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ABSTRACT

Real-world software product lines (SPLs) often encompass
enormous valid configurations that are impossible to enu-
merate. To understand properties of the space formed by
all valid configurations, a feasible way is to select a small,
valid and representative sample set. Even though a number
of sampling strategies have been proposed, they either fail to
produce diverse samples with respect to the number of select-
ed features (an important property to characterize behaviors
of configurations), or achieve diverse sampling but with lim-
ited scalability (the handleable configuration space size is
limited to 1013). To resolve this dilemma, we propose a scal-
able diverse sampling strategy, which uses a distance metric
in combination with the novelty search algorithm to produce
diverse samples in an incremental way. The distance metric
is carefully designed to measure similarities between config-
urations, and further diversity of a sample set. The novelty
search incrementally improves diversity of samples through
the search for novel configurations. We evaluate our sam-
pling algorithm on 39 real-world SPLs. It is able to generate
the required number of samples for all the SPLs, including
those which can not be counted by sharpSAT, a state-of-
the-art model counting solver. Moreover, it performs better
than or at least competitively to some state-of-the-art sam-
plers with respect to the diversity of the sample sets. Our
results suggest that only the proposed sampler (among all
tested ones) achieves scalable diverse sampling.

KEYWORDS

Software product lines, diverse sampling, novelty search, dis-
tance metric

1 INTRODUCTION

Software product lines (SPLs) [11], being highly configurable,
allow users to derive products by selecting and deselecting

features, which are increments of product functionality. That
is, a set of features defines a unique product (or configura-
tion) of an SPL. Clearly, as the number of features increases,
the number of all possible configurations grows exponentially
[44]. A common tool for representing all valid configurations
is a tree-like structure, called a feature model (FM) [34],
in which features and constraints among them are explicit-
ly specified. The space formed by all valid configurations is
called a configuration space, denoted as Ψ henceforth.

In many software engineering tasks, it is important to
understand properties of configuration spaces. These tasks
include, but not limited to, finding optimal solutions giv-
en user-specified objectives and constraints [23, 24, 26, 30,
52, 60], predicting performance of any configuration with a
learned model [33, 51, 53], finding bugs caused by feature
combinations [13, 25, 40, 41]. Ideally, one would like to in-
vestigate every valid configuration, but this is rarely possible
in practice due to the sheer size of configuration spaces [33].
For example, large real-world SPLs may encompass (hun-
dreds of) thousands of features, leading to enormous number
of valid configurations (≫ 1010) [46]. This definitely makes
exhaustive enumeration impractical.

An intuitional way of handling the above situation is to
select a small, valid and representative sample set from the
configuration space. In this paper, a sample set is a collection
of samples, i.e., valid configurations of an SPL. Quite often,
sample sets must be well-chosen based on domain knowledge.
For instance, a sample set should cover all t-wise feature
combinations in the context of t-wise sampling [2, 19, 32].
If no domain knowledge is available, however, sample set-
s are expected to cover the configuration space as widely
and uniformly as possible [33, 46]. There have been several
sampling strategies in the literature, e.g., Random sampling
[20, 22, 39, 41, 42], Solver-based sampling [10, 18, 26, 28],
Coverage-oriented sampling [2, 19, 32] and Uniform sam-
pling [1, 9, 43, 45, 46, 51, 54]. These sampling strategies
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focus on different aspects of sampling from SPLs, and come
with different strengths and weaknesses (detailed discussions
are available in Section 6).

In this paper, we focus on another kind of sampling, known
as diverse sampling, which seems to be largely ignored. Di-
verse sampling brings lots of benefits. For example, it could
reduce the risk of missing important configurations with dis-
tinct performance behavior when deriving a performance
prediction model [33], and forms a scalable and flexible alter-
native to t-wise sampling [27, 57]. Recently, Kaltenecker et
al. [33] proposed a diverse sampling strategy, called diversi-
fied distance-based sampling (DDbS). The key idea is to use
a distance metric in combination with a discrete probability
distribution to spread the sample set across the configuration
space as diversely as possible. More specifically, each config-
uration is assigned with a distance value (i.e., the number
of selected features [33]), and DDbS tries to derive samples
covering distinct distance values so as to improve diversity.

In fact, the number of selected features for a configuration
c ∈ Ψ, denoted as T (c), is important to characterize the be-
havior of this configuration. For example, in the context of
configuring SPLs [26, 30, 52, 60], this number (also known as
richness of features) is often used as an optimization objec-
tive, and it is also highly related to other objectives, e.g., the
total cost of a configuration. Moreover, according to Kalte-
necker et al. [33], improving a sample set’s representativeness
with respect to the number of selected features is of impor-
tance to learn an accurate performance prediction model.
Therefore, sampling configurations that are diverse regard-
ing the number of selected features is meaningful, yet poses
challenges to state-of-the-art samplers. Figs. 1 (a) and (b)
show the distribution of the number of selected features for
samples generated by two recent uniform samplers (i.e., S-
march [46] and Unigen3 [54]) on the HiPAcc feature model
[33]. As seen, compared with DDbS [33] [see Fig. 1 (c)], both
of them are unable to produce diverse samples concerning
the number of selected features. Even though DDbS could
sample more diverse configurations on this model, it faces
the scalability issue. According to the results in [46], DDbS
failed to handle configuration space larger than 1013. This is
also confirmed by our experiments performed in Section 5.3,
and explained later in Section 5.4.

To achieve scalable diverse sampling, this paper provides
an alternative perspective, i.e., search-based sampling. The
key idea is to generate initial samples using efficient off-the-
shelf SAT solvers, and then incrementally improve the di-
versity of the sample set using a specific search algorithm.
This sampling strategy relies on a special distance metric
and a search technique, called novelty search (NS) [36, 37].
We name this sampling algorithm NS-based sampling (NS-
bS for short). To demonstrate merits of NSbS, we compare
it with several state-of-the-art sampling algorithms using 39
real-world SPLs adopted by Oh et al. [46]. Experimental re-
sults reveal that NSbS indeed enables a scalable diverse sam-
pling from SPLs. In particular, it successfully generates the
requested number of configurations (i.e., 100 configurations
in our setting) for all 39 SPLs, including the largest ones on
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Figure 1: Distribution of the number of selected fea-
tures for samples generated by four samplers on
HiPAcc [33]. In this figure, ⋆ denotes estimated
boundaries of the number of selected features (see
Section 2.2). Note that these boundaries may not be
reachable.

which most state-of-the-art samplers fail to generate even
one configuration within an hour.

Main contributions of the paper are summarized as fol-
lows.

• A tailored distance metric. By using the number of s-
elected features, the configuration space Ψ is mapped
to a small behavior space B = {T (c)|c ∈ Ψ}. A dis-
tance metric is designed to measure similarities be-
tween configurations in both B and Ψ. We show, both
theoretically and experimentally, that using this dis-
tance metric not only improves the coverage in the
behavior space, but also promotes diversity in the orig-
inal configuration space. Considering diversity in both
spaces could improve the representativeness of sample
sets.
• A befitting search technique. We choose NS as the
search engine because of its good theoretical properties
[16, 17] that well fit the goal of diverse sampling. Pre-
cisely, NS has been shown to tend towards a diverse
sampling of the behavior space [16, 17]. The above
property could help to improve diversity of the sam-
ple set in the behavior space. As shown in Fig. 1 (d),
samples generated by NSbS are as diverse as those of
DDbS. As mentioned early, DDbS is a tailored diverse
sampler.
• Flexibility in the sampling process. Since diversity is
improved in an incremental way, it is easy for user-
s to achieve a desired trade-off between diversity and
efficiency. If a higher-quality sample set is required,
then more execution time can be specified. The flex-
ibility in the sampling process is one of the main ad-
vantages of NSbS over other state-of-the-art samplers,
most of which are not controllable regarding the exe-
cution time.
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2 PRELIMINARIES

In this section, we provide necessary preliminaries on sam-
pling from configuration spaces, as well as a space mapping
strategy. Afterwards, we give a brief introduction to NS.

2.1 Sampling from configuration spaces

Formally, an FM can be seen as a tuple ⟨F , C⟩, where F =
{f1, . . . , fn} is the set of n features, and C is the set of al-
l constraints among features. A configuration c, represented
by {±f1, . . . ,±fn}, is defined as a set of selected or deselect-
ed features. Precisely, +fi and −fi indicate that the feature
fi is selected and deselected, respectively. Certainly, c can
also be represented by a binary string, with 1 indicating a
selected feature, and 0 a deselected one. Due to constraints
in C, not all configurations are valid. The configuration that
satisfies all the constraints is called a valid configuration,
and all valid configurations form the configuration space Ψ.
The size of Ψ is usually denoted by |Ψ|.

Many software engineering tasks require to derive a smal-
l and representative sample set from Ψ. In this context, a
sample set, S = {s1, . . . , sN} (where N denotes the sample
size), is a subset of Ψ, i.e., S ⊆ Ψ. Each si (i = 1, 2, . . . , N)
is called a sample, i.e., a valid configuration. Manually deriv-
ing a sample is error-prone and time-consuming even for tiny
FMs [6]. Therefore, automated solvers, like SAT solvers, have
been widely adopted to generate samples from Ψ [27, 38, 60].
It is well-known that an FM can be easily converted into a
propositional formula ϕ [6]. The derived ϕ is then used as
the input of automated solvers, which are internally run to
find solutions to ϕ.

2.2 Mapping to behavior spaces

As mentioned previously, by characterizing the behavior a
configuration using the number of selected features, c ∈ Ψ is
mapped to an integer. Accordingly, the configuration space
Ψ is mapped into the behavior space B. Let Φb be the space
formed by all configurations with exactly b ∈ B selected
features, then Ψ = ∪b∈BΦb. That is to say, the whole config-
uration space Ψ is decomposed into |B| subspaces. We can
then sample representative configurations that are diversely
distributed among these subspaces.

Understanding B is much easier than Ψ due to that |B|
is significantly smaller than |Ψ|. In fact, the lower bound
and the upper bound for B can be approximated by using
the number of core features (denoted by |core|) and the num-
ber of dead features (denoted by |dead|), respectively. Notice
that core features must be selected in every valid configura-
tion, while dead features must not be selected. To be more
specific, min(B) = |core|, and max(B) = n−|dead|, where n
is the total number of features. Therefore, the size of B is at
most n − (|core| + |dead|) + 1. In contrast, |Ψ| grows expo-
nentially with respect to n. Hence, Ψ can be astronomically
large, especially for large real-world SPLs. For example, |Ψ|
is as large as 7.78× 10417 for the uClinux-config model [46].
We must mention that knowing exactly B is as hard as know-
ing Ψ because every configuration should be investigated at

the worst case. However, B can be well approximated by the
following set, B′ = {|core|, |core|+ 1, . . . , n− |dead|}, which
contains all possible integers from |core| to n − |dead|. It is
possible that there exist some integers to which no configu-
rations are mapped. Therefore, B is a subset of B′. In Section
4.3, B′ will be used to calculate performance indicators.

2.3 Novelty search

As mentioned in Section 1, NS [36, 37] is adopted in our
search-based diverse sampling. Therefore, it is necessary to
give a brief introduction to this search technique. NS is one
of the main divergent search algorithms [36], and its promi-
nent feature is to abandon objectives [36]: it replaces the
conventional goal-oriented objective by a criterion measur-
ing novelty of individuals. This criterion is referred to as
novelty score, defined as the average distance of an individu-
al to its k closest neighbors. Formally, ρ(x), the novelty score
of x, is given as follows [16, 36, 37].

ρ(x) =
1

k

k∑
j=1

d(x, xj) (1)

where xj is the j-th nearest neighbor of x among an archive
of previously explored individuals and the current popula-
tion in the behavior space. The ρ(x) estimates the sparseness
of x in the behavior space. If this score is large, then x is
in a sparse area; in contrast, it is in a dense area in case
that the novelty score is small. In general, individuals in s-
parse regions are preferred to those in dense regions as the
exploitation around sparse regions is helpful to perform a
diverse exploration of the behavior space [16].

Following the practice in [57], the calculation of the nov-
elty score can be extended from a single configuration to a
sample set S = {s1, . . . , sN}. Specifically,

ρ(S) =
N∑
i=1

ρ(si) (2)

where ρ(si) is the novelty score of a single configuration, as
given by Eq. (1). Clearly, the higher the novelty score, the
more diverse the sample set.

Finally, it is worth mentioning that there is an interesting
search behavior of NS. That is, the sampling produced by NS
covers the whole reachable behavior space [16]. This suggests
that NS explores the behavior space diversely. It is a good
property, which well matches the goal of diverse sampling
from SPLs. Therefore, we choose NS as the search engine.

3 NS-BASED DIVERSE SAMPLING

The NSbS procedure is outlined in Algorithm 1. The key idea
is to continuously improve diversity of the initial sample set
through the search for novel individuals (or configurations).
The algorithm takes the propositional formula ϕ (derived
from a given FM) and sample size N as input, and outputs
a set of samples stored in an archive A.
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Algorithm 1: NSbS algorithm

Input: ϕ (propositional formula), N (sample size)
Output: A (archived samples)

1 Initialize the archive A by generating N solutions to ϕ

using the randomized SAT4J solver [27];

2 Initialize the distance matrix D = (dij)(N+1)×(N+1),
where dij (i, j = 1, . . . , N), as given in Eq. (3), is the
distance between xi ∈ A and xj ∈ A;

3 For each x ∈ A, calculate its novelty score ρ(x) based

on Eq. (1);

4 while the termination conditions is not met do
5 {p1, p2} ← matingSelection(A);
6 {c1, c2} ← crossover(p1, p2);

7 for i ∈ {1, 2} do
8 ci ← mutation(ci);

9 if ci is invalid then
10 Repair ci using the probSAT solver [5];

11 end

12 A ← updateAchive(A, ci);
13 end

14 end

15 return A

3.1 Initialization

As shown in Line 1 of Algorithm 1, A is initialized with N
configurations generated by the randomized SAT4J solver
[7], in which the order how the logical clauses and the lit-
erals are parsed is randomized [26]. According to the im-
plementation in [26, 28], there exist three parsing strate-
gies, i.e.,NegativeLiteralSelectionStrategy, PositiveLiteralSe-
lectionStrategy and RandomLiteralSelectionStrategy. Each s-
trategy has an equal chance of being chosen when generating
initial configurations. In particular, the first strategy prefers
negative assignments to literals, and thus emphasizes con-
figurations with less selected features. Therefore, the lower
bound of B can be approximated by using this strategy. Sim-
ilarly, the second strategy helps to approximate the upper
bound of B. The third strategy randomly assigning true or
false to literals is able to improve randomness of the gen-
erated configurations. Using simultaneously three strategies
aims at improving diversity of the initial sample set. In par-
ticular, bounds of B could be well approximated.

3.2 Distance metric

To measure similarities between two configurations, we de-
fine the following distance1:

dij = d(xi, xj) =
1

2
·
(
abs (T (xi)− T (xj))

n

)
+
1

2
·
(
1− |xi ∩ xj |

n

)
· δ

(3)

1If xi = xj , dij is forcibly set to 0.

where xi, xj ∈ A (xi ̸= xj) are two different configurations;
T (xi) denotes the number of selected features in xi; abs(·)
returns the absolute value of a number; and | · | returns the
cardinality of a set. The δ is a constant, as given below.

δ =

{
1

max{T (xi),T (xj)}
T (xi) + T (xj) ≤ n,

1
n−min{T (xi),T (xj)}

otherwise.
(4)

As seen, this distance metric consists of two weighted part-
s. The first part measures the similarity between configura-
tions in the behavior space, while the second part in the

original configuration space. In fact, 1− |xi∩xj |
n

is the Ham-
ming distance [3] between xi and xj . Note that using the
above two parts is intended to sample configurations cov-
ering diversely in the behavior space, and also keeping as
dissimilar as possible in the configuration space. In Section
5.1, we will experimentally verify this distance measure.

It is also worth noting that δ is set based on our theoret-
ical analysis, which is presented in Section S-1 of the online
supplement2. Our theoretical analysis shows that δ is needed
to mitigate biases towards sampling specific configurations.
In other words, Eq.(3) without using δ can introduce bias-
es in the behavior space, and thus can hamper diversity of
the sample set. More detailed discussions can be found in
Section S-1 of the supplement. In Section 5.2, we will exper-
imentally investigate δ’s effects. Therein, one will find that
using δ indeed improves diversity of the sample set in the
behavior space.

According to Line 2 in Algorithm 1, the distance matrix
D(N+1)×(N+1) is initialized by working out the distance be-
tween each pair of configurations in A. Note that, since D
is symmetric, we only need to calculate distances for half of
these pairs. We would like to mention that the size of D is
(N + 1) × (N + 1), rather than N ×N , because we reserve
spaces for storing distances when evaluating a new config-
uration (see Algorithm 2). After obtaining D, as shown in
Line 3 of Algorithm 1, the novelty score for each x ∈ A is
calculated based on Eq. (1).

3.3 Genetic operations

Like in genetic algorithms, we perform in order the mating
selection, crossover and mutation to generate new individu-
als. As shown in Line 5 of Algorithm 1, the matingSelection
procedure chooses from A two parents p1 and p2 each time.
The basic idea of choosing a parent is to select the one with
larger novelty score from two different random members in
A. In case of a tie, a random selection is performed between
the two members. Clearly, the above mating selection em-
phasizes individuals located in sparse regions. Exploration
around sparse regions could potentially improve diversity of
the samples.

Once two parents p1 and p2 have been selected, the uni-
form crossover is applied to generate two children, c1 and c2
(Line 6 in Algorithm 1). To be specific, for each index j ∈

2The online supplement (entitled “OnlineSupplemen-
t ICSE2022.pdf ”) is available at an anonymous website
http://doi.org/10.5281/zenodo.4939625

http://doi.org/10.5281/zenodo.4939625
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Algorithm 2: A ← updateAchive(A, c)
Input: A, c
Output: A

1 if A contains c then
2 return A ;

3 end

4 for i = 1, . . . , N do
5 di,(N+1) ← d(xi, c);

6 d(N+1),i ← di,(N+1);

7 end

8 d(N+1),(N+1) ← 0;

9 For each x ∈ A ∪ c, calculate its novelty score ρ(x)

based on Eq. (1);

10 xworst ← argmin
x∈A

ρ(x) // Find the worst member in A;

11 if ρ(c) > ρ(xworst) then
12 xworst ← c;

// Update D

13 for j = 1, . . . , N do
14 dj,worst ← dj,(N+1);

15 dworst,j ← d(N+1),j ;

16 end

17 dworst,worst ← 0;

18 end

19 return A

{1, . . . , n}, we generate a random number rand. If rand <
0.5, then c1(j) and c2(j) are set to p1(j) and p2(j), respec-
tively. Otherwise, they are set to p2(j) and p1(j), respec-
tively. Notice that c1(j) denotes the value taken in the j-th
position of c1. The newly generated individuals are then sub-
jected to bit-wise mutation (Line 8 in Algorithm 1). Specif-
ically, for each bit, the value is changed from 1 (true) to 0
(false), or vice versa. Often, the ratio of bits to be changed
is controlled by a parameter Pµ, called mutation probability.
In this work, we set Pµ to 0.1, following the common practice
in [58].

It is not uncommon that the resulting configurations (after
crossover and mutation) are invalid. In this case, as shown
in Line 10 of Algorithm 1, the probSAT solver [5], one of the
high-performing stochastic local search (SLS) SAT solvers, is
adopted to repair invalid configurations. The variables to be
flipped by the solver are chosen based on probabilities such
that more promising variables are given more chances to be
selected. In fact, probSAT [5] has been adopted to repair
infeasible configurations in prior work [59, 60] in the con-
text of optimal products selection from SPLs. In particular,
the empirical study in [59] suggested that probSAT is more
effective than WalkSAT [8], another popular SLS solver, in
improving diversity of a configuration set. For more details
on probSAT, we direct readers to the original study [5]. No-
tice that internal parameters of this solver are set following
the practice in [5] and [59]. Therefore, a tuning phase is not
required in this work.

Configurations operated by probSAT could still be invalid
(even though they are valid most of the time)3, in particular
for large-scale FMs. In case of invalidity, we simply request
to the randomized SAT solver, as described in Section 3.1,
to return a valid configuration.

3.4 Updating archive

The archive A stores novel configurations discovered during
the search process. Its update procedure is presented in Al-
gorithm 2. To improve diversity, as shown in Lines 1-3, the
producer rejects the entry of any configurations that are i-
dentical to already archived ones. When a totally different
configuration c is available, we need to fill the distance ma-
trix D by working out distances between c and each xi ∈ A.
These distances are stored in the last row and the last colum-
n. In what follows, as indicated in Line 9 of Algorithm 2, the
novelty score for each member x ∈ A∪ c is calculated based
on Eq. (1). We should note here that the novelty scores are
computed taking into account not only members in A but
also the new configuration c. This enables an evaluation of
the novelty with respect to both previously explored individ-
uals and the current one that represents the most recently
visited point [36].

In Line 10 of Algorithm 2, we find the worst member from
A, and this member is denoted by xworst, where the index
worst is its position in the archive. In case that the novel-
ty score of c is higher than that of xworst, we will replace
xworst by c. Subsequently, the distance matrix should be
updated. This is achieved by simply copying the last row
(column) to the worst-th row (column) (see Lines 13-16).
At last, dworst,worst should be set to 0.

According to the above update procedure, the algorithm
consistently looks for novel individuals, pushing individuals
to constantly move in the behavior space: in new and un-
explored areas first, but also then in already explored areas
as their density of individuals is never exactly homogeneous
[17]. This way, diversity of the samples can be persistently
improved.

3.5 Termination conditions

Termination of NSbS can be flexibly specified by users. We
offer the following two termination strategies.

Strategy 1: Termination controlled by the maximum run-
ning time (max t). This is a common way of stopping a
search algorithm, and the setting of max t depends largely
on the demands of users.

Strategy 2: Automatic termination when the algorithm
gets relatively steady. This is achieved by adding the follow-
ing piece of codes after Line 13 in Algorithm 1.

If |ρ(Ã)−ρ(A)|
ρ(Ã)

< 0.1%

counter ++
Else

counter ← 0

3Different from conflict-driven clause learning (CDCL) solvers [14],
such as SAT4J, SLS-type SAT solvers offer no guarantees on finding
valid assignments.
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End
where Ã is the old archive, while A is the newly updated
one. If the change ratio of novelty scores for the two archives
is below 0.1%, then counter is increased by one; otherwise, it
is reset to 0. The algorithm will terminate once counter ex-
ceeds R, a threshold specified by users. In our experiments,
we set R to 10. With this setting, it is found that NSbS
automatically terminates on almost all of the tested FMs.

We would like to mention that we give users freedom to
specify the termination of the sampling process. Most of the
state-of-the-art samplers are not controllable with respect
to the execution time. Indeed, it may take excessively long
before a set of samples is returned [46, 49]. Instead, the pro-
posed NSbS allows users to make a desired trade-off between
quality (primarily diversity) and efficiency. If users want a
higher-quality sample set, he/she can set R or max t to a
relatively larger value. The flexibility regarding terminations
is one of the main advantages of NSbS over other state-of-
the-art samplers.

4 EXPERIMENT SETUP

In this section, we start by introducing our research question-
s (RQs). Then, we give information about FMs used in our
empirical study. Subsequently, we describe how the perfor-
mance of different samplers can be measured using special-
ized indicators. Finally, detailed implementations are given.

4.1 Research Questions

The distance metric is expected to play an important role
in sampling products that are diverse not only in the behav-
ior space, but also in the original configuration space. It is
necessary to investigate the effect of each component in Eq.
(3). With this regard, we aim at answering the following two
RQs.

RQ1:What are the benefits brought by using the two weight-
ed parts in the distance metric?

RQ2: Does the factor δ matter in the distance metric of
NSbS?

To address RQ1, we experimentally compare the distance
metric defined in Eq. (3) against a modified one in which the
second part is removed. We expect that the adoption of the
two parts can promote diversity of the sampled configura-
tions in both spaces. According to our theoretical analysis,
the goal of δ in Eq. (3) is to alleviate biases towards specif-
ic configurations in the behavior space. The second research
question amounts to experimentally verifying this.

Moreover, we intend to answer one more research ques-
tion regarding the effectiveness of NSbS in comparison with
several state-of-the-art samplers.

RQ3: How effective is NSbS concerning both scalability
and diversity in comparisons with state-of-the-art samplers?

To address RQ3, we compare NSbS with SAT-based sam-
pling [26], DDbS [33], UniGen3 [54] and Smarch [46]. We
expect that NSbS performs better than or at least competi-
tively to them with respect to both scalability and diversity.

4.2 Subject Feature Models

In our experiments, we consider 39 FMs that have been care-
fully selected by Oh et al. [46] in their evaluation of Smarch.
Table S-1 in the online supplement gives an overview of the
subject FMs, including the number of features (|F|), the
number of CNF constraints (|C|), the size of the configuration
space (|Ψ|), the number of core, dead and unconstrained4

features (i.e., |core|, |dead| and |uc|). Note that |Ψ| is count-
ed by sharpSAT [56], which fails on the last five largest FMs.
All FMs are publicly available in DIMACS format5, the s-
tandard format for SAT solvers.

4.3 Performance indicators

Performance indicators are required to evaluate the quali-
ty of a sample set S = {s1, . . . , sN}. To measure whether
S widely covers the behavior space B = {b1, . . . , b|B|}, the
following indicator, which we call Spread, is defined.

Spread(S,B) = 1

|B|

|B|∑
i=1

dmin(bi,S), (5)

where dmin(bi,S) denotes the minimum distance from bi to
S. Mathematically, dmin(bi,S) is in the following form

dmin(bi,S) =
N

min
j=1

abs(bi − T (sj)). (6)

Regarding B, as mentioned in Section 2.1, it is not exactly
known, but can be easily approximated by B′. In practice, we
therefore calculate Spread(S,B′), instead of Spread(S,B).
It is clear that a smaller value of Spread indicates a more
diverse distribution in the behavior space.

In addition to Spread, the novelty score of a sample set,
ρ(S), as given in Eq. (2), also serves as a performance indi-
cator. It measures the diversity of S in the original configu-
ration space.

4.4 Detailed Implementations

For each FM, we sample 100 configurations and compute the
average sampling time per configuration (measured in mil-
liseconds) to compare efficiency. All samplers except NSbS
terminate once 100 configurations are sampled, or the sam-
pling time takes more than 3600,000 milliseconds (i.e., one
hour). Since NSbS is able to quickly sample 100 configura-
tions, it terminates either automatically based on Strategy
2 as described in Section 3.5, or forcibly when the sampling
time reaches a timeout of one hour. Note that, to mitigate
random bias, all samplers are independently run 30 times,
and we present and analyze experimental results regarding
mean values of the performance indicators.

All experiments are performed on a Quad Core@2.20 GHz
with 8 GB of RAM running Ubuntu 20.04.2. Source codes
of SAT-based sampling [26], DDbS [33], UniGen3 [54] and
Smarch [46] are downloaded from their authors’ repositories,
and they are all executed on a single thread (i.e., without

4Unconstrained features here are those that are not involved in the
CNF constraints.
5All FMs are downloaded from https://github.com/jeho-oh/Smarch

https://github.com/jeho-oh/Smarch
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parallelization), following the practice in [29]. The codes for
NSbS can be found in our repository6.

5 RESULTS

In this section, we provide a series of experimental results
regarding the research questions.

5.1 RQ1: Benefits brought by using the
two weighted parts in the distance
metric

To investigate benefits brought by using two weighted parts
in Eq.(3), we consider two different distance metrics. The
first one, as given in Eq.(3), uses two weighted parts. Here-
after, we call it weighted distance. The second one retains
only the first part, and therefore measures only the similar-
ity in the behavior space. This metric is called unweighted
distance. Both distance metrics are tested within the same
NS framework in which k = 15. This setting of k has been
widely employed in NS-related literature [21]. Our tuning ex-
periments presented in Section S-2 of the online supplement
suggest that k = 15 is also a good setting in our context.
When the weighted distance is used, the sampling algorithm
automatically terminates according to Strategy 2. In the
case of unweighted distance, the termination is controlled by
Strategy 1, in which max t is set to the running time con-
sumed by the corresponding algorithm using the weighted
distance. This setting allows us to investigate the benefits
while eliminating potential impacts brought by using differ-
ent running times.

Means of Spread and novelty score obtained by using the
two distance metrics are provided in Table S-2 of the on-
line supplement. To determine whether the difference (over
all the 30 runs) is significant or not, following guidelines
suggested by Arcuri and Briand [4], the Mann-Whitney U
test with a 0.05 significance level is performed for each FM.
Test results are represented by three symbols: •, ‡ and ◦
indicating that the weighted distance performs better than,
equivalently to and worse than the unweighted distance, re-
spectively. Regarding Spread, the weighted distance performs
significantly better than its counterpart on 3 out of all the
39 FMs, but worse on only one FM, i.e., the simplest LLVM.
For all the remaining 35 FMs, the two distance metrics have
similar performance. The above results suggest that using
alone the first part of Eq. (3) (which measures similarities in
the behavior space) is enough to obtain good spread in the
behavior space in the majority of the cases.

Regarding the novelty score, the weighted distance shows
significant improvements over the unweighted one on 26 out
of 39 FMs (67%), and degenerations on only lrzip and 2.6.33.3-
2var. Clearly, the second part of Eq. (3) is necessary in pro-
moting diversity in the original configuration space.

Therefore, the answer to RQ1 is clear. Using the two weight-
ed parts in Eq. (3) indeed brings benefits: it improves cover-
age in the behavior space; at the same time, it also promotes

6Omitted for blind review. They will be made publicly accessible after
acceptance of the paper.

diversity in the original configuration space. Boosting diver-
sity in both spaces is beneficial for enhancing representative-
ness of the sample set.

5.2 RQ2: δ matters in the distance metric

According to Section 3.1, δ in Eq. (3) is used to mitigate
potential biases towards specific configurations. In this sec-
tion, we are going to experimentally examine the effects of
this factor. To this end, we compare NSbS (described in Al-
gorithm 1) against its variant, i.e., NSbS-δ in which δ is
omitted in the distance metric. The only difference between
the two algorithms is the presence or absence of δ.

0 200 400 600 800 1000

NSbS

1000 2000 3000 4000 5000 6000

NSbS

0 200 400 600 800 1000

NSbS-δ

(a)

1000 2000 3000 4000 5000 6000

NSbS-δ

(b)

Figure 2: Configurations sampled by NSbS widely
cover the behavior space, while those sampled by
NSbS-δ fail. (a) ref4955, (b) 2.6.28.6-icse11

Table S-3 in the supplement gives Spread results of the
two algorithms. As shown, NSbS performs better than or
at least comparably to NSbS-δ on all the 39 FMs. In par-
ticular, NSbS significantly outperforms its counterpart on
25/39 = 64% of the FMs. Moreover, the improvements are
mostly observed on large FMs. Taking ref4955 and 2.6.28.6-
icse11 as examples, Fig. 2 graphically shows the distribu-
tion of the sampled configurations in the behavior space. As
seen, configurations sampled by NSbS are distributed more
widely than those sampled by NSbS-δ on the two FMs. More
specifically, configurations of NSbS-δ cover intensively in the
middle part, but sparsely at the boundaries.

The above experimental results bring out the following.
The δ indeed matters: when δ is omitted, diversity of the
sampled configurations is significantly affected in the behav-
ior space. In particular, boundaries of the behavior space tend
not to be sufficiently covered. The above experimental result-
s are in line with our theoretical findings, stating that the
adoption of δ is able to mitigate bias towards sampling spe-
cific configurations.

5.3 RQ3: Effectiveness of NSbS in
comparison with state-of-the-art
samplers

Table 1 gives the average time (measured in milliseconds)
to sample a single configuration for all FMs. If the sampling
can not finish within one hour, then we declare a timeout.
According to Table 1, SAT-based simpler scales very well, be-
ing able to sample one configuration within 300 milliseconds
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Table 1: Time taken to sample a configuration (in
milliseconds). timeout = one hour

FM NSbS SAT-based DDbS Unigen3 Smarch

lrzip 2 1 18 <1 185
LLVM 2 <1 5 <1 110
X264 87 <1 10 <1 151
Dune 2 <1 14 <1 163
BerkeleyDBC 148 <1 14 <1 165
HiPAcc 2 <1 99 5 329
JHipster 10 <1 161 1 388
Polly 92 <1 400 1 373
7z 120 <1 1299 3 467
JavaGC 9 <1 780 1 381
VP9 6 <1 2412 2 396
fiasco 17 10 12 <1 timeout 15 3260
axTLS 2 1 4 6 <1 timeout 12 895
fiasco 93 1 timeout 20 58003
toybox 13 <1 timeout 7 7123
axtls 14 1 timeout 34 13515
uClibc-ng 1 0 29 7 <1 timeout 4681 4239
toybox 0 7 5 7 <1 timeout 231 3492
uClinux 61 2 timeout 258 39713
ref4955 46 1 timeout timeout 37299
adderII 49 1 timeout timeout 48508
ecos-icse11 40 1 timeout timeout timeout
m5272c3 45 1 timeout timeout 43946
pati 46 1 timeout timeout 38404
olpce2294 51 1 timeout timeout 53946
integrator arm9 65 2 timeout timeout 377666
at91sam7sek 49 1 timeout timeout 45776
se77x9 70 2 timeout timeout timeout
phycore229x 49 1 timeout timeout 56323
busybox-1.18.0 202 3 timeout timeout timeout
busybox 1 28 0 37 <1 timeout timeout 18087
embtoolkit 2306 35 timeout timeout timeout
freebsd-icse11 201 7 timeout timeout timeout
uClinux-config 296 7 timeout timeout timeout
buildroot 6916 21 timeout timeout timeout
freetz 16540 35 timeout timeout timeout
2.6.28.6-icse11 558 29 timeout timeout timeout
2.6.32-2var 36000 256 timeout timeout timeout
2.6.33.3-2var 36000 289 timeout timeout timeout

even for the largest FM, i.e., 2.6.33.3-2var. Quite often, the
sampling takes no more than 1 millisecond. For DDbS, it can
only handle 11 small FMs with |Ψ| ≤ 2.16×105. For Unigen3,
it succeeds in dealing with 19 FMs with |Ψ| ≤ 1.63 × 1091.
Regarding Smarch, it scales better than DDbS and Unigen3,
but still fails on 11 FMs. For our NSbS, it dose not en-
counter a timeout for all FMs. We would like to mention
that even though NSbS runs out of one hour on 2.6.32-2var
and 2.6.33.3-2var, it successfully samples 100 configurations
as requested. Therefore, we do not declare a timeout. In fact,
this is totally different from the timeout of other samplers,
which are unable to sample 100 configurations within one
hour. Regarding the sampling speed, as shown in Table 1,
NSbS is slower than the SAT-based sampler, but much faster
than Smarch.

Table S-4 in the online supplement lists Spread results for
all samplers, and Table 2 summarizes Wilcoxon’s test results
for each pairwise comparison between NSbS and each sam-
pler. In this table, available cases refer to those without a

timeout for both samplers. As can be found, NS performs
better than or at least competitively to other samplers in al-
most all the available cases. The only exception is observed
on the pairwise comparison between NSbS and DDbS on
the simplest LLVM. In this case, NSbS is significantly worse
than DDbS. This exceptional case accounts for 9% of all the
available 11 cases for the pair NSbS v.s. DDbS. According
to the results in Table 2, we can conclude that NSbS is more
effective than SAT-based sampler, Unigen3 and Smarch in
generating diverse configurations, and that NSbS and DDb-
S are able to sample configurations covering similarly in the
behavior space. However, as discussed previously, DDbS suf-
fers from the scalability issue, being only able to handle very
small FMs.

Table 2: Summary of Wilcoxon’s test results (regard-
ing Spread) for pairwise comparisons between NSbS
and each sampler

NSbS v.s. SAT-based DDbS Unigen3 Smarch

Available cases (#) 39 11 19 28

• 77% 0% 68% 82%

‡ 23% 91% 32% 18%

◦ 0% 9% 0% 0%

For configurations generated by the five samplers on JHip-
ster (chosen as an example), we plot in Fig. 3 the number of
selected features, and the difference of this number between
two successive configurations. Notice that configurations in
these sample sets are sorted in increasing order based on the
number of selected features. It can be found in Fig. 3 that
the number of selected features for NSbS increases more reg-
ularly than that for other samplers. To be more specific, the
increment of this number for NSbS is steady being always
one, while it is either one or two for DDbS and Smarch. In
addition, configurations sampled by NSbS can be partitioned
into nearly equal-sized subsets based on the number of se-
lected features. For other samplers, however, this partition is
less balanced. This can be observed from histograms for the
‘difference’, indicating that some groups have more configu-
rations than others. The above graphical results suggest that
NSbS is capable of sampling configurations that are widely
and nearly-uniformly distributed in the behavior space.

Experiments performed in this section emphasize the fol-
lowing. First, NSbS and SAT-based sampling are the two best
samplers regarding scalability, and both of them can handle
all FMs under study. Second, NSbS and DDbS perform best
concerning diversity of the samples in the behavior space.
Therefore, only NSbS (among all samplers tested in this sec-
tion) achieves scalable diverse sampling.

5.4 Discussions

It is not surprising that NSbS performs better than SAT-
based sampler regarding diversity. In fact, initial population
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Figure 3: For configurations generated by each sampler on JHipster, the number of selected features and the
difference of this number between two successive configurations are shown in histograms.

in NSbS is the outcome of the SAT-based sampler. This ini-
tial population is sequently improved by NS in an incremen-
tal way. As shown in Fig. 4, novelty scores of the sample
sets are persistently improved during the sampling process
of NSbS, naturally leading to more and more diverse sam-
ples.

It is also easy to explain why DDbS is computationally
much more expensive than NSbS. In fact, NSbS uses genetic
operations to generate temporary configurations, and then
adopts probSAT [5] to repair them if necessary. This is an
efficient way of creating new configurations. Instead, each
time DDbS requests to the Z3 constraint solver [15] to find a
configuration with exactly d selected features, where d is uni-
formly drawn from the set of all possible distances. However,
it is not always easy to find such configurations because they
may not exist. Sometimes the constraint solver takes long to
find a feasible configuration, or fails to return any one even
after a long time of running. Hence, DDbS suffers from low
efficiency.
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Figure 4: Novelty scores of the sample sets are per-
sistently improved during the sampling process of
NSbS

The following is the reason why the two uniform sampler-
s (Unigen3 and Smarch) can not generate diverse samples
in the behavior space. In fact, Unigen3 and Smarch aim at
deriving uniform samples in the configuration space. The
uniformity in this space cannot guarantee diversity in the
behavior space. Recall in Section 2.2 that Ψ = ∪b∈BΦb. If a

subspace Φb is larger, then more configurations will be sam-
pled from this subspace. All these configurations collapse to
a single point in the behavior space. Clearly, this mechanism
could hamper diversity in the behavior space.

5.5 Threats to Validity

In this section, we briefly discuss threats to internal validity
and external validity, as well as how they could be mitigated.

Internal validity. This type of threats can be caused
by potential errors in our implementation of NSbS and the
samplers used for comparisons. To rule out errors in the im-
plementation, we have thoroughly tested our codes by ana-
lyzing the outcomes step by step on small FMs. For samplers
used in performance comparisons, they were implemented by
codes provided by their authors.

Due to stochastic nature of the samplers under study, out-
comes of different runs could be different. To diminish ran-
dom biases, we independently run the samplers 30 times,
and compare them based on mean values of performance in-
dicators. In addition, statistical tests are utilized to make
reliable comparisons.

External validity. This threat is related to the degree to
which we can generalize from the experiments. To increase
external validity, we select 39 real-world FMs from different
domains, and most of them have been widely used by others
to evaluate their sampling algorithms [33, 46, 49]. These FM-
s are representative with respect to the configuration size,
which ranges from 102 to more than 10417. Therefore, we
are confident that our results could generalize to many more
FMs.

6 RELATED WORK

There are different strategies for sampling configurations
from SPLs: random sampling, solver-based sampling, coverage-
oriented sampling and uniform sampling.

Random sampling: The simplest way to create a sam-
ple set is to randomly assign true or false to each feature for
each configuration [22, 39, 41, 42]. Due to constraints among
features, however, this method is very likely to generate in-
valid configurations. Instead of randomly selecting features,
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there exist sampling approaches randomly selecting config-
urations either from all the enumerated configuration space
[51], or by using the Monte-Carlo method without exhausted
enumeration [20]. Nevertheless, these approaches also select
invalid configurations, or suffer from low efficiency because
of the time-consuming or even impractical enumeration.

Solver-based sampling: Off-the-shelf SAT or satisfiabil-
ity modulo theories constraint solvers have been widely used
to derive samples. These solvers include SAT4J [26, 27, 38],
PicoSAT [10, 50], Z3 solver [18, 23, 33, 47]) and stochastic
local search SAT solvers [57, 59, 60]. This kind of sampling
generally scales well to large real-world SPLs, but offers no
guarantees about randomness or coverage [33, 49]. In partic-
ular, to improve the diversity of configurations, Henard et
al. [26] randomized the order how the logical clauses and the
literals are parsed. The resulting randomized SAT4J solver,
which has been extensively adopted in different contexts
[27, 28, 57], is selected as a baseline in this paper. According
to our results, this solver cannot give any guarantees about
coverage in the behavior space, though.

Coverage-oriented sampling: It creates a sample set
according to a specific coverage criterion. One of the promi-
nent example is t-wise sampling in which all possible t fea-
ture combinations must be covered [12]. Nowadays, various
t-wise sampling approaches are available, e.g., Chvatal [31],
ICPL [32], IncLing [2], YASA [35] and CASA [19]. Based on
the evaluations in [41], however, most of the t-wise sampling
techniques can only deal with small FMs considering often
t = 1 or t = 2. For large real-world SPLs and/or high t in-
teraction strengths, they often run out of memory, do not
terminate, or take too much running time [48].

Uniform sampling: Achieving uniform sampling is im-
portant to understand properties of the whole configuration
space [46]. Recently, uniform sampling has caught increasing
attention from both SAT and SPL communities [1, 29, 49].
UniGen2 [9] partitions the configuration space as evenly as
possible using hashing functions. Subsequently, sampling is
done by choosing a partition at random, and then generating
a valid configuration in that partition using an SAT solver.
Unigen2 also supports parallelism on sampling, and its im-
proved version, i.e., UniGen3 [54], is now available. Several
strategies perform counting-based uniform sampling. Typi-
cally, they subsequently partition the configuration space on
variable assignments, and then count the number of config-
urations of the resulting parts. In [43], the number of valid
configurations can be easily counted since an FM is encoded
as a binary decision diagram. Both Spur [1] and Smarch [46]
rely on sharpSAT [56] to count the number of valid config-
urations. The above samplers guarantee uniform sampling,
but may encounter a bottleneck in some cases. According to
Sundermann et al. [55], none of their evaluated model count-
ing solvers, including sharpSAT, can count the number of
valid configurations for some large industrial SPLs. Alter-
natively, QuickSampler [18] performs an efficient sampling
of configurations using only a small number of MAX-SAT
solver calls. This sampler, however, offers no guarantees on
uniformity or even validity of the samples [29, 49].

7 CONCLUSIONS

This paper focuses on diverse sampling from SPLs. In prac-
tice, the number of selected features for a configuration is
important to characterize its behaviors. By using this num-
ber, the configuration space is mapped to a small behavior
space. Deriving a small set of valid configurations that has
a good coverage in the behavior space is required in many
software engineering tasks. However, most existing sampling
strategies fail to achieve this goal. In this paper, we propose
a search-based sampling strategy which adopts an efficien-
t off-the-shelf SAT solver to generate an initial sample set,
and then improves its diversity in an incremental way. This
is achieved by using a special distance metric in combination
with the novelty search algorithm. Experimental results on
39 real-world SPLs demonstrate that our sampling algorith-
m can not only improve coverage in the behavior space, but
also promote diversity in the original configuration space.
Moreover, we show, both theoretically and experimentally,
that the designed distance metric is able to mitigate bias to-
wards covering specific parts in the behavior space. Finally,
our results show that only the proposed sampling algorithm
achieves scalable diverse sampling among all the five eval-
uated samplers. In particular, our sampler scales up well,
being able to handle all the SPLs, including those whose
configuration space even cannot be counted.

Focusing on sampling diverse configurations from behav-
ior spaces, this paper provides a search-based sampler. This
is a new attempt on diverse sampling from SPLs, and there
are some directions for subsequent studies. For example, it
is easy to adapt our sampler in different sampling scenarios
using other criteria to map configuration spaces into behav-
ior spaces. For the generated sample sets, it is worthwhile to
investigate their t-wise coverage [57] and performance pre-
diction accuracy [33].
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[48] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter,
Malte Lochau, and Ina Schaefer. 2019. Product Sampling for
Product Lines: The Scalability Challenge. In Proceedings of the
23rd International Systems and Software Product Line Con-
ference - Volume A (Paris, France) (SPLC’19). Association for
Computing Machinery, New York, NY, USA, 78–83.

[49] Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey,
and Maxime Cordy. 2019. Uniform Sampling of SAT Solutions
for Configurable Systems: Are We There Yet?. In 12th IEEE
Conference on Software Testing, Validation and Verification,
ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 240–251.

[50] Richard Pohl, Kim Lauenroth, and Klaus Pohl. 2011. A perfor-
mance comparison of contemporary algorithmic approaches for
automated analysis operations on feature models. In IEEE/ACM
International Conference on Automated Software Engineering.
313–322.

[51] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel, and
Krzysztof Czarnecki. 2015. Cost-Efficient Sampling for Perfor-
mance Prediction of Configurable Systems. In Proceedings of the
30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (Lincoln, Nebraska) (ASE’15). IEEE Press,
342–352.

[52] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany
Ammar. 2013. Scalable product line configuration: A straw to
break the camel’s back. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 465–
474.

[53] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Chris-
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