 21% (27%) to 18% (16%), 35 

and the correlation coefficients improved from 0.81 (0.72) to 0.89 (0.90) on the test (training) 36 

dataset. For IWs with amplitude exceeding 100 m, the model can be expected to get an absolute 37 

error of 10 m. The mean relative error decreased with the increase in IW amplitudes. Comparisons 38 

with other algorithms demonstrate that the proposed model is efficient for IW studies. We applied 39 

the model to 156 satellite images containing IW signatures in the Andaman Sea, finding that large-40 

amplitude IWs were mainly located at the water depth between 200 m and 1,000 m on the 41 

continental slope. When considering one-pixel input errors for the peak-to-peak (PP) distance, the 42 
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model shows large tolerance with the errors. Compared with the KdV equation-based method, the 43 

developed model was more accurate. 44 

Keywords: Internal wave, amplitude, transfer learning, remote sensing, in-situ measurement, 45 

laboratory experiment 46 

1 Introduction 47 

Internal waves (IW) are a ubiquitous phenomenon in the global ocean (Apel et al., 1985; Guo et 48 

al., 2012; Kozlov et al., 2014; Lavrova and Mityagina, 2017; Lindsey et al., 2018; Liu et al., 1998; 49 

Osborne and Burch, 1980; Scotti et al., 2008; Zhang et al., 2020; Zhao et al., 2014; Xu et al., 2008).  50 

IWs are characterized by their large amplitudes and long wave crests compared with surface waves. 51 

Field observations have shown that IW amplitudes range from tens of meters to hundreds of meters. 52 

For example, IW amplitude in the South China Sea reaches over 240 m (Huang et al., 2016). Large-53 

amplitude IWs can propagate over several hundred kilometers before dissipating on the continental 54 

shelf. As a result, they cause sizeable vertical motion and strong shear forces of ocean currents, 55 

threatening marine navigation, transportation, and oil rig operation safety and affecting ocean 56 

environments, such as sediment resuspension and ocean mixing. Therefore, the accurate inversion 57 

of IW amplitude is necessary for IW studies.  58 

Field observation is one of the best ways to obtain amplitudes of IWs and has developed very 59 

fast in recent years (Alford et al., 2010; Chen et al., 2019). In addition, IW characteristics, ocean 60 

mixing, and interactions between IWs or between IW and mesoscale processes have been studied 61 

based on in-situ observations (Liu et al., 2004; Shroyer et al., 2011; Zhao et al., 2004). However, 62 
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the in-situ dataset is usually small in number and collected at fixed locations. Thus, they mainly 63 

serve as an independent test dataset to validate satellite observations or numerical results. 64 

Remote sensing has already shown its potential and advantages in studying IWs for decades 65 

(Alpers, 1985; da Silva et al., 2012; Guo et al., 2012; Li et al., 2013; Li et al., 2008; Liu and Hsu, 66 

2004; Marghany, 1999; Magalhaes and da Silva, 2018; Serebryany et al., 2020; Zhang et al., 2021; 67 

Marghany, 2021). Satellite images, both acquired by active microwave sensors, such as synthetic 68 

aperture radar image (SAR image), or passive optical sensors, such as the Moderate Resolution 69 

Imaging Spectroradiometer image (MODIS image), have become an important data source for IW 70 

studies. The benefit of combining the high spatial resolution and day-night imaging capabilities of 71 

SAR and high temporal resolution and a wide swath of MODIS sensors has led researchers to gain 72 

valuable knowledge of IWs in the past two decades. The spatiotemporal distributions (Liu and Hsu, 73 

2004; Zubkova and Kozlov, 2020), generation mechanism (Magalhaes et al., 2020), propagation 74 

characteristics (Bai et al., 2017; Liu et al., 2014; Tensubam et al., 2021), interactions (Magalhaes 75 

et al., 2021; Xue et al., 2014), automatic detections (Li et al., 2020; Marghany, 2018), and the 76 

forecast of IWs (Zhang and Li, 2021; Zhang et al., 2021) have been extensively studied using 77 

satellite images. IW-induced currents will modulate the sea surface and produce convergence and 78 

divergence regions. The signal received by SAR images will be enhanced/weakened in the 79 

convergence/divergence region by the Bragg backscatter mechanism (Alpers, 1985). Passive 80 

optical images show clear IW signatures due to the specular reflection mechanism in areas with 81 

sun glitter. So surface signatures related to IWs can be clearly observed from satellite images.  82 
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In the literature, retrieval of IW amplitudes from satellite images has been mainly based on the 83 

Korteweg-De Vries (KdV) equation and the IW half-width characteristic (Zheng et al., 2001). The 84 

KdV equation is a simple form to describe IWs in shallow oceans. Since it has an analytical solution, 85 

researchers have used it to gain first-order knowledge of IW. However, in most cases, IW has far 86 

more complicated characteristics than those modeled using the KdV or extended KdV equations. 87 

Machine learning techniques have recently shown their potential in oceanographic studies in 88 

various aspects (Li et al., 2020; Zheng et al., 2020), with different techniques proposed for different 89 

oceanic studies. Machine learning algorithms’ strong nonlinear mapping ability is promising for 90 

building the relationship between IW surface signatures extracted from satellite images and IW 91 

amplitudes. Some machine learning methods have been applied to retrieve IW amplitude from 92 

optical satellite images by Pan et al. (2018) and lab data by Wang et al. (2021). Their models were 93 

trained using numerical or lab results, which are not the same as in-situ data. The accuracy of the 94 

provided true value was the upper limit of a machine learning model, so their results were limited 95 

by the truth they provided to the model and were mainly validated in shallow oceans with IW 96 

amplitudes less than 30 m. 97 

The matched dataset between the in-situ data and satellite images was small, while the IW lab 98 

experiment provided a larger dataset. To fully utilize the two datasets, this study proposes a transfer 99 

learning model to retrieve the amplitudes of IWs from satellite images. First, we trained the model 100 

using the laboratory data collected in a water tank (Wang et al., 2021). We then applied the transfer 101 

learning technique to fine-tune the pre-trained model using limited in-situ data and synchronous 102 

satellite images. The transfer learning technique is an effective method in the machine learning 103 



7 

 

field to solve the problem of small training datasets (Pan and Yang, 2009). Finally, to improve the 104 

model’s performance further, we introduced a bias correction method in the model establishment 105 

that allows considering density information in real oceans. Because the lab experiment has 106 

unrealistic density differences to make the experiment easier to observe by the camera. The bias 107 

correction method can correct the pre-model results using density information in the actual oceans. 108 

The paper is organized as follows. The data description are presented in section 2. In section 3, 109 

we show the model development and results. Applications of the model are presented in section 4. 110 

Discussions are presented in section 5, then we summarized the paper in section 6. 111 

2 Data 112 

2.1 Experimental lab data 113 

IW lab experiments were conducted in a tank with a two-layer fluid system. The tank is 3 m 114 

long, 0.15 m wide, and 0.3 m tall. Two cameras were placed on the side and top of the tank to 115 

capture the IW waveform and surface signature images simultaneously. A baffle was placed 0.2 m 116 

away from the left side of the tank to generate the IW using the gravity collapse method (Du et al., 117 

2019). On the left side of the baffle, the interface level of the water is higher than the right side. 118 

The IW was generated by the evolution of propagating vortex developed from the vertical shear 119 

movements on the left side of the tank after the baffle was removed. The generated waveform was 120 

usually consistent with the KdV equation described as:  121 

η
t
+c0η

x
+αηη

x
+γηη

xxx
=0,                           (1) 122 

c0=√
2g(ρ2-ρ1

)h1h2

(ρ2+ρ1
)H

,  α=
3c0(h1-h2)

2h1h2
,  γ=

c0h1h2

6
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Here, g is the gravity acceleration, η is the amplitude of the solitary wave, α is the nonlinear 124 

coefficient, γ is the dispersion coefficient, c0 is the linear phase speed, x is in the spatial variable, 125 

t is the time, h1(h2) is the depth of the upper (lower) layer with smaller (larger) density water, and 126 

H is the total water depth. Some validations have been performed between the KdV equation and 127 

the experiment-generated IW waveform. Kao et al. (1985) presented an empirical equation to 128 

estimate the generated numbers of internal solitons in the tank, which is described as: 129 

N≤
L

π
√

3

2
|
h1-h2

h1
2
h2

2 | η
0
+1                             (3) 130 

Here, L is the distance between the baffle and the left side of the tank, η
0
 is the difference in the 131 

interface level of either side of the baffle. IW lab experiments have been carried out widely to study 132 

IW characteristics, such as its generation, breaking, and validation of the KdV equation (Du et al., 133 

2019; Kao et al., 1985). 134 

In our study, only one internal soliton was generated each time. Different amplitudes of IWs were 135 

generated under different collapse heights or stratifications, so IW data generated at different 136 

conditions could be collected. More details of the IW experiments can be found in Wang et al. 137 

(2021). During the experiment, the side-looking camera captured the waveform (amplitude) of IWs, 138 

and the down-looking camera provided synchronous surface information on the water surface 139 

where bright and dark bands were observed. A photo of the IW lab experiment is shown in Fig. 1. 140 

The side-looking camera served the in-situ data role. The down-looking camera served the satellite 141 

observation role for IWs in the natural ocean, so synchronous observation was achieved. A total of 142 

888 pairs of IW lab data were collected. 143 
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 144 

Fig. 1. Photo of the IW lab experiments and views of the two cameras. 145 

2.2 Satellite images, in-situ data, and matched dataset 146 

2.2.1 Satellite images 147 

MODIS image has a swath of 2,330 km and spatial resolutions of 250 m, 500 m, and 1,000 m. 148 

Cooperation between the Terra and Aqua satellites permits two observations of the same ocean 149 

area in one day. Clear IW signatures, wide swath, and high temporal resolution make satellite 150 

observation a good choice for synchronous dataset collection. SAR images are widely used in IW 151 

observations but with a smaller swath and long revisit period. Therefore, SAR images are more 152 

difficult to match with in-situ data. In this study, MODIS images with a spatial resolution of 250 153 

m were mainly used for collecting the synchronous observation dataset. Several synthetic aperture 154 

radar (SAR) images, such as ENVISAT ASAR images and Radarsat-2 images, collected in the 155 

South China Sea were also used to build the matched dataset (Zhang et al., 2016). 156 



10 

 

  An IW will induce divergence and convergence regions on the ocean surface and hence manifest 157 

as bright or dark bands on satellite imagery. If one extracts the profiles perpendicular to the wave 158 

crest, the bright or dark bands on satellite images manifest as positive or negative peaks on the 159 

profile. The distance between the positive and negative peaks, i.e., peak-to-peak (PP) distance, can 160 

be extracted from satellite images. Previous studies have proven that the PP distance is closely 161 

related to IW amplitude (Zheng et al., 2001; Zhang et al., 2016). Therefore, the PP distance 162 

extracted from satellite images is expected to build the relationship with IW amplitude extracted 163 

from in-situ data. 164 

2.2.2 In-situ data 165 

In-situ data is one of the best ways to get the IW amplitude. The Andaman Sea has active IW 166 

occurrences across the ocean and multiple IW generation sites. A buoy was placed at 167 

(95.6°E, 9.6°N) to measure temperature profiles from 18 November 2012 to 28 May 2014 in the 168 

Andaman Sea (Liu et al., 2018). The underwater part of the buoy had 13 sensors continuously 169 

measuring the temperature at 1, 10, 20, 40, 60, 80, 100, 120, 140, 200, 300, 500, and 700 m depth. 170 

When an IW passed by the buoy location, the buoy observed IW-induced temperature variations. 171 

2.2.3 Synchronous dataset – matching the in-situ data with satellite images 172 

The total working period of the buoy in the Andaman Sea was 557 days. An IW passed by the 173 

sensor and the satellite flew over the ocean; a synchronous observation was achieved. A case of 174 

synchronous observation of IWs in the Andaman Sea using the buoy and a satellite image is shown 175 

in Fig. 2. The red dot indicates the location of the field observation. A MODIS image was collected 176 

on 11 March 2011 showing multiple IW packets propagating in different directions, with one IW 177 
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packet right on the field observation spot. Corresponding field observations are shown in the lower 178 

panel of Fig. 2, where a large vertical movement of an isotherm is clearly seen. Besides the buoy 179 

placed in the Andaman Sea, in-situ observation in other oceans with matched satellite images was 180 

also collected from previous studies, such as the observations in the South China Sea (Chen et al., 181 

2018, 2019; Huang et al., 2016; Ramp et al., 2004; Yang et al., 2009; Zhang et al., 2016), the Malin 182 

Shelf (Small et al., 1999), and the Mid-Atlantic Bight (Xue et al., 2012). Only 121 IW observation 183 

matches between in-situ data and satellite images were collected with these in-situ observations. 184 

Field observation is costly and local, and these restrictions make it difficult to collect a large 185 

synchronous dataset. Transfer learning techniques could be an excellent option to help with this 186 

problem. 187 
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 188 

Fig. 2. Observation of IWs in the Andaman Sea using MODIS images (upper) acquired on 11 189 

March 2011 and corresponding filed observations (lower). The red dot in the MODIS image 190 

represents the in-situ location. The solid black lines in the lower panel represent an isotherm of 191 

25℃. The black arrow indicates the location of an IW.  192 
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 193 

Fig. 3. Histogram of the IW amplitude, month, time window between satellite observation and in-194 

situ observation, and the peak-to-peak distance of IWs in the collected in-situ dataset. 195 

As shown in Fig. 3, IW amplitudes in the collected dataset range from 10 m to over 100 m, 196 

indicating both small-amplitude and large-amplitude IWs are included. The temporal distribution 197 

of collected samples shows that most samples were taken between April and August. This result is 198 

reasonable because most IWs are observed in the summer in the South China Sea and the Andaman 199 

Sea because of a stronger stratification in the summer. The in-situ data and satellite images are not 200 

perfectly synchronous, and a time window exists between them. Most of the synchronous pairs 201 

were collected with a time window of fewer than 6 hours, while some were over 10 hours. IWs are 202 

mainly periodically generated by the semi-diurnal tide in the Andaman Sea and many other oceans 203 
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(Apel et al., 1985; Zhang et al., 2021). A time window of 12 hours means an IW was generated by 204 

the successive semi-diurnal tide and might have a similar amplitude with previous ones at the exact 205 

location. This window makes it possible to match the in-situ data and satellite images in a more 206 

significant time. The PP distance of IWs is mainly between 1,000 m and 2,000 m. 207 

3. Transfer learning model for IW amplitude retrieval  208 

3.1 The transfer learning model 209 

Transfer learning, which was specially proposed to solve the problem of a small dataset by 210 

utilizing a large dataset sharing similar characteristics with the target dataset, has been widely used 211 

in computer vision. For example, transfer learning has proven to be efficient for Web document 212 

classification and Wi-Fi localization when facing the problems of a few manual labels (small target 213 

dataset) and outdated data (Pan and Yang, 2009). 214 

Here, we adopt a transfer learning technique to solve the problem of a small IW in-situ dataset. 215 

IW lab experiments were designed to study IW generation or propagation characteristics in actual 216 

oceans (Wang et al., 2021; Zhang et al., 2019). IWs data collected in the natural ocean and 217 

generated in a tank show differences, although they share similar features. This allows lab collected 218 

IW to serve as an additional data source but not as an enhanced dataset to the in-situ dataset directly. 219 

To effectively transfer the features contained in the lab data, we used transfer learning techniques. 220 

First, the lab data was used to obtain a pre-trained model; then, the pre-trained model parameters 221 

were used to initialize the final model parameters, and the in-situ data was used to fine-tune the 222 
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final model. The initial parameters of the pre-trained model were randomly initialized and adjusted 223 

based on the lab data using the back-propagation algorithm, which can be described as: 224 

wpretrain,ki
' =wpretrain,ki-α

∂losspretrain

∂wpretrain,ki
,                          (4) 225 

losspretrain=(lab_truth-model_predicted
pretrain

)
2
.                 (5) 226 

Here, α=0.015 is the learning rate in our study, w is the weight of kth node in the ith layer of the 227 

neural network, the loss is used to evaluate the performance of the model prediction using truth 228 

data and its back-propagation can adjust the weights of the neural network as shown in equation 229 

(4) and (5). After the pre-trained model was established, the weights of all neural network nodes 230 

were obtained. The weights of the pre-trained model will serve as the initial weights in the fine-231 

tuning process and the weights will be readjusted based on the in-situ data. This process can be 232 

described as: 233 

Wft_initial=Wpretrain_final                            (6) 234 

wft,ki
' =wft,ki-α

∂lossft

∂wft,ki
                              (7) 235 

lossft=(in-situ_truth-model_predicted
ft
)
2
                  (8) 236 

Here, W is the weights of all nodes in the neural network, and the subscript ‘ft’ means the fine-237 

tuning process. The fine-tuning process made the model-learned features shift from the lab data to 238 

the in-situ data. The transfer learning technique made it possible to build a relationship between in-239 

situ IW amplitude and satellite IW signatures (PP distance) with limited synergy with in-situ 240 

observations. 241 

3.2 Two modifications - short connection and bias correction 242 
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We made two specially tailored modifications to the transfer learning model based on transfer 243 

learning’s verified effectiveness in various fields. The first modification is the short connection 244 

between layers to avoid information loss in input parameters and promote the fitting process with 245 

a small dataset. The in-situ data used to train the model was limited. To avoid information loss 246 

during the model training process, we used the framework of a fully connected neural network 247 

incorporated with a shortcut connection to build the inversion model part. The ‘shortcut connection’ 248 

method was inspired by the residual module of the deep residual network (He et al., 2016). This 249 

idea has also been recently applied to image classification tasks, showing the surprisingly excellent 250 

performance (Touvron et al., 2021). The shortcut connections (blue arrows in Fig. 4) between 251 

different layers can merge features extracted in different layers, thus reducing the input information 252 

loss and ensuring better model performance. The shortcut connections can be described as: 253 

vki=Relu(wkixki+bki+xki-n).                          (9) 254 

Here, vki is the output, wki is the weight, xki is the input value, and bki is the bias value of the 255 

kth node in the ith layer, xki-n is the input value of the kth node in the (i-n)th layer, n is the distance 256 

of the short connections, which indicates how many nodes are skipped to merge the inputs with the 257 

kth node, and Relu is the activation function. The nonlinear effect of the activation function will 258 

cause information loss. By merging inputs from nodes in different layers, the information loss 259 

between these layers can be reduced. The shortcut connections also benefit the model fitting 260 

process, which can help the model converge more efficiently when the dataset is small.  261 

The second modification is to incorporate a bias correction model with the transfer learning 262 

technique to improve the model performance by introducing density information of the natural 263 
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ocean. The inversion model that predicted IW amplitude was bias-corrected using two additional 264 

input parameters: the density of the upper and lower layer in actual oceans. Compared with real 265 

ocean situations, the lab experiment had unrealistic density information to make IWs easier to 266 

generate and observe by the camera. IW amplitude is affected by the ocean stratification 267 

information. The depth of the upper layer and density difference are used in the inversion model, 268 

the density information of the upper and lower layer can serve as additional information for the IW 269 

amplitude retrieval. Thus, the density information in the real ocean was used to bias correct model 270 

results. The density of the upper and lower layer and the unbias-corrected IW amplitude were 271 

inputted into the bias correction model. The relationship between the real IW amplitude and the 272 

density information can be built during the training process, so the density information can help 273 

increase the IW amplitude inversion accuracy. 274 

Based on these two specially designed modifications, this study proposed a two-stage model, 275 

including a transfer learning inversion model and a bias correction model, to retrieve IW amplitude 276 

from satellite images. The model’s loss function is the mean square error which is an appropriate 277 

indicator to evaluate the model performance in regression tasks. The detailed model structure is 278 

shown in Fig. 4. 279 

3.3 Model inputs and outputs 280 

IW amplitudes are relevant to ocean environment factors, such as the stratification, topography, 281 

and IW characteristics. The inputs of the first-stage model include the water depth, depth of the 282 

upper layer, relative density difference, and the PP distance extracted from satellite images (Zheng 283 

et al., 2001). The relative density difference is defined as the density difference of the upper and 284 
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lower layer divided by the average density under a two-layer ocean assumption. The introduction 285 

of relative density difference aims to reduce differences between the lab and real oceans by several 286 

orders of magnitude. The PP distance is closely related to the IW amplitude, which can be extracted 287 

from satellite images and has been used to estimate IW amplitude in previous works (Zheng et al., 288 

2001). The density and stratification information can be calculated from the publicly available 289 

monthly-mean World Ocean Atlas (WOA) 2018 dataset based on the satellite image’s time, and 290 

location of an IW detected. The WOA 2018 dataset has a grid resolution of 0.25° and follows a 291 

standard depth level in the vertical direction. The water depth was extracted from the ETOPO1 292 

dataset based on the IW locations. The output of the transfer learning model is the bias-corrected 293 

amplitude of IW. 294 
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 295 

 296 

Fig. 4. Flowchart of the proposed transfer learning model to retrieve amplitude of IWs. The blue 297 

arrows indicate the shortcut connections between different layers. The width of the Block 1 and 298 

Block 2 modules is 64 (32) neurons for the inverse (bias correction) model. Two specially tailored 299 

modifications, the short connection, and the bias correction are highlighted. The IW lab and in-situ 300 

data were inputted into Input Layer 1, and the density information was inputted into Input Layer 2. 301 

In the input layers, H is the water depth, h1 is the depth of the upper layer, dp is the density 302 

difference of upper and lower layer, PP is the IW PP distances extracted from the satellite images, 303 

p1 (p2) is the density of the upper (lower) layer. In the insert figure, x indicates the layer input, y 304 
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indicates the layer output, w indicates the weight of the layer, and b indicates the bias of the layer. 305 

Two different connection types are indicated with two red boxes. 306 

3.4 Model results 307 

The developed transfer learning IW amplitude retrieval (TLIAR) model results are shown in Fig. 308 

5. Generally, the TLIAR model shows good agreement with the in-situ IW amplitudes in both the 309 

training and test dataset, with root mean square error (RMSE) values of 11.59 m and 9.59 m, mean 310 

relative error (MRE) values of 16% and 18%, and correlation coefficients of 0.90 and 0.89, 311 

respectively. The RMSE and MRE are defined as: 312 

RMSE=√
1

N
∑ (True amplitude-Model predicted amplitude)2N

i=1          (10) 313 

MRE= ∑
Model predicted amplitude - True amplitude

True amplitude
/N×100          (11) 314 

Here, N represents the number of samples included in the calculation. The bias correction helps 315 

establish the model; the model performance improved after the bias correction was implemented. 316 

The RMSE on the test dataset decreased from 12.09 m to 9.59 m, the MRE decreased from 21% to 317 

18%, and the correlation coefficients improved from 0.81 to 0.89. The results of the training dataset 318 

and the test dataset are very close, indicating the model is not over-fitted. 319 

 320 
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 321 

Fig. 5. TLIAR Model performance on the training (a, c) and test (b, d) dataset before (a, b) and 322 

after (c, d) bias correction. The solid black line indicates the 1-to-1 line.  323 

Fig. 6 shows the distributions of the absolute error and the MRE with the actual IW amplitudes. 324 

A fitted line is represented with the blue line, and the red shaded area indicates the 95% confidence 325 

intervals. One can find that the absolute error increases with the increase in IW amplitude; for an 326 

IW with an amplitude of 100 m, the absolute error can be expected to be around 10 m. The fitted 327 

line for the relative error rate shows that it decreases with increased IW amplitudes; this promises 328 
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that the TLIAR model still has a good performance for large-amplitude IWs. Fig. 7 shows the 329 

statistical results for IW amplitudes in different ranges, and one can find that with the increase in 330 

the IW amplitude, MRE decreases. A larger MRE for an IW amplitude of 20 m may be attributed 331 

to the smaller IWs having fewer modulations on the ocean surface and hence less prominent 332 

features on satellite images. Errors may be introduced to the PP distance of IWs. Smaller IWs may 333 

also be affected by the strong background information. For large-amplitude IWs, the IW signal is 334 

more obvious in satellite observations and ocean environments, which promise a lower MRE. 335 
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 336 

Fig. 6. Absolute error and the relative error rate of the TLIAR model. The solid blue line indicates 337 

the fitted line for the distribution, and the red shaded area indicates the 95% confidence interval. 338 
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 339 

Fig. 7. The relative error rate of the TLIAR model for different IW amplitude ranges. 340 

4. Application of the TLIAR model for IW amplitude retrieval in the Andaman Sea 341 

The TLIAR model can retrieve IW amplitudes based on two-dimensional information extracted 342 

from satellite observations and corresponding publicly available datasets, so the three-dimensional 343 

structure of IWs was rebuilt. As shown in Fig. 8, multiple IW packets propagating eastward are 344 

observed clearly in the Andaman Sea. Three leading IWs were selected to retrieve the amplitudes 345 

using the TLIAR model. The PP distances for IW-A, IW-B, IW-C are 1,391.5 m, 731.5 m, and 346 

517.2 m, respectively. The A, B, and C locations are shown in Fig. 8 b, and the water depth is 347 

3,277.7 m, 1,225.5 m, and 1,592.0 m, respectively. The distance between successive IW packets is 348 

99.02 km and 90.85 km. The amplitudes retrieved using the proposed TLIAR model are 45.8 m, 349 

36.0 m, and 38.9 m, respectively. The three-dimensional structure of IW-A, IW-B, and IW-C are 350 
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presented in Fig. 8 b. When propagating from A to B, the IW experiences a dispersion process due 351 

to the deep water, and the amplitude becomes smaller in location B than location A. When 352 

propagating from B to C, the water depth decrease gradually. The IW experiences a nonlinear 353 

process due to the nonlinear enhancing effect, so the waveform becomes steeper, and the amplitude 354 

becomes larger.  355 
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Fig. 8. (a) Three IW packets observed by MODIS image taken on 19 August 2019; (b) three-357 

dimensional structure of IWs can be obtained with model predicted amplitudes and satellite-358 

observed PP distances with the KdV-type solutions. The underwater topography is also presented. 359 

The proposed TLIAR model can be used to study IW amplitudes in different areas. We collected 360 

1,097 samples from 156 satellite images in the Andaman Sea to retrieve IW amplitudes from 361 

satellite observations; a detailed description can be found in (Zhang et al., 2021). The spatial 362 

distribution of IW amplitudes and histogram of IW amplitudes are presented in Fig. 9. We can find 363 

that IW amplitudes in the Andaman Sea are mainly located at 40 m. When the IWs propagate into 364 

shallow areas with water depth less than 1,000 m, IW amplitudes increase due to the strong 365 

nonlinear effect. The nonlinear steepening of the waveform can also be found in Fig. 8. Large-366 

amplitude IWs are mainly found at a water depth between 200 m and 1,000 m. Osborne and Burch 367 

(1980) conducted field observations in the Andaman Sea at (6.9°N, 97.0°W). They observed an 368 

IW with an amplitude of 60 m. The TLIAR model predicts IW amplitudes of about 50 m in the 369 

same location. As described in section 2, a buoy was placed at ( 95.6°E, 9.6°N)  and field 370 

observation shows that IW amplitudes ranged from 20 m to 55 m, which is also consistent with 371 

model-predicted results (20 m to 40 m). These match results demonstrate that the proposed TLIAR 372 

model can be used to study the amplitude evolution and distribution of IWs. 373 
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 374 

Fig. 9. Amplitude distributions (upper panel) of IWs estimated from satellite images using the 375 

TLIAR model in the Andaman Sea and corresponding histograms (lower panel).  376 
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5. Discussion 377 

5.1 TLIAR model performance against typical machine learning models 378 

To demonstrate the performance of our TLIAR model, we carried out more experiments 379 

comparing TLIAR with other traditional machine learning approaches. These approaches are Back-380 

propagation neural network (BPNN), support vector machine (SVM), Random Forest (RF), and 381 

XGBoost. We firstly compare them trained by only in-situ data and then compare them trained by 382 

both lab and in-situ data. Finally, they were tested using only the in-situ data. The parameter setting 383 

and model results for different algorithms are shown in Table 1. The results show that, when only 384 

using the in-situ data to train the model, the XGboost algorithm had the best performance on the 385 

independent test dataset with the smallest RMSE of 18.70 m. On the other hand, as shown in section 386 

3, the TLIAR model has an RMSE of 9.59 m, and this result demonstrates that the introduction of 387 

the lab data is valuable and necessary. 388 

Table 1. Performance of different algorithms trained by only the in-situ data 389 

Models Parameter setting RMSE_train(m) RMSE_test(m) 

BPNN 

Four-hidden-layer structure: 32, 16, and 8 

activation function: relu 

24.24 24.53 

SVM C=40, Kernel=rbf, gamma=0.6 20.50 21.64 

RF n_estimators=100, max_depth=30 7.31 19.59 

XGBoost 

max_depth=5, min_child_weight=3, learning_

rate=0.15, n_estimators=120, gamma=0.18 

12.36 18.70 
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Seven different fusion data/model strategies were applied to compare their performance to 390 

combine the lab collected data and in-situ data. The details of combining the lab and in-situ data 391 

are listed in Table 2. 392 

Table 2. Descriptions of different fusion strategies to combine the lab and in-situ data. 393 

Strategy Index Description 

One model 

F1 Lab data and observational data were trained together directly. 

F2 

Lab data and observational data were normalized separately and then put together 

for the model training. 

F3 

The amplitudes and PP distances were normalized using the water depth for both 

the lab data and observational data, then put together for the model training. 

F4 

A scaling factor was calculated based on the median or average IW amplitudes 

in the lab data and observational data. The lab data were rescaled before putting 

the data together. 

F5 

The IW amplitudes were normalized using the water depth, and the PP distances 

were normalized using the upper water depth; then the data were put together for 

the model training. 

Stacking 

model 

F6 

A lab model was trained using the lab data; the lab model predicted IW amplitude 

served as one of the input parameters of the observational model; the 

observational model produced the final predicted IW amplitudes. 
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F7 

A lab model and an observational model were trained separately using the lab 

data and observational data. The predicted IW amplitudes served as input 

parameters for a third emerged model, which produced the final predicted IW 

amplitudes. 

The fusion strategies include five one-model strategies and two stacking-model strategies. The 394 

one-model strategy combined the data and was used for training in a single model. The stacking-395 

model strategy built multiple models using different data sources as a stacking model. As shown 396 

in Table 1, the XGBoost has the best performance among those models; we tested different fusion 397 

strategies based on the XGboost model. The performance of different fusion strategies is shown in 398 

Table 3. The performance of different strategies had similar RMSE values on the test dataset, all 399 

over 20.0 m. Compared with the models trained only using in-situ data, the fusion strategies do not 400 

show apparent improvements when more lab data were included in the training dataset. However, 401 

the proposed transfer learning TLIAR model showed much better performance than models F1-F7, 402 

with RMSE of 11.59 m and 9.59 m on the training and test dataset. The comparison demonstrates 403 

that the transfer learning technique is an efficient way to overcome small dataset problems for IW 404 

studies. 405 

Table 3. Model performance for different fusion strategies. 406 

Fusion Strategy RMSE_train (m) RMSE_test (m) 

One model 

F1 4.57 20.84 

F2 3.77 23.48 
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F3 3.82 24.63 

F4 12.39 20.09 

F5 16.38 22.66 

Stacking model 

F6 12.79 20.99 

F7 9.62 21.68 

5.2 Influence of input parameter noise 407 

The TLIAR model has many input parameters, and errors may be introduced. The water depth 408 

was extracted from ETOPO1, and stratification data was extracted from the WOA 2018 dataset. 409 

Errors should not be very substantial for input parameters extracted from these publicly published 410 

datasets. The PP distance was measured from satellite images and may have been affected by 411 

complex imaging conditions and backgrounds. Therefore, errors in the PP distance extracted from 412 

satellite images were more easily introduced. The MODIS images used in this study had a spatial 413 

resolution of 250 m. Here we consider an error of two pixels (±500 m) on the MODIS image to 414 

investigate its influence on the model performance, and the results are shown in Fig. 10. The model 415 

performance degraded from 10 m to less than 20 (25) m with an error of 250 m (500 m). As shown 416 

in Fig. 3, the PP distance mainly ranged from 1,000 m to 2,000 m. An error of 500 m indicates a 417 

32 - 50% error rate on the PP distance measurements. The correlation coefficient and MRE 418 

degraded to over 0.7 (0.4) and 30% (40%), respectively, with an error of 250 m (500 m). With a 419 

one-pixel-error on the PP distance, the model generally produces a reliable result, while with two-420 

pixel-error, the model shows relatively large deviations. Although the TLIAR model shows good 421 

tolerance on the PP distance error, we can still further reduce the error of PP distance measurements. 422 
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SAR images have a higher spatial resolution (tens of meters), which reduces the PP distance error. 423 

The PP distance error was also reduced when we extracted multiple profiles and obtained the 424 

average measurement. Therefore, while the TLIAR model shows strong robustness on PP distance 425 

errors, we can still take several measurements to further reduce the measurement error, which 426 

promised good performance from the TLIAR model. 427 

 428 

Fig. 10. The TLIAR model performance for PP distance input errors. 429 

5.3 Comparison with the KdV equation-based method 430 
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The KdV equation has been widely applied to retrieve internal solitary wave amplitude (Zhao 431 

et al., 2004; Zheng et al., 2001). The KdV equation for the propagation of the internal solitary 432 

wave is described in equation (1). Equation (1) has a soliton solution described as: 433 

η(x,t)=η
0
sech

2 [
x-vt

L
] 434 

L=√
12γ

αη0

            (12) 435 

where η
0
 is the maximum amplitude, and L is the characteristic half-width. Zheng et al. (2001) 436 

proposed the relationship between the internal solitary wave half-width and the PP distance 437 

extracted from satellite images. As shown in Fig.2, an IW was observed on the MODIS image near 438 

the buoy. The IW has a PP distance of 1,241.93 m with an in-situ amplitude of 35 m. The TLIAR 439 

model-predicted amplitude is 38.45 m, while the KdV-predict amplitude is 25.01 m. Another case 440 

is shown in Fig. 11, a MODIS image was acquired at 06:59 on 27 March 2013, and the PP distance 441 

is 1,916.13 m. The buoy captured the IW about 1 hour later with an amplitude of 43 m. The TLIAR 442 

model-predicted IW amplitude is 38.45 m, while the KdV-predicted amplitude is 10.50 m. The 443 

KdV prediction show much more significant deviations than the proposed TLIAR model. As shown 444 

in Fig.3, the PP distance of IWs mainly ranges from 1,000 m to 2,000 m, and the KdV equation 445 

generally produces minimal amplitude inversion results.  446 
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 447 

Fig. 11. Observation of IWs in the Andaman Sea using MODIS images (a) acquired at 06:59 on 448 

27 March 2013 and the corresponding in-situ data (b). The red dot indicates the buoy location. 449 

The KdV equation is mainly suitable for small-amplitude internal solitary waves in shallow 450 

oceans. Now we analyze which regimes the collected dataset fell in. Considering the average results, 451 

the horizontal length scale (L) was 2,000 m, the depth of the upper layer (h) was 60 m, the total 452 

water depth (H) was 1,258 m, and the amplitude (A) was 50 m. We calculated 453 

L/H~O(1), h/H≪1, AL2/H3≪1, AL/h
2≫1. This result does not fall in the regime of the shallow-454 

water theory, deep-water theory, or the finite-depth theory demonstrating that IWs in the ocean are 455 

more complicated than can be modeled using the KdV or extended equations. 456 

5.4 TLIAR model applicability for extra-large-amplitude IWs 457 

As shown in Fig. 3, IW amplitude in the collected matched dataset ranged from tens of meters 458 

to over 100 meters. The largest IW amplitude in the matched in-situ dataset was 116 m. IW 459 

amplitudes in the South China Sea and other oceans reached over 200 m. The performance of the 460 

TLIAR model for extra-large-amplitude IWs was not validated in this study because we did not 461 

find such data to train or test the model. However, according to the results shown in Fig. 6, the 462 
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relative error rate decreased with increased IW amplitudes. If more data is collected in the future, 463 

the model could be tested or even re-trained based on the same approach. 464 

5.5 Model application to other ocean areas 465 

The TLIAR model was developed mainly based on the matched dataset in the Andaman Sea, 466 

while some data in other ocean areas were also included. The water depth variations for the 467 

developed model ranges from 75 m to 2789 m, the mixed layer depth ranges from 13 m to 95 m, 468 

the density of the upper layer ranges from 1021 kg/m3 to 1023 kg/m3, and the density of the 469 

lower layer ranges from 1024 kg/m3 to 1027 kg/m3. The model was trained and tested under a 470 

wide range of ocean conditions. The model should not apply to only one region. We show a few 471 

examples below.  472 

A MODIS image acquired on 28 August 2014 showing clear IW signatures in the South China 473 

Sea was reported in the work of Xu et al. (2020), as shown in Fig. 12. The water depth at the 474 

observation location is 1180 m. The depth of the upper layer extracted from the WOA2018 is 65 475 

m, close to in-situ data. The PP distance of the nearest leading IW in Fig. 12 is 647.83 m. The 476 

TLIAR model estimated IW amplitude is 99.6 m, while the in-situ IW amplitude is close to 100 m 477 

(Fig. 6i in Xu et al., 2020), which shows good agreements between the model result and in-situ 478 

data. This result indicates that the developed TLIAR model works well in the South China Sea.  479 
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 480 

Fig. 12. MODIS image acquired on 28 August 2014 showing clear IW signatures in the South 481 

China Sea. The red symbol indicates the in-situ observation location reported in Xu et al. (2020). 482 

The insert map shows the extracted profiles indicated by the solid red line. 483 

 Data in the South China Sea is included during the model establishment, no sample is located 484 

in the Sulu Sea in the matched in-situ dataset. To test the model applicability in the Sulu Sea, we 485 

used MODIS images reported in Zhang et al. (2020) to inverse IW amplitudes, and the results are 486 

shown in Fig. 13. Historical in-situ data were used to validate the model results because no in-situ 487 

data is found in the Sulu Sea. The black box in Fig. 13 represents the in-situ observation station, 488 

SS3, reported in Apel et al. (1985). IWs in the SS3 station observed 18 solitons with amplitudes 489 

ranging from 20 m to 80 m (Fig. 20 in Apel et al., 1985). The histogram of TLIAR model results 490 

of IWs in this area is shown in the right panel of Fig. 13, where IW amplitudes show good 491 
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agreements with historical in-situ observations in the Sulu Sea. Although we do not test the model 492 

applicability further, existing results show the model works reasonably well. 493 

 494 

Fig. 13. Amplitude distributions (left) of IWs estimated using the TLIAR model in the Sulu Sea. 495 

The black box indicates the SS3 station in Apel et al. (1985). The right panel shows the 496 

corresponding IW amplitude histograms in the black box. 497 

6 Conclusions 498 

Amplitude is an important parameter for IW studies. In this study, a transfer learning model was 499 

proposed to invert IW amplitudes from satellite images. To develop the model, we built two 500 

datasets, including 888 pairs of IW lab data and 121 pairs of satellite/in-situ matched datasets. The 501 

TLIAR model is a two-stage model including an inversion model and a bias correction model. We 502 

introduced the transfer learning technique and short connection in the inversion model. The transfer 503 

learning helps to utilize two datasets fully, and the short connection helps to reduce the information 504 

loss and makes the model convergence easier. The bias correction used the density information in 505 
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the natural ocean to correct the results of the inversion model. The model has an RMSE of 9.59 m, 506 

an MRE of 18%, and a correlation coefficient of 0.89 on an independent test dataset, which shows 507 

good consistency between the model predictions and field observations. Analysis shows that for an 508 

IW with a large amplitude of 100 m, the absolute error is expected to be around 10 m. Relative 509 

error rate analysis shows that the TLIAR model still has good performance for large-amplitude 510 

IWs. The model was applied to IW amplitude retrievals in the Andaman Sea. The spatial 511 

distributions and variations of IW amplitude were revealed: IW amplitudes in the Andaman Sea 512 

are mainly located at 40 m, and large-amplitude IWs are mainly found at a water depth between 513 

200 m and 1,000 m. 514 

Five other machine learning algorithms also join the experiments. Each algorithm built one 515 

model trained with only in-situ data, and seven fusion models trained with lab and in-situ data were 516 

tested. The XGBoost model has the best performance for models trained with only in-situ data, 517 

with an RMSE of 18.70 m. Considering an RMSE of 9.59 m for the TLIAR model, the introduction 518 

of the lab data was necessary. Seven fusion models did not improve, while the TLIAR model 519 

showed far better performance. These results demonstrate that the lab data serves as an excellent 520 

additional data source, and the transfer learning technique is efficient for this study. 521 

The error distribution with the IW amplitudes was also presented, and the results indicate that 522 

the model can still have a small error for IW amplitude over 100 m. However, the error rate was 523 

reduced for large-amplitude IWs. Noise sensitivity analysis shows that while the noise is most 524 

easily introduced to the PP distance, the model shows large tolerance for the PP distance error, with 525 

a one-pixel error and RMSE still less than 20 m. Compared with the KdV equation, the TLIAR 526 
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model shows a much better result. Model applicability in the Sulu Sea was also discussed, the 527 

model results show good agreements with historical in-situ results. 528 
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List of Figure Captions 681 

Fig. 1. Photo of the IW lab experiments and views of the two cameras. 682 

Fig. 2. Observation of IWs in the Andaman Sea using MODIS images (upper) acquired on 11 683 

March 2011 and corresponding filed observations (lower). The red dot in the MODIS image 684 

represents the in-situ location. The solid black lines in the lower panel represent an isotherm of 685 

25℃. The black arrow indicates the location of an IW.  686 

Fig. 3. Histogram of the IW amplitude, month, time window between satellite observation and in-687 

situ observation, and the peak-to-peak distance of IWs in the collected in-situ dataset. 688 

Fig. 4. Flowchart of the proposed transfer learning model to retrieve amplitude of IWs. The blue 689 

arrows indicate the shortcut connections between different layers. The width of the Block 1 and 690 

Block 2 modules is 64 (32) neurons for the inverse (bias correction) model. Two specially tailored 691 

modifications, the short connection, and the bias correction are highlighted. The IW lab and in-situ 692 

data were inputted into Input Layer 1, and the density information was inputted into Input Layer 2. 693 

In the input layers, H is the water depth, h1 is the depth of the upper layer, dp is the density 694 

difference of upper and lower layer, PP is the IW PP distances extracted from the satellite images, 695 

p1 (p2) is the density of the upper (lower) layer. In the insert figure, x indicates the layer input, y 696 

indicates the layer output, w indicates the weight of the layer, and b indicates the bias of the layer. 697 

Two different connection types are indicated with two red boxes. 698 

Fig. 5. TLIAR Model performance on the training (a, c) and test (b, d) dataset before (a, b) and 699 

after (c, d) bias correction. The solid black line indicates the 1-to-1 line.  700 
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Fig. 6. Absolute error and the relative error rate of the TLIAR model. The solid blue line indicates 701 

the fitted line for the distribution, and the red shaded area indicates the 95% confidence interval. 702 

Fig. 7. The relative error rate of the TLIAR model for different IW amplitude ranges. 703 

Fig. 8. (a) Three IW packets observed by MODIS image taken on 19 August 2019; (b) three-704 

dimensional structure of IWs can be obtained with model predicted amplitudes and satellite-705 

observed PP distances with the KdV-type solutions. The underwater topography is also presented. 706 

Fig. 9. Amplitude distributions (upper panel) of IWs estimated from satellite images using the 707 

TLIAR model in the Andaman Sea and corresponding histograms (lower panel).  708 

Fig. 10. The TLIAR model performance for PP distance input errors. 709 

Fig. 11. Observation of IWs in the Andaman Sea using MODIS images (a) acquired at 06:59 on 710 

27 March 2013 and the corresponding in-situ data (b). The red dot indicates the buoy location. 711 

Fig. 12. MODIS image acquired on 28 August 2014 showing clear IW signatures in the South 712 

China Sea. The red symbol indicates the in-situ observation location reported in Xu et al. (2020). 713 

The insert map shows the extracted profiles indicated by the red solid line. 714 

Fig. 13. Amplitude distributions (left) of IWs estimated using the TLIAR model in the Sulu Sea. 715 

The black box indicates the SS3 station in Apel et al. (1985). The right panel shows the 716 

corresponding IW amplitude histograms in the black box. 717 
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