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Abstract: Prototype-based approaches generally provide better explainability and are widely used for 
classification. However, the majority of them suffer from system obesity and lack transparency on complex 
problems. In this paper, a novel classification approach with a multi-layered system structure self-organized from 
data is proposed. This approach is able to identify local peaks of multi-modal density derived from static data and 
filter out more representative ones at multiple levels of granularity acting as prototypes. These prototypes are then 
optimized to their locally optimal positions in the data space and arranged in layers with meaningful dense links 
in-between to form pyramidal hierarchies based on the respective levels of granularity accordingly. After being 
primed offline, the constructed classification model is capable of self-developing continuously from streaming 
data to self-expend its knowledge base. The proposed approach offers higher transparency and is convenient for 
visualization thanks to the hierarchical nested architecture. Its system identification process is objective, data-
driven and free from prior assumptions on data generation model with user- and problem- specific parameters. Its 
decision-making process follows the “nearest prototype” principle, and is highly explainable and traceable. 
Numerical examples on a wide range of benchmark problems demonstrate its high performance. 

Keywords: local optimality; multi-granularity; prototype-based; pyramidal hierarchy. 

1. Introduction 
Classification is a hot topic centred in the machine learning and statistic domains. Many classification techniques 
have been developed and successfully applied in various disciplines of science and technology. 

In recent years, deep neural networks (DNNs) have gained enormous popularity among researchers as well as the 
general public thanks to the state-of-the-art performance they demonstrated on many practical applications [25]. 
Despite their success, research communities and industries start calling for explainable artificial intelligence [10] 
due to the increasing concerns on the issues of understandability and trustability of intelligent systems. Compared 
with DNNs and other mainstream classification algorithms such as decision tree (DT) [27] and random forests [4], 
prototype-based approaches (e.g., support vector machines (SVMs) [7], k-nearest neighbour (KNN) [8], learning 
vector quantization (LVQ) [23],[35] and evolving intelligent systems (EISs) [1],[34]) are more popular in the 
application scenarios where the model interpretability plays an important role. Nonetheless, it is also observed 
that prototype-based systems learned from high-dimensional, large-scale, complex problems can be over-sized 
and extremely difficult to interpret [10]. 

To further enhance the interpretability and explainability of prototype-based systems, a feasible way is to organize 
the identified prototypes in layers according to their descriptive abilities [19]. In addition, one may need to 
consider both the objectiveness of the prototype identification process and the local optimality of the learned 
solutions from data in system design because they both determine the effectiveness and validity of prototype-
based approaches. In other words, the learning model should objectively disclose the underlying data patterns 
while providing users with the currently best-fitted solutions from empirically observed data. 

In this paper, a novel multi-granularity locally optimal prototype-based (MLOP) approach with such 
characteristics is proposed for classification. The proposed approach is capable of building a multi-layered 
recognition model with locally optimal prototypes representing local peaks of multi-modal density. In the 
proposed approach, prototypes are firstly identified from data as the most representative samples at multiple levels 
of specificity. Then, they are optimized iteratively to the locally optimal positions to guarantee both the 
effectiveness and validity of the learned solutions. After this, these locally optimal prototypes are arranged 
naturally in a pyramidally hierarchical form according to the respective levels of granularity. In contrast with the 
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classification approach presented in [19], the MLOP classifier is an approach designed for learning locally optimal 
prototypes from static data with the capability of self-determining its model structure. The proposed model builds 
much denser connections between locally optimal prototypes of successive layers based on their spatial scattering, 
resulting in more robust performance across a wide variety of different problems. Despite of being an offline 
learning model, the proposed MLOP classifier is also capable of continuously self-learning from streaming data 
in  a recursive manner after being primed with static data. This further allows the proposed approach to quickly 
self-adapt to new data patterns and makes it suitable for online application scenarios.  

Instead of being a “black box” model, the learning process of the proposed MLOP approach is driven by data 
without involving any prior assumption on data generation model. Any decisions made during the learning and 
decision-making processes are directly based on empirically observed training data, and thus, rationales behind 
the decisions can be explained clearly to humans. The learned prototypes can be visualized in a human-
understandable form objectively reflecting the underlying data patterns.  

Key features of the proposed algorithm are: (1) self-organization of a multi-layered recognition model for 
classification in a fully autonomous, data-driven manner; (2) self-determination of the system structure based on 
the ensemble properties and mutual distribution of data; (3) maximization of the information mined from data by 
iteratively optimizing the obtained solutions; (4) perception of complex problems with multiple levels of 
specificity simultaneously. 

The reminder of this paper is organized as follows. Section 2 provides a review of related works. The algorithmic 
procedure of the MLOP classifier is described in detail in Section 3. Computational complexity of the proposed 
approach is analysed in Section 4. Numerical examples are provided in Section 5 as the proof of the concept. 
Section 6 concludes this paper and points out directions for future work.  

2. Related Works 
Currently, there have been a wide variety of successful classification approaches developed. Due to the limited 
space of this paper, it is practically impossible to cover all of them. The review of related works in this paper is 
focused on mainstream approaches of the two most relevant categories, namely, (1) multi-layered and (2) 
prototype-based.  

DNNs (or artificial neural networks, ANNs) are currently the best-known multi-layered approaches for 
classification. They have achieved great success in many complex recognition tasks involving visual and speech 
information [24],[28],[38], which leads to the recent hot wave of deep learning [25]. Although DNNs are very 
powerful, they suffer from several deficiencies as follows [17],[20],[47]. Firstly, it is well known that the training 
process of DNNs is data- and computational resource- hungry. Without a huge amount of labelled training data 
and powerful computational facilities, it would be very difficult for individuals to fully exploit the learning ability 
and build a well-performing model. Secondly, DNNs are highly complicated models with typically millions of 
hyper-parameters. Their performance depends heavily on careful tuning, and their training and decision-making 
processes lack transparency and are not human-interpretable because of too many interfering factors with almost 
infinite configurational combinations [49]. Thirdly, the performance of DNNs is fragile to new observations with 
unfamiliar patterns, and DNNs can be easily fooled to produce high confidence predictions for images that are 
unrecognizable to humans [29].  

Recent researches have demonstrated that both transfer learning and semi-supervised learning can substantially 
reduce the amount of labelled data needed for DNN training. To be more specific, transfer learning [50] aims to 
train a DNN to solve new problems better and faster using limited labelled training data by utilizing the previously 
learned knowledge from different but related problems. Meanwhile, semi-supervised learning [3],[42] attempts to 
build a strong recognition model by involving a great amount of unlabelled data with a limited amount of labelled 
ones together. Both approaches have demonstrated great success in addressing the data-hunger issue, but other 
issues inherent in DNNs, such as lack of transparency and explainability, remain open.  

There are some alternative multi-layered learning models introduced recently attempting to achieve high-level 
performance competitive to DNNs but with less aforementioned deficiencies. For example, a deep forest 
framework was proposed in [49] by constructing a multi-layered model using random forests as its building blocks. 
Essentially, this approach employs a cascade structure with each level formed by an ensemble of random forests. 
Input information is processed level-by-level in the deep forest model resembling DNNs. A similar multi-layered 
model with gradient boosting DTs as base units was presented in [9]. Nonetheless, both models are complicated, 
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and their transparency and explainability might still be limited depending on the nature of problem. In addition, 
they both are limited to numerical and simple image classification problems. 

By integrating a zero-order EIS [1],[18] with a multi-layer image-processing architecture, deep rule-based (DRB) 
classifiers proposed in [17] serve as a strong alternative to DNNs for image classification problems by offering 
both human-level precision and high model transparency. Same as conventional zero-order EISs [1],[18], DRB 
classifiers are based on prototypes. Prototypes are the most representative samples in the data space. They play 
an instrumental role in prototype-based systems by summarizing the empirically observed data and preserving the 
data structure and class distribution [2],[6],[16],[37]. Compared with DNNs, prototype-based systems have the 
advantages of intuitive model understanding and sparse representation [12]. They are more popular in the 
application scenarios where model interpretability plays an important role. On the other hand, the performance, 
efficiency, system transparency and interpretability of prototype-based systems may vary a lot due to the 
differences in the computational processes for prototype identification.  

KNN classifier is one of the most used and powerful prototype-based classifiers [8]. KNN treats all the training 
samples as prototypes and uses them to classify unlabelled samples by the “nearest neighbours” principle. 
However, this simple operating mechanism also has several weaknesses, such as higher storage requirement, 
lower tolerance to noise, lower computational efficiency for decision-making and lower system interpretability 
[12]. SVM is another most used prototype-based classifier. SVM performs classification based on support vectors 
(namely, prototypes) obtained from data by identifying the maximum-margin hyperplanes in the data space 
through an iterative computational process. Compared with KNN, SVM is far more sophisticated and is 
considered as a typical type of “black box” models. Learning vector quantization (LVQ) [23] and generalized 
learning vector quantization (GLVQ) [35] are also popular prototype-based systems for classification. Both 
algorithms iteratively update a predefined number of prototypes within the data space searching for locally optimal 
solutions based on the principle of competitive learning. However, LVQ and GLVQ are ANNs and their learning 
processes are opaque due to the iterative parameter optimization. In contrast, zero-order EISs are popular for 
streaming data classification thanks to their higher transparency, computational efficiency and human-
interpretability [39], but they, including the aforementioned DRB classifiers, suffer from the problem of system 
obesity when applied to large-scale complex problems [20]. In such cases, the computational efficiency and 
system interpretability of zero-order EISs can be significantly reduced. 

There are a few recently proposed prototype-based approaches worth mentioning. For example, a selective 
prototype-based learning (SPL) algorithm is proposed in [6] for nonstationary streaming data classification. SPL 
learns a set of highly representative samples from streaming data as prototypes for classification and 
simultaneously maintains a separate set of misclassified samples for concept drift detection. However, despite that 
SPL has better capability of handling uncertainties in data streams, its model size as well as a few other parameters 
have to be fixed a priori by users. As a result, the performance of SPL is very much depending on the externally 
controlled parameter setting. An ensemble prototype selection approach is presented in [5] for selecting a set of 
prototypes from training data to achieve the maximum classification accuracy rate by following the “nearest 
neighbours” principle. This approach considers not only the frequencies of data samples that are selected as 
prototypes by the ensemble prototype selectors and but also the relationships between these selected prototypes. 
Nevertheless, this approach would select a very large number of data samples as prototypes from large-scale, 
high-dimensional datasets, making the constructed classification model uninterpretable.  

To address the system obesity problem of prototype-based systems and improve the model transparency, one 
possible solution is to further aggregate the identified prototypes into a smaller number of more descriptive ones 
and organize them into pyramidal hierarchies according to their descriptive abilities. An example of this is the 
two-level approach for streaming data classification, named SyncStream [37]. SyncStream dynamically maintains 
a two-level data structure with the first level storing raw prototypes representing the current data pattern and the 
second level storing highly summarized prototypes representing historical data patterns. Raw prototypes at the 
first level of SyncStream are directly extracted from data and are updated all the time to better capture the current 
data pattern. Once a new data pattern is detected, these raw prototypes that represent the previous data pattern will 
be clustered into more descriptive ones and inserted into the second level, and the first level will then be occupied 
by new raw prototypes. The main issue with SyncStream is that its model size is not self-adjustable from data but 
has to be predetermined by users based on the prior knowledge. If the scale of prototype exceeds the pre-set 
maximum numbers, parts of them have to be either discarded or merged together to save spaces for new prototypes. 
This places a restriction on its applicability in real world applications concerning large-scale data streams with 
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complex structure. In contrast, the hierarchical prototype-based (HP) classifier proposed in [19] is very suitable 
for solving such problems with very high prediction precision and computational efficiency. The HP classifier is 
capable of self-organizing a pyramidical structure composed of meaningful prototypes identified at multiple levels 
of granularity from streaming data and continuously self-evolving to capture the new data patterns. Nevertheless, 
prototypes identified by the HP classifier lacks optimality due to its “one pass” learning mechanism, which may 
adversely influence its prediction precision. Another issue with the HP approach is that its model depth in terms 
of layer number has to be predetermined by users, which may have a great impact on both the precision and 
computational efficiency of the learning model. In addition, the HP classifier will require a full re-training if extra 
layers are added into the system structure.  

3. Proposed Approach 
In this section, the general architecture and computational process of the proposed approach are presented in detail. 

 

Table 1. A summary of key notations and the respective definitions  

Notations Definitions 
 Real metric space  

 Dimensionality of 
 Dataset 

 Cardinality of  
 The data sample observed at the th time instance 

 Number of classes 
 Subset of  belonging to the th class 

 Cardinality of  

 Mean of  

 Mean of ‖ ‖  

 Set of unique data samples of the th class 

 Occurrence frequencies of  

 Cardinality of  

 The th unique data sample of the th class 
 Occurrence frequency of  

 Multimodal density of  
 Layer number of the th prototype-based hierarchy 
 Number of prototypes at the th layer of the th prototype-based hierarchy 
∗ Collection of local maxima of the th class 

∗ The th local maximum of the th class 
 Clusters formed around local maxima of the th class 

 Cluster formed around ∗ 
 Cardinality of  
 Centre of  

,  Collection of neighbouring cluster centres around  at the hth level of 
granularity 

 Average radius of area of influence around each prototype at the th layer of the 
th prototype-based hierarchy 

 Collection of prototypes at the th layer of the th prototype-based hierarchy 

,  The th prototypes at the th layer of the th prototype-based hierarchy 

,  Number of data samples associated with ,  

,  Collection of subordinates of ,  
 Score of confidence on  given by the th prototype-based hierarchy 
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First of all, let , , … , , … ,  ( , , , , … , , ∈ ) be a particular dataset in a real 
metric space,  with the dimensionality of ;  is the cardinality of ; the subscript  indicates the time 
instance at which  is observed. It is assumed that  is composed of data samples of  different classes. Thus, 

 can be divided into  subsets, denoted by , , … ,  ( 1,2, … , ), based on the 

corresponding class labels, where the superscript  denotes the ith class and there is ∑ . For each subset 

, some samples may share the same values, for example,  and . The set of unique data 

samples of the ith class is denoted as , , … ,  ( ⊆ ), and the corresponding occurrence 

frequencies are denoted as , , … , , where  is the occurrence frequency of ;  is the 

cardinality of ; ∑ . Without loss of generality, in this paper, Euclidean distance is used for 

derivation by default. For clarity, key notations and the respective definitions used in this paper are summarized 
in Table 1. 

3.1. General architecture 
The general architecture of the MLOP classifier is given in Fig. 1, where one can see that the proposed approach 
consists of  different prototype-based hierarchies (one hierarchy per class). In Fig. 1, ,  denotes the kth 

prototype at the hth layer of the ith hierarchy; 1,2, … , ; 1,2,… , ;  is the layer number, which 
would be different for each hierarchy and is determined by data;   is the total number of prototypes at the hth 
layer of the ith hierarchy; 1,2, … , . 

 

Fig. 1. General architecture of the proposed approach (1 ; 1 ; 1 ; and 1
) 

 

Each hierarchy is composed of meaningful prototypes identified from data samples of the corresponding class at 
multiple levels of granularity from low to high. Each prototype (except for leaf prototypes at the bottom layer) is 
connected to one or multiple subordinate prototypes at the next layer. At the same time, each prototype (except 
for apex prototypes at the top layer) is linked with one or more superior prototypes at the layer above. However, 
unlike the artificial neurons of adjacent layers in neural networks that are fully connected, links between 
prototypes at the successive layers of the hierarchies within the MLOP classifier are established only when they 
are physically neighbouring in the data space. Note that there is no connection between prototypes at the same 
layer or prototypes of different hierarchies.  

Very importantly, the prototype-based hierarchies can be easily visualized in an easy-to-interpret form, allowing 
users to perceive a problem at multiple levels of granularity. The top layers of the hierarchies usually have only a 
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very small amount of highly descriptive prototypes representing global patterns of data, which can help users to 
quickly capture the big picture. Meanwhile, the lower layers may have a larger number of prototypes, which are 
closer to the raw data samples. These prototypes represent the local patterns of data and can provide lots of fine 
details, but users may have to spend more times to interpret them. In addition, the links between prototypes of 
successive layers provide users very important information regarding the relationships between these global and 
local patterns, which can help users to gain a better understanding of the problem. 

In the next three subsections, the learning and decision-making processes of the MLOP classifier are described in 
detail. 

3.2. Learning process from static data 
In this subsection, the algorithmic procedure for the proposed approach to self-organize a hierarchical structure 
from static data is described in detail. Since the learning process of the proposed approach is performed class-
wise, the ith hierarchy is used as an example for illustration ( 1,2, … , ). The same principles can be applied 
to all other hierarchies within the MLOP classifier. 

Stage 1. Voronoi tessellation formation [18] 

In this stage, the multimodal density value at each unique data sample,  ( ∈ ) of the ith class is firstly 

calculated using equation (1) [2]: 

                                                                                                                          (1) 

where  and  are the respective means of  and ‖ ‖ , which can be calculated by following 

expression: 

∑ ; ∑                                                                                                         (2) 

and ‖ ‖ ∑ ,  denotes the Euclidean norm of .  

Multimodal density behaves like the multimodal discrete probability density function by considering both 
occurrence frequencies and mutual distances of data. It also has multiple local peaks representing the local models 
of data distribution [2],[16]. Data samples with locally maximum multimodal density values can better represent 
the local models of data distribution and thus, are used as prototypes for classification. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 2. Multimodal density obtained from the BA dataset 
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To better deliver the concept, the banknote authentication (BA) dataset1 is employed for visual illustration. BA 
dataset is a binary classification problem very suitable for visualization thanks to its smaller scale and simpler 
structure (2 classes with 1372 data samples in total; each sample has 4 attributes). Here, principal component 
analysis (PCA) is applied to further reduce the dimensionality of data to two for visual clarity. The multimodal 
density values calculated at data samples of classes 1 and 2 using equation (1) are depicted in Figs. 2(a) and 2(b), 
respectively. 

To identify the local peaks of multimodal density, firstly, all the unique data samples, 	are arranged in an 

indexing list, denoted by , with regard to their mutual distances and ensemble properties. The unique data 
sample with the highest multimodal density value is selected as the first element,  of  [16]: 

∈ ; ←                                                                                         (3) 

Then, remaining elements of  are identified one-by-one based on the following rule ( 2,3, … , ) [16]: 

∈ ; ←                                                                        (4) 

Once the full indexing list is built, local maxima, denoted by ∗( ∗ ← ), of multimodal density can be 
identified by Condition 1 ( 2,3, … , -1) [16],[18]: 

	 :
	 1

	 ∗ ← ∗ ∪
               (5) 

where 
1, 0
0, 0
1, 0

 is the sign function; the cardinality of ∗ is ∗.   

Continuing the example in Fig. 2, the ranked multimodal density values in regard to the indexing list obtained by 
equations (3) and (4) are given in Fig. 3, where the identified local maxima by Condition 1 are marked by black 
circles, “○”. In addition, the positions of local maxima in the data space are given in Fig. 4, where dots “•” 
represent data samples. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 3. Ranked multimodal density and local maxima identified using Condition 1 (local maxima are marked by 
black circles, “○”) 

 

 
1 Available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication. 
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After the local maxima, ∗ have been identified, Voronoi tessellations are formed in the data space by using 
them as raw prototypes to attract nearby data samples creating a number of clusters, denoted by : 

∗ ← ∗ ∪ ; ∗ ← , ,…, ∗
∗                                                                           (6) 

where 1,2,… , .  Then, multimodal density values at the centres of the clusters,  are calculated by the 
following equation ( 1,2,… , ∗) [2]: 

                                                                                                                             (7) 

where  is the cardinality of ;  is the centre of  and there is ∑ ∈ . After this, the learning 

algorithm enters the next stage. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 4. Identified local maxima in the data space (dots “•” represent data samples; local maxima are marked by 
black circles, “○”) 

 

Stage 2. Multi-granularity prototype identification 

As the local maxima identified by Condition 1 may contain some less representative ones, in this stage, these 
local maxima are filtered based on their multimodal density values and mutual distances to extract the most 
representative ones as prototypes at different levels of granularity [2],[16],[18]. The identification process starts 
from the first level, namely, 1.  

To extract prototypes at the hth level of granularity, the neighbouring clusters of each cluster need to be identified 
in the first place using the following condition based on the mutual distances of cluster centres ( ,
1,2, … , ∗;	 ) [18]: 

	 :
	

	 , ← , ∪
                                                                                           (8) 

where ,  denotes the collection of neighbouring cluster centres surrounding  at the hth level of granularity; 

 is the corresponding average radius of area of influence around each prototype and is derived by equation (9) 
( 1,2,3, …) [18]: 

∑ ‖ ‖, ∈ ; ;‖ ‖                                                                                                (9) 
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here 2 , which is the average distance between any two data samples of the ith class; 	is 

the number of pairs of data samples within  between which the distance is smaller than .  provides an 

intuitive estimation of the average distance between any two strongly connected prototypes at the hth level of 
granularity by condensing the mutual distribution information extracted from data. Thus,  is guaranteed to be 
valid all the time. Thus, Condition 2 and equation (9) together define the concept of closeness at  multiple levels 
of granularity in a meaningful, data-driven way.  

Then, the following principle is used for identifying prototypes as the most representative local maxima (
1,2, … , ∗) [18]: 

	 :
	 ∈ ,

	 ← ∪
                                                                           (10) 

where  denotes the collection of prototypes of the ith class identified at the hth level of granularity;  is the 
cardinality of . After the prototypes have been extracted, the algorithm enters the next stage to optimize them 
to their locally optimal positions in the data space. 

Stage 3. Prototype optimization 

The local optimality of the obtained prototypes plays a critical role in determining the overall performance of the 
proposed classifier due to its prototype-based nature [18]. Therefore, in this stage, the algorithm optimizes the 
solution obtained in Stage 2, namely,  by iteratively minimizing the following objective function [36]: 

∑ ∑ , , 	
	

                                                                                                                (11) 

where  ,
1, 	 , 	 , ,…, , 	

0,
                                                                   (12) 

Essentially, equation (11) calculates the intra-cluster variance of the partitioning results. To minimize , the 

following two steps are repeated until  converges to the (locally) minimum value [18],[40]: 

Step 1. Create Voronoi tessellations in the data space by using  to attract nearby data samples and form new 
clusters (namely, equation (6)). 

Step 2. Update  as the centres of the newly formed clusters and recalculate the objective function,  
(namely, equation (11)). 

Once  has converges to the (locally) minimum value, the optimization process is completed and  have 
been adjusted to the locally optimal positions. Then, the algorithm enters the next stage. 

Stage 4. Stopping criterion inspection 

In this stage, the learning algorithm uses the following objective function (equation (13)) to assess whether the 
prototypes identified at the hth level of granularity, namely,  have sufficiently partitioned the data space and 
disclosed fine details of the underlying data patterns to build a well-performing recognition model altogether with 

,  ,…,		 .   

∑ ∑ , , 	
	

                                                                                           (13) 

where  is the regularization parameter ( 0);  is the penalty in terms of number of prototypes.  controls 

the trade-off between the intra-cluster variance and the number of prototypes (layers). 

Condition 4 is used for the MLOP classifier to automatically self-determine the most appropriate level of 
granularity: 
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	 :

	 1

	 	 0

	 	 	 	 	 	 	 	 	

               (14) 

Condition 4 is based on the elbow method [22], which is the oldest method for determining the number of clusters 
in the dataset. The elbow method treats the intra-cluster variance of the partitioning results as a function of the 
number of clusters. The appropriate number of clusters is determined when adding extra clusters does not 
significantly reduce the intra-cluster variance of the results. Nonetheless, the elbow method requires visual 
inspection by human experts and is sometimes ambiguous. Condition 4, on the other hand, replaces the human 
inspection process by introducing a penalty term based on the number of prototypes at the corresponding level of 
the hierarchical prototype-based structure.  

If Condition 4 is satisfied, the algorithm proceeds to Stage 5 to form the hierarchical prototype-based structure 
with the identified prototypes ,  ,…,		  and . Otherwise, the algorithm goes back to Stage 2 to extract 
prototypes from data at a higher level of granularity ( ← 1). 

An illustrative example is provided in Fig. 5 showing how the value of  determines the appropriate level of 
granularity for the proposed MLOP classifier by Condition 4, where the blue curve is the relationship between 
the value of the objective function  and the layer number/level of granularity, ; black diamonds “◊” are 
the knee points on the curves where Condition 4 is satisfied given a specific . In general, it can be observed 
from Fig. 5, the MLOP classifier tends to self-organize hierarchies with more layers given a smaller . 

 

 

Fig. 5. Appropriate layer number,  determined by Condition 4 given different values of  

 

Following the visual examples given by Figs. 2-4, Condition 4 is satisfied for data samples of both classes with 
3 given  0.9. In total, there are two, five and 12 prototypes identified from data samples of class 1 at the 

first, second and third levels of granularity by Conditions 2 and 3, respectively. Meanwhile, there are three, five 
and nine prototypes identified from data samples of class 2 correspondingly at the respective three different levels 
of granularity. The obtained locally optimal prototypes by the algorithm at the three levels of granularity from the 
BA dataset are given in Fig. 6, where asterisks “*” represent the prototypes identified at the first level of 
granularity; squares “□” represent the prototypes of the second level; triangles “∆” represent prototypes of the 
third level. 
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(a) 1, class 1                                                                   (b)  1, class 2 

 

(c) 2, class 1                                                                   (d) 2, class 2 

 

(e) 3, class 1                                                                   (b) 3, class 2 

Fig. 6. Locally optimal prototypes obtained by Conditions 2 and 3 at different levels of granularity (asterisks 
“*” represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the 

second level of granularity; triangles “∆” represent prototypes at the third level of granularity) 

 

Stage 5. Prototype-based hierarchy assembly 
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The final stage of the algorithm starts by aggregating prototypes in a multi-layered hierarchical structure based on 
their corresponding levels of granularity. Assuming that Condition 4 is satisfied by prototypes identified at the 

th level of granularity, the algorithm will build a -layer hierarchy with  as the first layer prototypes,  as 
the second layer prototypes,	  as the third layer prototypes, etc.  

Then, the links (superior-subordinate relationships) between prototypes at successive layers are established based 
on Conditions 5a and 5b: 

	 :
	 , , 	 , ,… , ,

	 , ← , ∪ ,

                                        (15) 

	 :
	 , , 	 ∙

	 , ← , ∪ ,

                                                                                      (16) 

where ,  denotes the collection of subordinates of , ; 2,3, … , ; 1,2, … , ; ,
1,2, … , , ; 4. Condition 5a indicates that ,  is recognized as one of the subordinates of ,  if 

its distance to ,  is smaller than its distances to other prototypes at the upper layer. Condition 5b further adds 

neighbouring prototypes of ,   at the same layer into , . Prototypes that satisfy Condition 5b are highly 

likely to be associated with ,  because they are spatially close to , . By establishing links between these 

prototypes and , , the robustness of the decision-making process, which will be detailed in the next subsection, 
will be significantly enhanced at the price of very little extra computation. Note that all prototypes at the bottom 
layer have no subordinates and they are the leaf prototypes of the hierarchy, namely, , ∅, 1,2, … , .  

Once the links between all prototypes at adjacent layers have been built, the learning process of the ith hierarchy 
is completed. The system is ready for classifying unlabelled testing samples after all prototype-based hierarchies 
have been constructed. 

The final three-layer prototype-based hierarchies built by the proposed algorithm from the BA dataset are 
visualized in Fig. 7 following the illustrative example given by Fig. 6, where lines in different colours stand for 
the links between prototypes of successive layers. 

The main procedure of the prototype-based hierarchy identification process is summarized in the following pseudo 
code. 

Input:  
Algorithm begins 
i. Calculate  at  by (1) and (2); 

ii. Reorder  into  by (3) and (4); 
iii. Identify ∗ by Condition 1; 
iv. Form Voronoi tessellation and obtain  by (6); 
v. Calculate  at centres of  by (7); 
vi. ← 0; 
vii. While (Condition 4 is not satisfied) 

a. ← 1; 
b. Identify  by Conditions 2 and 3; 
c. Optimize  by iteratively minimizing ; 

viii. End while 
ix. Initialize the multi-layered structure with ,  ,…,	  and 

; 
x. Build links between prototypes by Conditions 5a and 5b;
Algorithm ends 
Output: the ith prototype-based hierarchy
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(a) Class 1 

  

(b) Class 2 

Fig. 7. Prototype-based hierarchies obtained from the BA dataset using the proposed algorithm (asterisks “*” 
represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the 

second level of granularity; triangles “∆” represent prototypes at the third level of granularity; lines in different 
colours stand for the links between prototypes of successive layers) 

 

3.3. Learning process from streaming data 
After the MLOP classifier has self-organized its system structure and meta-parameters from static training data, 
it can be expected that more training samples become available in the form of data streams. In this subsection, an 
online learning extension is introduced to the proposed approach, which allows the learning model to continuously 
self-develop from streaming data on a sample-by-sample basis.  

The algorithmic procedure of the online learning process of the MLOP classifier is detailed as follows. Note that, 
the online learning process is also performed class-wise. During this stage, the classifier will not add new layers, 
and prototypes may not be at their optimal positions anymore due to the “one pass” updating process. 

For each newly available data sample of the ith class denoted by , the model updating process is performed 

in a top-down layer-by-layer manner. The average radii of area of influence of prototypes at all 	layers are 
firstly updated using equation (17) [18]: 
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←                                                                                                                                  (17) 

where 1,2, … , ;   and  .   

Then,  is compared with the nearest prototype at the hth layer (starting with 1), namely, , ∗  by 

Condition 6 to see whether   has the potential to become a new prototype at this layer [19]: 

	 :
	 , ∗

	 	 	 	 	
                                                                           (18) 

where , ∗
∈ ‖ ‖ 	 1

∈ , ∗
‖ ‖                                                                                       (19) 

The key idea of equation (19) is that, instead of directly searching the nearest one from all leaf prototypes, which 
can be highly computationally expensive, the classifier searches the nearest prototype layer-by-layer in a top-
down manner by only checking the subordinates of the nearest prototype at the next layer. This significantly 
improves the computational efficiency of the nearest prototype searching process because the searching range is 
limited to a small group of subordinate prototypes instead of the entire data space. Such searching strategy 
effectively avoids the waste of computational resources since the majority of prototypes, especially at lower layers, 
are actually far away from  in the data space and should not be considered for nearest neighbour searching. On 
the other hand, compared with the similar approach used in [19], the searching strategy proposed in this paper is 
more robust thanks to the denser connections between prototypes built by Condition 5b. 

If Condition 6 is not satisfied,  is used for updating , ∗ [1]: 

, ∗ ← , ∗ 1; , ∗ ← , ∗
, ∗

, ∗
                                                                                            (20) 

where , ∗ is the number of data samples associated with , ∗. After this,  is passed to the next layer ( ←

1) and compared with the subordinates of , ∗ to see whether  can be a new prototype at the next layer. 

The same process will be repeated until Condition 6 is satisfied or  reaches the bottom layer (namely, 

). 

If  meets Condition 6, it initializes a new prototype at the hth layer and all the layers below using equation  

(21) ( , 1, … , ): 

← 1;
,

← ; ,
← 1; ← ∪

,                                                      (21) 

After the existing prototypes have been updated and/or new prototypes have been added, links between these 
prototypes and other prototypes within this hierarchy are updated and/or established using Condition 5a and 5b. 
The current updating cycle is then completed, and the classifier will move on to learn from the next available data 
sample following the same algorithmic procedure ( ← 1).  

The online prototype-based hierarchy updating process is summarized in the following pseudo code. 

Input: , , , … 
Algorithm begins 
While (  is available) 

i. For 	 1	to :
a. Update  using (17); 

ii. End for 
iii. For 	 1	to : 

a. Identify , ∗ using (19); 
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b. If (Condition 6 is satisfied) 
1. For to : 

- ← 1; 
- Initialize 

,
 and 

,
, expand 	using (21);	

- Build links of 
,

 by Conditions 5a and 5b; 

2. End for 
3. Break for loop; 

c. Else 
1. Update , ∗ and , ∗ using (20); 
2. Update links of , ∗ by Conditions 5a and 5b; 

d. End if 
iv. End for 
v. ← 1; 

End while 
Algorithm ends 
Output: the ith prototype-based hierarchy

 

3.4. Decision-making process 
In this subsection, the algorithmic procedure for decision-making is presented. For an unlabelled sample , the 
local decision-maker of each prototype-based hierarchy will produce a score of confidence based on the distance 
between  and the nearest leaf prototype. The score of confidence produced by the th prototype-based hierarchy 
is calculated by equation (22): 

, ∗
                                                                                                                                       (22) 

where , ∗  is the nearest leaf prototype to  identified by equation (19) in a top-down, layer-by-layer manner. 

A visual example of the decision-making process is given by Fig. 8 for better illustration.    

 

Fig. 8. Illustrative example of the decision-making process (the orange arrows are the exploited paths during the 
searching process; the nearest prototype at each layer is marked by red circle) 

 

Based on the  scores of confidence (one per class), the global decision-maker of the MLOP classifier determines 
the class label of  following the “winner takes all” principle: 

← 	 ∗ ∗
, ,…,                                                                             (23) 
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It is worth noting that the decision-making process of the proposed algorithm follows the “nearest prototype” 
principle, and scores of confidence are directly calculated from the dissimilarities between data samples and the 
most similar leaf prototypes. Therefore, there is no randomness existing during this process and one can easily 
trace back any decisions by examining the exploited paths (see Fig. 8 as example). This allows users to gain a 
straightforward understanding about the rationales behind the decisions made by the MLOP classifier.  

In the next section, computational complexity of the proposed approach will be analysed. 

4. Computational Complexity Analysis 
4.1. Learning process from statistic data 
Since the learning process of the MLOP classifier is conducted class-wise, the ith hierarchy is used as an example. 
In Stage 1 of the learning process, the complexity of calculating multimodal density values at all unique data 
samples is ; the complexity of ranking unique data samples based on their mutual distances is ; 
and the complexity of forming Voronoi tessellation and calculating multimodal density values at local maxima 
are ∗  and ∗ , respectively. During Stage 2, the overall computational complexity for estimating 
the average radius of area of influence and identifying prototypes is . The computational complexity 
of the prototype optimization process in Stage 3 is , where  is the number of iterations for the 
prototypes converge to the locally optimal positions in the data space; the subscript  stands for the current level 
of granularity. Computational complexity of Stage 4 is negligible comparing with other stages. Assuming that 
Stages 2-4 are repeated for   times (the level of granularity increases from 1 to ) until Condition 4 is satisfied 

finally, the overall computational complexity of this process is ∑	 . Stage 5 is for 

building connections between prototypes at adjacent layers and the computational complexity for this process is 

∑ ∑ . Therefore, the overall computational complex of the entire learning 

process to build a recognition model from data by the proposed MLOP approach is ∑ ∑	

∑ ∑ . 

4.2. Learning process from streaming data 
The online updating process of the classifier is also conducted class-wise but on a sample-by-sample basis, 
therefore, the complexity analysis is performed on a particular updating cycle of the ith hierarchy. During the 
updating cycle, the classifier firstly updates the average radii of area of influence of prototypes at all  layers 

with the newly available data sample,  , and the computational complexity is . However, depending 

on the mutual distances between  and prototypes at different layers, the minimum computational complexity 

of the system updating process is reached if  meets Condition 6 at the top layer and is added to the prototype-

based hierarchy as a new prototype at every layer. In this case, the computational complexity is . The 

maximum computational complexity of the updating process is reached if  fails to satisfy Condition 6 and 

is used for updating the nearest prototypes layer-by-layer. In this situation, the computational complexity is 

∑ , ∗ , where	 , ∗  denotes the cardinality of , ∗ . In both cases, the computational 

complexity for updating/initializing the links of these prototypes with other prototypes within the hierarchy is  

∑ ∑ . Therefore, the computational complexity of a particular online updating cycle is 

between  2∑  and	 2 ∑ ∑ , ∗ . 

4.3. Decision-making process 
During the decision-making process, the complexity of the computational process for each hierarchy to produce 

a score of confidence on an unlabelled data sample is ∑ , ∗ , where 1,2, … , . 

Therefore, the overall computational complexity of the decision-making process for a particular data sample is 

∑ ∑ , ∗ . 
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5. Experimental Investigation 
In this section, numerical examples are presented to justify the effectiveness and validity of the proposed approach. 
The performance of the MLOP classifier is evaluated on a variety of widely used benchmark datasets and 
compared with a number of state-of-the-art approaches. The algorithms were developed on MATLAB2018a 
platform, and the performance was evaluated on a desktop with dual core i7 processer 3.60 2 and 16  
RAM. In the numerical examples presented in this section, by default, the MLOP classifier is trained with static 
data in offline scenarios, and the reported numerical results are obtained after 10 Monte Carlo experiments unless 
specifically declared otherwise. 

5.1. Performance demonstration on numerical datasets  
The following eight benchmark datasets are involved in numerical experiments for demonstrating the performance 
of the proposed approach. 

(1) Wilt (WI) dataset2; 

(2) Semeion handwritten digit (SH) dataset3; 

(3) Occupancy detection (OD) dataset4; 

(4) Letter recognition (LR) dataset5; 

(5) Optical recognition of handwritten digits (OR) dataset6; 

(6) Pen-based recognition of handwritten digits (PR) dataset7; 

(7) Phishing websites (PW) dataset8; and, 

(8) Epileptic seizure recognition (ES) dataset9. 

Details of the eight datasets are summarized in Table 2.  

 

Table 2. Details of benchmark numerical datasets for demonstration 

Dataset # Samples # Attributes # Classes
WI Training set 4339 5 + 1 label 2 

Testing set 500
SH 1593 256 + 1 label 10
OD a Training 8143 5 + 1 label 2 

Testing set 1 2664
Testing set 2 9752

LR 20000 16 + 1 label 26
OR 5620 62 + 1 label 10
PR 10996 16 + 1 label 10
PW 10550 30 + 1 label 2
ES 11500 178 + 1 label 2

                                                                                   a Time stamps of the original dataset have been removed. 

 

In the first numerical example, the influence of  on performance and computational complexity of the MLOP 
classifier is investigated. Four benchmark datasets, namely, WI, SH, OD and LR are involved for investigation. 

 
2 Available at: http://archive.ics.uci.edu/ml/datasets/wilt. 
3 Available at: https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit. 
4 Available at: https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+. 
5 Available at: https://archive.ics.uci.edu/ml/datasets/letter+recognition. 
6 Available at: https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits. 
7 Available at: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits. 
8 Available at: https://archive.ics.uci.edu/ml/datasets/phishing+websites. 
9 Available at: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition. 
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For SH and LR datasets, 50% of data samples are randomly selected out to form the training sets and the remaining 
samples are used to form the testing sets. For WI and OD datasets, the original split is adopted, and the order of 
the training samples is randomly scrambled for each experiment. During the experiment, the value of  varies 
from 0 to 0.3. Numerical results including the average layer number (# Layer), classification accuracy, training 
and testing time consumptions (in seconds) are reported in Table 3 in the form of 	 . 
To gain a better picture regarding the system complexity, numbers of prototypes at different layers of the two 
hierarchies identified from the training set of the OD dataset (with 0.05) during a particular experiment are 
reported in Fig. 9.  

As one can see from Table 3, generally, the performance of the proposed approach in terms of classification 
accuracy is stronger with a smaller value of . However, this will inevitably increase the system complexity 
because there will be more layers and more prototypes (see Fig. 9) in the system structure. On the other hand, 
Table 3 also shows that the computational complexity of the training and testing processes is only slightly 
increased with the system structure going deeper. Therefore, in the following numerical examples presented in 
this paper, 0.05 is used by default to pursue higher classification precision. 

 

Table 3. Influence of different values of  on the performance of the MLOP classifier 

Dataset  # Layer Accuracy Training time, s Testing time, s 
WI 0.00 9.0 0.7440±0.0000 3.42±0.17 0.60±0.08 

0.05 5.5 0.7760±0.0000 1.86±0.11 0.32±0.06 
0.10 5.0 0.7880±0.0000 1.73±0.06 0.28±0.03 
0.15 4.0 0.7860±0.0000 1.47±0.03 0.20±0.01 
0.20 4.0 0.7860±0.0000 1.44±0.01 0.21±0.04 
0.25 4.0 0.7860±0.0000 1.47±0.04 0.20±0.02 
0.30 4.0 0.7860±0.0000 1.44±0.01 0.20±0.01 

SH 0.00 4.3 0.8601±0.0101 0.08±0.05 1.85±0.54 
0.05 4.3 0.8601±0.0101 0.06±0.01 1.83±0.54 
0.10 4.3 0.8601±0.0101 0.06±0.01 1.79±0.51 
0.15 4.3 0.8601±0.0101 0.06±0.01 1.79±0.53 
0.20 4.2 0.8600±0.0101 0.06±0.01 1.94±0.63 
0.25 4.2 0.8599±0.0101 0.06±0.02 1.89±0.61 
0.30 4.2 0.8596±0.0099 0.06±0.01 1.80±0.47 

OD 0.00 14.0 0.9435±0.0000 2.10±0.12 16.17±0.12 
0.05 5.0 0.9441±0.0000 2.01±0.02 5.57±0.07 
0.10 4.5 0.9300±0.0000 2.01±0.04 4.95±0.02 
0.15 4.0 0.9290±0.0000 2.04±0.04 4.42±0.05 
0.20 3.5 0.9079±0.0000 2.61±0.04 3.81±0.02 
0.25 3.5 0.9079±0.0000 2.62±0.07 3.81±0.02 
0.30 3.0 0.9075±0.0000 2.59±0.08 3.28±0.20 

LR 0.00 8.7 0.9283±0.0035 0.81±0.09 122.13±2.14 
0.05 7.6 0.9281±0.0034 0.74±0.03 107.67±1.92 
0.10 6.1 0.9273±0.0035 0.67±0.04 102.03±4.36 
0.15 5.4 0.9253±0.0036 0.63±0.03 93.22±1.75 
0.20 5.0 0.9234±0.0051 0.56±0.01 77.55±2.11 
0.25 4.7 0.9187±0.0034 0.53±0.01 71.44±1.48 
0.30 4.4 0.9144±0.0036 0.50±0.02 65.91±2.42 
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Fig. 9. Number of prototypes at different hierarchies identified from training data with 0.05 

 

In the following numerical example, the online learning ability of the proposed MLOP classifier is demonstrated 
based on eight benchmark datasets as listed in Table 1, namely, WI, SH, OD, LR, OR, PR, FW and ES. In 
particular, for SH, LR, FW and ES datasets, 50% of data samples are randomly selected out to form the training 
sets and the remaining samples are used to form the testing sets. For WI, OD, PR and OR datasets, the original 
splits are kept but the orders of training samples are randomly scrambled for each experiment. During the 
experiments, the MLOP classifier is firstly trained with half of the training set in an offline scenario and, then, the 
classifier continues to self-update based on the remaining 10%, 20%, 30%, 40% and 50% training data on a 
sample-by-sample basis online. The classification accuracy rates of the classifier on the testing sets are reported 
in Table 4. The performance of the MLOP classifier trained with the entire training set offline is given in the same 
table as baseline. From Table 4 one can conclude that the MLOP classifier can effectively learn from new 
streaming data samples online after being primed with static data and maintain very high classification precision. 

 

Table 4. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts 
of data for online training 

Dataset Offline Online Training Baseline 
50% 10% 20% 30% 40% 50% 

WI 0.7482 0.7602 0.7734 0.7798 0.7856 0.7884 0.7760
SH 0.8318 0.8367 0.8389 0.8449 0.8477 0.8511 0.8601
OD 0.9455 0.9368 0.9359 0.9336 0.9320 0.9288 0.9441
LR 0.8843 0.9001 0.9123 0.9202 0.9269 0.9326 0.9281
OR 0.9716 0.9735 0.9743 0.9762 0.9765 0.9778 0.9850
PR 0.9673 0.9692 0.9709 0.9732 0.9734 0.9744 0.9757
PW 0.9155 0.9177 0.9216 0.9259 0.9295 0.9334 0.9371
ES 0.9008 0.9079 0.9079 0.9198 0.9237 0.9268 0.9204

 

Furthermore, the impact of different amounts of offline training data on the overall performance of the MLOP 
classifier trained in a hybrid manner (namely, offline training first followed by online training) is further 
investigated. In this example, the MLOP classifier is firstly trained with 30%, 40%, 50%, 60%, 70% and 80% of 
the training data offline, and then continues to learn from the remaining data on a sample-by-sample basis online. 
Classification accuracy rates of the classifier obtained on the testing sets are presented in Table 5. The performance 
of the MLOP classifier trained with the entire training set offline is also given here as baseline. It can be seen from 
Table 5 that, in general, the overall performance of the MLOP classifier trained in a hybrid manner is less 
influenced by the available amount of offline training data. This further demonstrates the effectiveness of the 
online learning mechanism of the proposed approach.  
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Table 5. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts 
of offline training data 

Dataset Offline Training Baseline 
30% 40% 50% 60% 70% 80% 

WI 0.7476 0.7652 0.7884 0.7882 0.7914 0.7806 0.7760
SH 0.8576 0.8525 0.8511 0.8545 0.8551 0.8599 0.8601
OD 0.9270 0.9304 0.9288 0.9288 0.9295 0.9296 0.9441
LR 0.9329 0.9335 0.9326 0.9312 0.9309 0.9291 0.9281
OR 0.9720 0.9737 0.9778 0.9767 0.9774 0.9786 0.9850
PR 0.9746 0.9749 0.9744 0.9752 0.9742 0.9730 0.9757
PW 0.9355 0.9357 0.9334 0.9356 0.9364 0.9339 0.9371
ES 0.9260 0.9266 0.9268 0.9246 0.9240 0.9225 0.9204

 

For better demonstration, statistical performance (classification accuracy and training time consumption, in 
seconds) of the MLOP classifier on the eight benchmark problems, namely, WI, SH, OD, LR, OR, PR, PW and 
ES, in offline scenarios is reported in Table 6 in the form of 	 . During the 
experiments, the same training-testing splits of the eight datasets used in the previous examples are considered. 
In addition, statistical performance of the MLOP classifier trained in a hybrid manner (denoted by MLOP-H) is 
also reported in this table. During the experiments, the MLOP-H classifier is firstly primed with 50% of training 
samples offline and continuously trained with the remaining 50% training samples online.  

The performance of the proposed approach is further compared with the following algorithms: 

(1) SVM classifier with linear kernel [7]; 

(2) DT classifier [27]; 

(3) KNN classifier with 5 [8]; 

(4) Sequence-dictionary-based KNN  (SDKNN) classifier with 5 [32]; 

(5) Sequence classifier (SC) [32]; 

(6) Extreme learning machine (ELM) classifier with maximum 200 neurons [21]; 

(7) Multi-layer perceptron (MLP) network with three hidden layers and 20 neurons in each hidden layer; 

(8) GLVQ with 25 reference vectors per class and the gain factor set as 0.005 [35]; 

(9) Extended sequential adaptive fuzzy inference system (ESAFIS) [34]; 

(10) Zero-order autonomous learning multiple-model system (ALMMo0) [1]; 

(11) Self-organising neuro-fuzzy inference system (SONFIS) with the level of granularity set as 5 [18]; 

(12) Hierarchical prototype-based (HP) classifier with six layers ( 6) [19]. 

SVM, DT and KNN are the most used generic approaches for classification. MLP uses the well-known resilient 
back propagation algorithm for parameter optimization. GLVQ is a prototype-based ANN popular for multi-class 
classification. ELM is a single-layer feedforward neural network for classification. SC and SDKNN are two 
recently introduced dictionary-based approaches for classification. ESAFIS is a first-order EIS designed for 
regression and classification. SONFIS and ALMMo0 are both zero-order EISs with a prototype-based nature. HP 
classifier is prototype-based approach with a multi-layered structure, which is of the same type as the proposed 
MLOP classifier. Nonetheless, the layer number of the HP classifier is predefined by users instead of being 
determined by data and it employs cosine dissimilarity as the distance measure. During the experiments, the 
externally controlled parameters for the involved classification approaches are determined by the commonly used 
experimental protocols and are fixed across different problems due to insufficient prior knowledge. The numerical 
results obtained by the 12 comparative approaches on the eight benchmark datasets are also reported in Table 6 
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following the same experimental protocols, where the training time consumptions of KNN are not reported 
because it literally requires no training.  

For better demonstration, the comparative algorithms are ranked from best to worst on each dataset in terms of 
classification accuracy, and the ranks are given in Table 7. The overall ranks of the algorithms across the eight 
datasets are given in the same table as well. One can see from Table 7 that the overall performance of the proposed 
MLOP classifier is in the second place among the involved classification methods for comparison while the HP 
classifier ranks the top, but the performance of the proposed MLOP approach is relatively more stable. 

 

Table 6. Performance comparison between the 14 classification approaches in terms of classification accuracy 
and training time consumption on the eight benchmark datasets (the best accuracy rates are bolded) 

Dataset WI SH
Algorithm Accuracy Training time, s Accuracy Training time, s 
MLOP 0.7760±0.0000 1.86±0.11 0.8601±0.0101 0.06±0.01 
MLOP-H 0.7884±0.0346 4.03±0.09 0.8511±0.0091 0.69±0.03 
SVM 0.7150±0.0017 54.58±1.73 0.9174±0.0096 0.49±0.29 
DT 0.8140±0.0000 0.04 ± 0.06 0.7103±0.0227 0.12±0.21 
KNN 0.7260±0.0000 0.8767±0.0139
SDKNN 0.3980±0.0000 4.52±0.26 0.8242±0.0255 2.05±0.10 
SC 0.6720±0.0000 5.27±0.27 0.8927±0.0109 3.45±0.13 
ELM 0.8574±0.0044 0.06±0.03 0.3923±0.1212 0.04±0.03 
MLP 0.7008±0.0874 0.73±0.25 0.5933±0.0455 0.40±0.22 
GLVQ 0.6260±0.0000 19.70±0.06 0.8313±0.0142 28.07±1.29 
ESAFIS 0.6258±0.0018 5.53±3.09 0.6736±0.0427 87.58±5.08 
ALMMo0 0.7728±0.0129 0.39±0.08 0.8934±0.0090 0.09±0.03 
SONFIS 0.7960±0.0000 1.12 ± 0.04 0.8680±0.0113 0.04±0.05 
HP 0.8046±0.0166 2.85±0.17 0.8951±0.0097 0.35±0.03 
Dataset OD LR
Algorithm Accuracy Training time, s Accuracy Training time, s 
MLOP 0.9441±0.0000 2.01±0.02 0.9281±0.0034 0.74±0.03 
MLOP-H 0.9288±0.0045 4.19±0.27 0.9326±0.0018 4.83±0.11 
SVM 0.6787±0.2118 164.24±10.28 0.8540±0.0030 15.77±0.54 
DT 0.9314±0.0000 0.04±0.05 0.8235±0.0068 0.12±0.05 
KNN 0.9580±0.0000 0.9325±0.0020
SDKNN 0.7576±0.0000 7.83±0.22 0.8339±0.0050 12.02±0.49 
SC 0.8984±0.0000 22.00±0.73 0.8561±0.0028 27.71±1.09 
ELM 0.9895±0.0002 0.13±0.03 0.5001±0.0585 0.16±0.04 
MLP 0.9152±0.0268 1.05±0.58 0.5160±0.0306 2.24±0.32 
GLVQ 0.9314±0.0000 25.86±1.37 0.7606±0.0089 56.30±0.94 
ESAFIS 0.9586±0.0237 15.26±6.71 0.8251±0.0077 66.85±2.31 
ALMMo0 0.9404±0.0040 0.63±0.11 0.9179±0.0029 0.76±0.19 
SONFIS 0.9382±0.0000 2.51±0.07 0.9223±0.0052 0.27±0.15 
HP 0.7873±0.0116 3.91±0.70 0.9414±0.0011 5.31±0.26 
Dataset OR PR
Algorithm Accuracy Training time, s Accuracy Training time, s 
MLOP 0.9850±0.0000 0.52±0.02 0.9757±0.0000 0.93±0.03 
MLOP-H 0.9786±0.0023 2.62±0.05 0.9744±0.0026 5.07±0.24 
SVM 0.9627±0.0000 0.75±0.31 0.9551±0.0000 58.65±0.90 
DT 0.8525±0.0000 0.06±0.03 0.9122±0.0003 0.04±0.03 
KNN 0.9794±0.0000 0.9760±0.0000
SDKNN 0.9627±0.0000 5.08±0.45 0.9531±0.0000 8.33±0.38 
SC 0.9549±0.0000 8.41±0.69 0.9511±0.0000 12.50±0.45 
ELM 0.9053±0.0096 0.07±0.03 0.9086±0.1622 0.10±0.03 
MLP 0.9304±0.0077 0.92±0.14 0.9459±0.0078 1.13±0.29 
GLVQ 0.9199±0.0000 34.25±1.01 0.8453±0.0000 33.56±0.62 
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ESAFIS 0.9538±0.0067 32.24±10.36 0.9197±0.0134 38.80±5.93 
ALMMo0 0.9789±0.0000 0.33±0.09 0.9752±0.0023 0.56±0.05 
SONFIS 0.9766±0.0000 0.09±0.06 0.9763±0.0000 0.39±0.03 
HP 0.9772±0.0000 1.56±0.21 0.9782±0.0001 3.87±0.07 
Dataset PW ES
Algorithm Accuracy Training time, s Accuracy Training time, s 
MLOP 0.9371±0.0047 1.85±0.08 0.9204±0.0071 41.77±3.43 
MLOP-H 0.9334±0.0052 6.17±0.43 0.9268±0.0119 72.22±16.21 
SVM 0.9262±0.0027 4.76±1.46 0.1921±0.0319 96.19±2.41 
DT 0.9466±0.0030 0.09±0.16 0.9351±0.0036 0.57±0.08 
KNN 0.9314±0.0045 0.9146±0.0072
SDKNN 0.9107±0.0048 5.64±0.40 0.9198±0.0050 15.04±0.52 
SC 0.9456±0.0029 13.71±0.59 0.9452±0.0028 36.29±1.47 
ELM 0.9100±0.0064 0.09±0.03 0.2719±0.2317 0.12±0.03 
MLP 0.9386±0.0066 0.57±0.34 0.9408±0.0493 1.05±0.40 
GLVQ 0.9099±0.0050 24.65±0.90 0.6983±0.2589 35.53±0.94 
ESAFIS 0.9413±0.0027 244.20±69.50 0.9044±0.0123 909.64±89.66 
ALMMo0 0.9436±0.0044 0.93±0.08 0.8937±0.0025 25.77±3.19 
SONFIS 0.9138±0.0038 0.66±0.09 0.8884±0.0140 2.24±0.07 
HP 0.9450±0.0050 1.92±0.39 0.8941±0.0026 3.23±0.37 

 

Table 7. Overall classification accuracy ranks of comparative algorithms 

Algorithm Rank 
WI SH OD LR OR PR PW ES Overall 

MLOP 6 7 4 4 1 4 7 5 4.8±2.0 
MLOP-H 5 8 9 2 4 6 8 4 5.8±2.4 
SVM 9 1 14 8 7 7 10 14 8.8±4.2 
DT 2 11 7 11 14 12 1 3 7.6±5.1 
KNN 8 5 3 3 2 3 9 7 5.0±2.7 
SDKNN 14 10 13 9 8 8 12 6 10.0±2.8 
SC 11 4 11 7 9 9 2 1 6.8±4.0 
ELM 1 14 1 14 13 13 13 13 10.3±5.7 
MLP 10 13 10 13 11 10 6 2 9.4±3.7 
GLVQ 12 9 8 12 12 14 14 12 11.6±2.1 
ESAFIS 13 12 2 10 10 11 5 8 8.9±3.7 
ALMMo0 7 3 5 6 3 5 4 10 5.4±2.3 
SONFIS 4 6 6 5 6 2 11 11 6.4±3.2 
HP 3 2 12 1 5 1 3 9 4.5±4.0 

 

In addition, confusion matrices obtained by the MLOP classifier and the 12 comparative algorithms on the four 
binary classification problems, namely, WI, OD, PW and ES are reported in Table 8 for better comparison. 

 

Table 8. Confusion matrices obtained by the MLOP and 12 comparative classifiers on the four binary 
classification problems (the best results are bolded) 

Dataset Algorithm True 
positive

False 
negative

False 
positive

True 
negative 

WI MLOP 79.0 108.0 4.0 309.0
SVM 66.2 120.8 21.7 291.3
DT 107.0 80.0 13.0 300.0
KNN 51.0 136.0 1.0 312.0
SDKNN 38.0 149.0 15.0 298.0
SC 187.0 0.0 301.0 12.0
ELM 125.5 61.5 9.8 303.2 
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MLP 44.5 142.5 7.1 305.9
GLVQ 0.0 187.0 0.0 313.0
ESAFIS 0.2 186.8 0.3 312.7
ALMMo0 83.1 103.9 9.7 303.3
SONFIS 111.0 76.0 26.0 287.0
HP 117.6 69.4 28.3 284.7

OD MLOP 9098.0 298.0 396.0 2625.0
SVM 7189.9 2206.1 1784.1 1236.9
DT 9048.0 348.0 504.0 2517.0
KNN 9030.0 366.0 156.0 2865.0
SDKNN 8755.0 641.0 620.0 2401.0
SC 9394.0 2.0 3008.0 13.0
ELM 9281.8 114.2 16.3 3004.7 
MLP 8697.7 698.3 354.2 2666.8
GLVQ 8724.0 672.0 180.0 2841.0
ESAFIS 9073.6 322.4 191.7 2829.3
ALMMo0 9100.5 295.5 444.8 2576.2
SONFIS 9207.0 189.0 578.0 2443.0
HP 7647.3 1748.7 893.0 2128.0

PW MLOP 2893.6 184.9 162.9 2287.1
SVM 2913.4 165.1 242.9 2207.1
DT 2939.0 139.5 155.8 2294.2 
KNN 2898.6 179.9 199.4 2250.6
SDKNN 2968.4 110.1 190.8 2259.2
SC 2831.0 247.5 246.3 2203.7
ELM 2935.4 143.1 354.3 2095.7
MLP 2925.4 153.1 186.2 2263.8
GLVQ 2886.9 191.6 306.4 2143.6
ESAFIS 2950.3 128.2 196.3 2253.7
ALMMo0 2936.3 142.2 169.6 2280.4
SONFIS 2894.5 184.0 292.5 2157.5
HP 2982.9 95.6 208.4 2241.6

ES MLOP 710.1 437.2 18.9 4583.8
SVM 779.0 368.3 4277.2 325.5
DT 955.7 191.6 181.7 4421.0
KNN 662.5 484.8 6.0 4596.7
SDKNN 843.1 304.2 11.0 4591.7
SC 692.9 454.4 6.6 4596.1 
ELM 1131.1 16.2 4170.5 432.2
MLP 878.9 268.4 72.1 4530.6
GLVQ 323.5 823.8 911.0 3691.7
ESAFIS 690.6 456.7 93.0 4509.7
ALMMo0 795.8 351.5 259.9 4342.8
SONFIS 604.9 542.4 99.5 4503.2
HP 795.5 351.8 257.3 4345.4

 

5.2. Performance demonstration on benchmark image sets 
In this subsection, the following four challenging image recognition problems are involved for evaluating the 
performance of the proposed approach on large-scale, high-dimensional, complex problems. 

(1) MNIST dataset10; 

(2) Fashion MNIST dataset11; 

 
10 Available at http://yann.lecun.com/exdb/mnist/. 
11 Available at https://github.com/zalandoresearch/fashion-mnist. 
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(3) Caltech101 dataset12, and; 

(4) Caltech256 dataset13; 

Example images of the four datasets are given in Fig. 10. 

 

 

(a) MNIST 

 

(b) Fashion MNIST 

 

(c) Caltech101 

 

(d) Caltech256 

Fig. 10. Example images of the four benchmark image sets for performance evaluation. 

 

Firstly, the performance of the MLOP classifier for image classification is evaluated on MNIST and Fashion 
MNIST datasets. In this example, for both datasets, all the training and testing images are converted into 784×1 
dimensional vectors and, then, directly used to train and test the proposed algorithm. The classification accuracy 
rates of the proposed approach on testing images of the two problems are reported in Table 9. For better evaluation, 

 
12 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/. 
13 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/. 
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10 comparative algorithms used in previous experiments are involved in this numerical example under the same 
experimental protocol, and their performances in terms of classification accuracy rates are reported in Table 9 for 
visual clarity. Note that, in this example, a MLP with three hidden layers, 200 neurons in each (in total, 600 
neurons) is used instead due to the much larger problem size. 

Table 9. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 
MNIST and Fashion MNIST datasets (the best accuracy rates are bolded) 

Algorithm MNIST Fashion MNIST
Original Gist Original Gist

MLOP 0.9696 0.9835 0.8496 0.8886
SVM 0.9438 0.9857 0.8497 0.8871
DT 0.8779 0.9010 0.7934 0.8142
KNN 0.9684 0.9875 0.8554 0.8957 
SDKNN 0.9555 0.9802 0.8660 0.8876
SC 0.9646 0.9762 0.8738 0.8817
ELM 0.1453 0.9122 0.3557 0.8045
MLP 0.8781 0.9577 0.7637 0.8869
ALMMo0 0.9683 0.9864 0.8589 0.8862
SONFIS 0.9681 0.9865 0.8610 0.8876
HP 0.9652 0.9864 0.8557 0.8845

 

Furthermore, the Gist feature descriptor [30] is used to extract 512×1 dimensional feature vectors from the original 
training/testing images of the two problems. Experiments are repeated by training and testing the algorithms with 
the Gist features of the images. The obtained results by the 11 approaches are reported in Table 9 as well. The 
average layer numbers of the prototype-based hierarchies that the MLOP classifier self-organized from the 
training images during the experiments are presented in Fig. 11.  

Finally, the performance of the MLOP classifier is evaluated on Caltech101 and Caltech256 datasets. A ensemble 
feature descriptor formed by pretrained AlexNet [24] and VGG-VD-16 [38] models is employed for feature 
extraction, which extracts a 9192×1 dimensional discriminative representation, denoted by  from each image, : 

‖ ‖
,
‖ ‖

                                                                                                                      (24) 

where  is the 9192×1 dimensional discriminative representation of  obtained by the ensemble feature 
descriptor;  and  are the 1×4096 dimensional activations extracted from the first fully connected 
layer of the AlexNet and VGG-VD-16 models, respectively.  

Following the common practice [41], for Caltech101 image set, 15 and 30 images are randomly selected out from 
each category for training, respectively, and the rest of the dataset are used for testing. For Caltech256 image set, 
15, 30, 45 and 60 images are randomly selected from each category for training, respectively, and the rest images 
are used for testing. The classification accuracy rates achieved by the MLOP classifier and four comparative 
approaches, namely, SVM, KNN, ALMMo0 and HP, on the testing sets of the two datasets are tabulated in Tables 
10 and 11, respectively. In addition, selected state-of-the-art results reported by recent publications are given in 
the same tables for better evaluation. The average layer numbers of the prototype-based hierarchies that MLOP 
classifier self-organized from the training sets of Caltech101 and Caltech256 are presented in Fig. 11 as well. 

Furthermore, three prototype-based hierarchies that the MLOP classifier identifies from training images of the 
“airplane”, “llama” and “snoopy” classes (30 images per class) in the Caltech101 dataset during a particular 
experiment are visualized in Fig. 12. However, as both the learning and classification processes of the MLOP 
classifier are conducted based on the feature vectors instead of raw images during numerical experiments, the 
training images with feature vectors that are the most similar to the identified prototypes are used for visualization 
in the depicted hierarchies. 
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Table 10. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 
Caltech101 dataset (the best accuracy rates are bolded) 

Algorithm 
Accuracy

15 Training Images 30 Training Images 
MLOP 0.9037±0.0047 0.9272±0.0043 
SVM 0.8729±0.0104 0.9027±0.0087 
KNN 0.8721±0.0079 0.9100±0.0042 

ALMMo0 0.8491±0.0062 0.8864±0.0047 
HP 0.8863±0.0060 0.9224±0.0040 

ICAC [44] 0.7148±0.0056 0.7663±0.0079 
CASE-LLC-SVM  [28] 0.6400±0.0040 0.7140±0.0120 

DEFEATnet [11] 0.7128±0.0061 0.7760±0.0096 
RNPCANet [33] - 0.7227±0.0102 
VLAD-LLC [26] - 0.8923

LEFSI  [31] 0.7721±0.0061 0.8578±0.0037 
ESRO-BoW [13] 0.8052 0.8535
DEL-BoW [14] 0.8269 0.8691

 

Table 11. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 
Caltech256 dataset (the best accuracy rates are bolded) 

Algorithm 
Accuracy

15 Training 
Images

30 Training 
Images

45 Training 
Images

60 Training 
Images

MLOP 0.6854±0.0033 0.7144±0.0032 0.7265±0.0030 0.7376±0.0027 
SVM Out of System Memory
KNN 0.6251±0.0031 0.6805±0.0029 0.7091±0.0035 0.7310±0.0024

ALMMo0 0.6239±0.0033 0.6711±0.0026 0.6976±0.0034 0.7187±0.0029
HP 0.6353±0.0045 0.6908±0.0029 0.7172±0.0034 0.7347±0.0030

DEFEATnet  [11] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032
VLAD-LLC [26] - - - 0.7425

LEFSI [31] 0.3657±0.0056 0.4721±0.0069 0.5081 ± 0.0041 0.5290 ± 0.0048
DEL-BoW [14] 0.6122 0.6925 - 0.7257
LSC-LG [43] 0.4314±0.0063 0.5062±0.0053 0.5327±0.0056 0.5576±0.0048
OCB-FV [47] 0.4403±0.0046 0.5315±0.0044 0.5784±0.0040 0.5903±0.0045

SWSS-DeCAF [45] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044
SWSS-FV [45] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041
SC2-CNN [46] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050

ResNet101-COMO-2 [48] - 0.4466 - 0.6707
 

 

Fig. 11. Average layer numbers of the prototype-based hierarchies identified by the MLOP classifier during 
numerical experiments on benchmark image sets 
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(a)Airplane                                                                   (b) Llama 

 

(c) Snoopy 

Fig. 12. Three prototype-based hierarchies that the MLOP classifier identifies from the respective training 
images of three different classes of the Caltech101 dataset 

 

5.3. Discussions 
From Tables 6-11 one can see that the proposed approach demonstrates very high classification performance on 
all benchmark problems surpassing or, at least, on par with the state-of-the-art approaches. In addition, despite 
that the MLOP classifier learns from static data offline, Table 6 shows that in many cases, its computational 
efficiency is higher than the majority of alternative prototype-based approaches involved in the experiments. It is 
demonstrated by Tables 4, 5 and 6 that the MLOP classifier can continue to self-learn and self-update from 
streaming data online to incorporate newly observed data patterns. In addition, one interesting feature of the 
MLOP classifier is that its multi-layered system structure and meta-parameters are derived from data based on the 
ensemble properties and mutual distribution in a straightforward way. The user-controlled parameter,  only 
controls the trade-off between the intra-cluster variance and the number of prototypes in the constructed model 
without influencing the objectiveness of the prototype identification process. Therefore, the MLOP classifier 
keeps the advantage of objectiveness of data-driven approaches, and the effectiveness and validity of its learning 
results are always guaranteed for different problems. 



28 
 

On the other hand, it needs to be kept in mind that a classifier might behave very differently depending on the 
nature of data. The proposed MLOP classifier categorizes unlabelled samples based on the “nearest prototype” 
principle. This decision-making mechanism is similar to the “nearest neighbour” principle used by the KNN 
classifier and would become less effective when data is not linearly separable. Therefore, one may notice from 
Table 6 that MLOP generally performs less well on nonlinear problems such as the WI, PW and ES dataset. The 
same problem can be observed from the KNN, ALMMo0 and HP classifiers as well. Meanwhile, DT, MLP, SC 
and ELM usually perform better on such types of problems because they are nonlinear classifiers. To further 
improve the ability of the MLOP classifier on nonlinear problems, one may use the kernel trick to transform the 
observed data samples into higher dimensions and make them linearly separable.  

Furthermore, the MLOP classifier in this paper uses the Euclidean distance as the default distance measure. 
However, it has been widely recognized that different distance measures have different focuses on disclosing the 
ensemble properties of data. The differences can be even more significant in higher dimensional data spaces. For 
example, many commonly used distance metrics, including Euclidean distance, city block distance and 
Mahalanobis distance, suffer from the so-called “curse of dimensionality”. In contrast, cosine dissimilarity is more 
frequently used for handling high-dimensional problems. Therefore, it is of great importance for a classifier to use 
a suitable distance measure for a particular problem. Otherwise, this might have an adverse impact on the 
performance of the system. As another direction for improvement, it would be valuable to introduce some 
modifications to the MLOP classifier, enabling it to work with various types of distance measures.  

It also has to be admitted that the proposed MLOP classifier might not be suitable for extremely large-scale 
problems. Its operating mechanism requires a time-consuming iterative searching process to identify the locally 
optimal prototypes for classification. This would become a huge computation burden if there is a huge amount of 
training samples or a locally optimal solution cannot be easily found due to the very high dimensionality and/or 
complex structure of data. Therefore, it can be observed that the computation efficiency of the MLOP classifier 
is surpassed by a number of comparative approaches on WI, OD, PW and ES datasets. Although the MLOP 
classifier can continuously self-learn from new data sample-by-sample after being primed offline, the 
computational efficiency of the online learning process is lower than ALMMo0 and HP classifiers due to its multi-
layered structure and denser links in-between. One feasible way to address this issue is to introduce some 
alternative online learning mechanism to the MLOP classifier. 

Last but not least, it needs to be clarified that the model transparency and explainability offered by the hierarchical 
prototype-based structure and the traceable inference mechanism of the MLOP classifier are mostly for machine 
learning experts/specialists to perform model diagnostics rather than for end users. To further enhance the end-
user explainability, one possible solution is to provide users with local explanation in terms of attribute importance 
based on the model topology. However, this is beyond the scope of this paper.  

6. Conclusion and Future Work 
This paper presents a novel approach named MLOP for classification. The proposed MLOP approach identifies 
locally optimal prototypes from data at multiple levels of granularity and self-organizes a multi-layered system 
structure by aggregating these prototypes in a pyramidally hierarchical form in regard to the respective levels of 
granularity. Unlike alternative mainstream algorithms, i.e., DNNs, the inner structure of the MLOP classifier is 
highly transparent and interpretable. In addition, it can continuously self-update with new data samples. Its 
decision-making process is fully explainable and traceable by following the “nearest prototype” principle, which 
is of great importance for financial and safety-critical applications. Most importantly, the learned knowledge by 
the proposed approach from data can be visualized in a human-interpretable form of prototype-based hierarchies. 
A much smaller number of highly abstract prototypes at the top layers of the hierarchies can provide users a 
general picture of the problem by summarizing key information. Meanwhile, a larger number of low-level 
prototypes can provide users fine details of the problem. Numerical examples demonstrated the efficacy of the 
proposed MLOP approach, showing its strong potential in real-world applications by offering both high predictive 
precision and explainablity.  

There are several considerations for future work. Firstly, the MLOP classifier requires one user-controlled 
parameter to control the trade-off between the intra-cluster variance and the number of prototypes in the system 
(equation (13)). Although this parameter can be determined without prior knowledge of the problem, involving a 
new mechanism to automatically self-adjust its value based on the observed data can further enhance the autonomy 
and robustness of the proposed approach. Secondly, some modifications are needed to enable the MLOP classifier 
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to work with different types of distance measures, enhancing its ability to handle data of different natures. Thirdly, 
the online learning scheme of the proposed approach needs to be improved to speed up the overall computational 
process for handling large-scale problems. In addition, introducing a semi-supervised learning mechanism to the 
proposed MLOP approach can be very helpful considering the very small ratios between labelled and unlabelled 
samples in many real-world applications. Finally, as aforementioned, it will be very useful to further improve the 
end-user explainability of the proposed approach by explaining the importance of different attributes during 
decision-making, such that users can better understand the inner relationships between input attribute values and 
model outputs.   
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