

University of Birmingham

A multi-granularity locally optimal prototype-based
approach for classification
Gu, Xiaowei; Li, Miqing

DOI:
10.1016/j.ins.2021.04.039

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gu, X & Li, M 2021, 'A multi-granularity locally optimal prototype-based approach for classification', Information
Sciences, vol. 569, pp. 157-183. https://doi.org/10.1016/j.ins.2021.04.039

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1016/j.ins.2021.04.039
https://doi.org/10.1016/j.ins.2021.04.039
https://birmingham.elsevierpure.com/en/publications/d66f7da2-6551-4620-ba94-4a37fb51612e

1

A Multi-Granularity Locally Optimal Prototype-Based
Approach for Classification

Xiaowei Gu1, Miqing Li2

1Department of Computer Science, Institute of Mathematics, Physics and Computer Science, Aberystwyth
University, Aberystwyth, SY23 3DB, UK

2School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Emails: xig4@aber.ac.uk; m.li.8@cs.bham.ac.uk

Abstract: Prototype-based approaches generally provide better explainability and are widely used for
classification. However, the majority of them suffer from system obesity and lack transparency on complex
problems. In this paper, a novel classification approach with a multi-layered system structure self-organized from
data is proposed. This approach is able to identify local peaks of multi-modal density derived from static data and
filter out more representative ones at multiple levels of granularity acting as prototypes. These prototypes are then
optimized to their locally optimal positions in the data space and arranged in layers with meaningful dense links
in-between to form pyramidal hierarchies based on the respective levels of granularity accordingly. After being
primed offline, the constructed classification model is capable of self-developing continuously from streaming
data to self-expend its knowledge base. The proposed approach offers higher transparency and is convenient for
visualization thanks to the hierarchical nested architecture. Its system identification process is objective, data-
driven and free from prior assumptions on data generation model with user- and problem- specific parameters. Its
decision-making process follows the “nearest prototype” principle, and is highly explainable and traceable.
Numerical examples on a wide range of benchmark problems demonstrate its high performance.

Keywords: local optimality; multi-granularity; prototype-based; pyramidal hierarchy.

1. Introduction
Classification is a hot topic centred in the machine learning and statistic domains. Many classification techniques
have been developed and successfully applied in various disciplines of science and technology.

In recent years, deep neural networks (DNNs) have gained enormous popularity among researchers as well as the
general public thanks to the state-of-the-art performance they demonstrated on many practical applications [25].
Despite their success, research communities and industries start calling for explainable artificial intelligence [10]
due to the increasing concerns on the issues of understandability and trustability of intelligent systems. Compared
with DNNs and other mainstream classification algorithms such as decision tree (DT) [27] and random forests [4],
prototype-based approaches (e.g., support vector machines (SVMs) [7], k-nearest neighbour (KNN) [8], learning
vector quantization (LVQ) [23],[35] and evolving intelligent systems (EISs) [1],[34]) are more popular in the
application scenarios where the model interpretability plays an important role. Nonetheless, it is also observed
that prototype-based systems learned from high-dimensional, large-scale, complex problems can be over-sized
and extremely difficult to interpret [10].

To further enhance the interpretability and explainability of prototype-based systems, a feasible way is to organize
the identified prototypes in layers according to their descriptive abilities [19]. In addition, one may need to
consider both the objectiveness of the prototype identification process and the local optimality of the learned
solutions from data in system design because they both determine the effectiveness and validity of prototype-
based approaches. In other words, the learning model should objectively disclose the underlying data patterns
while providing users with the currently best-fitted solutions from empirically observed data.

In this paper, a novel multi-granularity locally optimal prototype-based (MLOP) approach with such
characteristics is proposed for classification. The proposed approach is capable of building a multi-layered
recognition model with locally optimal prototypes representing local peaks of multi-modal density. In the
proposed approach, prototypes are firstly identified from data as the most representative samples at multiple levels
of specificity. Then, they are optimized iteratively to the locally optimal positions to guarantee both the
effectiveness and validity of the learned solutions. After this, these locally optimal prototypes are arranged
naturally in a pyramidally hierarchical form according to the respective levels of granularity. In contrast with the

2

classification approach presented in [19], the MLOP classifier is an approach designed for learning locally optimal
prototypes from static data with the capability of self-determining its model structure. The proposed model builds
much denser connections between locally optimal prototypes of successive layers based on their spatial scattering,
resulting in more robust performance across a wide variety of different problems. Despite of being an offline
learning model, the proposed MLOP classifier is also capable of continuously self-learning from streaming data
in a recursive manner after being primed with static data. This further allows the proposed approach to quickly
self-adapt to new data patterns and makes it suitable for online application scenarios.

Instead of being a “black box” model, the learning process of the proposed MLOP approach is driven by data
without involving any prior assumption on data generation model. Any decisions made during the learning and
decision-making processes are directly based on empirically observed training data, and thus, rationales behind
the decisions can be explained clearly to humans. The learned prototypes can be visualized in a human-
understandable form objectively reflecting the underlying data patterns.

Key features of the proposed algorithm are: (1) self-organization of a multi-layered recognition model for
classification in a fully autonomous, data-driven manner; (2) self-determination of the system structure based on
the ensemble properties and mutual distribution of data; (3) maximization of the information mined from data by
iteratively optimizing the obtained solutions; (4) perception of complex problems with multiple levels of
specificity simultaneously.

The reminder of this paper is organized as follows. Section 2 provides a review of related works. The algorithmic
procedure of the MLOP classifier is described in detail in Section 3. Computational complexity of the proposed
approach is analysed in Section 4. Numerical examples are provided in Section 5 as the proof of the concept.
Section 6 concludes this paper and points out directions for future work.

2. Related Works
Currently, there have been a wide variety of successful classification approaches developed. Due to the limited
space of this paper, it is practically impossible to cover all of them. The review of related works in this paper is
focused on mainstream approaches of the two most relevant categories, namely, (1) multi-layered and (2)
prototype-based.

DNNs (or artificial neural networks, ANNs) are currently the best-known multi-layered approaches for
classification. They have achieved great success in many complex recognition tasks involving visual and speech
information [24],[28],[38], which leads to the recent hot wave of deep learning [25]. Although DNNs are very
powerful, they suffer from several deficiencies as follows [17],[20],[47]. Firstly, it is well known that the training
process of DNNs is data- and computational resource- hungry. Without a huge amount of labelled training data
and powerful computational facilities, it would be very difficult for individuals to fully exploit the learning ability
and build a well-performing model. Secondly, DNNs are highly complicated models with typically millions of
hyper-parameters. Their performance depends heavily on careful tuning, and their training and decision-making
processes lack transparency and are not human-interpretable because of too many interfering factors with almost
infinite configurational combinations [49]. Thirdly, the performance of DNNs is fragile to new observations with
unfamiliar patterns, and DNNs can be easily fooled to produce high confidence predictions for images that are
unrecognizable to humans [29].

Recent researches have demonstrated that both transfer learning and semi-supervised learning can substantially
reduce the amount of labelled data needed for DNN training. To be more specific, transfer learning [50] aims to
train a DNN to solve new problems better and faster using limited labelled training data by utilizing the previously
learned knowledge from different but related problems. Meanwhile, semi-supervised learning [3],[42] attempts to
build a strong recognition model by involving a great amount of unlabelled data with a limited amount of labelled
ones together. Both approaches have demonstrated great success in addressing the data-hunger issue, but other
issues inherent in DNNs, such as lack of transparency and explainability, remain open.

There are some alternative multi-layered learning models introduced recently attempting to achieve high-level
performance competitive to DNNs but with less aforementioned deficiencies. For example, a deep forest
framework was proposed in [49] by constructing a multi-layered model using random forests as its building blocks.
Essentially, this approach employs a cascade structure with each level formed by an ensemble of random forests.
Input information is processed level-by-level in the deep forest model resembling DNNs. A similar multi-layered
model with gradient boosting DTs as base units was presented in [9]. Nonetheless, both models are complicated,

3

and their transparency and explainability might still be limited depending on the nature of problem. In addition,
they both are limited to numerical and simple image classification problems.

By integrating a zero-order EIS [1],[18] with a multi-layer image-processing architecture, deep rule-based (DRB)
classifiers proposed in [17] serve as a strong alternative to DNNs for image classification problems by offering
both human-level precision and high model transparency. Same as conventional zero-order EISs [1],[18], DRB
classifiers are based on prototypes. Prototypes are the most representative samples in the data space. They play
an instrumental role in prototype-based systems by summarizing the empirically observed data and preserving the
data structure and class distribution [2],[6],[16],[37]. Compared with DNNs, prototype-based systems have the
advantages of intuitive model understanding and sparse representation [12]. They are more popular in the
application scenarios where model interpretability plays an important role. On the other hand, the performance,
efficiency, system transparency and interpretability of prototype-based systems may vary a lot due to the
differences in the computational processes for prototype identification.

KNN classifier is one of the most used and powerful prototype-based classifiers [8]. KNN treats all the training
samples as prototypes and uses them to classify unlabelled samples by the “nearest neighbours” principle.
However, this simple operating mechanism also has several weaknesses, such as higher storage requirement,
lower tolerance to noise, lower computational efficiency for decision-making and lower system interpretability
[12]. SVM is another most used prototype-based classifier. SVM performs classification based on support vectors
(namely, prototypes) obtained from data by identifying the maximum-margin hyperplanes in the data space
through an iterative computational process. Compared with KNN, SVM is far more sophisticated and is
considered as a typical type of “black box” models. Learning vector quantization (LVQ) [23] and generalized
learning vector quantization (GLVQ) [35] are also popular prototype-based systems for classification. Both
algorithms iteratively update a predefined number of prototypes within the data space searching for locally optimal
solutions based on the principle of competitive learning. However, LVQ and GLVQ are ANNs and their learning
processes are opaque due to the iterative parameter optimization. In contrast, zero-order EISs are popular for
streaming data classification thanks to their higher transparency, computational efficiency and human-
interpretability [39], but they, including the aforementioned DRB classifiers, suffer from the problem of system
obesity when applied to large-scale complex problems [20]. In such cases, the computational efficiency and
system interpretability of zero-order EISs can be significantly reduced.

There are a few recently proposed prototype-based approaches worth mentioning. For example, a selective
prototype-based learning (SPL) algorithm is proposed in [6] for nonstationary streaming data classification. SPL
learns a set of highly representative samples from streaming data as prototypes for classification and
simultaneously maintains a separate set of misclassified samples for concept drift detection. However, despite that
SPL has better capability of handling uncertainties in data streams, its model size as well as a few other parameters
have to be fixed a priori by users. As a result, the performance of SPL is very much depending on the externally
controlled parameter setting. An ensemble prototype selection approach is presented in [5] for selecting a set of
prototypes from training data to achieve the maximum classification accuracy rate by following the “nearest
neighbours” principle. This approach considers not only the frequencies of data samples that are selected as
prototypes by the ensemble prototype selectors and but also the relationships between these selected prototypes.
Nevertheless, this approach would select a very large number of data samples as prototypes from large-scale,
high-dimensional datasets, making the constructed classification model uninterpretable.

To address the system obesity problem of prototype-based systems and improve the model transparency, one
possible solution is to further aggregate the identified prototypes into a smaller number of more descriptive ones
and organize them into pyramidal hierarchies according to their descriptive abilities. An example of this is the
two-level approach for streaming data classification, named SyncStream [37]. SyncStream dynamically maintains
a two-level data structure with the first level storing raw prototypes representing the current data pattern and the
second level storing highly summarized prototypes representing historical data patterns. Raw prototypes at the
first level of SyncStream are directly extracted from data and are updated all the time to better capture the current
data pattern. Once a new data pattern is detected, these raw prototypes that represent the previous data pattern will
be clustered into more descriptive ones and inserted into the second level, and the first level will then be occupied
by new raw prototypes. The main issue with SyncStream is that its model size is not self-adjustable from data but
has to be predetermined by users based on the prior knowledge. If the scale of prototype exceeds the pre-set
maximum numbers, parts of them have to be either discarded or merged together to save spaces for new prototypes.
This places a restriction on its applicability in real world applications concerning large-scale data streams with

4

complex structure. In contrast, the hierarchical prototype-based (HP) classifier proposed in [19] is very suitable
for solving such problems with very high prediction precision and computational efficiency. The HP classifier is
capable of self-organizing a pyramidical structure composed of meaningful prototypes identified at multiple levels
of granularity from streaming data and continuously self-evolving to capture the new data patterns. Nevertheless,
prototypes identified by the HP classifier lacks optimality due to its “one pass” learning mechanism, which may
adversely influence its prediction precision. Another issue with the HP approach is that its model depth in terms
of layer number has to be predetermined by users, which may have a great impact on both the precision and
computational efficiency of the learning model. In addition, the HP classifier will require a full re-training if extra
layers are added into the system structure.

3. Proposed Approach
In this section, the general architecture and computational process of the proposed approach are presented in detail.

Table 1. A summary of key notations and the respective definitions

Notations Definitions
 Real metric space

 Dimensionality of
 Dataset

 Cardinality of
 The data sample observed at the th time instance

 Number of classes
 Subset of belonging to the th class

 Cardinality of

 Mean of

 Mean of ‖ ‖

 Set of unique data samples of the th class

 Occurrence frequencies of

 Cardinality of

 The th unique data sample of the th class
 Occurrence frequency of

 Multimodal density of
 Layer number of the th prototype-based hierarchy
 Number of prototypes at the th layer of the th prototype-based hierarchy
∗ Collection of local maxima of the th class

∗ The th local maximum of the th class
 Clusters formed around local maxima of the th class

 Cluster formed around ∗
 Cardinality of
 Centre of

, Collection of neighbouring cluster centres around at the hth level of
granularity

 Average radius of area of influence around each prototype at the th layer of the
th prototype-based hierarchy

 Collection of prototypes at the th layer of the th prototype-based hierarchy

, The th prototypes at the th layer of the th prototype-based hierarchy

, Number of data samples associated with ,

, Collection of subordinates of ,
 Score of confidence on given by the th prototype-based hierarchy

5

First of all, let , , … , , … , (, , , , … , , ∈) be a particular dataset in a real
metric space, with the dimensionality of ; is the cardinality of ; the subscript indicates the time
instance at which is observed. It is assumed that is composed of data samples of different classes. Thus,

 can be divided into subsets, denoted by , , … , (1,2, … ,), based on the

corresponding class labels, where the superscript denotes the ith class and there is ∑ . For each subset

, some samples may share the same values, for example, and . The set of unique data

samples of the ith class is denoted as , , … , (⊆), and the corresponding occurrence

frequencies are denoted as , , … , , where is the occurrence frequency of ; is the

cardinality of ; ∑ . Without loss of generality, in this paper, Euclidean distance is used for

derivation by default. For clarity, key notations and the respective definitions used in this paper are summarized
in Table 1.

3.1. General architecture
The general architecture of the MLOP classifier is given in Fig. 1, where one can see that the proposed approach
consists of different prototype-based hierarchies (one hierarchy per class). In Fig. 1, , denotes the kth

prototype at the hth layer of the ith hierarchy; 1,2, … , ; 1,2,… , ; is the layer number, which
would be different for each hierarchy and is determined by data; is the total number of prototypes at the hth
layer of the ith hierarchy; 1,2, … , .

Fig. 1. General architecture of the proposed approach (1 ; 1 ; 1 ; and 1
)

Each hierarchy is composed of meaningful prototypes identified from data samples of the corresponding class at
multiple levels of granularity from low to high. Each prototype (except for leaf prototypes at the bottom layer) is
connected to one or multiple subordinate prototypes at the next layer. At the same time, each prototype (except
for apex prototypes at the top layer) is linked with one or more superior prototypes at the layer above. However,
unlike the artificial neurons of adjacent layers in neural networks that are fully connected, links between
prototypes at the successive layers of the hierarchies within the MLOP classifier are established only when they
are physically neighbouring in the data space. Note that there is no connection between prototypes at the same
layer or prototypes of different hierarchies.

Very importantly, the prototype-based hierarchies can be easily visualized in an easy-to-interpret form, allowing
users to perceive a problem at multiple levels of granularity. The top layers of the hierarchies usually have only a

6

very small amount of highly descriptive prototypes representing global patterns of data, which can help users to
quickly capture the big picture. Meanwhile, the lower layers may have a larger number of prototypes, which are
closer to the raw data samples. These prototypes represent the local patterns of data and can provide lots of fine
details, but users may have to spend more times to interpret them. In addition, the links between prototypes of
successive layers provide users very important information regarding the relationships between these global and
local patterns, which can help users to gain a better understanding of the problem.

In the next three subsections, the learning and decision-making processes of the MLOP classifier are described in
detail.

3.2. Learning process from static data
In this subsection, the algorithmic procedure for the proposed approach to self-organize a hierarchical structure
from static data is described in detail. Since the learning process of the proposed approach is performed class-
wise, the ith hierarchy is used as an example for illustration (1,2, … ,). The same principles can be applied
to all other hierarchies within the MLOP classifier.

Stage 1. Voronoi tessellation formation [18]

In this stage, the multimodal density value at each unique data sample, (∈) of the ith class is firstly

calculated using equation (1) [2]:

 (1)

where and are the respective means of and ‖ ‖ , which can be calculated by following

expression:

∑ ; ∑ (2)

and ‖ ‖ ∑ , denotes the Euclidean norm of .

Multimodal density behaves like the multimodal discrete probability density function by considering both
occurrence frequencies and mutual distances of data. It also has multiple local peaks representing the local models
of data distribution [2],[16]. Data samples with locally maximum multimodal density values can better represent
the local models of data distribution and thus, are used as prototypes for classification.

(a) Class 1 (b) Class 2

Fig. 2. Multimodal density obtained from the BA dataset

7

To better deliver the concept, the banknote authentication (BA) dataset1 is employed for visual illustration. BA
dataset is a binary classification problem very suitable for visualization thanks to its smaller scale and simpler
structure (2 classes with 1372 data samples in total; each sample has 4 attributes). Here, principal component
analysis (PCA) is applied to further reduce the dimensionality of data to two for visual clarity. The multimodal
density values calculated at data samples of classes 1 and 2 using equation (1) are depicted in Figs. 2(a) and 2(b),
respectively.

To identify the local peaks of multimodal density, firstly, all the unique data samples, 	are arranged in an

indexing list, denoted by , with regard to their mutual distances and ensemble properties. The unique data
sample with the highest multimodal density value is selected as the first element, of [16]:

∈ ; ← (3)

Then, remaining elements of are identified one-by-one based on the following rule (2,3, … ,) [16]:

∈ ; ← (4)

Once the full indexing list is built, local maxima, denoted by ∗(∗ ←), of multimodal density can be
identified by Condition 1 (2,3, … , -1) [16],[18]:

	 :
	 1

	 ∗ ← ∗ ∪
 (5)

where
1, 0
0, 0
1, 0

 is the sign function; the cardinality of ∗ is ∗.

Continuing the example in Fig. 2, the ranked multimodal density values in regard to the indexing list obtained by
equations (3) and (4) are given in Fig. 3, where the identified local maxima by Condition 1 are marked by black
circles, “○”. In addition, the positions of local maxima in the data space are given in Fig. 4, where dots “•”
represent data samples.

(a) Class 1 (b) Class 2

Fig. 3. Ranked multimodal density and local maxima identified using Condition 1 (local maxima are marked by
black circles, “○”)

1 Available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication.

8

After the local maxima, ∗ have been identified, Voronoi tessellations are formed in the data space by using
them as raw prototypes to attract nearby data samples creating a number of clusters, denoted by :

∗ ← ∗ ∪ ; ∗ ← , ,…, ∗
∗ (6)

where 1,2,… , . Then, multimodal density values at the centres of the clusters, are calculated by the
following equation (1,2,… , ∗) [2]:

 (7)

where is the cardinality of ; is the centre of and there is ∑ ∈ . After this, the learning

algorithm enters the next stage.

(a) Class 1 (b) Class 2

Fig. 4. Identified local maxima in the data space (dots “•” represent data samples; local maxima are marked by
black circles, “○”)

Stage 2. Multi-granularity prototype identification

As the local maxima identified by Condition 1 may contain some less representative ones, in this stage, these
local maxima are filtered based on their multimodal density values and mutual distances to extract the most
representative ones as prototypes at different levels of granularity [2],[16],[18]. The identification process starts
from the first level, namely, 1.

To extract prototypes at the hth level of granularity, the neighbouring clusters of each cluster need to be identified
in the first place using the following condition based on the mutual distances of cluster centres (,
1,2, … , ∗;) [18]:

	 :
	

	 , ← , ∪
 (8)

where , denotes the collection of neighbouring cluster centres surrounding at the hth level of granularity;

 is the corresponding average radius of area of influence around each prototype and is derived by equation (9)
(1,2,3, …) [18]:

∑ ‖ ‖, ∈ ; ;‖ ‖ (9)

9

here 2 , which is the average distance between any two data samples of the ith class; 	is

the number of pairs of data samples within between which the distance is smaller than . provides an

intuitive estimation of the average distance between any two strongly connected prototypes at the hth level of
granularity by condensing the mutual distribution information extracted from data. Thus, is guaranteed to be
valid all the time. Thus, Condition 2 and equation (9) together define the concept of closeness at multiple levels
of granularity in a meaningful, data-driven way.

Then, the following principle is used for identifying prototypes as the most representative local maxima (
1,2, … , ∗) [18]:

	 :
	 ∈ ,

	 ← ∪
 (10)

where denotes the collection of prototypes of the ith class identified at the hth level of granularity; is the
cardinality of . After the prototypes have been extracted, the algorithm enters the next stage to optimize them
to their locally optimal positions in the data space.

Stage 3. Prototype optimization

The local optimality of the obtained prototypes plays a critical role in determining the overall performance of the
proposed classifier due to its prototype-based nature [18]. Therefore, in this stage, the algorithm optimizes the
solution obtained in Stage 2, namely, by iteratively minimizing the following objective function [36]:

∑ ∑ , , 	
	

 (11)

where ,
1, 	 , 	 , ,…, , 	

0,
 (12)

Essentially, equation (11) calculates the intra-cluster variance of the partitioning results. To minimize , the

following two steps are repeated until converges to the (locally) minimum value [18],[40]:

Step 1. Create Voronoi tessellations in the data space by using to attract nearby data samples and form new
clusters (namely, equation (6)).

Step 2. Update as the centres of the newly formed clusters and recalculate the objective function,
(namely, equation (11)).

Once has converges to the (locally) minimum value, the optimization process is completed and have
been adjusted to the locally optimal positions. Then, the algorithm enters the next stage.

Stage 4. Stopping criterion inspection

In this stage, the learning algorithm uses the following objective function (equation (13)) to assess whether the
prototypes identified at the hth level of granularity, namely, have sufficiently partitioned the data space and
disclosed fine details of the underlying data patterns to build a well-performing recognition model altogether with

, ,…,		 .

∑ ∑ , , 	
	

 (13)

where is the regularization parameter (0); is the penalty in terms of number of prototypes. controls

the trade-off between the intra-cluster variance and the number of prototypes (layers).

Condition 4 is used for the MLOP classifier to automatically self-determine the most appropriate level of
granularity:

10

	 :

	 1

	 	 0

	 	 	 	 	 	 	 	 	

 (14)

Condition 4 is based on the elbow method [22], which is the oldest method for determining the number of clusters
in the dataset. The elbow method treats the intra-cluster variance of the partitioning results as a function of the
number of clusters. The appropriate number of clusters is determined when adding extra clusters does not
significantly reduce the intra-cluster variance of the results. Nonetheless, the elbow method requires visual
inspection by human experts and is sometimes ambiguous. Condition 4, on the other hand, replaces the human
inspection process by introducing a penalty term based on the number of prototypes at the corresponding level of
the hierarchical prototype-based structure.

If Condition 4 is satisfied, the algorithm proceeds to Stage 5 to form the hierarchical prototype-based structure
with the identified prototypes , ,…,		 and . Otherwise, the algorithm goes back to Stage 2 to extract
prototypes from data at a higher level of granularity (← 1).

An illustrative example is provided in Fig. 5 showing how the value of determines the appropriate level of
granularity for the proposed MLOP classifier by Condition 4, where the blue curve is the relationship between
the value of the objective function and the layer number/level of granularity, ; black diamonds “◊” are
the knee points on the curves where Condition 4 is satisfied given a specific . In general, it can be observed
from Fig. 5, the MLOP classifier tends to self-organize hierarchies with more layers given a smaller .

Fig. 5. Appropriate layer number, determined by Condition 4 given different values of

Following the visual examples given by Figs. 2-4, Condition 4 is satisfied for data samples of both classes with
3 given 0.9. In total, there are two, five and 12 prototypes identified from data samples of class 1 at the

first, second and third levels of granularity by Conditions 2 and 3, respectively. Meanwhile, there are three, five
and nine prototypes identified from data samples of class 2 correspondingly at the respective three different levels
of granularity. The obtained locally optimal prototypes by the algorithm at the three levels of granularity from the
BA dataset are given in Fig. 6, where asterisks “*” represent the prototypes identified at the first level of
granularity; squares “□” represent the prototypes of the second level; triangles “∆” represent prototypes of the
third level.

11

(a) 1, class 1 (b) 1, class 2

(c) 2, class 1 (d) 2, class 2

(e) 3, class 1 (b) 3, class 2

Fig. 6. Locally optimal prototypes obtained by Conditions 2 and 3 at different levels of granularity (asterisks
“*” represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the

second level of granularity; triangles “∆” represent prototypes at the third level of granularity)

Stage 5. Prototype-based hierarchy assembly

12

The final stage of the algorithm starts by aggregating prototypes in a multi-layered hierarchical structure based on
their corresponding levels of granularity. Assuming that Condition 4 is satisfied by prototypes identified at the

th level of granularity, the algorithm will build a -layer hierarchy with as the first layer prototypes, as
the second layer prototypes,	 as the third layer prototypes, etc.

Then, the links (superior-subordinate relationships) between prototypes at successive layers are established based
on Conditions 5a and 5b:

	 :
	 , , 	 , ,… , ,

	 , ← , ∪ ,

 (15)

	 :
	 , , 	 ∙

	 , ← , ∪ ,

 (16)

where , denotes the collection of subordinates of , ; 2,3, … , ; 1,2, … , ; ,
1,2, … , , ; 4. Condition 5a indicates that , is recognized as one of the subordinates of , if

its distance to , is smaller than its distances to other prototypes at the upper layer. Condition 5b further adds

neighbouring prototypes of , at the same layer into , . Prototypes that satisfy Condition 5b are highly

likely to be associated with , because they are spatially close to , . By establishing links between these

prototypes and , , the robustness of the decision-making process, which will be detailed in the next subsection,
will be significantly enhanced at the price of very little extra computation. Note that all prototypes at the bottom
layer have no subordinates and they are the leaf prototypes of the hierarchy, namely, , ∅, 1,2, … , .

Once the links between all prototypes at adjacent layers have been built, the learning process of the ith hierarchy
is completed. The system is ready for classifying unlabelled testing samples after all prototype-based hierarchies
have been constructed.

The final three-layer prototype-based hierarchies built by the proposed algorithm from the BA dataset are
visualized in Fig. 7 following the illustrative example given by Fig. 6, where lines in different colours stand for
the links between prototypes of successive layers.

The main procedure of the prototype-based hierarchy identification process is summarized in the following pseudo
code.

Input:
Algorithm begins
i. Calculate at by (1) and (2);

ii. Reorder into by (3) and (4);
iii. Identify ∗ by Condition 1;
iv. Form Voronoi tessellation and obtain by (6);
v. Calculate at centres of by (7);
vi. ← 0;
vii. While (Condition 4 is not satisfied)

a. ← 1;
b. Identify by Conditions 2 and 3;
c. Optimize by iteratively minimizing ;

viii. End while
ix. Initialize the multi-layered structure with , ,…,	 and

;
x. Build links between prototypes by Conditions 5a and 5b;
Algorithm ends
Output: the ith prototype-based hierarchy

13

(a) Class 1

(b) Class 2

Fig. 7. Prototype-based hierarchies obtained from the BA dataset using the proposed algorithm (asterisks “*”
represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the

second level of granularity; triangles “∆” represent prototypes at the third level of granularity; lines in different
colours stand for the links between prototypes of successive layers)

3.3. Learning process from streaming data
After the MLOP classifier has self-organized its system structure and meta-parameters from static training data,
it can be expected that more training samples become available in the form of data streams. In this subsection, an
online learning extension is introduced to the proposed approach, which allows the learning model to continuously
self-develop from streaming data on a sample-by-sample basis.

The algorithmic procedure of the online learning process of the MLOP classifier is detailed as follows. Note that,
the online learning process is also performed class-wise. During this stage, the classifier will not add new layers,
and prototypes may not be at their optimal positions anymore due to the “one pass” updating process.

For each newly available data sample of the ith class denoted by , the model updating process is performed

in a top-down layer-by-layer manner. The average radii of area of influence of prototypes at all 	layers are
firstly updated using equation (17) [18]:

14

← (17)

where 1,2, … , ; and .

Then, is compared with the nearest prototype at the hth layer (starting with 1), namely, , ∗ by

Condition 6 to see whether has the potential to become a new prototype at this layer [19]:

	 :
	 , ∗

	 	 	 	 	
 (18)

where , ∗
∈ ‖ ‖ 	 1

∈ , ∗
‖ ‖ (19)

The key idea of equation (19) is that, instead of directly searching the nearest one from all leaf prototypes, which
can be highly computationally expensive, the classifier searches the nearest prototype layer-by-layer in a top-
down manner by only checking the subordinates of the nearest prototype at the next layer. This significantly
improves the computational efficiency of the nearest prototype searching process because the searching range is
limited to a small group of subordinate prototypes instead of the entire data space. Such searching strategy
effectively avoids the waste of computational resources since the majority of prototypes, especially at lower layers,
are actually far away from in the data space and should not be considered for nearest neighbour searching. On
the other hand, compared with the similar approach used in [19], the searching strategy proposed in this paper is
more robust thanks to the denser connections between prototypes built by Condition 5b.

If Condition 6 is not satisfied, is used for updating , ∗ [1]:

, ∗ ← , ∗ 1; , ∗ ← , ∗
, ∗

, ∗
 (20)

where , ∗ is the number of data samples associated with , ∗. After this, is passed to the next layer (←

1) and compared with the subordinates of , ∗ to see whether can be a new prototype at the next layer.

The same process will be repeated until Condition 6 is satisfied or reaches the bottom layer (namely,

).

If meets Condition 6, it initializes a new prototype at the hth layer and all the layers below using equation

(21) (, 1, … ,):

← 1;
,

← ; ,
← 1; ← ∪

, (21)

After the existing prototypes have been updated and/or new prototypes have been added, links between these
prototypes and other prototypes within this hierarchy are updated and/or established using Condition 5a and 5b.
The current updating cycle is then completed, and the classifier will move on to learn from the next available data
sample following the same algorithmic procedure (← 1).

The online prototype-based hierarchy updating process is summarized in the following pseudo code.

Input: , , , …
Algorithm begins
While (is available)

i. For 	 1	to :
a. Update using (17);

ii. End for
iii. For 	 1	to :

a. Identify , ∗ using (19);

15

b. If (Condition 6 is satisfied)
1. For to :

- ← 1;
- Initialize

,
 and

,
, expand 	using (21);	

- Build links of
,

 by Conditions 5a and 5b;

2. End for
3. Break for loop;

c. Else
1. Update , ∗ and , ∗ using (20);
2. Update links of , ∗ by Conditions 5a and 5b;

d. End if
iv. End for
v. ← 1;

End while
Algorithm ends
Output: the ith prototype-based hierarchy

3.4. Decision-making process
In this subsection, the algorithmic procedure for decision-making is presented. For an unlabelled sample , the
local decision-maker of each prototype-based hierarchy will produce a score of confidence based on the distance
between and the nearest leaf prototype. The score of confidence produced by the th prototype-based hierarchy
is calculated by equation (22):

, ∗
 (22)

where , ∗ is the nearest leaf prototype to identified by equation (19) in a top-down, layer-by-layer manner.

A visual example of the decision-making process is given by Fig. 8 for better illustration.

Fig. 8. Illustrative example of the decision-making process (the orange arrows are the exploited paths during the
searching process; the nearest prototype at each layer is marked by red circle)

Based on the scores of confidence (one per class), the global decision-maker of the MLOP classifier determines
the class label of following the “winner takes all” principle:

← 	 ∗ ∗
, ,…, (23)

16

It is worth noting that the decision-making process of the proposed algorithm follows the “nearest prototype”
principle, and scores of confidence are directly calculated from the dissimilarities between data samples and the
most similar leaf prototypes. Therefore, there is no randomness existing during this process and one can easily
trace back any decisions by examining the exploited paths (see Fig. 8 as example). This allows users to gain a
straightforward understanding about the rationales behind the decisions made by the MLOP classifier.

In the next section, computational complexity of the proposed approach will be analysed.

4. Computational Complexity Analysis
4.1. Learning process from statistic data
Since the learning process of the MLOP classifier is conducted class-wise, the ith hierarchy is used as an example.
In Stage 1 of the learning process, the complexity of calculating multimodal density values at all unique data
samples is ; the complexity of ranking unique data samples based on their mutual distances is ;
and the complexity of forming Voronoi tessellation and calculating multimodal density values at local maxima
are ∗ and ∗ , respectively. During Stage 2, the overall computational complexity for estimating
the average radius of area of influence and identifying prototypes is . The computational complexity
of the prototype optimization process in Stage 3 is , where is the number of iterations for the
prototypes converge to the locally optimal positions in the data space; the subscript stands for the current level
of granularity. Computational complexity of Stage 4 is negligible comparing with other stages. Assuming that
Stages 2-4 are repeated for times (the level of granularity increases from 1 to) until Condition 4 is satisfied

finally, the overall computational complexity of this process is ∑	 . Stage 5 is for

building connections between prototypes at adjacent layers and the computational complexity for this process is

∑ ∑ . Therefore, the overall computational complex of the entire learning

process to build a recognition model from data by the proposed MLOP approach is ∑ ∑	

∑ ∑ .

4.2. Learning process from streaming data
The online updating process of the classifier is also conducted class-wise but on a sample-by-sample basis,
therefore, the complexity analysis is performed on a particular updating cycle of the ith hierarchy. During the
updating cycle, the classifier firstly updates the average radii of area of influence of prototypes at all layers

with the newly available data sample, , and the computational complexity is . However, depending

on the mutual distances between and prototypes at different layers, the minimum computational complexity

of the system updating process is reached if meets Condition 6 at the top layer and is added to the prototype-

based hierarchy as a new prototype at every layer. In this case, the computational complexity is . The

maximum computational complexity of the updating process is reached if fails to satisfy Condition 6 and

is used for updating the nearest prototypes layer-by-layer. In this situation, the computational complexity is

∑ , ∗ , where	 , ∗ denotes the cardinality of , ∗ . In both cases, the computational

complexity for updating/initializing the links of these prototypes with other prototypes within the hierarchy is

∑ ∑ . Therefore, the computational complexity of a particular online updating cycle is

between 2∑ and	 2 ∑ ∑ , ∗ .

4.3. Decision-making process
During the decision-making process, the complexity of the computational process for each hierarchy to produce

a score of confidence on an unlabelled data sample is ∑ , ∗ , where 1,2, … , .

Therefore, the overall computational complexity of the decision-making process for a particular data sample is

∑ ∑ , ∗ .

17

5. Experimental Investigation
In this section, numerical examples are presented to justify the effectiveness and validity of the proposed approach.
The performance of the MLOP classifier is evaluated on a variety of widely used benchmark datasets and
compared with a number of state-of-the-art approaches. The algorithms were developed on MATLAB2018a
platform, and the performance was evaluated on a desktop with dual core i7 processer 3.60 2 and 16
RAM. In the numerical examples presented in this section, by default, the MLOP classifier is trained with static
data in offline scenarios, and the reported numerical results are obtained after 10 Monte Carlo experiments unless
specifically declared otherwise.

5.1. Performance demonstration on numerical datasets
The following eight benchmark datasets are involved in numerical experiments for demonstrating the performance
of the proposed approach.

(1) Wilt (WI) dataset2;

(2) Semeion handwritten digit (SH) dataset3;

(3) Occupancy detection (OD) dataset4;

(4) Letter recognition (LR) dataset5;

(5) Optical recognition of handwritten digits (OR) dataset6;

(6) Pen-based recognition of handwritten digits (PR) dataset7;

(7) Phishing websites (PW) dataset8; and,

(8) Epileptic seizure recognition (ES) dataset9.

Details of the eight datasets are summarized in Table 2.

Table 2. Details of benchmark numerical datasets for demonstration

Dataset # Samples # Attributes # Classes
WI Training set 4339 5 + 1 label 2

Testing set 500
SH 1593 256 + 1 label 10
OD a Training 8143 5 + 1 label 2

Testing set 1 2664
Testing set 2 9752

LR 20000 16 + 1 label 26
OR 5620 62 + 1 label 10
PR 10996 16 + 1 label 10
PW 10550 30 + 1 label 2
ES 11500 178 + 1 label 2

 a Time stamps of the original dataset have been removed.

In the first numerical example, the influence of on performance and computational complexity of the MLOP
classifier is investigated. Four benchmark datasets, namely, WI, SH, OD and LR are involved for investigation.

2 Available at: http://archive.ics.uci.edu/ml/datasets/wilt.
3 Available at: https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit.
4 Available at: https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+.
5 Available at: https://archive.ics.uci.edu/ml/datasets/letter+recognition.
6 Available at: https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits.
7 Available at: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.
8 Available at: https://archive.ics.uci.edu/ml/datasets/phishing+websites.
9 Available at: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition.

18

For SH and LR datasets, 50% of data samples are randomly selected out to form the training sets and the remaining
samples are used to form the testing sets. For WI and OD datasets, the original split is adopted, and the order of
the training samples is randomly scrambled for each experiment. During the experiment, the value of varies
from 0 to 0.3. Numerical results including the average layer number (# Layer), classification accuracy, training
and testing time consumptions (in seconds) are reported in Table 3 in the form of 	 .
To gain a better picture regarding the system complexity, numbers of prototypes at different layers of the two
hierarchies identified from the training set of the OD dataset (with 0.05) during a particular experiment are
reported in Fig. 9.

As one can see from Table 3, generally, the performance of the proposed approach in terms of classification
accuracy is stronger with a smaller value of . However, this will inevitably increase the system complexity
because there will be more layers and more prototypes (see Fig. 9) in the system structure. On the other hand,
Table 3 also shows that the computational complexity of the training and testing processes is only slightly
increased with the system structure going deeper. Therefore, in the following numerical examples presented in
this paper, 0.05 is used by default to pursue higher classification precision.

Table 3. Influence of different values of on the performance of the MLOP classifier

Dataset # Layer Accuracy Training time, s Testing time, s
WI 0.00 9.0 0.7440±0.0000 3.42±0.17 0.60±0.08

0.05 5.5 0.7760±0.0000 1.86±0.11 0.32±0.06
0.10 5.0 0.7880±0.0000 1.73±0.06 0.28±0.03
0.15 4.0 0.7860±0.0000 1.47±0.03 0.20±0.01
0.20 4.0 0.7860±0.0000 1.44±0.01 0.21±0.04
0.25 4.0 0.7860±0.0000 1.47±0.04 0.20±0.02
0.30 4.0 0.7860±0.0000 1.44±0.01 0.20±0.01

SH 0.00 4.3 0.8601±0.0101 0.08±0.05 1.85±0.54
0.05 4.3 0.8601±0.0101 0.06±0.01 1.83±0.54
0.10 4.3 0.8601±0.0101 0.06±0.01 1.79±0.51
0.15 4.3 0.8601±0.0101 0.06±0.01 1.79±0.53
0.20 4.2 0.8600±0.0101 0.06±0.01 1.94±0.63
0.25 4.2 0.8599±0.0101 0.06±0.02 1.89±0.61
0.30 4.2 0.8596±0.0099 0.06±0.01 1.80±0.47

OD 0.00 14.0 0.9435±0.0000 2.10±0.12 16.17±0.12
0.05 5.0 0.9441±0.0000 2.01±0.02 5.57±0.07
0.10 4.5 0.9300±0.0000 2.01±0.04 4.95±0.02
0.15 4.0 0.9290±0.0000 2.04±0.04 4.42±0.05
0.20 3.5 0.9079±0.0000 2.61±0.04 3.81±0.02
0.25 3.5 0.9079±0.0000 2.62±0.07 3.81±0.02
0.30 3.0 0.9075±0.0000 2.59±0.08 3.28±0.20

LR 0.00 8.7 0.9283±0.0035 0.81±0.09 122.13±2.14
0.05 7.6 0.9281±0.0034 0.74±0.03 107.67±1.92
0.10 6.1 0.9273±0.0035 0.67±0.04 102.03±4.36
0.15 5.4 0.9253±0.0036 0.63±0.03 93.22±1.75
0.20 5.0 0.9234±0.0051 0.56±0.01 77.55±2.11
0.25 4.7 0.9187±0.0034 0.53±0.01 71.44±1.48
0.30 4.4 0.9144±0.0036 0.50±0.02 65.91±2.42

19

Fig. 9. Number of prototypes at different hierarchies identified from training data with 0.05

In the following numerical example, the online learning ability of the proposed MLOP classifier is demonstrated
based on eight benchmark datasets as listed in Table 1, namely, WI, SH, OD, LR, OR, PR, FW and ES. In
particular, for SH, LR, FW and ES datasets, 50% of data samples are randomly selected out to form the training
sets and the remaining samples are used to form the testing sets. For WI, OD, PR and OR datasets, the original
splits are kept but the orders of training samples are randomly scrambled for each experiment. During the
experiments, the MLOP classifier is firstly trained with half of the training set in an offline scenario and, then, the
classifier continues to self-update based on the remaining 10%, 20%, 30%, 40% and 50% training data on a
sample-by-sample basis online. The classification accuracy rates of the classifier on the testing sets are reported
in Table 4. The performance of the MLOP classifier trained with the entire training set offline is given in the same
table as baseline. From Table 4 one can conclude that the MLOP classifier can effectively learn from new
streaming data samples online after being primed with static data and maintain very high classification precision.

Table 4. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts
of data for online training

Dataset Offline Online Training Baseline
50% 10% 20% 30% 40% 50%

WI 0.7482 0.7602 0.7734 0.7798 0.7856 0.7884 0.7760
SH 0.8318 0.8367 0.8389 0.8449 0.8477 0.8511 0.8601
OD 0.9455 0.9368 0.9359 0.9336 0.9320 0.9288 0.9441
LR 0.8843 0.9001 0.9123 0.9202 0.9269 0.9326 0.9281
OR 0.9716 0.9735 0.9743 0.9762 0.9765 0.9778 0.9850
PR 0.9673 0.9692 0.9709 0.9732 0.9734 0.9744 0.9757
PW 0.9155 0.9177 0.9216 0.9259 0.9295 0.9334 0.9371
ES 0.9008 0.9079 0.9079 0.9198 0.9237 0.9268 0.9204

Furthermore, the impact of different amounts of offline training data on the overall performance of the MLOP
classifier trained in a hybrid manner (namely, offline training first followed by online training) is further
investigated. In this example, the MLOP classifier is firstly trained with 30%, 40%, 50%, 60%, 70% and 80% of
the training data offline, and then continues to learn from the remaining data on a sample-by-sample basis online.
Classification accuracy rates of the classifier obtained on the testing sets are presented in Table 5. The performance
of the MLOP classifier trained with the entire training set offline is also given here as baseline. It can be seen from
Table 5 that, in general, the overall performance of the MLOP classifier trained in a hybrid manner is less
influenced by the available amount of offline training data. This further demonstrates the effectiveness of the
online learning mechanism of the proposed approach.

20

Table 5. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts
of offline training data

Dataset Offline Training Baseline
30% 40% 50% 60% 70% 80%

WI 0.7476 0.7652 0.7884 0.7882 0.7914 0.7806 0.7760
SH 0.8576 0.8525 0.8511 0.8545 0.8551 0.8599 0.8601
OD 0.9270 0.9304 0.9288 0.9288 0.9295 0.9296 0.9441
LR 0.9329 0.9335 0.9326 0.9312 0.9309 0.9291 0.9281
OR 0.9720 0.9737 0.9778 0.9767 0.9774 0.9786 0.9850
PR 0.9746 0.9749 0.9744 0.9752 0.9742 0.9730 0.9757
PW 0.9355 0.9357 0.9334 0.9356 0.9364 0.9339 0.9371
ES 0.9260 0.9266 0.9268 0.9246 0.9240 0.9225 0.9204

For better demonstration, statistical performance (classification accuracy and training time consumption, in
seconds) of the MLOP classifier on the eight benchmark problems, namely, WI, SH, OD, LR, OR, PR, PW and
ES, in offline scenarios is reported in Table 6 in the form of 	 . During the
experiments, the same training-testing splits of the eight datasets used in the previous examples are considered.
In addition, statistical performance of the MLOP classifier trained in a hybrid manner (denoted by MLOP-H) is
also reported in this table. During the experiments, the MLOP-H classifier is firstly primed with 50% of training
samples offline and continuously trained with the remaining 50% training samples online.

The performance of the proposed approach is further compared with the following algorithms:

(1) SVM classifier with linear kernel [7];

(2) DT classifier [27];

(3) KNN classifier with 5 [8];

(4) Sequence-dictionary-based KNN (SDKNN) classifier with 5 [32];

(5) Sequence classifier (SC) [32];

(6) Extreme learning machine (ELM) classifier with maximum 200 neurons [21];

(7) Multi-layer perceptron (MLP) network with three hidden layers and 20 neurons in each hidden layer;

(8) GLVQ with 25 reference vectors per class and the gain factor set as 0.005 [35];

(9) Extended sequential adaptive fuzzy inference system (ESAFIS) [34];

(10) Zero-order autonomous learning multiple-model system (ALMMo0) [1];

(11) Self-organising neuro-fuzzy inference system (SONFIS) with the level of granularity set as 5 [18];

(12) Hierarchical prototype-based (HP) classifier with six layers (6) [19].

SVM, DT and KNN are the most used generic approaches for classification. MLP uses the well-known resilient
back propagation algorithm for parameter optimization. GLVQ is a prototype-based ANN popular for multi-class
classification. ELM is a single-layer feedforward neural network for classification. SC and SDKNN are two
recently introduced dictionary-based approaches for classification. ESAFIS is a first-order EIS designed for
regression and classification. SONFIS and ALMMo0 are both zero-order EISs with a prototype-based nature. HP
classifier is prototype-based approach with a multi-layered structure, which is of the same type as the proposed
MLOP classifier. Nonetheless, the layer number of the HP classifier is predefined by users instead of being
determined by data and it employs cosine dissimilarity as the distance measure. During the experiments, the
externally controlled parameters for the involved classification approaches are determined by the commonly used
experimental protocols and are fixed across different problems due to insufficient prior knowledge. The numerical
results obtained by the 12 comparative approaches on the eight benchmark datasets are also reported in Table 6

21

following the same experimental protocols, where the training time consumptions of KNN are not reported
because it literally requires no training.

For better demonstration, the comparative algorithms are ranked from best to worst on each dataset in terms of
classification accuracy, and the ranks are given in Table 7. The overall ranks of the algorithms across the eight
datasets are given in the same table as well. One can see from Table 7 that the overall performance of the proposed
MLOP classifier is in the second place among the involved classification methods for comparison while the HP
classifier ranks the top, but the performance of the proposed MLOP approach is relatively more stable.

Table 6. Performance comparison between the 14 classification approaches in terms of classification accuracy
and training time consumption on the eight benchmark datasets (the best accuracy rates are bolded)

Dataset WI SH
Algorithm Accuracy Training time, s Accuracy Training time, s
MLOP 0.7760±0.0000 1.86±0.11 0.8601±0.0101 0.06±0.01
MLOP-H 0.7884±0.0346 4.03±0.09 0.8511±0.0091 0.69±0.03
SVM 0.7150±0.0017 54.58±1.73 0.9174±0.0096 0.49±0.29
DT 0.8140±0.0000 0.04 ± 0.06 0.7103±0.0227 0.12±0.21
KNN 0.7260±0.0000 0.8767±0.0139
SDKNN 0.3980±0.0000 4.52±0.26 0.8242±0.0255 2.05±0.10
SC 0.6720±0.0000 5.27±0.27 0.8927±0.0109 3.45±0.13
ELM 0.8574±0.0044 0.06±0.03 0.3923±0.1212 0.04±0.03
MLP 0.7008±0.0874 0.73±0.25 0.5933±0.0455 0.40±0.22
GLVQ 0.6260±0.0000 19.70±0.06 0.8313±0.0142 28.07±1.29
ESAFIS 0.6258±0.0018 5.53±3.09 0.6736±0.0427 87.58±5.08
ALMMo0 0.7728±0.0129 0.39±0.08 0.8934±0.0090 0.09±0.03
SONFIS 0.7960±0.0000 1.12 ± 0.04 0.8680±0.0113 0.04±0.05
HP 0.8046±0.0166 2.85±0.17 0.8951±0.0097 0.35±0.03
Dataset OD LR
Algorithm Accuracy Training time, s Accuracy Training time, s
MLOP 0.9441±0.0000 2.01±0.02 0.9281±0.0034 0.74±0.03
MLOP-H 0.9288±0.0045 4.19±0.27 0.9326±0.0018 4.83±0.11
SVM 0.6787±0.2118 164.24±10.28 0.8540±0.0030 15.77±0.54
DT 0.9314±0.0000 0.04±0.05 0.8235±0.0068 0.12±0.05
KNN 0.9580±0.0000 0.9325±0.0020
SDKNN 0.7576±0.0000 7.83±0.22 0.8339±0.0050 12.02±0.49
SC 0.8984±0.0000 22.00±0.73 0.8561±0.0028 27.71±1.09
ELM 0.9895±0.0002 0.13±0.03 0.5001±0.0585 0.16±0.04
MLP 0.9152±0.0268 1.05±0.58 0.5160±0.0306 2.24±0.32
GLVQ 0.9314±0.0000 25.86±1.37 0.7606±0.0089 56.30±0.94
ESAFIS 0.9586±0.0237 15.26±6.71 0.8251±0.0077 66.85±2.31
ALMMo0 0.9404±0.0040 0.63±0.11 0.9179±0.0029 0.76±0.19
SONFIS 0.9382±0.0000 2.51±0.07 0.9223±0.0052 0.27±0.15
HP 0.7873±0.0116 3.91±0.70 0.9414±0.0011 5.31±0.26
Dataset OR PR
Algorithm Accuracy Training time, s Accuracy Training time, s
MLOP 0.9850±0.0000 0.52±0.02 0.9757±0.0000 0.93±0.03
MLOP-H 0.9786±0.0023 2.62±0.05 0.9744±0.0026 5.07±0.24
SVM 0.9627±0.0000 0.75±0.31 0.9551±0.0000 58.65±0.90
DT 0.8525±0.0000 0.06±0.03 0.9122±0.0003 0.04±0.03
KNN 0.9794±0.0000 0.9760±0.0000
SDKNN 0.9627±0.0000 5.08±0.45 0.9531±0.0000 8.33±0.38
SC 0.9549±0.0000 8.41±0.69 0.9511±0.0000 12.50±0.45
ELM 0.9053±0.0096 0.07±0.03 0.9086±0.1622 0.10±0.03
MLP 0.9304±0.0077 0.92±0.14 0.9459±0.0078 1.13±0.29
GLVQ 0.9199±0.0000 34.25±1.01 0.8453±0.0000 33.56±0.62

22

ESAFIS 0.9538±0.0067 32.24±10.36 0.9197±0.0134 38.80±5.93
ALMMo0 0.9789±0.0000 0.33±0.09 0.9752±0.0023 0.56±0.05
SONFIS 0.9766±0.0000 0.09±0.06 0.9763±0.0000 0.39±0.03
HP 0.9772±0.0000 1.56±0.21 0.9782±0.0001 3.87±0.07
Dataset PW ES
Algorithm Accuracy Training time, s Accuracy Training time, s
MLOP 0.9371±0.0047 1.85±0.08 0.9204±0.0071 41.77±3.43
MLOP-H 0.9334±0.0052 6.17±0.43 0.9268±0.0119 72.22±16.21
SVM 0.9262±0.0027 4.76±1.46 0.1921±0.0319 96.19±2.41
DT 0.9466±0.0030 0.09±0.16 0.9351±0.0036 0.57±0.08
KNN 0.9314±0.0045 0.9146±0.0072
SDKNN 0.9107±0.0048 5.64±0.40 0.9198±0.0050 15.04±0.52
SC 0.9456±0.0029 13.71±0.59 0.9452±0.0028 36.29±1.47
ELM 0.9100±0.0064 0.09±0.03 0.2719±0.2317 0.12±0.03
MLP 0.9386±0.0066 0.57±0.34 0.9408±0.0493 1.05±0.40
GLVQ 0.9099±0.0050 24.65±0.90 0.6983±0.2589 35.53±0.94
ESAFIS 0.9413±0.0027 244.20±69.50 0.9044±0.0123 909.64±89.66
ALMMo0 0.9436±0.0044 0.93±0.08 0.8937±0.0025 25.77±3.19
SONFIS 0.9138±0.0038 0.66±0.09 0.8884±0.0140 2.24±0.07
HP 0.9450±0.0050 1.92±0.39 0.8941±0.0026 3.23±0.37

Table 7. Overall classification accuracy ranks of comparative algorithms

Algorithm Rank
WI SH OD LR OR PR PW ES Overall

MLOP 6 7 4 4 1 4 7 5 4.8±2.0
MLOP-H 5 8 9 2 4 6 8 4 5.8±2.4
SVM 9 1 14 8 7 7 10 14 8.8±4.2
DT 2 11 7 11 14 12 1 3 7.6±5.1
KNN 8 5 3 3 2 3 9 7 5.0±2.7
SDKNN 14 10 13 9 8 8 12 6 10.0±2.8
SC 11 4 11 7 9 9 2 1 6.8±4.0
ELM 1 14 1 14 13 13 13 13 10.3±5.7
MLP 10 13 10 13 11 10 6 2 9.4±3.7
GLVQ 12 9 8 12 12 14 14 12 11.6±2.1
ESAFIS 13 12 2 10 10 11 5 8 8.9±3.7
ALMMo0 7 3 5 6 3 5 4 10 5.4±2.3
SONFIS 4 6 6 5 6 2 11 11 6.4±3.2
HP 3 2 12 1 5 1 3 9 4.5±4.0

In addition, confusion matrices obtained by the MLOP classifier and the 12 comparative algorithms on the four
binary classification problems, namely, WI, OD, PW and ES are reported in Table 8 for better comparison.

Table 8. Confusion matrices obtained by the MLOP and 12 comparative classifiers on the four binary
classification problems (the best results are bolded)

Dataset Algorithm True
positive

False
negative

False
positive

True
negative

WI MLOP 79.0 108.0 4.0 309.0
SVM 66.2 120.8 21.7 291.3
DT 107.0 80.0 13.0 300.0
KNN 51.0 136.0 1.0 312.0
SDKNN 38.0 149.0 15.0 298.0
SC 187.0 0.0 301.0 12.0
ELM 125.5 61.5 9.8 303.2

23

MLP 44.5 142.5 7.1 305.9
GLVQ 0.0 187.0 0.0 313.0
ESAFIS 0.2 186.8 0.3 312.7
ALMMo0 83.1 103.9 9.7 303.3
SONFIS 111.0 76.0 26.0 287.0
HP 117.6 69.4 28.3 284.7

OD MLOP 9098.0 298.0 396.0 2625.0
SVM 7189.9 2206.1 1784.1 1236.9
DT 9048.0 348.0 504.0 2517.0
KNN 9030.0 366.0 156.0 2865.0
SDKNN 8755.0 641.0 620.0 2401.0
SC 9394.0 2.0 3008.0 13.0
ELM 9281.8 114.2 16.3 3004.7
MLP 8697.7 698.3 354.2 2666.8
GLVQ 8724.0 672.0 180.0 2841.0
ESAFIS 9073.6 322.4 191.7 2829.3
ALMMo0 9100.5 295.5 444.8 2576.2
SONFIS 9207.0 189.0 578.0 2443.0
HP 7647.3 1748.7 893.0 2128.0

PW MLOP 2893.6 184.9 162.9 2287.1
SVM 2913.4 165.1 242.9 2207.1
DT 2939.0 139.5 155.8 2294.2
KNN 2898.6 179.9 199.4 2250.6
SDKNN 2968.4 110.1 190.8 2259.2
SC 2831.0 247.5 246.3 2203.7
ELM 2935.4 143.1 354.3 2095.7
MLP 2925.4 153.1 186.2 2263.8
GLVQ 2886.9 191.6 306.4 2143.6
ESAFIS 2950.3 128.2 196.3 2253.7
ALMMo0 2936.3 142.2 169.6 2280.4
SONFIS 2894.5 184.0 292.5 2157.5
HP 2982.9 95.6 208.4 2241.6

ES MLOP 710.1 437.2 18.9 4583.8
SVM 779.0 368.3 4277.2 325.5
DT 955.7 191.6 181.7 4421.0
KNN 662.5 484.8 6.0 4596.7
SDKNN 843.1 304.2 11.0 4591.7
SC 692.9 454.4 6.6 4596.1
ELM 1131.1 16.2 4170.5 432.2
MLP 878.9 268.4 72.1 4530.6
GLVQ 323.5 823.8 911.0 3691.7
ESAFIS 690.6 456.7 93.0 4509.7
ALMMo0 795.8 351.5 259.9 4342.8
SONFIS 604.9 542.4 99.5 4503.2
HP 795.5 351.8 257.3 4345.4

5.2. Performance demonstration on benchmark image sets
In this subsection, the following four challenging image recognition problems are involved for evaluating the
performance of the proposed approach on large-scale, high-dimensional, complex problems.

(1) MNIST dataset10;

(2) Fashion MNIST dataset11;

10 Available at http://yann.lecun.com/exdb/mnist/.
11 Available at https://github.com/zalandoresearch/fashion-mnist.

24

(3) Caltech101 dataset12, and;

(4) Caltech256 dataset13;

Example images of the four datasets are given in Fig. 10.

(a) MNIST

(b) Fashion MNIST

(c) Caltech101

(d) Caltech256

Fig. 10. Example images of the four benchmark image sets for performance evaluation.

Firstly, the performance of the MLOP classifier for image classification is evaluated on MNIST and Fashion
MNIST datasets. In this example, for both datasets, all the training and testing images are converted into 784×1
dimensional vectors and, then, directly used to train and test the proposed algorithm. The classification accuracy
rates of the proposed approach on testing images of the two problems are reported in Table 9. For better evaluation,

12 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
13 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

25

10 comparative algorithms used in previous experiments are involved in this numerical example under the same
experimental protocol, and their performances in terms of classification accuracy rates are reported in Table 9 for
visual clarity. Note that, in this example, a MLP with three hidden layers, 200 neurons in each (in total, 600
neurons) is used instead due to the much larger problem size.

Table 9. Classification accuracy comparison between the MLOP classifier and comparative algorithms on
MNIST and Fashion MNIST datasets (the best accuracy rates are bolded)

Algorithm MNIST Fashion MNIST
Original Gist Original Gist

MLOP 0.9696 0.9835 0.8496 0.8886
SVM 0.9438 0.9857 0.8497 0.8871
DT 0.8779 0.9010 0.7934 0.8142
KNN 0.9684 0.9875 0.8554 0.8957
SDKNN 0.9555 0.9802 0.8660 0.8876
SC 0.9646 0.9762 0.8738 0.8817
ELM 0.1453 0.9122 0.3557 0.8045
MLP 0.8781 0.9577 0.7637 0.8869
ALMMo0 0.9683 0.9864 0.8589 0.8862
SONFIS 0.9681 0.9865 0.8610 0.8876
HP 0.9652 0.9864 0.8557 0.8845

Furthermore, the Gist feature descriptor [30] is used to extract 512×1 dimensional feature vectors from the original
training/testing images of the two problems. Experiments are repeated by training and testing the algorithms with
the Gist features of the images. The obtained results by the 11 approaches are reported in Table 9 as well. The
average layer numbers of the prototype-based hierarchies that the MLOP classifier self-organized from the
training images during the experiments are presented in Fig. 11.

Finally, the performance of the MLOP classifier is evaluated on Caltech101 and Caltech256 datasets. A ensemble
feature descriptor formed by pretrained AlexNet [24] and VGG-VD-16 [38] models is employed for feature
extraction, which extracts a 9192×1 dimensional discriminative representation, denoted by from each image, :

‖ ‖
,
‖ ‖

 (24)

where is the 9192×1 dimensional discriminative representation of obtained by the ensemble feature
descriptor; and are the 1×4096 dimensional activations extracted from the first fully connected
layer of the AlexNet and VGG-VD-16 models, respectively.

Following the common practice [41], for Caltech101 image set, 15 and 30 images are randomly selected out from
each category for training, respectively, and the rest of the dataset are used for testing. For Caltech256 image set,
15, 30, 45 and 60 images are randomly selected from each category for training, respectively, and the rest images
are used for testing. The classification accuracy rates achieved by the MLOP classifier and four comparative
approaches, namely, SVM, KNN, ALMMo0 and HP, on the testing sets of the two datasets are tabulated in Tables
10 and 11, respectively. In addition, selected state-of-the-art results reported by recent publications are given in
the same tables for better evaluation. The average layer numbers of the prototype-based hierarchies that MLOP
classifier self-organized from the training sets of Caltech101 and Caltech256 are presented in Fig. 11 as well.

Furthermore, three prototype-based hierarchies that the MLOP classifier identifies from training images of the
“airplane”, “llama” and “snoopy” classes (30 images per class) in the Caltech101 dataset during a particular
experiment are visualized in Fig. 12. However, as both the learning and classification processes of the MLOP
classifier are conducted based on the feature vectors instead of raw images during numerical experiments, the
training images with feature vectors that are the most similar to the identified prototypes are used for visualization
in the depicted hierarchies.

26

Table 10. Classification accuracy comparison between the MLOP classifier and comparative algorithms on
Caltech101 dataset (the best accuracy rates are bolded)

Algorithm
Accuracy

15 Training Images 30 Training Images
MLOP 0.9037±0.0047 0.9272±0.0043
SVM 0.8729±0.0104 0.9027±0.0087
KNN 0.8721±0.0079 0.9100±0.0042

ALMMo0 0.8491±0.0062 0.8864±0.0047
HP 0.8863±0.0060 0.9224±0.0040

ICAC [44] 0.7148±0.0056 0.7663±0.0079
CASE-LLC-SVM [28] 0.6400±0.0040 0.7140±0.0120

DEFEATnet [11] 0.7128±0.0061 0.7760±0.0096
RNPCANet [33] - 0.7227±0.0102
VLAD-LLC [26] - 0.8923

LEFSI [31] 0.7721±0.0061 0.8578±0.0037
ESRO-BoW [13] 0.8052 0.8535
DEL-BoW [14] 0.8269 0.8691

Table 11. Classification accuracy comparison between the MLOP classifier and comparative algorithms on
Caltech256 dataset (the best accuracy rates are bolded)

Algorithm
Accuracy

15 Training
Images

30 Training
Images

45 Training
Images

60 Training
Images

MLOP 0.6854±0.0033 0.7144±0.0032 0.7265±0.0030 0.7376±0.0027
SVM Out of System Memory
KNN 0.6251±0.0031 0.6805±0.0029 0.7091±0.0035 0.7310±0.0024

ALMMo0 0.6239±0.0033 0.6711±0.0026 0.6976±0.0034 0.7187±0.0029
HP 0.6353±0.0045 0.6908±0.0029 0.7172±0.0034 0.7347±0.0030

DEFEATnet [11] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032
VLAD-LLC [26] - - - 0.7425

LEFSI [31] 0.3657±0.0056 0.4721±0.0069 0.5081 ± 0.0041 0.5290 ± 0.0048
DEL-BoW [14] 0.6122 0.6925 - 0.7257
LSC-LG [43] 0.4314±0.0063 0.5062±0.0053 0.5327±0.0056 0.5576±0.0048
OCB-FV [47] 0.4403±0.0046 0.5315±0.0044 0.5784±0.0040 0.5903±0.0045

SWSS-DeCAF [45] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044
SWSS-FV [45] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041
SC2-CNN [46] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050

ResNet101-COMO-2 [48] - 0.4466 - 0.6707

Fig. 11. Average layer numbers of the prototype-based hierarchies identified by the MLOP classifier during
numerical experiments on benchmark image sets

27

(a)Airplane (b) Llama

(c) Snoopy

Fig. 12. Three prototype-based hierarchies that the MLOP classifier identifies from the respective training
images of three different classes of the Caltech101 dataset

5.3. Discussions
From Tables 6-11 one can see that the proposed approach demonstrates very high classification performance on
all benchmark problems surpassing or, at least, on par with the state-of-the-art approaches. In addition, despite
that the MLOP classifier learns from static data offline, Table 6 shows that in many cases, its computational
efficiency is higher than the majority of alternative prototype-based approaches involved in the experiments. It is
demonstrated by Tables 4, 5 and 6 that the MLOP classifier can continue to self-learn and self-update from
streaming data online to incorporate newly observed data patterns. In addition, one interesting feature of the
MLOP classifier is that its multi-layered system structure and meta-parameters are derived from data based on the
ensemble properties and mutual distribution in a straightforward way. The user-controlled parameter, only
controls the trade-off between the intra-cluster variance and the number of prototypes in the constructed model
without influencing the objectiveness of the prototype identification process. Therefore, the MLOP classifier
keeps the advantage of objectiveness of data-driven approaches, and the effectiveness and validity of its learning
results are always guaranteed for different problems.

28

On the other hand, it needs to be kept in mind that a classifier might behave very differently depending on the
nature of data. The proposed MLOP classifier categorizes unlabelled samples based on the “nearest prototype”
principle. This decision-making mechanism is similar to the “nearest neighbour” principle used by the KNN
classifier and would become less effective when data is not linearly separable. Therefore, one may notice from
Table 6 that MLOP generally performs less well on nonlinear problems such as the WI, PW and ES dataset. The
same problem can be observed from the KNN, ALMMo0 and HP classifiers as well. Meanwhile, DT, MLP, SC
and ELM usually perform better on such types of problems because they are nonlinear classifiers. To further
improve the ability of the MLOP classifier on nonlinear problems, one may use the kernel trick to transform the
observed data samples into higher dimensions and make them linearly separable.

Furthermore, the MLOP classifier in this paper uses the Euclidean distance as the default distance measure.
However, it has been widely recognized that different distance measures have different focuses on disclosing the
ensemble properties of data. The differences can be even more significant in higher dimensional data spaces. For
example, many commonly used distance metrics, including Euclidean distance, city block distance and
Mahalanobis distance, suffer from the so-called “curse of dimensionality”. In contrast, cosine dissimilarity is more
frequently used for handling high-dimensional problems. Therefore, it is of great importance for a classifier to use
a suitable distance measure for a particular problem. Otherwise, this might have an adverse impact on the
performance of the system. As another direction for improvement, it would be valuable to introduce some
modifications to the MLOP classifier, enabling it to work with various types of distance measures.

It also has to be admitted that the proposed MLOP classifier might not be suitable for extremely large-scale
problems. Its operating mechanism requires a time-consuming iterative searching process to identify the locally
optimal prototypes for classification. This would become a huge computation burden if there is a huge amount of
training samples or a locally optimal solution cannot be easily found due to the very high dimensionality and/or
complex structure of data. Therefore, it can be observed that the computation efficiency of the MLOP classifier
is surpassed by a number of comparative approaches on WI, OD, PW and ES datasets. Although the MLOP
classifier can continuously self-learn from new data sample-by-sample after being primed offline, the
computational efficiency of the online learning process is lower than ALMMo0 and HP classifiers due to its multi-
layered structure and denser links in-between. One feasible way to address this issue is to introduce some
alternative online learning mechanism to the MLOP classifier.

Last but not least, it needs to be clarified that the model transparency and explainability offered by the hierarchical
prototype-based structure and the traceable inference mechanism of the MLOP classifier are mostly for machine
learning experts/specialists to perform model diagnostics rather than for end users. To further enhance the end-
user explainability, one possible solution is to provide users with local explanation in terms of attribute importance
based on the model topology. However, this is beyond the scope of this paper.

6. Conclusion and Future Work
This paper presents a novel approach named MLOP for classification. The proposed MLOP approach identifies
locally optimal prototypes from data at multiple levels of granularity and self-organizes a multi-layered system
structure by aggregating these prototypes in a pyramidally hierarchical form in regard to the respective levels of
granularity. Unlike alternative mainstream algorithms, i.e., DNNs, the inner structure of the MLOP classifier is
highly transparent and interpretable. In addition, it can continuously self-update with new data samples. Its
decision-making process is fully explainable and traceable by following the “nearest prototype” principle, which
is of great importance for financial and safety-critical applications. Most importantly, the learned knowledge by
the proposed approach from data can be visualized in a human-interpretable form of prototype-based hierarchies.
A much smaller number of highly abstract prototypes at the top layers of the hierarchies can provide users a
general picture of the problem by summarizing key information. Meanwhile, a larger number of low-level
prototypes can provide users fine details of the problem. Numerical examples demonstrated the efficacy of the
proposed MLOP approach, showing its strong potential in real-world applications by offering both high predictive
precision and explainablity.

There are several considerations for future work. Firstly, the MLOP classifier requires one user-controlled
parameter to control the trade-off between the intra-cluster variance and the number of prototypes in the system
(equation (13)). Although this parameter can be determined without prior knowledge of the problem, involving a
new mechanism to automatically self-adjust its value based on the observed data can further enhance the autonomy
and robustness of the proposed approach. Secondly, some modifications are needed to enable the MLOP classifier

29

to work with different types of distance measures, enhancing its ability to handle data of different natures. Thirdly,
the online learning scheme of the proposed approach needs to be improved to speed up the overall computational
process for handling large-scale problems. In addition, introducing a semi-supervised learning mechanism to the
proposed MLOP approach can be very helpful considering the very small ratios between labelled and unlabelled
samples in many real-world applications. Finally, as aforementioned, it will be very useful to further improve the
end-user explainability of the proposed approach by explaining the importance of different attributes during
decision-making, such that users can better understand the inner relationships between input attribute values and
model outputs.

References
[1] P. P. Angelov and X. Gu, “Autonomous learning multi-model classifier of 0-order (ALMMo-0),” in IEEE

International Conference on Evolving and Autonomous Intelligent Systems, 2017, pp. 1–7.
[2] P. P. Angelov, X. Gu, and J. Principe, “A generalized methodology for data analysis,” IEEE Trans. Cybern.,

vol. 48, no. 10, pp. 2981–2993, 2018.
[3] D. Berthelot, N. Carlini, I. Goodfellow, A. Oliver, N. Papernot, and C. Raffel, “MixMatch: a holistic approach

to semi-supervised learning,” arXiv preprint arXiv:1911.09785, 2019.
[4] L. Breiman, “Random forests,” Mach. Learn. Proc., vol. 45, no. 1, pp. 5–32, 2001.
[5] G. Cerruela-García, A. de Haro-García, J. P. P. Toledano, and N. García-Pedrajas, “Improving the

combination of results in the ensembles of prototype selectors,” Neural Networks, vol. 118, pp. 175–191,
2019.

[6] D. Chen, Q. Yang, J. Liu, and Z. Zeng, “Selective prototype-based learning on concept-drifting data streams,”
Inf. Sci. (Ny)., vol. 516, pp. 20–32, 2020.

[7] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based
learning methods. Cambridge: Cambridge University Press, 2000.

[8] P. Cunningham and S. J. Delany, “K-nearest neighbour classifiers,” Mult. Classif. Syst., vol. 34, pp. 1–17,
2007.

[9] J. Feng, Y. Yu, and Z. H. Zhou, “Multi-layered gradient boosting decision trees,” in Advances in Neural
Information Processing Systems, 2018, pp. 3551–3561.

[10] A. Fernandez, F. Herrera, O. Cordon, M. Jose Del Jesus, and F. Marcelloni, “Evolutionary fuzzy systems for
explainable artificial intelligence: why, when, what for, and where to?,” IEEE Comput. Intell. Mag., vol. 14,
no. 1, pp. 69–81, 2019.

[11] S. Gao, L. Duan, and I. W. Tsang, “DEFEATnet—a deep conventional image representation for image
classification,” IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 3, pp. 494–505, 2016.

[12] S. García, J. Derrac, J. R. Cano, and F. Herrera, “Prototype selection for nearest neighbor classification:
Taxonomy and empirical study,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 417–435, 2012.

[13] I. F. J. Ghalyan, S. M. Chacko, and V. Kapila, “Simultaneous robustness against random initialization and
optimal order selection in Bag-of-Words modeling,” Pattern Recognit. Lett., vol. 116, pp. 135–142, 2018.

[14] I. F. J. Ghalyan, “Estimation of ergodicity limits of bag-of-words modeling for guaranteed stochastic
convergence,” Pattern Recognit., p. 107094, 2020.

[15] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in
IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 6645–6649.

[16] X. Gu, P. P. Angelov, and J. C. Principe, “A method for autonomous data partitioning,” Inf. Sci. (Ny)., vol.
460–461, pp. 65–82, 2018.

[17] X. Gu, P. P. Angelov, C. Zhang, and P. M. Atkinson, “A massively parallel deep rule-based ensemble
classifier for remote sensing scenes,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 3, pp. 345–349, 2018.

[18] X. Gu, P. Angelov, and H. J. Rong, “Local optimality of self-organising neuro-fuzzy inference systems,” Inf.
Sci. (Ny)., vol. 503, pp. 351–380, 2019.

[19] X. Gu and W. Ding, “A hierarchical prototype-based approach for classification,” Inf. Sci. (Ny)., vol. 505,
pp. 325–351, 2019.

[20] H. Hagras, “Toward human-understandable, explainable AI,” Computer (Long. Beach. Calif)., vol. 51, no. 9,
pp. 28–36, 2018.

[21] G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass
classification,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 42, no. 2, pp. 513–529, 2012.

[22] T. M. Kodinariya and P. R. Makwana, “Review on determining number of cluster in K-means clustering,”
Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 6, pp. 2321–7782, 2013.

30

[23] T. Kohonen, “Learning vector quantization,” in Self-Organizing Maps, Berlin, Heidelberg: Springer, 1995,
pp. 175–189.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural
networks,” in Advances In Neural Information Processing Systems, 2012, pp. 1097–1105.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol. 13, no. 1, pp. 35–35, 2015.
[26] Q. Li, Q. Peng, and C. Yan, “Multiple VLAD encoding of CNNs for image classification,” Comput. Sci. Eng.,

vol. 20, no. 2, pp. 52–63, 2018.
[27] L. Lu, L. Di, and Y. Ye, “A decision-tree classifier for extracting transparent plastic-mulched Landcover from

landsat-5 TM images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 11, pp. 4548–4558, 2014.
[28] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse autoencoders for image classification,”

IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 7, pp. 3289–3294, 2018.
[29] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: high confidence predictions

for unrecognizable images,” in IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
427–436.

[30] A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial envelope,”
Int. J. Comput. Vis., vol. 42, no. 3, pp. 145–175, 2001.

[31] Y. Pan, Y. Xia, Y. Song, and W. Cai, “Locality constrained encoding of frequency and spatial information
for image classification,” Multimed. Tools Appl., vol. 77, no. 19, pp. 24891–24907, 2018.

[32] R. N. Patro, S. Subudhi, P. K. Biswal, and F. Dell’Acqua, “Dictionary-based classifiers for exploiting feature
sequence information and their application to hyperspectral remotely sensed data,” Int. J. Remote Sens., vol.
40, no. 13, pp. 4996–5024, 2019.

[33] M. Qaraei, S. Abbaasi, and K. Ghiasi-Shirazi, “Randomized non-linear PCA networks,” Inf. Sci. (Ny)., vol.
545, pp. 241–253, 2021.

[34] H. J. Rong, N. Sundararajan, G. Bin Huang, and G. S. Zhao, “Extended sequential adaptive fuzzy inference
system for classification problems,” Evol. Syst., vol. 2, no. 2, pp. 71–82, 2011.

[35] A. Sato and K. Yamada, “Generalized learning vector quantization,” in Advances in neural information
processing systems, 1996, pp. 423–429.

[36] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: a generalized convergence theorem and
characterization of local optimality,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 1, pp. 81–87,
1984.

[37] J. Shao, F. Huang, Q. Yang, and G. Luo, “Robust prototype-based learning on data streams,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 5, pp. 978–991, 2018.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in
International Conference on Learning Representations, 2015, pp. 1–14.

[39] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, “Evolving fuzzy and neuro-fuzzy
approaches in clustering, regression, identification, and classification: a survey,” Inf. Sci. (Ny)., vol. 490, pp.
344–368, 2019.

[40] R. E. Wendell and A. P. Hurter Jr, “Minimization of a non-separable objective function subject to disjoint
constraints,” Oper. Res., vol. 24, no. 4, pp. 643–657, 1976.

[41] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image
classification,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.

[42] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: self-supervised semi-supervised learning,” in
IEEE/CVF International Conference on Computer Vision, 2019, pp. 1476–1485.

[43] C. Zhang, J. Cheng, C. Li, and Q. Tian, “Image-Specific Classification with Local and Global
Discriminations,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 9, pp. 4479–4486, 2018.

[44] C. Zhang, J. Cheng, and Q. Tian, “Incremental codebook adaptation for visual representation and
categorization,” IEEE Trans. Cybern., vol. 48, no. 7, pp. 2012–2023, 2018.

[45] C. Zhang, J. Cheng, and Q. Tian, “Structured weak semantic space construction for visual categorization,”
IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 8, pp. 3442–3451, 2018.

[46] C. Zhang, C. Li, D. Lu, J. Cheng, and Q. Tian, “Birds of a feather flock together: visual representation with
scale and class consistency,” Inf. Sci. (Ny)., vol. 460–461, pp. 115–127, 2018.

[47] C. Zhang, G. Zhu, C. Liang, Y. Zhang, Q. Huang, and Q. Tian, “Image class prediction by joint object, context,
and background modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 2, pp. 428–438, 2018.

[48] B. Zhao, H. Xiong, J. Bian, Z. Guo, C. Z. Xu, and D. Dou, “COMO: widening deep neural networks with
convolutional maxout,” IEEE Trans. Multimed., DOI: 0.1109/TMM.2020.3002614, 2020.

31

[49] Z. H. Zhou and J. Feng, “Deep forest: towards an alternative to deep neural networks,” in International Joint
Conference on Artificial Intelligence, 2017, pp. 3553–3559.

[50] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109, no. 1, pp. 43–76, 2020.

