

University of Birmingham

Evolutionary multi-objective model compression for
deep neural networks
Wang, Z.; Luo, T.; Li, Miqing; Zhou, J.T.; Goh, R.S.M; Zhen, Liangli

DOI:
10.1109/MCI.2021.3084393

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Wang, Z, Luo, T, Li, M, Zhou, JT, Goh, RSM & Zhen, L 2021, 'Evolutionary multi-objective model compression
for deep neural networks', IEEE Computational Intelligence Magazine, vol. 16, no. 3, 9492169, pp. 10-21.
https://doi.org/10.1109/MCI.2021.3084393

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Z. Wang, T. Luo, M. Li, J. T. Zhou, R. S. M. Goh and L. Zhen, "Evolutionary Multi-Objective Model Compression for Deep Neural Networks,"
in IEEE Computational Intelligence Magazine, vol. 16, no. 3, pp. 10-21, Aug. 2021, doi: 10.1109/MCI.2021.3084393.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1109/MCI.2021.3084393
https://doi.org/10.1109/MCI.2021.3084393
https://birmingham.elsevierpure.com/en/publications/e7d5cd89-6565-4cdb-85eb-162a2c1508d2

1

Evolutionary Multi-Objective Model Compression
for Deep Neural Networks

Zhehui Wang, IHPC, A*STAR, SINGAPORE

Tao Luo, IHPC, A*STAR, SINGAPORE

Miqing Li, University of Birmingham, UK

Joey Tianyi Zhou, IHPC, A*STAR, SINGAPORE

Rick Siow Mong Goh, IHPC, A*STAR, SINGAPORE

Liangli Zhen, IHPC, A*STAR, SINGAPORE

Abstract—While deep neural networks (DNNs) deliver state-of-
the-art accuracy on various applications from face recognition to
language translation, it comes at the cost of high computational
and space complexity, hindering their deployment on edge
devices. To enable efficient processing of DNNs in inference,
a novel approach, called Evolutionary Multi-Objective Model
Compression (EMOMC), is proposed to optimise energy effi-
ciency (or model size) and accuracy simultaneously. Specifically,
the network pruning and quantisation space are explored and
exploited by using architecture population evolution. Further-
more, by taking advantage of the orthogonality between pruning
and quantisation, a two-stage pruning and quantisation co-
optimisation strategy is developed, which considerably reduces
the time cost of the architecture search. Lastly, different dataflow
designs and parameter coding schemes are considered in the
optimisation process since they have a significant impact on
energy consumption and the model size. Owing to the cooperation
of the evolution between different architectures in the population,
a set of compact DNNs that offer trade-offs on different objectives
(e.g., accuracy, energy efficiency, and model size) can be obtained
in a single run. Unlike most existing approaches designed to
reduce the size of weight parameters with no significant loss
of accuracy, the proposed method aims to achieve a trade-off
between desirable objectives, for meeting different requirements
of various edge devices. Experimental results demonstrate that
the proposed approach can obtain a diverse population of
compact DNNs that are suitable for a broad range of different
memory usage and energy consumption requirements. Under
negligible accuracy loss, EMOMC improves the energy efficiency
and model compression rate of VGG-16 on CIFAR-10 by a factor
of more than 8.9× and 2.4×, respectively.

Index Terms—Model Compression, Neural Architecture
Search, Pruning, and Quantisation, Evolutionary Multi-Objective
Optimisation.

I. INTRODUCTION

Deep neural networks (DNNs) are artificial neural networks
with more than three layers (i.e., more than one hidden layer),
which progressively extract higher-level features from the raw
input in the learning process. They have delivered state-of-the-
art accuracy on various real-world problems, such as image
classification, face recognition, and language translation [1].
The superior accuracy of DNNs, however, comes at the cost
of high computational and space complexity. For example,

Corresponding author: Liangli Zhen (E-mail: zhenll@ihpc.a-star.edu.sg).

the VGG-16 model [2] has about 138 million parameters,
which requires over 500MB memory for storage and 15.5G
multiply-and-accumulates (MACs) to process an input image
with 224 × 224 pixels. In myriad application scenarios, it is
desirable to make the inference on edge devices rather than on
cloud, for reducing the latency and dependency on connectivity
and improving privacy and security. Many of the edge devices
that draw the DNNs inference have stringent limitations on
energy consumption, memory capacity, etc. The large-scale
DNNs [3, 4] are usually difficult to be deployed on edge
devices, thus hindering their wide application.

Efficient processing of DNNs for inference has become
increasingly important for the deployment of edge devices. For
generating efficient DNNs, many neural architecture search
(NAS) approaches have been developed in recent years [5–7].
One way of carrying out NAS is to search from scratch [8, 9].
In contrast, model compression1 [10] searches for the optimal
networks starting from a well-trained network. For instance, to
reduce the storage requirement of DNNs, Han et al. proposed
a three-stage pipeline (i.e., pruning, trained quantisation, and
Huffman coding) to compress redundant weights [10]. Wang et
al. suggested removing redundant convolution filters to reduce
the model size [11]. Rather than reducing the model size, a few
attempts [12, 13] are conducted to compress DNNs directly
by taking the energy consumption as the feedback signals.
They have achieved promising results in reducing the size of
weight parameters (or energy consumption). However, these
approaches require the model to achieve approximately no loss
of accuracy, rendering the solution less flexible.

In practice, different users often have distinct preferences
on desirable objectives, e.g., accuracy, model size, energy ef-
ficiency, and latency, when they select the optimal DNN model
for their applications. In this paper, a novel approach, called
Evolutionary Multi-Objective Model Compression (EMOMC),
is proposed to optimise energy efficiency/model size and
accuracy simultaneously. By considering network pruning
and quantisation, the model compression is formulated as a
multi-objective problem under different dataflow designs and

1The technique aims to shrink the size of the neural network model without
a significant drop of accuracy.

2

parameter coding schemes. Each candidate architecture can
be regarded as an individual in the evolutionary population.
Owing to the cooperation and interplay of the evolution
between different architectures in the population, a set of
compact DNNs that offer trade-offs on different objectives
(e.g., accuracy, energy efficiency, and model size) can be ob-
tained in a single run. Unlike most existing approaches which
aim to reduce the size of weight parameters or the energy
consumption with no significant loss of accuracy, the proposed
approach attempts to achieve a good balance between desired
objectives, for meeting the requirements of different edge
devices. Experimental results demonstrate that the proposed
approach can obtain a diverse population of compact DNNs
for customised requirements of accuracy, memory capacity,
and energy consumption.

The novelty and main contributions of this work can be
summarised as follows:

• The model compression problem is formulated as a multi-
objective problem. The optimal solutions are searched
in the network pruning and quantisation space using a
population-based algorithm.

• To speed up the population evolution, a two-stage prun-
ing/quantisation co-optimisation strategy is developed
based on the orthogonality between pruning and quan-
tisation.

• The trade-offs between accuracy, energy efficiency, and
model size in model compression are explored by con-
sidering different dataflow designs and parameter coding
schemes. The experimental results demonstrate that the
proposed method can obtain a set of diverse Pareto
optimal solutions in a single run. Also, it achieves a
considerably higher energy efficiency than current state-
of-the-art methods.

II. PRELIMINARIES

Network pruning and quantisation are two commonly used
model compression techniques to improve the energy effi-
ciency in model inference and/or to shrink the size of the
model. Moreover, the dataflow design employed by edge
devices and the coding scheme applied to store the weight
matrix both have a significant impact on the performance of
model compression.

A. Network Pruning and Quantisation

For making the training easy, the networks are usually over-
parameterised [14]. Pruning is a widely-used model compres-
sion technique that can effectively reduce the energy consump-
tion of edge devices and shrink the model size [10]. Network
pruning removes some of the redundant parameters in the
network by setting their values as zeros. A well-trained neural
network usually contains a large number of weights whose
values are relatively small compared to other parameters. In
most cases, these parameters are not particularly important
when performing model inference. Hence, one can sort all the
parameters in the model and replace those parameters with the
least absolute values by zeros, while the accuracy of the model
can still be maintained. For instance, the pruning amount to

Algorithm 1 Computation of a typical convolutional layer
for co in range(CO) do

for ci in range(CI) do
for x in range(X) do

for y in range(Y) do
for fx from -(FX -1)/2 to (FX -1)/2 do

for fy from -(FY -1)/2 to (FY -1)/2 do
O[co][x][y]
+=I[ci][x+fx][y+fy]×W [co][ci][fx][fy]

be 33%, then one-third of the parameters in the model will be
replaced by zeros. In the inference process, if the processing
elements (PEs)2 whose input weight parameters are zeros,
the computation process can be skipped in those PEs, thus
reducing energy consumption.

Quantisation is another critical model compression tech-
nique that is used to accelerate DNNs and reduce model
size [10]. It involves mapping data to a small set of quan-
tisation levels and aims at minimising the error between
the reconstructed data from the quantisation levels and the
original data. The quantisation level reflects the precision and
ultimately the number of bits representing a parameter. After
the quantisation, the low precision parameters may still store
enough information for model inference, and the accuracy of
the model can be maintained. In practical implementations, if
the weights are quantised, one can use multipliers with simpler
structures, thus reducing energy consumption. For instance, a
high precision parameter with 32-bit float point (32FP) data
type requires 23 bit × 23 bit multipliers. Such type of multi-
plier contains 506 adders in total. If quantising the activation
from 32FP to 16-bit float point (16FP) and quantising the
weights from 32FP to 8-bit integer (8INT), only 10 bit ×
8 bit multipliers are required, each of which contains only
72 adders in total. The fewer adders in multipliers, the lower
energy consumption for computation.

Pruning and quantisation can reduce not only the energy
consumption on the computation process but also the energy
consumption on the data movement, which is roughly pro-
portional to the total amount of data transmitted from the
memory module in terms of bits [15]. For instance, if pruning
80% of the parameters in the model and quantising all the
parameters from 16 bits to 8 bits, then about 90% of the energy
consumption on data movement can be reduced.

B. Dataflow Design in Hardware Accelerators

The dataflow design decides how data is reused among
different PEs. Since a large portion of the energy consumption
of hardware accelerators is on the data movement, the dataflow
design needs to be considered when optimising the energy
efficiency. Algorithm 1 shows the computation procedure of a
typical convolutional layer. It contains six loops, each of which
corresponds to one dimension either in the weight filter or in
the feature map. More specifically, CO and CI are the numbers
of output and input channels, X and Y are the width and
height of the feature map, and FX and FY are the width and

2The PE is a basic unit to conduct computation in processors.

3

Dataflow - X:Y

W0

I0

O0 W1

I1

O1

W2

I2

O2 W3

I3

O3

I0

W10

W01 W11

Dataflow - CI:CO

O0 O1

Processing element Register file Data direction

W00

W0

I0

W1

I1

W2

I2

W3

I3

Dataflow - FX:FY

W0

I1

W1

O0

I2

O1

I0

I1

Dataflow - X:Fx
O

Fig. 1. Examples of the four popular dataflow designs [15]. For simplicity,
only four PEs are shown in each example. Wk/Wkk , Ik , and Ok are the
elements in the weight, the input feature map, and the output feature map,
respectively.

height of the weight filter. In each iteration of the innermost
loop, a basic arithmetic operation called multiply-accumulate
(MAC) is performed. In one convolutional layer, there are
CO · CI ·X · Y · FX · FY MAC operations in total.

In typical hardware accelerators3, there are a set of process-
ing elements. Each PE can execute one MAC operation inde-
pendently. How to map the MAC operation into each PE and
how the data flow among those PEs become key considerations
in the design of hardware accelerators. Theoretically, there
are many mapping methods, resulting in different dataflow
designs. For example, suppose that the device has an array
of PEs, one can unroll any one of the loops in Algorithm 1
and map each iteration in the unrolled loop into each PE
of the array. Similarly, if the device has a matrix of PEs,
one can unroll any two loops in Algorithm 1 and map the
MAC operations into each PE in the matrix. Thus, with six
loops as shown in Algorithm 1, there are C2

6 = 15 possible
dataflow designs in total. To simplify the problem, in this
work, only four popular dataflow designs are evaluated, as
shown in Table I. These dataflow designs are named as A : B,
where A and B stand for the names of the two unrolled loops.

Figure 1 shows the schematic diagram of those four popular
dataflow designs, where only four PEs are involved in each
example. Each PE contains one multiplier and one adder,
which can execute one MAC operation each time. The PE
also contains register files, which can temporarily store input
or output data. In X:Y , the MAC operation results are stored
in registers at output ports of PEs. At each iteration, the last
MAC operation result is read from registers. In CI :CO, at each

3The devices that are specialised to execute a certain task, such as the
graphics processing unit (GPU), field-programmable gate array(FPGA), and
application-specific integrated circuit (ASIC).

TABLE I
POPULAR DATAFLOW DESIGNS THAT ARE APPLIED IN LITERATURE

Dataflow Applied by Dataflow Applied by

X : Y [16] [17] CI : CO [18] [19]
FX : FY [20] X : FX [21] [22]

XXX

NA

0 0 XXX

2

0 0 0 XXX

3

W1W0 W3W2 W5W4 W7W6

Distance = 2 Distance = 3

Fig. 2. The CSR coding scheme with relative positions, which stores the
values of non-zero elements and their relative positions in the array.

iteration, the input feature map is reused CO times, and CI

MAC operation results are summed up. In FX :FY , FX · FY

weights are stored in registers at input ports of PEs. At each
iteration, FX · FY MAC operation results are summed up. In
X:FX , FX weights are stored in registers at input ports of
PEs. At each iteration, the weights are reused X times, and
FX MAC operation results are summed up.

C. Coding Scheme for the Parameters

After pruning, the filter in the model becomes a sparse
matrix, which means that it contains plenty of zero elements.
To store the sparse matrix into the memory, many coding
schemes are developed, and the choice of the coding scheme
mainly depends on the characteristics of the matrix. In this
work, three coding schemes are considered. The first one is
the normal coding scheme, where it stores those zero elements
in the same way as those non-zero elements. In other words,
it keeps the space for all the zero elements in the matrix.
Therefore, the storage size of the normal coding scheme is
N · qi, where N is the total number of weight elements in the
matrix and qi is the quantisation depth of the weight.

In some cases, it is a waste of the memory capacity to store
all these zero weights. For saving memory space, various new
coding schemes are proposed to shrink the size of the sparse
matrix. One common coding scheme is called the Coordinate
(COO) coding. In the COO coding scheme, the non-zero
elements are stored, along with the row index and the column
index, and zero elements are ignored. Another popular coding
scheme is called the compressed sparse row (CSR) coding.
In the CSR coding scheme, only the values of the non-zero
elements are stored along with the column index and the row
offset. To further save the memory space, one version of the
CSR coding scheme only stores the relative distance between
two non-zero elements, which is shown in Figure 2. For this
example, the weight matrix has eight elements, and three of
them are non-zero elements. Only the values of these three
elements and their relative positions in the array are stored.

4

The second non-zero element is three slots away from the first
non-zero element, and the integer 2 is recorded as a relative
row index for the second element. It is assumed that each
non-zero element requires three bits to store the relative row
index. If one non-zero element is far away from the previous
element, zero-padding elements are inserted into the array to
avoid overflow. Therefore, the storage size of the CSR coding
scheme with relative positions is n · (pi + 3), where n is the
number of non-zero elements and qi is the quantisation depth
of the weight.

III. RELATED WORK

A. Model Compression

Model compression aims to compress and accelerate DNN
models. Different approaches target different objectives, such
as model size, number of floating-point operations per second
(FLOPs), latency, and energy efficiency. The initial intention of
model compression is to alleviate the on-chip storage limit for
complicated CNN models [10]. Since then, many approaches
have been proposed to shrink the model size of CNNs [23, 24].
There are two major branches in this area. The first branch
focuses on the computation cost, and they target the number
of FLOPs [25]. For example, Li et al. [26] proposed to prune
whole filters from CNNs, avoiding sparse connectivity patterns
and reducing the computational cost significantly. Lemaire et
al. proposed a budgeted regularised pruning framework for
deep CNNs [25], which makes the compressed model less
computation-intensive. The second branch targets the inference
speed [27, 28]. For instance, He et al. leveraged reinforcement
learning to provide the model compression policy, which can
accelerate the inference on mobiles considerably.

Recently, edge devices have become increasingly popular
for AI applications. However, considering the large amount
of energy consumed for the model inference, the deployment
of CNN on edge devices becomes challenging. To solve
this problem, some scholars proposed model compression
approaches to reduce the energy consumption directly, using
quantisation [13] and/or pruning [12] techniques. In [12], an
energy-aware network pruning approach is proposed to reduce
the overall energy across all layers by 3.7× for AlexNet [29]
and 1.6× for GoogLeNet [30].

From the above, it can be seen that model compression
is essentially a multi-objective optimisation problem, with
several objectives to be considered, including accuracy, energy
consumption, model size, etc. Previous studies rarely deal
with multiple objectives at the same time. A common way
adopted in literature is to optimise only one of the objectives
while setting the remaining ones to be hard constraints. In this
work, the evolutionary multi-objective optimisation technique
is applied to tackle these objectives simultaneously.

B. Evolutionary Multi-Objective Optimisation

In the real-world systems, there exist plenty of problems
having two or more (often conflicting) objectives which one
needs to consider simultaneously. Such problems are called the
multi-objective optimisation problems (MOPs). Without loss

of generality, a multi-objective optimisation problem (MOP)
can be formulated as the following minimisation problem:

min
x

F (x) = (f1(x), f2(x), . . . , fM (x))T

s.t. gj(x) ≤ 0, j ∈ {1, 2, . . . , J},
hk(x) = 0, k ∈ {1, 2, . . . ,K},
x ∈ Ω,

(1)

where J denotes the number of inequality constraints, K is
the number of equality constraints, Ω ⊆ Rn is the decision
space, x = (x1, x2, . . . , xn)T is a candidate solution, and F :
Ω→ RM consists of M (conflicting) objective functions.

Let a and b be two feasible solutions for an MOP defined
in Equation (1), one can say that a dominates b if ∀u fu(a) ≤
fu(b) and ∃v fv(a) < fv(b), where u, v ∈ {1, 2, . . . ,M}.
A solution is Pareto optimal if it is not dominated by any
other solutions. Due to the conflict of the objectives in MOPs,
there are a set of Pareto optimal solutions, which represent
the best possible trade-offs among different objectives. The
optimal solution set in the decision space is called the Pareto
set (PS), and its mapping in the objective space is called the
Pareto front (PF).

In the literature, many approaches have been developed to
solve MOPs since the 1950s [31]. Among them, evolutionary
algorithms (EAs) stand out thanks to the nature of population-
based search that aims to approximate the whole Pareto front
in a single execution. Also, EAs are typically exempt from
the characteristics of the PF than conventional mathematical
programming techniques [31]. They can handle the MOPs with
discontinuous and non-convex PFs well.

Since the seminal work, called Vector Evaluated Genetic
Algorithm (VEGA) [32], was proposed by Schaffer in 1985,
a large number of multi-objective evolutionary algorithms
(MOEAs) have been developed and adopted in various appli-
cations. In MOEAs, the selection strategy of individuals in the
population plays a key role in the evolutionary process. Since
the optimal solutions are those non-dominated to each other in
the whole search space, Pareto dominance naturally becomes
a viable criterion for selecting promising solutions during the
evolutionary process. The Pareto dominance criterion, how-
ever, may fail to provide sufficient selection pressure, making
the algorithm hard to converge. This situation can be usually
encountered when the objective space is enormous, e.g., in
many-objective optimisation problems [33–35]. To push the
population towards the PF, Goldberg proposed a mechanism
called Pareto ranking [36] for the selection in MOEAs. A niche
method is then used in the Nondominated Sorting Genetic
Algorithm (NSGA) [37] to maintain stable sub-populations.
Later on, in its new version Nondominated Sorting Genetic
Algorithm-II (NSGA-II) [38], a crowding degree comparison
operator is adopted to make the ranking scheme more effective
and efficient. NSGA-II is widely used to solve MOPs, despite
its limitations in handling the MOPs with more than three
objectives [39]. Recently, many MOEAs tend to consider
other selection strategies since they may converge fast towards
the PF, such as indicator-based MOEAs, decomposition-based
MOEAs, and bi-goal criterion MOEAs [33].

5

Recently, there have been a few attempts to exploit MOEAs
to search for efficient neural architectures. For instance, Lu
et al. proposed a method, called NSGA-Net [40], which
formulates the neural architecture search as a multi-objective
problem and uses the NSGA-II algorithm to solve it. NSGA-
Net considers two objectives: the classification error and the
computation cost (measured by the number of MACs). It
has achieved promising results compared with other neural
architecture search methods, e.g., DARTS [5] and ENAS [41],
on the CIFAR-10 dataset [42].

This work studies how the evolutionary multi-objective
(EMO) method can be used in model compression, given its
multi-objective nature. Particularly, it is rather expensive to
explore how to enable EMO to work with the pruning and
quantisation, and how to make the evolutionary search efficient
as the training of DNN.

IV. OUR PROPOSED METHOD

In real-world applications, users usually have different
preferences on the prediction model’s objectives, including
accuracy, energy efficiency, model size, etc. In this section,
the evolutionary multi-objective model compression method is
presented. The model compression problem is formulated as
a multi-objective problem (MOP), which has several objective
functions and constraints [43]. Then, an evolutionary algorithm
is adopted to solve the MOP. The goal of the optimisation
is to find a set of Pareto optimal solutions that represents
various trade-offs on the desired objectives, thus enabling the
deployment of the AI models on edge devices with different
resource constraints.

A. Problem Formulation

This work aims to compress a well-trained model to achieve
high accuracy, low energy consumption, and low model size.
By providing different pruning amount, p, and quantisation
depth, q, the compressed model should result in different
accuracy, energy consumption, and model size. The goal of
the optimisation is to reduce the energy consumption or
model size while at the same time making the accuracy of
the model as high as possible. The relationship between the
accuracy, the pruning amount, p, and the quantisation depth
q = [q1, q2, . . . , qL] is denoted as

Accuracy = f1(p,q), (2)

where f1(·) represents the accuracy score of the model ob-
tained by pruning p of the weight parameters in each layer of
the original model, then quantising the parameters in the i-th
layer with the depth of qi bits, and L denotes the number of
layers in the original model.

The energy consumption of the inference is constrained
by the battery’s capacitance of edge devices. Exceeding the
energy budget of the edge device will greatly limit the imple-
mentation of AI applications. From the perspective of users,
it is usually acceptable to trade a bit of loss of accuracy for a
large amount of reduction on energy consumption, especially
for edge devices. For a trained model, the energy consumption
in inference is also related to the exact dataflow design d

applied on the edge devices. The relationship among the
pruning amount p, the quantisation depth q, and the dataflow
design d is denoted as follows:

Energy = f2(p,q, d). (3)

The model size is constrained by the capacities of on-chip
memory modules in edge devices. If the model size exceeds
the limitation, it must load and save weights/features maps
through the off-chip memory for each inference process. Given
the fact that off-chip memory access consumes much larger
energy consumption than the on-chip memory access [10],
the energy consumption of the inference process increases
tremendously. Furthermore, the app stores are sensitive to the
size of the binary files, e.g., App Store has the restriction
“apps above 100 MB will not download until you connect
to Wi-Fi” [10]. Hence, it is important to shrink the size of
the model and to make sure that the entire model can be fit
into the memory constraint of the edge devices. For a given
model, the model size highly depends on the coding scheme
c applied to store the weights. The relationship between the
model size, the pruning amount p, the quantisation depth q
and the coding scheme c is defined as

Model Size = f3(p,q, c). (4)

There are L + 3 variables, and L denotes the number of
layers in the original model. The value of the variable p is a
real number that indicates the pruning amount in all the layers
of the model. The value of the variable qi is an integer that
reflects the quantisation depth in the i-th layer of the model.
The constraints on these variables are as follows:

pl ≤ p ≤ pu,
ql ≤ qi ≤ qu,
d ∈ {d1, d2, d3, d4},
c ∈ {c1, c2, c3},

(5)

where pl and pu are the upper and lower bounds of the pruning
amount, ql and qu are the upper and lower bounds of the
quantisation depth, d1, d2, d3, and d4 correspond to the four
dataflow designs of X : Y , CI : CO, FX : FY and X : FX ,
and c1, c2 and c3 indicate three parameter coding schemes of
the normal coding, COO and CSR, respectively. In this work,
the pruning amount is assumed to be from 0% to 100%, and
the quantisation depth of each layer ranges from 1 bit to 23
bits.

Two bi-objective optimisation problems are studied. In the
first problem, it explores possible combinations of pruning
amount and quantisation depth, and aims to maximise the
model accuracy f1 and minimise the energy consumption f2,
assuming the dataflow design to be d. Mathematically, it can
be formulated as the following problem:{

max f1(p,q),
min f2(p,q, d),

s.t.

 pl ≤ p ≤ pu,
ql ≤ qi ≤ qu,
d ∈ {d1, d2, d3, d4}.

(6)

In the second bi-objective problem, we aims to maximise the
accuracy f1 and minimise the model size f3 simultaneously,

6

0.0

0.25

0.50

0.75

1.00

0 4 8 12 16 20 24 28 32
0.0

0.25

0.50

0.75

1.00

Multi-Step Prunning

Single-Step Prunning

P
e
rc

e
n
ta

tg
e
 o

f
N

o
n
-Z

e
ro

 W
e
ig

h
ts

A
c
c
u
ra

c
y

Time (epoch)

Fig. 3. The comparison between multi-step pruning and single-step pruning,
tested on CIFAR-10 using VGG-16 (figure adopted from [15]).

assuming the coding scheme to be c, namely, the following
problem:{

max f1(p,q),
min f3(p,q, c),

s.t.

 pl ≤ p ≤ pu,
ql ≤ qi ≤ qu,
c ∈ {c1, c2, c3}.

(7)

Note that this work formulates two bi-objective optimisation
problems rather than a three-objective optimisation problem.
There are two reasons. Firstly, if one optimises the energy
consumption and the model size simultaneously (i.e., differ-
ent dataflow designs and different coding schemes will be
considered at the same time), the decision space will be
increased considerably, making the optimisation much harder
and consuming more computation resource. Secondly, as the
evaluation of each individual has a high computational cost,
the population size cannot be a large number. Typically, the
population size is set to be smaller than 100. A three-objective
space will lead to the solution set to be much more sparse than
a bi-objective space.

B. Multi-Objective Optimisation and Speedup

Instead of pruning the model directly in one step, a more
effective approach employed is to prune the model in multiple
steps. If pruning the model in one step, the accuracy will
decrease apparently, and it will be too difficult to restore the
model [44]. Figure 3 demonstrates the comparison between the
multi-step pruning method and the single-step pruning method.
the model compression of a well-trained VGG-16 model is
tested on the CIFAR-10 dataset [15, 42]. For the multi-step
pruning, it gradually increases the pruning amount from 0 to
95% in 32 steps. In each step, the model is pruned partially
and re-trained by one epoch. In the single-step pruning, the
model is pruned by 95% immediately, and then re-trained by
32 epochs. As shown in Figure 3, it can be seen that the
multi-step pruning method outperforms the single-step pruning
method in terms of accuracy with a large margin.

A challenge in the multi-step pruning process is that it
usually has high computational complexity. Specifically, each
step requires fine-tuning the model by one or several epochs.
If one attempts to find the optimal pruning amount and quan-
tisation depth for a model, the multi-step pruning process will
considerably delay the optimisation progress. To obtain the

Pruning amount p

Prune model

based on p

Pre-pruned models

library

Load

Energy estimator

save

p = p + ρ

Pruning amount p

Pre-pruned models

library

Quantizing depth q

Quantize model

based on q

Model inference

Energy

consumption
Accuracy

(a) Stage-I (b) Stage-II

Fig. 4. The process of the proposed two-stage pruning and quantisation co-
optimisation method. (a) Stage-I: prune the model and save the pre-pruned
models to the library; (b) Stage-II: load the pre-pruned model from the library,
quantise the parameter, and calculate the accuracy as well as the energy
consumption/the model size.

accuracy of the compressed model at a given pruning amount
and quantisation depth, the model needs to be compressed
first, which usually includes many training epochs. Due to
the large search space, it is almost impossible to pre-store all
the compressed models under any combinations of pruning
amount and quantisation depth. For example, the parameters
in each layer of the model can be quantised from 23 bits to
1 bit. The pruning amount in each layer can range from 0
to 100%. In general, an L-layer model can have 100 × 23L

possible combinations of pruning amount and quantisation
depth, assuming 1% pruning amount granularity.

The EMO technique is adopted to solve this problem.
However, since an evolutionary algorithm is essentially a
stochastic search, it may need thousands of trials (candidate
solutions) to find a high-quality solution. Once a new solution
(architecture) is produced, it takes a substantial amount of time
to perform the training for the evaluation. Consequently, it may
make the EMO-based search impossible.

To address this issue, by taking advantage of the orthogonal-
ity between pruning and quantisation [45], a two-stage pruning
and quantisation co-optimisation method is proposed, which
can effectively reduce the computational cost. Specifically,
the optimisation process is divided into two stages. In the
first stage, it prunes the model by multiple independent loops.
In each loop, it starts from a well-trained model, prunes the
model with a different pruning amount, fine-tunes the model,
and saves the pruned model into a library. The set of pruning
amounts cover all the possible pruning amounts which can be
referenced by the multi-objective solver. This is to guarantee
that no pruning process is required in the second stage. In
the second stage, the multi-objective solver starts to explore
the design space and tries to find the optimal combinations of
pruning amount and quantisation depth. During this process,
the solver needs to know the accuracy, energy consumption,
and model size under a given combination of pruning amount
and quantisation depth. At this step, one just needs to load the
corresponding pruned model from the library and quantise it.

Figure 4 shows an overview of the proposed approach.
Instead of pruning and quantising the models at the same

7

time, these two actions are taken into two different stages.
In the first stage, it only prunes the model. Specifically,
assuming ρ as granularity, it prunes the model by 100/ρ
times. At the i-th time step, it starts from the well-trained
model and prunes the model gradually using the multi-step
pruning method, until the target pruning amount reaches i · ρ.
After that, it saves the compressed model into a pre-pruned
models library. In the second stage, it loads one of the pre-
pruned models from the library based on the required pruning
amount p, and then quantises the parameters on the pre-pruned
model based on the required quantisation depth q. Since
pruning and quantisation are two orthogonal operations, the
final compressed model will be equivalent to the compressed
model that is pruned and quantised at the same time. Lastly, it
obtains accuracy by performing the model inference and read
the energy consumption from an energy estimator.

The proposed approach can efficiently speed up the optimi-
sation process. To obtain the accuracy and energy consumption
under a given pruning amount and quantisation depth, it does
not need to fine-tune the model anymore. Before the optimisa-
tion process, it completes the procedures in stage-I and saves
only 100 compressed models into the library, assuming 1%
granularity. The number of saved models is much less than
100× 23L, i.e., the number of possible compressed models in
the whole exploration space. For each combination of pruning
amount and quantisation depth, the time cost of evaluating the
individual is roughly equal to the inference time cost of the
model.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed method is evaluated on three baseline CNN
models: MobileNet [46], VGG-16 [2] and LeNet-5 [47],
which have different characteristics. MobileNet is a neural
network specially designed for mobile and embedded vision
applications. VGG is a typical deep neural network, which
was in the first place on the image localisation and the
second place on the image classification task in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) in 2014.
LeNet-5 is a simple network for handwritten and machine-
printed character recognition. It consists of only two sets
of convolutional and average pooling layers, followed by a
flattening convolutional layer, two fully-connected layers, and
a Softmax classifier. MobileNet and VGG-16 are tested for
colour image classification on the CIFAR-10 dataset [42],
and LeNet-5 is applied to recognise handwriting digits in the
MNIST dataset [47].

A. Experimental Setting

The NSGA-II algorithm in the python-based tool Py-
moo [43] is used to solve the formulated multi-objective
problem. The neural network is implemented in PyTorch4.
During the network training, the initial learning rate is set
to be 0.01, and it decays by half every 30 epochs. The batch
size is set to be 256. During the multi-objective optimisation
process, the population size is set to be 40, and it runs 250 gen-
erations in each execution. The multi-objective optimisation

4PyTorch Open Source Toolkit at https://github.com/pytorch/pytorch.

and network training are performed on an NVIDIA Titan Xp
graphics processing unit (GPU) card. Four dataflow designs
are considered as they are the most commonly used dataflow
designs X : Y , CI : CO, FX : FY , and X : FX . The
resource requirement is calculated based on the Xilinx Virtex
UltraScale FPGA and the energy consumption from the Xilinx
XPE toolkit [48]. In the implementation, the multipliers and
adders are implemented on LUTs (lookup tables). An M ×N
multiplier requires M/2 × (N + 1) LUTs [49]. To save the
memory space, there is no need to keep the feature map in
local memory after the computation of each layer. Hence, the
size of the local memory modules must support the weights
in all layers and the temporary feature maps. The pruning and
quantisation approaches are described in [10]. For pruning, the
`1-norm based unstructured pruning method is adopted and a
mask is added to filter out the pruned weight. For quantisation,
the linear (uniform) quantisation method is adopted and a
scaling factor is used to lower the precision of the weights.

B. Bi-Objective Optimisation of Accuracy and Energy Con-
sumption

Due to the proposed two-stage pruning and quantisation co-
optimisation method, one can complete the model compression
and obtain the solution set efficiently. The entire optimisation
process includes two stages. The first stage is for the pre-
processing, which takes around 24 hours. The second stage
is for multi-objective optimisation. The solver can generate
optimal solutions within one hour by using a single NVIDIA
Titan Xp graphics processing unit (GPU) card. Figure 5 shows
the solution sets obtained from the bi-objective optimisation
of accuracy and energy consumption, under the four different
dataflow designs. Each point in the figure corresponds to one
compressed model in the solution set obtained by the bi-
objective optimisation. From the results, one can see that:

• The points marked in different colours cover a large range
of accuracy scores and energy consumption, which means
that EMOMC obtains a solution set with a high diversity
for the model compression of the three baseline CNN
models, under the four dataflow designs. For example,
under the dataflow design of X : Y , the accuracy scores
of MobileNet range from around 75% to 90%, and the
energy consumption from around 0.2 mJ to 0.58 mJ. It
offers the right trade-offs between the two objectives for
meeting the constraints of various edge devices.

• From the perspective of energy consumption, if searching
solutions from the one with the highest energy consump-
tion to the one with the lowest energy consumption, the
loss on accuracy is negligible at the first few points.
For instance, under the dataflow design of X : Y , the
energy consumption of VGG-16 decreases from around
2.3 mJ to 0.5 mJ with an accuracy drop less than 2%.
However, after a certain threshold, the accuracy loss
becomes extremely large. By considering the model’s
accuracy, if searching for solutions from the one with
the highest accuracy to the one with the lowest accuracy,
the reduction of energy consumption is remarkable at the
first few points. However, after a certain threshold, energy
consumption becomes relatively stable.

8

0

0.2

0.4

0.6

0.8

1.0

0.70 0.75 0.80 0.85 0.90

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Accuracy

0

0.5

1.0

1.5

2.0

2.5

0.75 0.80 0.85 0.90 0.95

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Accuracy

1.0

2.0

3.0

4.0

5.0

6.0

0.80 0.85 0.90 0.95 1.0

MobileNet VGG-16 LeNet-5

X:Y (3.4) CI:CO (3.2)

FX:FY (4.6) X:FX (4.7)

X:Y (23.1) CI:CO (21.2)

FX:FY (24.0) X:FX (22.8)

X:Y (31.2) CI:CO (33.1)

FX:FY (31.5) X:FX (28.1)

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

µ
J
)

Accuracy

Fig. 5. The solution sets obtained from the bi-objective optimisation of accuracy and energy consumption on CIFAR-10 (MobileNet and VGG-16) and MNIST
(LeNet-5). The four different dataflow designs are marked with different colours. In the legends, the quoted number after the dataflow design indicates its
energy consumption (mJ) on the original model before the model compression.

0

1.5

3.0

4.5

6.0

7.5

0.70 0.75 0.80 0.85 0.90

M
o
d
e
l
S

iz
e
 (

M
B

y
te

s
)

Accuracy

0

5

10

15

20

25

0.75 0.80 0.85 0.90 0.95

M
o
d
e
l
S

iz
e
 (

K
B

y
te

s
)

Accuracy

0

25

50

75

100

125

0.80 0.85 0.90 0.95 1.0

MobileNet VGG-16 LeNet-5

COO CSR-relative

Normal (12.5)

COO CSR-relative

Normal (59.5)

COO CSR-relative

Normal (240)

M
o
d
e
l
S

iz
e
 (

K
B

y
te

s
)

Accuracy

Fig. 6. The solution sets obtained from the bi-objective optimisation of accuracy and model size on CIFAR-10 (MobileNet and VGG-16) and MNIST
(LeNet-5). The three different coding schemes are marked with different colours. In the legends, the quoted number after normal coding scheme indicates the
size of the original model before the model compression.

0

2

4

6

8

10

0.70 0.75 0.80 0.85 0.90

N
o
rm

a
liz

e
d
 S

c
o
re

Accuracy

0

25

50

75

100

125

0.75 0.80 0.85 0.90 0.95

N
o
rm

a
liz

e
d
 S

c
o
re

Accuracy

0

2

4

6

8

10

0.80 0.85 0.90 0.95 1.0

MobileNet VGG-16 LeNet-5

r/τ = 0.2

r/τ = 1.0

r/τ = 5.0

r/τ = 0.2

r/τ = 1.0

r/τ = 5.0

r/τ = 0.2

r/τ = 1.0

r/τ = 5.0

N
o
rm

a
liz

e
d
 S

c
o
re

Accuracy

Fig. 7. The aggregation scores on CIFAR-10 (MobileNet and VGG-16) and MNIST (LeNet-5) under three different reward over penalty ratios. The scores
are individually normalised by the aggregation score obtained by the uncompressed models.

• Different models prefer different dataflow designs.
Specifically, CI : CO achieves the highest energy effi-
ciency among the four dataflow designs for MobileNet.
However, it is inferior to other dataflow designs for VGG-
16. The reason is that the convolution layers of differ-

ent models have different shapes. In addition to energy
consumption, the latency and cost of edge devices also
depend on dataflow designs. The selection of dataflow
designs involves many factors, which makes it very
difficult in practice. This work explores the optimisation

9

2
-2

2
-1

1

2
1

2
2

0.70 0.75 0.80 0.85 0.90 0.95

X:Y CI:CO

FX:FY X:FX

R
a

ti
o

 o
f

E
n

e
rg

y
 C

o
n

s
.

Accuracy

Fig. 8. The energy consumption of VGG-16 over the energy consumption of
MobileNet under different accuracy scores on CIFAR-10.

2
-3

2
-2

2
-1

1

2
1

2
2

2
3

0.70 0.75 0.80 0.85 0.90 0.95

COO CSR-relative

Normal

R
a

ti
o

 o
f

M
o

d
e

l
S

iz
e

Accuracy

Fig. 9. The model size of VGG-16 over the model size of MobileNet under
different accuracy scores on CIFAR-10.

results on the four popular dataflow designs.

C. Bi-Objective Optimisation of Accuracy and Model Size

Figure 6 demonstrates the solution sets obtained from the bi-
objective optimisation of accuracy and model size, under three
different parameter coding schemes. Each point stands for one
compressed model in the solution set obtained by EMOMC.
The results demonstrate that in terms of diversity the solution
sets show similar patterns with the bi-objective optimisation
of accuracy and energy consumption.

Furthermore, it can be observed that although COO and
CSR are developed to store a sparse matrix, sometimes they
do not save the memory space for the compressed models,
compared with the normal coding scheme. For example, if
pursuing high model accuracy, the normal coding scheme is
the best one among the three coding schemes for MoblieNet.
The reason is that although the COO and CSR coding schemes
only store non-zero elements, they still need several extra bits
to record the position of each non-zero element. If attempting
to keep the model accuracy at a high level, the compression
rate cannot be high, making the memory space saved from
the sparsity of the filter less than the overhead of those extra
bits. In this case, the normal coding scheme is a better choice.
However, if allowing a certain level of accuracy loss, then CSR
is the best among the three coding schemes.

D. Aggregation of Accuracy and Energy Efficiency

Theoretically, higher accuracy comes with higher energy
consumption. Most previous model compression approaches
only allow a negligible loss of accuracy. For applications
on edge devices, it will be acceptable to sacrifice a little
bit of accuracy to achieve substantial improvement in energy
efficiency. For VGG-16, as shown in Figure 5, if 2% of
accuracy loss is acceptable, the energy consumption can be

reduced by around 80%. In the solution sets displayed in
Figure 5, there are some knee points if considering the balance
of both the model accuracy and the energy consumption. To
help users select the model for deployment on edge devices,
a new metric called aggregation score is defined as:

AScore = (f1 · r + (1− f1) · τ) · /f2, (8)

where f1 is the accuracy of the model, and f2 is the corre-
sponding energy consumption. When classifying an image, if
the result is correct, a reward r can be obtained; otherwise, a
penalty τ is performed. By giving a fixed amount of energy
budget, the number of images that can be classified is inversely
proportional to the energy consumed per image f2. From
Equation (8), it can be seen that one of the key parameters
in this aggregation score system is the ratio between the
reward and the penalty r/τ , which indicates the significance of
accuracy. The selection of the optimal solution highly depends
on the ratio r/τ .

Figure 7 displays the aggregation scores of different solu-
tions under three different values of r/τ . Each curve is plotted
based on the results from one execution of the multi-objective
optimisation. As the multi-objective solver generates discrete
points (i.e., solutions), they are plotted in a line using a smooth
function called cspline, which connects consecutive points by
natural cubic splines after rendering the data monotonic. The
scores are individually normalised by the aggregation score
obtained by original uncompressed models. From the results,
it can be observed that most accuracy-energy curves have
one peak point. For the complex neural networks such as
VGG-16, the highest scores will be 125× higher than the
uncompressed model due to its high compression rate. For the
simpler networks such as MobileNet and LeNet, the highest
aggregation score is around 9× more than the original model.

E. On Selection of Neural Networks
On the same dataset, the selection of an optimal neural net-

work depends on how one compresses the model. For instance,
MobileNet is specially designed for computation efficiency;
although its accuracy is slightly lower than VGG-16, it uses
much fewer hardware resources than VGG-16, in terms of
energy efficiency and model size. However, this statement is
true only for the original uncompressed MobileNet and VGG-
16. After model compression, VGG-16 may be more efficient
than MobileNet. Figures 8 and 9 show the ratios of energy
consumption and model size between VGG-16 and MobileNet,
in four dataflow designs and three coding schemes. The results
show that apart from dataflow design CI : CO and the
normal coding scheme, VGG-16 consumes around 50% less
energy and occupies around 50% less memory space than the
MobileNet when the accuracy is below 88%. This observation
shows that although MobileNet is designed for computation
efficiency, one should select a compressed model from a more
complex neural network such as VGG-16. It is more efficient
than the compressed model from simpler neural networks, in
terms of energy efficiency and model size. The reason is that
the number of the parameters or the precision of the parameters
in VGG-16 can be lower than those of MobileNet after the
mode compression.

10

TABLE II
ENERGY CONSUMPTION COMPARISON OF THE COMPRESSED MODELS OBTAINED BY EMOMC AND THE PEER METHODS FOR VGG-16 ON CIFAR-10

Method Accuracy Energy consumption (mJ) Efficiency improvement (×) Aggregation score
loss X : Y CI : CO FX : FY X : FX X : Y CI : CO FX : FY X : FX r/τ = 5.0 r/τ = 1.0 r/. τ = 0.2

EMOMC (ours) 0.3% 1.7 1.7 2.3 2.6 14.0 12.2 10.4 8.9 125.6 97.0 30.0
Pruning Filters [26] 0.2% 18.5 19.6 18.5 19.3 1.2 1.1 1.3 1.2 1.2 1.2 1.4
Play and Prune [50] 0.1% 9.5 12.6 9.5 11.2 2.4 1.7 2.5 2.0 2.2 2.2 2.5

TABLE III
MODEL SIZE COMPARISON OF THE COMPRESSED MODELS OBTAINED BY

MOMC AND THE PEER METHODS FOR VGG-16 ON CIFAR-10

Method Accuracy Model size (MB) Compression rate (×)
loss Normal CSR COO Normal CSR COO

EMOMC (ours) 0.3% 9.8 8.0 24.5 6.1 7.4 2.4
Pruning Filters [26] 0.2% 34.7 37.9 57.3 1.7 1.6 1.0
Play and Prune [50] 0.1% 15.1 16.5 24.6 3.9 3.6 2.4

F. Comparison to State-of-the-Art

Tables II and III report the results of different model
compression methods, in terms of the energy consumption and
the aggregation scores, and model size, respectively. Table II
shows that under negligible accuracy loss (typically, less than
0.5% accuracy loss), EMOMC improves the energy efficiency
and model compression rate by a factor of 11.4× and 5.3×,
on average. There are two reasons for such improvements.
Firstly, the evolutionary multi-objective solver optimises the
problem generation by generation. By allowing a certain range
of accuracy loss, it can generate many intermediate results, and
these results contribute to the improvements in energy effi-
ciency or compression rate. Compared with previous methods
which take accuracy loss as a hard constraint, EMOMC is
more likely to find better results. Secondly, the exploration
space of the model compression process is significantly re-
duced by adopting both pruning and quantisation techniques.
Without the proposed two-stage pruning and quantisation co-
optimisation strategy, previous approaches suffer from too
high computation cost to explore and exploit such a huge
search space. In addition to energy efficiency and compression
rate, the proposed method also shows an average 84.2×
improvement on aggregation scores.

In practice, one needs to select an optimal solution (from the
solution set obtained by an EMO algorithm) for the machine
learning task on a specific device. For instance, after solving
the bi-objective optimisation problem of accuracy and energy
efficiency, a set of solutions can be obtained which trade
off the two objectives. The constraint on the energy can be
calculated based on the energy capacity and battery life. Then,
the solution that achieves the highest accuracy will be selected
as the optimal solution for the task. One can select the knee
point from the solution set as the preferred solution.

VI. CONCLUSION

In this paper, an evolutionary multi-objective model com-
pression approach is proposed to accelerate and compress
DNNs by optimising multiple objectives (e.g., accuracy, en-
ergy efficiency, and model size) simultaneously. As the eval-
uation of each architecture is extremely time-consuming dur-

ing the evolution, a two-stage pruning and optimisation co-
optimisation strategy is developed to speed up the architecture
searching process. Extensive experimental results demonstrate
that the proposed method can obtain a set of diverse networks
in a single execution. Furthermore, the proposed method
outperforms the peer methods in terms of energy efficiency
and model size for model compression of three popular DNNs.

ACKNOWLEDGEMENT

This work is partly supported by the Agency for Sci-
ence, Technology and Research (A*STAR) under its AME
Programmatic Funding Scheme (No. A18A1b0045 and No.
A1687b0033).

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
learning. MIT press Cambridge, 2016, vol. 1, no. 2.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, 2014.
[Online]. Available: https://arxiv.org/abs/1804.09081

[3] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le, “XLNet: Generalized autoregressive pretraining
for language understanding,” in Advances in neural information
processing systems, 2019, pp. 5753–5763.

[4] L. Zhen, P. Hu, X. Peng, R. S. M. Goh, and J. T.
Zhou, “Deep multimodal transfer learning for cross-modal
retrieval,” IEEE Transactions on Neural Networks and
Learning Systems, to be publishsed. [Online]. Available:
https://doi.org/10.1109/TNNLS.2020.3029181

[5] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable
architecture search,” in Proceedings of the International Con-
ference on Learning Representations, 2018.

[6] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang,
“Surrogate-assisted evolutionary deep learning using an end-to-
end random forest-based performance predictor,” IEEE Transac-
tions on Evolutionary Computation, vol. 24, no. 2, pp. 350–364,
2020.

[7] Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervised deep
neural networks for learning meaningful representations,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 1, pp.
89–103, 2018.

[8] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely
automated CNN architecture design based on blocks,” IEEE
Transactions on Neural networks and Learning Systems, vol. 31,
no. 4, pp. 1242–1254, 2020.

[9] ——, “Evolving deep convolutional neural networks for image
classification,” IEEE Transactions on Evolutionary Computa-
tion, vol. 24, no. 2, pp. 394–407, 2020.

[10] S. Han, H. Mao, and W. J. Dally, “Deep Compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” CoRR, 2015. [Online].
Available: https://arxiv.org/abs/1510.00149

[11] Y. Wang, C. Xu, J. Qiu, C. Xu, and D. Tao, “Towards evo-
lutionary compression,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 2476–2485.

https://arxiv.org/abs/1804.09081
https://doi.org/10.1109/TNNLS.2020.3029181
https://arxiv.org/abs/1510.00149

11

[12] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Pruning,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 5687–5695.

[13] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-
aware automated quantization with mixed precision,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: A tutorial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[15] Z. Wang, T. Luo, J. T. Zhou, and R. S. M. Goh, “EDCompress:
Energy-aware model compression with dataflow,” CoRR, 2020.
[Online]. Available: https://arxiv.org/abs/2006.04588

[16] Z. Du et al., “ShiDianNao: Shifting vision processing closer
to the sensor,” in Proceedings of the Annual International
Symposium on Computer Architecture, 2015, pp. 92–104.

[17] M. Song et al., “Towards efficient microarchitectural design
for accelerating unsupervised GAN-based deep learning,” in
Proceedings of the IEEE International Symposium on High
Performance Computer Architecture. IEEE, 2018, pp. 66–77.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-
datacenter performance analysis of a tensor processing unit,”
in Proceedings of the Annual International Symposium on
Computer Architecture, 2017, pp. 1–12.

[19] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
CNN accelerators,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, 2016, pp. 1–12.

[20] J. Qiu et al., “Going deeper with embedded FPGA plat-
form for convolutional neural network,” in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2016, pp. 26–35.

[21] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 367–
379, 2016.

[22] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A
high performance FPGA-based accelerator for large-scale con-
volutional neural networks,” in Proceedings of the International
Conference on Field Programmable Logic and Applications.
IEEE, 2016, pp. 1–9.

[23] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for
efficient DNNs,” in Proceedings of the Advances in Neural
Information Processing Systems, 2016, pp. 1379–1387.

[24] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schet-
tini, “Automated pruning for deep neural network compression,”
in Proceedings of the International Conference on Pattern
Recognition. IEEE, 2018, pp. 657–664.

[25] C. Lemaire, A. Achkar, and P.-M. Jodoin, “Structured pruning of
neural networks with budget-aware regularization,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9108–9116.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” CoRR, 2016. [Online].
Available: https://arxiv.org/abs/1608.08710

[27] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC:
AutoML for model compression and acceleration on mobile de-
vices,” in Proceedings of the European Conference on Computer
Vision, 2018, pp. 784–800.

[28] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain
dynamic pruning for convolutional neural networks,” in Pro-
ceedings of the Advances in Neural Information Processing
Systems, 2018, pp. 1043–1053.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Pro-
ceedings of the Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[31] K. Deb, “Multi-objective optimization,” in Search Methodolo-
gies. Springer, 2014, pp. 403–449.

[32] J. D. Schaffer, “Multiple objective optimization with vector
evaluated genetic algorithms,” in Proceedings of the Interna-
tional Conference on Genetic Algorithms, 1985, pp. 93–100.

[33] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Computing Surveys, vol. 48, no. 1,
2015.

[34] L. Zhen, M. Li, R. Cheng, D. Peng, and X. Yao, “Adjusting
parallel coordinates for investigating multi-objective search,”
in Proceedings of the International Conference on Simulated
Evolution and Learning, Shenzhen, China, 2017, pp. 224–235.

[35] M. Li, L. Zhen, and X. Yao, “How to read many-objective
solution sets in parallel coordinates,” IEEE Computational In-
telligence Magazine, vol. 12, no. 4, pp. 88–100, 2017.

[36] D. E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning. USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[37] N. Srinivas and K. Deb, “Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms,” Evolutionary
Computation, vol. 2, no. 3, pp. 221–248, 1994.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[39] C. A. C. Coello, S. G. Brambila, J. F. Gamboa, M. G. C. Tapia,
and R. H. Gómez, “Evolutionary multiobjective optimization:
Open research areas and some challenges lying ahead,” Complex
& Intelligent Systems, vol. 6, no. 2, pp. 221–236, 2020.

[40] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Good-
man, and W. Banzhaf, “NSGA-Net: Neural architecture search
using multi-objective genetic algorithm,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2019, pp.
419–427.

[41] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neu-
ral architecture search via parameters sharing,” in Proceedings
of the International Conference on Machine Learning, 2018,
pp. 4095–4104.

[42] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (Canadian
Institute for Advanced Research),” Tech Report, 2010. [Online].
Available: http://www.cs.toronto.edu/kriz/cifar.html

[43] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in
python,” IEEE Access, vol. 8, pp. 89 497–89 509, 2020.

[44] M. Zhu and S. Gupta, “To Prune, or Not to Prune: Exploring
the efficacy of pruning for model compression,” CoRR, 2017.
[Online]. Available: https://arxiv.org/abs/1710.01878

[45] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” CoRR,
2017. [Online]. Available: https://arxiv.org/abs/1710.09282

[46] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, 2017. [Online]. Available:
https://arxiv.org/abs/1704.04861

[47] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[48] Xilinx, “Vivado design suite user guide,” Technical Publication,
2018.

[49] E. G. Walters, “Array Multipliers for High Throughput in Xilinx
FPGAs with 6-input LUTs,” Computers, vol. 5, no. 4, p. 20,
2016.

[50] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Play and
Prune: Adaptive filter pruning for deep model compression,”
CoRR, 2019. [Online]. Available: https://arxiv.org/abs/1905.
04446

https://arxiv.org/abs/2006.04588
https://arxiv.org/abs/1608.08710
http://www. cs. toronto. edu/kriz/cifar. html
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.04446
https://arxiv.org/abs/1905.04446

	Introduction
	Preliminaries
	Network Pruning and Quantisation
	Dataflow Design in Hardware Accelerators
	Coding Scheme for the Parameters

	Related Work
	Model Compression
	Evolutionary Multi-Objective Optimisation

	Our Proposed Method
	Problem Formulation
	Multi-Objective Optimisation and Speedup

	Experimental Results and Analysis
	Experimental Setting
	Bi-Objective Optimisation of Accuracy and Energy Consumption
	Bi-Objective Optimisation of Accuracy and Model Size
	Aggregation of Accuracy and Energy Efficiency
	On Selection of Neural Networks
	Comparison to State-of-the-Art

	Conclusion

