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Solving Many-Objective Optimization Problems by a
Pareto-based Evolutionary Algorithm with
Preprocessing and a Penalty Mechanism

Yuan Liu—, Ningbo Zhu and Miqing Li

Abstract—It is known that the Pareto-based approach is not
well suited for optimization problems with a large number of
objectives, even though it is a class of mainstream methods in
multi-objective optimization. Typically, a Pareto-based algorithm
comprises two parts: a Pareto dominance-based criterion and
a diversity estimator. The former guides the selection toward
the optimal front, while the latter promotes the diversity of
the population. However, the Pareto dominance-based criterion
becomes ineffective in solving optimization problems with many
objectives (e.g., more than 3), and thus, the diversity estimator will
determine the performance of the algorithm. Unfortunately, the
diversity estimator usually has a strong bias toward dominance
resistance solutions (DRSs), thereby failing to push the population
forward. DRSs are solutions that are far away from the Pareto
optimal front but cannot be easily dominated. In this paper,
we propose a new Pareto-based algorithm to resolve the above
issue. First, to eliminate the DRSs, we design an interquartile
range method to preprocess the solution set. Second, to balance
convergence and diversity, we present a penalty mechanism of
alternating operations between selection and penalty. The pro-
posed algorithm is compared with five state-of-the-art algorithms
on a number of well-known benchmarks with 3-15 objectives.
The experimental results show that the proposed algorithm
can perform well on most of the test functions and generally
outperforms its competitors.

Keywords—Many-objective optimization, evolutionary algorithm,
dominance resistance solutions.

I. INTRODUCTION

ECENTLY, many-objective problems (MaOPs) with at
least four conflicting objectives have drawn increasing
attention in evolutionary computation. MaOPs often appear in
real-world applications, such as directed acyclic graph schedul-
ing [1], workflow applications [2], and task secheduling [3],
as a result, algorithms in the evolutionary computation field,
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called many-objective evolutionary algorithms (MaOEAs),
have been rapidly developed. In general, such an algorithm
searches for a set of well-converged and well-distributed trade-
off solutions instead of a single optimal solution in single-
objective optimization.

Conventional evolutionary algorithms, which use Pareto
dominance as the primary selection criterion, may perform
very poorly in solving MaOPs [4], [5]. A commonly accepted
notion is that due to the “curse of dimensionality”, Pareto-
based algorithms encounter two significant challenges. The
first is the dominance resistant phenomenon that leads to
incomparability of solutions [6]]. The resulting solutions, called
dominance resistance solutions (DRSs), survive over numerous
generations (or even exist in the final population). DRSs are
solutions that are far away from the Pareto-optimal front
but cannot be easily dominated. The second is the difficulty
of maintaining a good diversity in a high-dimensional space
[7], [8]]. Diversity is subdivided into two aspects: uniformity
and spread. Uniformity quantifies the distance between neigh-
bouring points in solutions; however, the traditional distance
metrics (e.g., Euclidean distance-based estimators) in a very
high-dimensional objective space become less reliable. The
spread refers to the coverage of solutions in the objective
space; however, a large search space and the limited number
of solutions certainly conflict with each other.

To overcome the above problems, researchers have focused
on the development of new algorithms and techniques [8]], [9]
that can be roughly divided into the following four categories.

The first approach involves dominance relaxation. If Pareto
dominance is unsuitable for many-objective optimization, a
straightforward idea is to modify Pareto dominance by en-
larging the dominance areas of a solution to increase the
pressure on the selection toward the Pareto front. Several
related approaches have been proposed, including e-dominance
[10], [I11], controlling dominance area of a solution [12],
and Fuzzy Pareto dominance [13]], [14], and others [15]-
[17]. Unfortunately, all of these approaches inevitably entail
difficulties in determining the extent of relaxation for different
problems, which has led to the emergence of dynamic tuning
methods [18], [19]].

The second approach is diversity-based. In many-objective
optimization, the diversity selection mechanism plays a vital
role when Pareto dominance cannot provide sufficient pressure
on the selection toward the Pareto-optimal front. In view
of this, another way of adapting Pareto-based algorithms
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for MaOPs is to modify their diversity maintenance strategy
[20]. Specifically, in [21]], the crowding distance of boundary
solutions of NSGA-II is assigned a zero value to improve the
proximity of the algorithm; in [22], a diversity management
mechanism can be switched off when the population is ex-
cessively diverse, and in [23]], a shift-based density estimation
(SDE) mechanism is used to shift the position of solutions in
their density estimation to reflect their convergence.

The indicator-based approach is the third type. Indicators
are commonly used to evaluate the performance of algorithms
in the area [24]. This approach uses a performance indicator
to calculate the fitness of solutions and guide the search
process. Some well-known MOEAs based on the indicator-
based approach are IBEA [25]], SMS-MOEA [26], and HypE
[27]. However, the calculation time of hypervolume-based
algorithms (such as SMS-MOEA and HypE) is usually longer
than that of other algorithms.

The last category is the decomposition-based approach.
In this approach, a scalarizing function is used to decom-
pose a MaOP into a set of single-objective subproblems.
A representative example is the multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [28]. MOEA/D
decomposes a MaOP into a number of subproblems and uses
a set of evenly distributed weights to maintain the diversity of
the population. Many algorithms based on decomposition, such
as PAEA [29], MOEA/D-LWS [30], MOEA/DD [31]], have
recently been proposed to deal with many-objective problems.
Additionally, adaptive weight setting has become a research
hotspot in this category in recent years, and it used in methods
such as MOEA/HD [32], A-NSGA-III [33] and RVEA [34].

Although these studies have enhanced the search ability of
MaOEAs and provided a variety of approaches to MaOPs,
the field of many-objective optimization is far from maturity.
Notably, relaxation factor tuning is the most challenging ob-
stacle in the use of the first approach. Due to the uncertain
environment of a given problem, it is difficult for the diversity-
based approach to balance the convergence and diversity of
solutions in the many-objective space. As described above,
the indicator-based approach requires time-consuming compu-
tations to obtain the indicator values of all solutions. For the
decomposition-based approach, the challenge is to specify a
set of appropriate reference points that are consistent with the
Pareto front’s shape of a given problem, although some results
have been derived in this regard.

In this paper, we focus on diversity-based approaches. When
solving MaOPs, these approaches are intended to improve
performance by reducing the adverse effects of diversity
maintenance. However, these approaches’ performance aspects
of convergence and diversity are difficult to reconcile un-
der an uncertain environment, and performance remains far
from meeting the requirements of MaOPs. On the one hand,
premature convergence is considered one of their recurrent
drawbacks [35]. It is generally due to excessive selection
pressure and the loss of diversity within the population. In
this case, it is challenging for the algorithm to escape the
local optimum represented by the population [36]. On the
other hand, many schemes for avoiding premature convergence
have been devised in an effort to increase the diversity of

population [37]. However, if the population is too diverse,
a large number of DRSs will exist in the population when
MaOPs are being solved, resulting in a slow convergence and
eventually producing poor-quality solutions. Naturally, existing
studies have explored various methods for detecting DRSs.
For example, Ikeda et al. [38] proposed a relaxed form of
the dominance method, called c-dominance, for dominating
the DRSs. G. Yu er al. [39] introduced a novel boundary
elimination selection based on binary search trying to avoid
the impact of DRSs during optimization. Bhattacharjee et al.
[40] proposed a Six-Sigma-based method for removing the
influence of DRSs on nadir point calculation. Finally, W. Hu
et al. [41]] proposed using the mean absolute deviation method
to detect DRS:s.

To alleviate the above challenges, this paper proposes a
novel Pareto-based evolutionary algorithm (named PMEA)
using a penalty mechanism to optimize the preprocessed
population. The basic idea of PMEA is that it alternately
selects and penalizes solutions to ensure population quality. We
first select the best solution from preprocessed solutions based
on a convergence metric and subsequently penalize its neigh-
bouring solutions according to a distribution metric. Note that
the penalty operation means deprioritizing solutions’ entries
rather than deleting solutions. Additionally, we introduce an
interquartile range method (IQR) as a preprocessing operation
to eliminate the DRSs.

The main contributions of this paper can be summarized as
follows.

e An effective preprocessing mechanism is proposed. In
this paper, we explore the impact of DRSs on algorithms
used for optimization MaOPs and emphasize the impor-
tance of detecting and removing DRSs. Furthermore, we
introduce a new DRS detection method, and verify the
effectiveness of the method through experiments.

e A novel diversity maintenance method is proposed. In
this method, the convergence and diversity maintenance
operations are alternated. Once the solution with the
best convergence has been selected, its diversity will be
considered. An important feature of this method is that
it weakens the sensitivity to the distribution threshold
during the diversity maintenance process.

e We propose a new Pareto-based algorithm that integrates
the above two strategies. Extensive experiments are
performed to assess the performance of our algorithm
in solving MaOPs by comparing it with several state-
of-the-art MOEAs for MaOPs on three suites of widely
used test problems.

The rest of this paper is organized as follows. Section II
presents the related studies and outlines the motivation of this
research. Section III describes the proposed algorithm in detail.
In Section IV, extensive experiments are performed to compare
the proposed algorithm with five state-of-the-art algorithms.
Finally, we draw conclusions in Section V.

II. RELATED STUDIES AND MOTIVATION

To introduce the background knowledge of this paper, the
impact of DRSs and several diversity-based mechanisms are
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TABLE 1. SOLUTION VALUES IN THE BI-OBJECTIVE SPACE.

A B C D E F

Objective space (100, 0) (0.8, 0.2) (0.6, 0.4) (0.4, 0.6) 0.2,0.8) (0, 1)
Normalized objective space (1, 0)  (0.008, 0.2) (0.006, 0.4) (0.004, 0.6) (0.002, 0.8) (0, 1)

briefly reviewed. The inspirations of the proposed algorithm
are also presented at the end of each related topic.

A. Impact of DRSs

In general, Pareto-based algorithms consider non-dominated
solutions as proper candidate solutions to be kept. If the
population size limit is exceeded, some of the more crowded
solutions will be removed based on another criterion, e.g.,
density estimation. However, if there are solutions that are
hardly dominated but significantly worse than others and that
are spread among the population, then they cannot be cleaned
by Pareto-based strategies [38]], [42]]. This phenomenon can
be regarded as dominance resistance, and these solutions are
called dominance resistance solutions (DRSs).

Numerically, the term DRSs refers to non-dominated solu-
tions with a poor value in at least one of the objectives but with
nearly optimal values in the other objectives; such solutions
are usually located in the boundary regions. Since DRSs are
boundary solutions, most of them will have the best density
value, resulting in these solutions being always included in the
new population [42]. Additionally, it is generally recognized
that the proportion of non-dominated solutions in a population
increases exponentially with the number of objectives [43].
As a result, the number of DRSs may also increase with
the number of objectives, causing a more intense dominance
resistance [44]. Thus the existence of these solutions will
hinder the population’s progress toward the Pareto-optimal
front since their values in several objectives are relatively poor.

DRSs can seriously inflate the nadir in specific axial di-
rections, resulting in uneven scaling of each objective. Many
MaOEAs [45]-[47]] considered in the literature typically use
a normalization operation to map the objective values of the
non-dominated set to the same interval (e.g., [0,1]) using
their ranges before the environmental selection to facilitate
solving the MaOPs with various objectives scaled to different
ranges. Most often, the min-max normalization that performs a
linear transformation on the original solutions is adopted in the
evolutionary computation. The minimum and maximum values
of each objective are the corresponding elements in the ideal
point and the nadir point, respectively. However, the presence
of DRSs may result in the effective range of each normalized
objective not necessarily being in the range [0, 1]. For example,
assume that there is a set of non-dominated solutions in the
bi-objective space, which contains a DRS with a poor value
in objective fi, as shown in Table 2. After normalization, the
effective ranges of objectives f; and f> are scaled to the region
[0.01,0] and the range [1,0], respectively. Additionally, the
DRS may be more easily preserved in the normalized space.
As shown in the table, solutions A and F have the same
convergence in the normalized space, but the distribution of
the former is significantly better than that of the latter.

Moreover, if there is a large number of DRSs in the popu-
lation, the offspring they generate through the recombination
operator are also most likely to be DRSs. In many-objective
problems, the limited size of the population causes solutions
to be far apart from each other [47]. In such a population,
two distant parent solutions are likely to produce offspring
solutions that are also distant from parents [48[]. In this
scenario, the effect of the recombination operator questionable.
Therefore, most MaOEAs [34]], [47] typically use simulated
binary crossover (SBX) with a large distribution index, leading
to a high probability of sampling an offspring close to its
parents. However, this approach of emphasizing near-parent
solutions may further increase the number of DRSs in the new
population if there are some DRSs in the mating pool.

Given all that, it is undeniable that a reasonable DRS
detection mechanism will be invaluable for the many-objective
optimization process. The detection and elimination of DRSs
is not easy, and further research is required to address this
issue. In this paper, we introduce an interquartile range method
that eliminates all non-dominated solutions with convergence
metrics that are are in the upper quartile.

B. Niche-based diversity maintenance mechanisms

For Pareto-based algorithms, niche-based techniques—a com-
mon method of solving MaOPs—can achieve a performance
trade-off by controlling the distribution of well-converged
solutions [45]], [46], [49], [50]. In this section, we review some
classic niche-based maintenance mechanisms that inspired the
proposed penalty mechanism.

A knee point driven MOEA proposed in [49] prefers knee
points of the non-dominated fronts in selection. Specifically,
KnEA uses the solution farthest from a hyperplane in a local
region as the knee point, and the hyperplane is defined by
M extreme points in the non-dominated solutions. Whenever
a knee point is confirmed, its neighbours will be penalized.
KnEA uses a hyperbox to identify the neighbours of a knee
point, and the size of the hyperbox can be adaptively changed
during the evolution.

The 1by1EA [46] method was the first to introduce the one-
by-one selection strategy. The main idea is that during the
environmental selection, well-converged solutions are selected
one-by-one based on a computationally efficient convergence
metric. Once the best-converged solution has been selected, its
neighbours are penalized using a niche technique to guarantee
the diversity of the population. In 1bylEA, the neighbours
of a solution are determined by cosine similarity, and the
distribution threshold is adaptively updated similarly to the
approach used in KnEA.

VaEA [45] emphasizes a new optimizer based on the
search directions of the evolving population itself. It first uses
the maximum-vector-angle-first principle to select the better-
density solutions from the non-dominated set to build the
search directions and then uses the worse-elimination principle
to find the better-convergence solutions in those search direc-
tions. In VaEA, the threshold of each search direction is set to
a fixed value that is only related to the size of the population.

Intuitively, the above algorithms all use a niche preservation
technique to keep a balance between convergence and diversity.
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An effective way to determine the correct threshold becomes
the key to achieving good diversity performance for such
algorithms, however, this task is quite difficult. If the threshold
is too large, most of the solutions will be penalized so that the
selection operation cannot be completed in one round, and the
end of a round will occur when the candidate set is empty.
Multiple rounds of selection will result in numerous adjacent
solutions being selected into the next population. Conversely,
if the threshold is too small, the next population will be filled
before the end of the first round of selection. As a result, it
will be difficult for the population to cover the entire Pareto-
optimal front. As analysed in [|50]], the most desirable state is to
complete the selection of the next population if and only if the
candidate set is empty for the first time. However, it is difficult
for the existing adaptive threshold mechanism to attain such a
state. In this paper, we propose a new mechanism to achieve
this goal by controlling the number of penalized solutions,
where the number is equal to the difference between the size
of the candidate set and the number of selected solutions in
each generation.

III. PROPOSED METHOD

The proposed method consists of preprocessing and a
penalty mechanism. Preprocessing eliminates DRSs in the
population, and the penalty mechanism selects a set of well-
converged and well-distributed trade-off solutions from the
preprocessed population.

A. Pre-processing

The pre-processing is an essential step in the data mining
process, and the removal of outliers is one of its purposes [51].
In fact, numerous outliers (or DRSs) occur in the population
during optimization many-objective problems. As discussed in
Section II-A, such DRSs can have an adverse effect on the
performance of the population.

In this paper, we introduce an interquartile range (IQR)
method to detect and eliminate DRSs. IQR, being a descriptive
statistic, can be applied to any data. Given an ordered set of
one-dimensional data X, we first determine low quartile
and upper quartile (Q3, and subsequently calculate the upper
and lower boundaries of the data. Formally,

{UB =Q3+7(Q3— Q1)

LB=Q1—r(Qs— Q1)
where UB and LB represent the upper and lower boundaries
of the valid dataset, respectively. The sensitivity of r on the
performance of our algorithm is explored in Section I of the

supplementary file and it was eventually set to 1.5. In addition,
Q1 and Q3 are defined as

= (-1 E))+
REIE (1(_— ()

6]

Algorithm 1: Pre-processing

Input: Solution Set: F, Population Size: n
Output: Solution Set: F
Compute the convergence metric of solutions F: CM;
Sort CM;
Compute 7 and its index ¢;
Compute ()3 and its index j;
if n > j then
i = size(CM) — n and Q1 = CM(i);
j=mn and Q3 = CM(j);
end
Compute the upper boundary (UB) of the ordered set
CM;
Eliminate the solutions whose convergence values are
greater than the UB;

E=EE--HEEN - Y L

—
>

where |-| indicates rounding down and | - | represents the size
of the set.

Outliers are points that are on either end of the dataset. For
example, consider dataset X = {5,40,42,---,58,60,95} in
Fig. [I] According to (1)), the blue points {5,95} are outside
the boundary, and are thus regarded as outliers.

LB=23 @Q =425, Q,=49; Qs;=555 UB="T5.

Fig. 1. An example of the interquartile method, where LB and UB represent
the lower and upper boundaries, respectively, and Q2 and Q3 represent the
lower and upper quartiles, respectively.

In evolutionary computation, as outliers are more significant
than the rational solutions in terms of the convergence metric,
we only need to eliminate the solutions with convergence
metrics that are greater than the upper boundary. The pseu-
docode of the preprocessing operation is shown in Algorithm 1,
which assumes that there is a set of non-dominated solutions
F that outnumber the population size n. First, we calculate the
convergence metric for each solution in the non-dominated set
and keep it in CM. Afterwards, we need to sort the values
of CM in the ascending order. Next, the upper and lower
quartiles (@3 and (1) of the ordered set CM are calculated
by Eq. (Z), and their index positions are recorded as ¢ and
J, respectively. To prevent the number of candidate solutions
after preprocessing from being less than the population size
n, we compare the size of (J3’s index j with the size n of
the population n. If 5 < n, we adjust the upper and lower
quartiles of CM in steps 6 and 7 of the algorithm. After the
upper and lower quartiles have been determined, the upper
boundary (UB) is calculated according to Eq. (I). Finally, we
eliminate all solutions with convergence metrics that are on
the upper boundary.

Fig. [2] shows a comparison trajectories of the distance
between the nadir point (ZY) and the ideal point (Z%) of
the original VaEA [45] method and the variant with IQR
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—— Variant VaEA(10-Obj.) —— Variant VaEA(10-Obj.)
—— Variant VaEA(8-Obj.) 3,000 |- —— Variant VaEA(8-Obj.)
——  VaEA(10-Obj.) I ——  VaEA(10-Obj.)
400 |- — VaEA(8-Obj.) \ — VaEA (8-Obj.)
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3 )
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\ 300 8
0 y 0 s
0 500 1,000 1,500 2,000 0 500 1,000 1,500 2,000
Number of generations Number of generations
(a) DTLZ1 (b) DTLZ3
Fig. 2. Distance between the nadir point (Z Uy and the idea point (Z Ly in

each generation of the runs on the (a) 10- and 8-objective DTLZ1 problems
and (b) 10- and 8-objective DTLZ3 problems, respectively

on the DTLZ1 and DTLZ3 problems [52]]. VaEA is selected
because it is a Pareto-based algorithm, and its performance
is heavily impacted by DRSs. Here ZY is composed of the
maximum value of each objective for all solutions, and Z% is
set to the coordinate origin. As shown in Fig. 2] the values
of Dist(ZY, Z) of the two algorithms decrease gradually
and eventually fluctuate around a horizontal line, but ZY of
VaEA is significantly more bloated and turbulent than that of
the variant version. Additionally, this figure shows that the
convergence of the variant version is much better than that of
the original VaEA.

B. Penalty Mechanism

After the candidate solution set has been preprocessed,
our penalty mechanism takes into account the convergence
and diversity of the population to select a set of superior
solutions for the next generation. First, we need to obtain
the convergence and distribution metrics for each candidate
solution and keep them in sets CIM and DM, respectively.
Next, the best solution is selected from the candidate set for
the next generation according to the obtained convergence
metrics CM. Once a solution has been, we need to distinguish
its neighbours according to the distribution metrics DM and
penalize them into the penalty set E. If the size of E exceeds
its upper limit determined by the difference between the size
of the initial candidate set (s) and the size of the required
population (n), we should choose some of the well-distributed
solutions from the penalty set as candidate solutions by com-
paring the similarity between the solutions in the penalty set
and the selected solutions. Here, the top-(s-n) solutions closest
to the selected solutions are regarded as neighours of the latter,
and the other solutions in the penalty set are moved into
the candidate set as well-distributed solutions. Finally, during
selection, the solutions in the penalty set are always closest
to the selected solutions, and their count is less than or equal
to the maximum capacity of the penalty set. The procedure is
presented in Algorithm 2. To describe the penalty mechanism
more clearly, we give a simple example in section II of the
supplementary file.

As described above, the penalty mechanism considers two
fitness metrics: a convergence metric and a distribution metric.

Algorithm 2: Penalty Mechanism

Input: Solution Set: F, Population Size: n
Output: Next Population: P
Compute the distribution metrics of solutions F: DM;
Compute the convergence metrics of solutions F: CM,;
s=1F|;
Select a well-converged solution p; from F;
Move p; into P;
Distinguish the neighbors Nei of p; based on DM;
Move Ne: into the penalty set E;
if Size(E) > s — n then
Distinguish the neighbors Nei of P based on DM;
penalize Ne: into the penalty set E;
Move others into the solution set F;
end

o LN NN R W N =

[ =Y
N - S

For the convergence metric, the ideal strategy is to calculate
the distance from the solution to the Pareto-optimal front of
the problem [53]]. However, in many cases, the Pareto-optimal
front of the problem is unknown [54], i.e., we cannot directly
use the above method to represent the convergence value. One
of the improved methods uses the calculated distance from a
solution to an ideal point (Z) as the solution’s convergence
value [46]. Here Z% is composed of the minimum value of
each objective for the current solutions. There are several
distance metrics for measuring the convergence of solutions
[28]], [55], [56]. A distribution metric is used to detect the
similarity between solutions in their convergence direction. For
each solution, the connection between it and the ideal point is
used to approximate its convergence direction. Tow solutions
are similar if and only if their convergence directions are very
close. The commonly used distribution metrics are the cosine
metric [57] and the perpendicular distance [47]. In section III
of the supplementary file, we carry out a detailed analysis of
these metrics.

C. General Framework

The basic framework of the proposed algorithm is shown
in Algorithm 3. First, an initial population P with n» members
is randomly constructed in the entire decision space. Second,
in each iteration, n offspring solutions S are generated from
the parent population by using the crossover operator [58] and
the mutation operator [47]. Third, we select n solutions from
the union set of P and S in each iteration. Finally, when the
iteration is completed, this algorithm outputs the final obtained
population.

During selection, we first divide solutions into different
layers by the non-dominated sorting procedure. One non-
dominated layer is selected at a time to construct a new
population P, starting from F;, until the size of P is equal to
n or is for the first time greater than n. The last selected layer
is defined as the critical layer F;. When the population is full
(|IP| = n), P is returned. Conversely, if the population size
exceeds the predefined size, we select partial solutions from
F; into the next generation of the population.
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Algorithm 3: The basic framework of the algorithm

Input: Population Size: n, Terminate Condition: 7
Output: Next Population: P

1 P = Randomlnitiate(P);

2 while =7 do

3 Q=10

4 S = MatingSelection(P);

5 S = Crossover&Mutation(S);

6 R=PUS;

7 (F1,F5,---) = Non-dominated-sorting(R);

8 | while |F|+ |F;| <ndo

9 | P=PUF;andi=1i+1;

10 end

11 The last front to be included: F; = F;;

12 if |P| = n then

13 | return P;

14 end

15 F; = Pre-processing(F);

16 Calculate the ratio of the spread of F and F; : r;

17 if v > 1 then

18 Fl = Fl;

19 end

20 Calculate the number of solutions %k to be punished

from F;: k = |P| + |F;| — n;

21 Normalization(F);

22 if |P| = 0 then

23 Select m boundary solutions from F;, which
are closest to the corresponding coordinate
axes;

24 end

25 while |P| > n do

26 Choose n — |P| solutions from F:
P = Penalty_Mechanism(F;,n);

27 end

28 end

Before selecting superior solutions from F;, the algorithm
needs to detect if there are DRSs in F;. To this end, it first uses
IQR to preprocess F; to obtain a new set F;. Afterwards, it
compares the spreads of both sets (F; and F;). Spread indicator
D is used to calculate the length of the diagonal of a hypercube
formed by the extreme objective values attained in set F', and
is defined as

m 27 1/2
D= [; <Igggfz(><) min fz(x)> ] o ®
where m denotes the number of objectives, and x is a candidate
solution that belongs to F. Finally, the ratio r of the spreads
of the two sets is calculated by

D

0 —. 4

F;
Obviously, if v is smaller than or equal to 1, it means that

there is no DRS in F;. On the contrary, if v is greater than 1, it

indicates that one or more DRSs exist in F;, and we consider
F; = F;. The influence of the preprocessing operation on our
algorithm is considered in section IV the supplement file.

After preprocessing, the min-max normalization is used. The
role of normalization is to scale the objectives of solutions into
the same interval according to their ranges. Formally

(x.) — 7L
fz/(xj)zflél[jj)_ZZLTa 26{172,,7’77,}, (5)
where the ideal point Z” and the nadir point ZV are de-
termined by figuring out the minimum and maximum, re-
spectively, values of each objective for all solutions in the
preprocessed set.

Once the normalization operation has been completed, two
cases are considered. Since all of the solutions are located on
the unified layer, PMEA first prefers to select m boundary so-
lutions to ensure the spread of the population and subsequently
uses the penalty mechanism. Otherwise, it selects n— |P| well-
converged solutions one-by-one from the preprocessed set by
the penalty mechanism.

The above description implies that the computational com-
plexity of the proposed algorithm in one generation is dom-
inated by the non-dominated sorting and the penalty mecha-
nism. Specifically, the non-dominated sorting of a population
with 2n solutions and m objectives requires O(n(logn)™~2)
computations [59]. Preprocessing solutions requires O (nlog n)
computations. Normalization of objectives requires O(mn)
computations. In the penalty mechanism, the computational
complexities of the calculations of cosine similarity and elitism
selection are O(mn?) and O(n?), respectively. Considering all
the above computations, the overall worst-case complexity of
one generation of this algorithm is O(mn?).

IV. RESULTS AND ANALYSIS

In this section, the performance of PMEA is empirically
evaluated by comparison with various types of state-of-the-art
algorithms, such as SPEA2+SDE [23], NSGA-II+SDR [60],
MaOEAIGD [61], VaEA [45]], SPEAR [62]. The experiments
are conducted on 25 test problems taken from three widely
used test suites, namely, DTLZ [52], WFG [63]] and MaF [64].
For each test problem, 3, 5, 8, 10 and 15 objectives are con-
sidered. In addition, two widely-used performance indicators,
namely, the Hypervolume (HV) [65] and inverted generational
distance (IGD) [66], are considered. Due to the page limit,
the experimental design, the statistical results are described
in the supplementary file. In particular, the Section V in
the supplementary file gives the experimental settings of this
paper and the Section VIII in the supplementary file gives the
statistical results.

For comparison purposes, we use the Manhattan distance
and the cosine distance as the convergence and distribution
metrics of our algorithm (named PMEA-MA). In section VI
of the supplementary file, we demonstrate that the combination
of the Manhattan distance and the cosine distance can provide
the best performance for PMEA. Furthermore, in the following
experiments, we also compare PMEA-MA with a variant
of PMEA-MA without preprocessing (named PMEA*-MA)



XXXX, VOL. X, NO. X, XX XXXX

TABLE II. THE PROPORTIONS OF THREE TEST SUITES ON WHICH
PMEA-MA ARE BETTER THAN, WORSE THAN, AND EQUAL TO SIX PEER
ALGORITHMS CONCERNING IGD INDICATOR

MPEA-MA v.s. PMEA*-MA SPEA2+SDE NSGA-II+SDR MaOEAIGD VaEA SPEAR

+ 2/35 16/35 8/35 2/35 3/35 3/35

DTLZ1 - 8/35 19/35 27/35 33/35 28/35  32/35

~ 25/35 0/35 0/35 0/35 4/35 0/35

+ 10/45 12/45 11/45 0/45 9/45 13/45

WFG - 1/45 32/45 33/45 44/45 31/45  30/45

~ 34/45 1/45 1/45 1/45 5/45 2/45

+ 2/45 16/45 5/45 3/45 8/45 2/45

MaF - 14/35 28/45 40/45 42/45 8/45 42/45

~ 29/45 1/45 0/45 0/45 /45 1/45

The symbols “+7, “~” and “—" denote that the performance of the compared algorithm is statistically better than,
equivalent to, and worse than PMEA-MA.

to assess the effectiveness of preprocessing and the penalty
mechanism.

A. DTLZ problems

Table IV of the supplementary file presents a comparison
of results of the seven algorithms on the DTLZ test suite. It
is apparent that PMEA-MA and SPEA2+SDE have a clear
advantage over the other five algorithms on the majority of
the test instances. Our algorithm is highly competitive on
problems with concave Pareto fronts, i.e., DTLZ2, DTLZ3
and DTLZ4, while SPEA2+SDE is good at solving problems
with simple Pareto fronts, i.e., DTLZ1, and problems with
degenerate Pareto fronts, i.e., DTLZS and DTLZ6. These
two algorithms obtain 16 and 13, repsectively, best results
in the entire DTLZ test suite. NSGA-II+SDR outperforms
our algorithm only when solving problems with degenerate
Pareto fronts. MOEAIGD does not obtain the best results
on any problem the entire DTLZ suite and only outperforms
our algorithm when optimizing 8-objective DTLZ2 and 15-
objective DTLZ7 problems. VaEA only obtains the best result
on the 8-objective DTLZ7 problem. Although VaEA also uses
the Manhattan distance and the cosine distance to represent
the solutions’ convergence and distribution metrics, its perfor-
mance is far from that of our algorithm. The main reason is
that VaEA places too much emphasis on diversity and is weak
on convergence. Matching the performance of NSGA-II+SDR,
SPEAR only obtains two best results among 35 problems.
Additionally, the IGD values of PMEA-MA and PMEA*-
MA demonstrate that the preprocessing operation can improve
the performance of our algorithm when dealing with DTLZ
problems.

As Fig. 20 of the supplementary file shows, the approximate
Pareto front obtained by PMEA-MA on DTLZ3 exhibits
promising convergence and good diversity. Although the solu-
tions obtained by SPEA2+SDE have good convergence, their
distribution is not as uniform as that of solutions obtained by
our algorithm. For NSGA-II+SDR, the final solution set ob-
tained by optimizing the 10-objective DTLZ3 problem is much
better than that obtained by solving the 3-objective DTLZ3
problem. Because MaOEAIGD can easily fall into a local
optimum when solving the DTLZ3 problem, its performance
is not as good as that of our algorithm. Conversely, VaEA and
SPEAR perform better on low-dimensional DTLZ3 problems,
but lack effective convergence on high-dimensional DTLZ3
problems.

In short, our algorithm is more competitive than the com-
pared algorithms on DTLZ problems. As for the statistical re-
sults of Table[[I] the proportions of the DTLZ test instances on
which PMEA-MA outperforms PMEA*-MA, SPEA2+SDE,
NSGA-II+SDR, MaOEAIGD, VaEA and SPEAR with sta-
tistical significance are 8/35, 19/35, 27/35, 33/35, 28/35 and
32/35, respectively. Conversely, the proportions of the DTLZ
test instances on which PMEA-MA outperforms PMEA*-MA,
BiGE, NSGAIII, KnEA, VaEA and SPEAR with statistical
significance are 2/35, 16/35, 8/35, 2/35, 3/35 and 3/35, re-
spectively.

B. WFG problems

Table V of the supplementary file presents the IGD results
for all WFG test instances. As the table shows, PMEA-MA has
an absolute advantage on problems with concave Pareto fronts,
such as WFG4-9. However, PMEA-MA is not as effective as
other algorithms on problems with complex Pareto fronts, such
as WFG1-3. If the preprocessing operation is removed, we ob-
serve that the performance of our algorithm on these problems
improves. Compared to other algorithms, SPEA2+SDE is very
competitive on the WFG1 problem. However, it is easy to note
that the performance of SPEA2+SDE on the WFG test suite is
not as good as that on the DTLZ test suite. The main reason is
that SDE is likely to fail to reflect the solutions’ performance
in the case of the scaled problems. NSGA-II+SDR, only
obtains the best results on two problems, namely, 5- and 8-
objective WFG3. MaOEAIGD does not perform as well as
other algorithms on the WFG test suite. VaEA performs better
on the WFG suite than the DTLZ suite. The reason is that WFG
problems emphasize diversity rather than convergence, while
VaEA mainly uses a distributed maintenance mechanism to
select solutions. SPEAR performs well on WFG test problems
in a low-dimensional space. The multilayer simplex lattice
approach can only alleviate but not completely solve the
problem of setting weights in a high-dimensional space. In
addition, the table shows that preprocessing has less impact
on most of the WFG problems.

Fig. 21 of the supplementary file presents the final solutions
of one run with respect to the 10-objective WFG9 problem
obtained by parallel coordinates. For this problem, the range of
the ith objective is [0, 2 x 7]. As shown, the solutions obtained
by these algorithms are similar in convergence while slightly
different in diversity. Specifically, PMEA-MA and VaEA per-
form the best, and obtain solutions that can even be distributed
over the entire Pareto front. The solution set obtained by
SEPA2+SDE is biased toward the regions far away from the
ideal point. Although the solutions obtained by NSGA-II+SDR
cover the entire objective space, their distribution is not ideal.
The solutions obtained by MaOEAIGD converge to several
local regions. The solutions obtained by SPEAR are also
distributed evenly, while the boundary solutions seem to be
denser than the internal ones

In summary, we can conclude from above descriptions
that PMEA-MA performs the best among the five com-
pared algorithms on WFG problems. As shown in Table
the proportions of WFG test instances on which PMEA-
MA outperforms PMEA*-MA, SPEA2+SDE, NSGA-II+SDR,
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MaOEAIGD, VaEA and SPEAR are 1/45, 32/45, 33/45, 44/45
31/45 and 30/45, respectively. Conversely, the proportions
of test isntances on which PMEA-MA is outperformed by
the compared algorithms are 10/45, 12/45, 11/45, 0/45, 9/45
and 13/45 for PMEA*-MA, SPEA2+SDE, NSGA-II+SDR,
MaOEAIGD, VaEA and SPEAR, respectively. It must be ac-
knowledged that preprocessing indeed has a detrimental effect
on our algorithm when optimizing WFG1 and WFG2 prob-
lems. For those problems, most solutions prefer the regions
that are close to the ideal point, causing the preprocessing
operation to remove the sparse solutions of the regions far
from the ideal points as abnormal solutions.

C. MaF problems

The IGD results for MaF test instances are given in Ta-
ble VI of the supplementary file. As the table shows, PMEA-
MA performs the best, exhibiting a clear advantage over
the other five algorithms on the majority of test instances.
More specifically, PMEA-MA obtains the best and second-
best IGD results on 37 out of 45 test instances, while other
algorithms obtain the best and second-best IGD results on
19, 16, 4, 0, 12 and 2 out of 45 test instances for PMEA*-
MA, SPEA2+SDE, NSGA-II+SDR, MaOEAIGD, VaEA and
SPEAR, respectively. PMEA-MA is more suitable than the
other compared algorithms for MaF1 with an inverted linear
Pareto front and defeats opponents in all dimensions of this
problem. For MaF2 with a concave Pareto front, PMEA-
MA performs the best on low-dimensional instances while
SPEA2+SDE and VaEA perform the best on high-dimensional
instances. The MaF3 problem mainly examines whether a
MOEA handles convex and multimodal Pareto front’s shape.
In this problem, SPEA2+SDE clearly outperforms the other six
algorithms and is followed by our algorithm. MaF4 and MaF5
are designed to investigate the ability of algorithms to handle
problems with different scaled objective values. PMEA-MA
and VaEA perform very well on such problems. The former
performs the best on MaF5, and the latter outperforms the
other algorithms on most of MaF4 instances. The Pareto front
of MaF6 is a degenerate curve designed to test the ability
of algorithms to find a lower-dimensional objective space.
In this problem, the performance of our algorithm does not
seem to be as good as that of the other algorithms, i.e.,
NSGA-II+SDR, MaOEAIGD and VaEA, especially in high-
dimensional objective spaces. MaF8 and MaF9 consider a
two-dimensional decision space and calculate the Euclidean
distance from points to M target points and target straight
lines of a given polygon, respectively. In these two problems,
PMEA-MA and PMEA*-MA outperform the other compared
algorithms on MaF8, while SPEA2+SDE obtains the best
IGD values on MaF9 problems of any dimension. MaF13 is
designed primarily to verify the convergence of an algorithm.
The data show that PMEA-MA is the best performer in most
cases.

For further observations, Fig. 22 of the supplementary file
plots the final solution set obtained by each algorithm on MaF§
problems with 10 objectives. The Pareto-optimal solutions
of this problem are designed to be inside one (or several)

two-dimensional closure(s) in the decision space. The centre
coordinates of the Pareto-optimal region are (0,0), and the
radius of the Pareto-optimal region is 1.0. This figure shows
that PMEA-MA has the bese diversity and is followed by
VaEA. The difference between the two algorithms is that the
convergence of the former is better than that of the latter.
For SPEA2+SDE, NSGA-II+SDR and MaOEAIGD, although
most of their solutions converge to the Pareto front, the
diversity of those solutions is not ideal. More specifically, the
solutions obtained by MaOEAIGD converge to local regions in
this problem. In contrast, SPEAR has many badly converged
solutions, most of which are concentrated in several small
regions.

Overall, PMEA-MA also performs very well on MaF prob-
lems. As the statistical results in Table [[I, PMEA-MA shows
significant improvement over other algorithms on most MaF
instances. The proportions of test instances on which PMEA-
MA outperforms better than PMEA*-MA, SPEA2+SDE,
NSGA-II+SDR, MaOEAIGD, VaEA, and SPEAR are 14/45,
29/45, 40/45, 42/45, 30/45 and 42/45, respectively.

V. CONCLUSIONS

The “curse of dimensionality” poses great challenges for
traditional Pareto-based algorithms. The imbalance between
the convergence and diversity in many-objective optimization
suggests the need for new methodologies in evolutionary
computation. In this paper, we propose a novel Pareto-based
evolutionary algorithm with a penalty mechanism to deal with
many-objective problems. By alternating the selection and
penalty operations, PMEA considers both the convergence and
diversity for each solution in the population. In addition, to
eliminate the outliers and improve the stability of PMEA,
we introduce a preprocessing mechanism before the selection
operation.

In fact, the penalty mechanism is part of a selection frame-
work in which any kind of convergence metrics and distribu-
tion metrics can be used as relevant information. In this paper,
we have considered several common distance metrics (e.g., the
Manhattan distance, the Euclidean distance and the Chebyshev
distance) and distribution metrics (e.g., the cosine metric and
the perpendicular distance). The experimental results show that
the combination of the Manhattan distance and the cosine met-
ric is the best. In addition, experiments comparing the proposed
method with eight popular MOEAs (namely, SPEA2+SDE,
NSGA-II+SDR, MaOEAIGD, VaEA, SPEAR) demonstrate
that PMEA-MA significantly outperforms its competitors on
most problem instances.

Future studies will include further exploring the potential of
the proposed algorithm. In this paper, we have considered the
same neighbourhood range for all solutions in the population,
which may not be conducive to solving problems with complex
Pareto fronts (e.g., degenerate problems). Therefore, adapting
the neighbourhood range to the population during the search
could be one possible avenue for improving the algorithm’s
performance.

REFERENCES



XXXX, VOL. X, NO. X, XX XXXX

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Inf. Sci., vol. 270, pp. 255-287, Jun. 2014.

Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344-1357, May 2016.

K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Trans. on Parallel Distrib.
Syst., vol. 25, no. 11, pp. 2867-2876, Nov. 2014.

H. Chen, Y. Tian, W. Pedrycz, G. Wu, R. Wang, and L. Wang, “Hyper-
plane assisted evolutionary algorithm for many-objective optimization
problems,” IEEE Trans. Cybern., early access, Mar. 4, 2019, doi:
10.1109/TCYB.2019.2899225.

Z. He and G. G. Yen, “Many-objective evolutionary algorithm: Ob-
jective space reduction and diversity improvement,” IEEE Trans. Evol.
Comput., vol. 20, no. 1, pp. 145-160, Feb. 2016.

H. Xu, W. Zeng, X. Zeng, and G. G. Yen, “An evolutionary algorithm
based on minkowski distance for many-objective optimization,” IEEE
Trans. Cybern., vol. 49, no. 11, pp. 3968-3979, Nov. 2019.

M. Li and X. Yao. (2017) What weights work for you? adapting
weights for any pareto front shape in decomposition-based evolutionary
multi-objective optimisation. [Online]. Available: arxiv.abs/1709.02679

Z. He and G. G. Yen, “Many-objective evolutionary algorithms based
on coordinated selection strategy,” IEEE Trans. Evol. Comput., vol. 21,
no. 2, pp. 220-233, Apr. 2017.

P. Wang, B. Liao, W. Zhu, L. Cai, S. Ren, M. Chen, Z. Li, and K. Li,
“Adaptive region adjustment to improve the balance of convergence and
diversity in MOEA/D,” Appl. Soft Comput., vol. 70, pp. 797-813, Sep.
2018.

M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining conver-
gence and diversity in evolutionary multiobjective optimization,” Evol.
Comput., vol. 10, no. 3, pp. 263-282, 2002.

K. Deb, M. Mohan, and S. Mishra, “Evaluating the e-domination
based multi-objective evolutionary algorithm for a quick computation of
pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501-525,
2005.

H. Sato, H. E. Aguirre, and K. Tanaka, “Controlling dominance area
of solutions and its impact on the performance of MOEAS,” in Evolu-
tionary Multi-Criterion Optimization, S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, Eds.  Berlin, Germany: Springer, 2007,
pp- 5-20.

M. Farina and P. Amato, “A fuzzy definition of ‘optimality’ for many-
criteria optimization problems,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 34, no. 3, pp. 315-326, May 2004.

M. Koppen, R. Vicente-Garcia, and B. Nickolay, “Fuzzy-pareto-
dominance and its application in evolutionary multi-objective op-
timization,” in Evolutionary Multi-Criterion Optimization, C. A.
Coello Coello, A. Herndndez Aguirre, and E. Zitzler, Eds.  Berlin,
Germany: Springer, 2005, pp. 399-412.

H. Wang and X. Yao, “Corner sort for pareto-based many-objective
optimization,” IEEE Trans. Cybern., vol. 44, no. 1, pp. 92-102, Jan.
2014.

S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 17, no. 5, pp. 721-736, Oct. 2013.

Y. Liu, N. Zhu, K. Li, M. Li, J. Zheng, and K. Li, “An angle dominance
criterion for evolutionary many-objective optimization,” Inf. Sci., vol.
509, pp. 376-399, Jan. 2020.

K. Narukawa, “Effect of dominance balance in many-objective opti-
mization,” in Evolutionary Multi-Criterion Optimization, R. C. Pur-
shouse, P. J. Fleming, C. M. Fonseca, S. Greco, and J. Shaw, Eds.
Berlin, Germany: Springer, 2013, pp. 276-290.

B. Li, K. Tang, J. Li, and X. Yao, “Stochastic ranking algorithm for
many-objective optimization based on multiple indicators,” [EEE Trans.
Evol. Comput., vol. 20, no. 6, pp. 924-938, Dec. 2016.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “Im-
proving 1bylEA to handle various shapes of pareto fronts,” in Parallel
Problem Solving from Nature—PPSN XV, A. Auger, C. M. Fonseca,
N. Lourenco, P. Machado, L. Paquete, and D. Whitley, Eds. Cham,
Switzerland: Springer Int., 2018, pp. 311-322.

T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” in Evolu-
tionary Multi-Criterion Optimization, S. Obayashi, K. Deb, C. Poloni,
T. Hiroyasu, and T. Murata, Eds.  Berlin, Germany: Springer, 2007,
pp. 742-756.

S. F. Adra and P. J. Fleming, “Diversity management in evolutionary
many-objective optimization,” IEEE Trans. Evol. Comput., vol. 15,
no. 2, pp. 183-195, Apr. 2011.

M. Li, S. Yang, and X. Liu, “Shift-based density estimation for pareto-
based algorithms in many-objective optimization,” IEEE Trans. Evol.
Comput., vol. 18, no. 3, pp. 348-365, Jun. 2014.

M. Li and X. Yao, “Quality evaluation of solution sets in multiobjective
optimisation: A survey,” ACM Comput. Survs., vol. 52, no. 2, pp. 1-38,
Mar. 2019.

E. Zitzler and S. Kiinzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature—PPSN VIII, X. Yao,
E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervos, J. A.
Bullinaria, J. E. Rowe, P. Tino, A. Kaban, and H.-P. Schwefel, Eds.
Berlin, Germany: Springer, 2004, pp. 832-842.

M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” in Evolutionary Multi-
Criterion Optimization, C. A. Coello Coello, A. Hernandez Aguirre, and
E. Zitzler, Eds. Berlin, Germany: Springer, 2005, pp. 62-76.

J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-
based many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp.
45-76, 2011.

Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11,
no. 6, pp. 712-731, Dec. 2007.

Y. Zhou, Y. Xiang, Z. Chen, J. He, and J. Wang, “A scalar projection
and angle-based evolutionary algorithm for many-objective optimization
problems,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2073-2084, Jun.
2019.

R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized
weighted sum method for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 3—-18, Feb. 2018.

K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decompo-
sition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694-716, Oct.
2015.

H. Xu, W. Zeng, D. Zhang, and X. Zeng, “MOEA/HD: A multiobjective
evolutionary algorithm based on hierarchical decomposition,” IEEE
Trans. Cybern., vol. 49, no. 2, pp. 517-526, Feb. 2019.

H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part ii: Handling constraints and extending to an adaptive approach,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602-622, Aug. 2014.

R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Trans. Evol. Comput., vol. 20, no. 5, pp. 773-791, Oct. 2016.

M. Crepin§ek, S.-H. Liu, and M. Mernik, “Exploration and exploitation
in evolutionary algorithms: A survey,” ACM Comput. Surv., vol. 45,
no. 3, pp. 1-33, Jul. 2013.

R. K. Ursem, “Diversity-guided evolutionary algorithms,” in Parallel
Problem Solving from Nature—PPSN VII, J. J. M. Guervoés, P. Adamidis,
H.-G. Beyer, H.-P. Schwefel, and J.-L. Fernandez-Villacaiias, Eds.
Berlin, Germany: Springer, 2002, pp. 462-471.

H. M. Pandey, A. Chaudhary, and D. Mehrotra, “A comparative review
of approaches to prevent premature convergence in GA,” Appl. Soft
Comput., vol. 24, pp. 1047-1077, 2014.

K. Ikeda, H. Kita, and S. Kobayashi, “Failure of pareto-based MOEAs:


10.1109/TCYB.2019.2899225
arxiv.abs/1709.02679

XXXX, VOL. X, NO. X, XX XXXX

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

does non-dominated really mean near to optimal?” in Proc. Congr. Evol.
Comput., vol. 2, May 2001, pp. 957-962.

G. Yu, R. Shen, J. Zheng, M. Li, J. Zou, and Y. Liu, “Binary search
based boundary elimination selection in many-objective evolutionary
optimization,” Appl. Soft Comput., vol. 60, pp. 689-705, 2017.

K. S. Bhattacharjee, H. K. Singh, T. Ray, and Q. Zhang, “Decomposi-
tion based evolutionary algorithm with a dual set of reference vectors,”
in IEEE Congr. Evol. Comput. (CEC). IEEE, Jun. 2017, pp. 105-112.

W. Hu, G. G. Yen, and G. Luo, “Many-objective particle swarm opti-
mization using two-stage strategy and parallel cell coordinate system,”
IEEE Trans. Cybern., vol. 47, no. 6, pp. 1446-1459, Jun. 2017.

R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization
of many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11,
no. 6, pp. 770-784, Dec. 2007.

M. Zhang and H. Li, “A reference direction and entropy based evolu-
tionary algorithm for many-objective optimization,” Appl. Soft Comput.,
vol. 70, pp. 108-130, Sep. 2018.

B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surveys, vol. 48, no. 1, p. 13,
2015.

Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based
evolutionary algorithm for unconstrained many-objective optimization,”
IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 131-152, Feb. 2017.

Y. Liu, D. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary
algorithm using a one-by-one selection strategy,” IEEE Trans. Cybern.,
vol. 47, no. 9, pp. 2689-2702, Sep. 2017.

K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577-601, Aug. 2014.

Q. Zhu, Q. Lin, J. Li, C. A. Coello Coello, Z. Ming, J. Chen, and
J. Zhang, “An elite gene guided reproduction operator for many-
objective optimization,” IEEE Trans. Cybern., pp. 1-14, 2019, doi:
10.1109/TCYB.2019.2932451.

X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Trans. Evol. Comput.,
vol. 19, no. 6, pp. 761-776, Dec. 2015.

R. Shen, J. Zheng, M. Li, and J. Zou, “Many-objective optimization
based on information separation and neighbor punishment selection,”
Soft Comput., vol. 21, no. 5, pp. 1109-1128, 2017.

D. Chicco, “Ten quick tips for machine learning in computational
biology,” BioData Min., vol. 10, no. 1, p. 35, Dec. 2017.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable Test Problems
for Evolutionary Multiobjective Optimization. London, U.K.: Springer,
2005, pp. 105-145.

D. A. Van Veldhuizen and G. B. Lamont, “Evolutionary computation
and convergence to a pareto front,” in Proc. Genet. Program. Conf.,
1998, pp. 221-228.

Y. Tian, X. Zhang, R. Cheng, C. He, and Y. Jin, “Guiding evolutionary
multiobjective optimization with generic front modeling,” IEEE Trans.
Cybern., vol. 50, no. 3, pp. 1106-1119, Mar. 2020.

M. Li, S. Yang, and X. Liu, “Bi-goal evolution for many-objective
optimization problems,” Artif. Intell., vol. 228, pp. 45-65, Nov. 2015.

W.-C. Chang, A. Sutcliffe, and R. Neville, “A distance function-based
multi-objective evolutionary algorithm,” in Proc. Genet. Evol. Comput.
Conf. Citeseer, 2003, pp. 47-53.

J. Chen and Y. Saad, “Dense subgraph extraction with application to
community detection,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 7,
pp. 1216-1230, Jul. 2012.

R. B. Agrawal, K. Deb, and R. Agrawal, “Simulated binary crossover
for continuous search space,” Complex syst., vol. 9, no. 2, pp. 115-148,
1995.

M. T. Jensen, “Reducing the run-time complexity of multiobjective EAs:
The NSGA-II and other algorithms,” IEEE Trans. on Evol. Comput.,
vol. 7, no. 5, pp. 503-515, Oct. 2003.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, “A strengthened
dominance relation considering convergence and diversity for evolution-
ary many-objective optimization,” IEEE Trans. Evol. Comput., vol. 23,
no. 2, pp. 331-345, Apr. 2019.

Y. Sun, G. G. Yen, and Z. Yi, “IGD indicator-based evolutionary
algorithm for many-objective optimization problems,” IEEE Trans.
Evol. Comput., vol. 23, no. 2, pp. 173-187, Apr. 2019.

S. Jiang and S. Yang, “A strength pareto evolutionary algorithm based
on reference direction for multiobjective and many-objective optimiza-
tion,” IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 329-346, Jun.
2017.

S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Trans. Evol. Comput., vol. 10, no. 5, pp. 477-506, Oct. 2006.

R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, and X. Yao,
“A benchmark test suite for evolutionary many-objective optimization,”
Complex Intell. Syst., vol. 3, no. 1, pp. 67-81, Mar. 2017.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257-271, Nov. 1999.

P. A. N. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 7, no. 2, pp. 174-188, Apr. 2003.

Yuan Liu received the M.Sc. degree in computer
science from the College of Information Engineer-
ing, Xiangtan University, Xiangtan, China, in 2017.
He is currently working toward the Ph.D. degree with
the College of Information Science and Engineering,
Hunan University, Changsha, China. His current re-
search topic is many-objective optimization.

Ningbo Zhu received the Ph.D. degree in engineer-
ing from the computer use and application, Nan-
jing University of Science and Technology, Nan-
jing, China, in 2005. He is a Associate Professor
at the College of Information Science and Engi-
neering, Hunan University, Changsha, China. His
current research interests include pattern recognition
and intelligent system, digital image processing and
evolutionary computation.

Miqing Li received the Ph.D. degree in computer
science from the Department of Computer Science,
Brunel University London, U.K. in 2015.

Dr Miqing Li is currently a lecturer with the
University of Birmingham, U.K. His research is
principally on multi-objective optimisation, where he
works on developing population-based randomised
algorithms (e.g. evolutionary algorithms) for both
general challenging problems (e.g. many-objective
optimisation, constrained optimisation, multi-modal
optimisation, robust optimisation, expensive opti-

misation) and specific challenging problems in other fields (e.g. software
engineering, system engineering, product disassembly, post-disaster response,
neural architecture search, and reinforcement learning). He is the founding
chair of IEEE CIS Task Force on Many-Objective Optimisation.


10.1109/TCYB.2019.2932451

	Introduction
	Related studies and Motivation
	Impact of DRSs
	Niche-based diversity maintenance mechanisms

	Proposed Method
	Pre-processing
	Penalty Mechanism
	General Framework

	Results and Analysis
	DTLZ problems
	WFG problems
	MaF problems

	Conclusions
	References
	Biographies
	Yuan Liu
	Ningbo Zhu
	Miqing Li


