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Abstract 20 

Regional transport is a key source of carbonaceous aerosol in many Chinese megacities 21 

including Beijing. The sources of carbonaceous aerosol in urban areas have been studied extensively 22 

but are poorly known in upwind rural areas. This work aims to quantify the contributions of fossil 23 

and non-fossil fuel emissions to carbonaceous aerosols at a rural site in North China Plain in winter 24 

2016. We integrated online high resolution-time of flight-aerosol mass spectrometer (HR-TOF-25 

AMS) observations and radiocarbon (14C) measurements of fine particles with Positive Matrix 26 

Factorization (PMF) analysis as well as Extended Gelencsér (EG) method. We found that the fine 27 

particle concentration is much higher at the rural site than in Beijing during the campaign (7th Dec 28 

2016 to 8th Jan 2017). PMF analysis of the AMS data showed that coal-combustion related organic 29 

aerosol (CCOA + Oxidized CCOA) and more oxidized oxygenated organic aerosol (MO-OOA) 30 

contributed 48% and 30% of organic matter to non-refractory PM1 (NR-PM1) mass. About 2/3 of 31 

the OC and EC were from fossil-fuel combustion. By EG method, combining AMS-PMF and 14C 32 

data, we found that primary and secondary OC from fossil fuel contribute 35% and 22% to total 33 

carbon (TC), coal combustion emission dominates the fossil fuel sources, and biomass burning 34 

accounted for 21% of carbonaceous aerosol. In summary, our results confirm that fossil fuel 35 

combustion was the dominant source of carbonaceous aerosol during heavy pollution events in the 36 

rural areas. Significant emissions of solid fuel carbonaceous aerosols at rural areas can affect air 37 

quality in downwind cities such as Beijing and Tianjin, highlighting the benefits of energy transition 38 

from solid fuels to cleaner energy in rural areas.  39 

Keywords：Air pollution; Fossil and non-fossil fuel emission; Coal combustion; Biomass burning; 40 

Sources apportionment;  41 
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 42 

 43 

Graphical Abstract 44 

1 Introduction 45 

Atmospheric particles, especially with diameter less than 2.5 m (PM2.5) have a major 46 

influence on visibility (Watson, 2002) and human health (Pope III et al., 2002). They also exert 47 

direct (absorption and scattering) and indirect impacts (cloud interaction) on the climate through 48 

changing the Earth’s energy balance (IPCC, 2021). Submicron particles (PM1) contribute the most 49 

to these effects because their sizes are closer to the wavelength of visible light and they can penetrate 50 

deep into the respiration system (Costa et al., 2015; Marseglia et al., 2019; Pope and Dockery, 2006). 51 

It is estimated that PM2.5 pollution has led to over 1 million premature deaths (GBD MAPS Working 52 

Group, (2016), and over 346 billion RMB in economic loss per year in China (Xia et al., 2016).  53 

In China, frequent haze events have beset its air quality for decades. Since 2013, a series of 54 

clean air policies have substantially reduced mass concentration of particulate matter (PM2.5) (Vu et 55 

al., 2019; Zhang et al., 2020). However, PM2.5 levels are still several times higher than the newly 56 

announced air quality guidelines by the World Health Organization (WHO) (Cheng et al., 2021; 57 

WHO, 2021). Furthermore, serious haze events still occurred frequently, especially during 58 

wintertime in Northern China (Shi et al., 2021; Sun et al., 2015; Xu et al., 2021; Zhang et al., 2018; 59 

Zhang et al., 2017b). PM2.5 pollution remains a major challenge in China.  60 

Carbonaceous aerosol is a major component in PM1, contributing 20-90% of PM1 mass 61 

(Jimenez et al., 2009). Carbonaceous aerosol comprises a wide variety of organic compounds, 62 

generally referred as organic matter (OM), elemental carbon (EC), and carbonate, while the latter 63 

typically being negligible in submicron aerosol since it is mainly present in the coarse fraction 64 

(Sillanpää et al., 2005). OM is often referred as organic aerosol (OA), which is classified into 65 

primary and secondary organic aerosol (POA and SOA), the latter of which are formed from the 66 

condensation of oxygenated volatile organic compounds (OVOCs) or atmospheric oxidation of 67 

primary organic aerosol(Xu et al., 2021; Zhang et al., 2018). POA and its precursors can be emitted 68 

from fossil (e.g. coal combustion and vehicle exhaust) and non-fossil sources (e.g. biomass burning, 69 

vegetation emission, cooking) (Hou et al., 2021; Minguillón et al., 2011; Sun et al., 2019).  70 

Although much progress has been made in the past 20 years in organic aerosol characterization 71 

and source apportionment (Hopke et al., 2020; Jimenez et al., 2009; Li et al., 2017b; Liang et al., 72 

2016; Wang et al., 2021a; Zhou et al., 2020), it remains a major challenge to quantitatively determine 73 

the contributions of different sources to OA, not only for its complex origins but also for the unclear 74 

formation processes (Liang et al., 2016; Zhang et al., 2014b; Zhou et al., 2020). Chemical Mass 75 
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Balance (CMB) is an effective method to apportion the sources of organic carbon (OC) but it 76 

requires the analysis of a wide range of organic tracers and chemical profiles of PM from different 77 

sources in the local study region (Xu et al., 2020). Radioisotope of carbon (14C) is an ideal tracer for 78 

distinguishing fossil and contemporary carbon. Due to its age (half life time 5730 years), 14C is 79 

completely depleted in fossil-fuel emissions whereas non-fossil carbon sources (e.g. biomass 80 

burning or biogenic emissions) contain contemporary 14C (Heal, 2014; Szidat, 2009). Filter-based 81 

radiocarbon analyses apportioned the sources of fossil and non-fossil to particulate matter in China 82 

(Hou et al., 2021; Liu et al., 2017; Liu et al., 2020; Zhang et al., 2017a; Zhou et al., 2017). Positive 83 

matrix factorization (PMF) (Ulbrich et al., 2009) and a multilinear engine (ME-2) (Canonaco et al., 84 

2013) modelling of high time resolution organic mass spectrometric data from aerosol mass 85 

spectrometer (AMS) have also been used to resolve organics into various OA factors, which 86 

correspond to different sources and processes. OA are generally de-convolved into four POA (i.e. 87 

hydrocarbon OA (HOA), coal combustion OA (CCOA), food cooking OA (COA), biomass burning 88 

OA (BBOA)) and two SOA factors (i.e. less oxidized OA (LO-OOA) and more oxidized OA (MO-89 

OOA)) (Sun et al., 2018; Zhang et al., 2018). HOA is generally considered from diesel/gasoline 90 

combustion. The exact sources of LO-OOA and MO-OOA remain unclear. Some studies argued that 91 

certain OOAs are oxidized HOA or CCOA based on their correlation markers such as nitrate and 92 

NO2 or sulfate and SO2 respectively (Sun et al., 2018; Zhang et al., 2018). However, the 93 

contributions from fossil and non-fossil fuel sources to carbonaceous aerosols remain poorly 94 

quantified. 95 

North China Plain (NCP), including Beijing, Tianjin and Hebei, remains one of the most 96 

polluted city clusters in China. Although air quality in Beijing has improved significantly in the past 97 

few years as a result of the clean air actions (Li et al., 2021b; Vu et al., 2019; Zhang et al., 2020), 98 

Beijing still experiences frequent haze pollution events in the winter. Modelling and observations 99 

consistently suggest that a large fraction of the air pollutants in Beijing is from regional transport, 100 

and this is particularly true during hazy events (Cheng et al., 2018; Shi et al., 2021; Wang et al., 101 

2021b; Zheng et al., 2015). Several observational studies in urban Beijing suggested that air 102 

pollutants transported from the south and southwest contribute significantly to air pollution in 103 

Beijing (Li et al., 2017a; Sun et al., 2018; Zhang et al., 2018; Zhong et al., 2020). Modelling studies 104 

also indicated that about half of the black carbon and carbon monoxide in Beijing is from regional 105 

transport (Liu et al., 2019; Panagi et al., 2020). Some studies on gaseous pollutants and PM 106 

composition were also carried out at upwind locations of Beijing, such as Gucheng (Kuang et al., 107 

2020; Li et al., 2021a; Lin et al., 2009; Shi et al., 2021; Xu et al., 2021; Zhang, 2011; Zhong et al., 108 

2020), Tianjing (Fan et al., 2020; Wang et al., 2020; Zhang, 2011; Zou et al., 2017) , Yufa (Takegawa 109 

et al., 2009) and Xianghe (He et al., 2021; Wang et al., 2021c; Wang et al., 2020). A major focus of 110 

these studies is to understand the formation mechanisms of secondary aerosol, particularly inorganic 111 

aerosols. However, little is known on the sources of carbonaceous aerosol in the upwind area of 112 

Beijing and Tianjin, particularly at rural areas (Xu et al., 2020). 113 

In this study, we quantified the contribution of fossil fuel and non-fossil fuel combustion 114 

sources to carbonaceous aerosol at an upwind rural site of megacities, such as Beijing and Tianjin, 115 

in NCP. We chose a rural site at Gucheng, which is often downwind of industrial cities, namely 116 

Taiyuan, Shijiazhuang, Hengshui and upwind of Beijing and Tianjin (Kuang et al., 2020; Li et al., 117 

2021a; Zhong et al., 2020). Gucheng is a typical regional background site in NCP. In the main 118 

manuscript, we firstly provide an overview of the PM1 chemical composition and source 119 
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apportionment results during an intensive observation campaign from December 2016 to January 120 

2017 (section 3.1). We then used the radiocarbon data to apportion the sources of fossil and non-121 

fossil fuel combustion to OC and EC (Section 3.2). Finally, we combined the AMS-PMF results 122 

with 14C-based extended Gelencsér (EG) method (Hou et al., 2021) to apportion the contribution of 123 

specific sources of carbonaceous aerosols (section 3.3) to OC.  124 

2 Experiment section 125 

2.1 Sampling site and instrumentation 126 

All measurements were conducted at the Integrated Ecological-Meteorological Observation 127 

and Experiment Station of Chinese Academy of Meteorological Sciences, Gucheng station, in Hebei 128 

province (3908 N, 115 40 E, 15.2 m asl) (Figure 1). The area is representative of the wider rural 129 

areas in NCP, and has been chosen by previous studies to investigate regional sources and processes 130 

of air pollution in NCP (Lin et al., 2009;Li et al., 2021; Zhang, 2011). On a regional scale, the site 131 

locates within a pollution transport convergence belt of NCP. When the northwest winds from Mt. 132 

Yan and Taihang meet the southeast wind from the plain, the air masses form a transport 133 

convergence belt alongside the mountain. This is also called as an accumulation belt for the pollution 134 

of NCP (Su et al., 2004). On a local scale, it is surrounded by agricultural fields (for cultivation of 135 

wheat and corn), and the closest residential town (Dingxing county) is 15 km to the northeast of the 136 

site. There are no agricultural activities during the winter period. A national (arterial) road goes 137 

across the county which is 1.5 km away from the site.  138 

 139 

 140 

Figure1. The location of study site (red circle) and surrounding major cities in the NCP. The color 141 

scheme represents the elevation.  142 

 143 

The key instrument deployed in this study is a HR-TOF-AMS from December 7th 2016 to 144 

January 8th 2017 Air was sampled through a PM10 impactor (16.7 L min−1) with an automatic aerosol 145 

dryer unit to dry the sampling air with RH < 30%. Mass concentrations of organics, sulfate, nitrate, 146 
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ammonium and chloride were measured by the HR-TOF-AMS with 1-minute time resolution. 147 

Particle number size distributions were measured by Twins Differential Mobility Particle Sizer 148 

(TDMPS, TROPOS in Germany) to further correct the collection efficiency of AMS. Based on the 149 

comparison of AMS and TDMPS data, a fixed collection efficiency (CE) of 0.6 was used. Daily 150 

PM2.5 samples were collected on quartz filters with a high volume sampler (TISCH, TE6070VFC) 151 

from 9:00 to 9:00 during 14 haze days. Hourly trace gaseous pollutants, including NO2 (TE, 42CTL), 152 

SO2 (TE, 43CTL), CO (TE, 48C), NH3 (Ecotech, EC9842) and O3 (TE, 49C) were also monitored 153 

during the campaign. The surface hourly meteorological data including temperature (T), relative 154 

humidity (RH), wind speed (WS) and direction (WD) were monitored by an automatic weather 155 

station (AWS).  156 

2.2 Data analysis and 14C-based source apportionment 157 

2.2.1 AMS data analysis  158 

The HR-TOF-AMS data were analyzed by Squirrel (Version 1.62G) and Pika (Version 1.22G) 159 

to determine the mass concentrations, size distributions of NR-PM1 species, and elemental 160 

compositions of organic aerosol. In addition, the updated Improved-Ambient method (Canagaratna 161 

et al., 2015) was used to determine the elemental ratios of OA including hydrogen to carbon (H/C), 162 

oxygen to carbon (O/C), nitrogen to carbon (N/C), and organic mass to organic carbon (OM/OC) 163 

ratios. Collection efficiency (CE) was determined based on the relationship between total PM1 and 164 

TDMPS (Zhong et al., 2020).  165 

PMF was applied to the high resolution mass spectra to resolve distinct OA factors (Paatero and 166 

Tapper, 1994; Ulbrich et al., 2009). The procedures for the processing of data and error matrices 167 

were detailed in Ng et al. (2011). By comparing the mass spectral profiles with previous studies and 168 

correlations with time series of tracers, five OA factors with fpeak = 0 were selected, including three 169 

POA factors: HOA, CCOA and BBOA, and two SOA factors: oxidized coal combustion OA 170 

(OCCOA) and MO-OOA. The diagnostic plots and the temporal series of five OA factors with other 171 

tracers are shown in the Figures S1 and S2. The mass spectral pattern of HOA was primarily 172 

characterized by high m/z 43 and m/z 57, which are also widely used as a HOA tracer. CCOA was 173 

characterized by aromatic hydrocarbon related fragments including C6H5, C7H7 and C9H7, which 174 

are considered as typical tracers for coal combustion OA. OCCOA was featured by slightly higher 175 

m/z 44 signal as well as its similar mass spectral pattern with that of the CCOA, which indicated it 176 

is most likely the oxidized form of CCOA. Prominent signals at m/z 60 and 73 are used as tracers 177 

for BBOA. Significant m/z 44 signals were used to as the tracer for more oxidized OOA. Moreover, 178 

good correlations between these OA components and specific tracers confirmed the PMF results are 179 

reasonable, i.e. HOA vs C4H9 (fragment of alkanes), CCOA vs chloride and SO2, OCCOA vs AH-180 

related fragments, BBOA vs Levoglucosan, MO-OOA vs CO2
+, sulfate and nitrate (Figure S2). 181 

2.2.2 14C Analysis of the Carbonaceous Fractions 182 

A punch of the daily PM2.5 filter samples (total 14 filters) was analyzed for total carbon (TC), 183 

organic carbon (OC) and elemental carbon (EC) by the thermal optical reflectance (TOR) method 184 

following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Cao 185 

et al., 2004). Another portion of the filter samples was used for 14C analysis.  186 

The OC and EC were also extracted by the IMPROVE protocol for 14C measurements. Detailed 187 

descriptions of extracting procedures for OC and EC, as well as preparing procedures of 188 
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graphitization samples for OC and EC were given by Pang et al. (2019). 14C measurements were 189 

performed at China Institute of Atomic Energy (CIAE) compact accelerator mass spectrometry 190 

system, which was based on a 200 kV single-stage accelerator mass spectrometer (SSAMS) (Pang 191 

et al., 2017).  192 
14C measurement results were expressed as fractions of modern C (fM), representing the fraction 193 

of 14C in the sample. In this paper, all the reported fractions of modern carbon (descript as fNF) were 194 

corrected by the reference sample in year 1950. In specific, non-fossil fractions of OC and EC (i.e. 195 

fNF (OC) and fNF (EC), respectively) were calculated from the fM (sample) and the reference values 196 

fM (Ref) (fNF = fM (sample)/ fM (Ref)). More details of the estimation of reference values (fM (Ref)) 197 

have been previously reported (Minguillón et al., 2011; Zhang et al., 2013), fM (Ref) values were 198 

1.07±0.04 and 1.10±0.05 for OC and EC, respectively (Zhang et al., 2017a). 199 

2.2.3 Extended Gelencsér (EG) method for source apportionment 200 

Based on the AMS-PMF results, mass concentrations of OC and EC and the 14C results, four 201 

main parameters including EC from fossil (ECFF) and non-fossil sources (ECNF), OC from fossil 202 

(OCFF) and non-fossil sources (OCNF) were resolved. Gelencsér et al. (2007) reported a method for 203 

the source apportionment of carbonaceous aerosol into fractions from biomass burning, road traffic 204 

and secondary organic aerosol, applicable to Europe where these are the dominant sources. But in 205 

China, coal combustion fraction must be considered. The quantification of non-fossil sources of 206 

SOC by Gelencsér et al. (2007) method is dependent on the source apportionment of OC from 207 

biomass burning. But the diversity of fuel types and combustion conditions make the selection of 208 

OC/EC ratios for biomass burning aerosol difficult due to large variabilities (Hou et al., 2021). For 209 

this reason, an extended Gelencsér (EG) method (Hou et al., 2021) was used to quantify the fossil 210 

and non-fossil sources of OC (OCFF and OCNF) along with OC from biomass burning. Finally, OCFF 211 

and OCNF were further classified into subtypes including primary fossil-fuel OC (POCFF), secondary 212 

fossil-fuel OC (SOCFF), non-fossil OC from biomass burning OCbb and other emission OCother.  213 

Hydrocarbon OC (HOC), Coal Combustion OC (CCOC), Biomass Burning OC (BBOC), 214 

Oxygenic Coal Combustion OC (OCCOC) and OCAMS were calculated from HOA (Hydrocarbon 215 

OA), CCOA (Coal Combustion OA), BBOA (Biomass Burning OA), OCCOA (Oxidized CCOA) 216 

and Organics divided by corresponding OM/OC values from AMS-PMF and AMS on-line data 217 

respectively (see Figure S1). We assume that the fossil POC is the sum of HOC and CCOC, and 218 

BBOC was all from biomass burning emissions. The equations for the detailed source 219 

apportionment are shown in Table1.  220 

 221 

Table 1. Equations for the 14C based source apportionment 222 

 223 
 Extended Gelencsér method 

ECNF ECbb = fNF (EC)EC 

ECFF EC-ECNF 

OCNF fNF (OC)OC 

OCFF OC- OCNF 

POCFF ECFF (POC/EC)FF 

SOCFF OCFF-POCFF 

OCbb ECNF  (POC/EC)bb 
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OCother OCNF-OCbb 

OCAMS OAAMS / (OM/OC)AMS 

 224 

where, subscripts NF, FF, and bb are abbreviation of non-fossil, fossil fuel, biomass burning 225 

respectively, and fNF represents the 14C fraction of non-fossil fuel sources.  226 

To estimate the concentration of POCFF, it is essential to calculate the (POC/EC)FF. Hou et al. 227 

(2020) employed the lowest value method to calculate the (POC/EC)FF by (POC/EC)FF, min. We 228 

followed their method to estimate (POC/EC)FF, min value by multiplying the lowest 5% OC/EC ratios 229 

with the lowest two (
1−𝑓𝑁𝐹,𝑂𝐶

1−𝑓𝑁𝐹,𝐸𝐶
) ratios. The estimated (POC/EC)FF in this study is 3.81, which is close 230 

to that reported in in Beijing (IAP site) during the winter 2016 (Hou et al., 2020). The small 231 

difference could be due to the diversity of fuel types, uncertainties of sampling and the analyzing 232 

process. Overall, the uncertainty of POCFF is estimated to be 5%.  233 

(POC/EC)bb is a key parameter to estimate OCbb. The diversity of fuel types and combustion 234 

conditions make the selection of OC/EC ratios for biomass burning aerosol difficult. Wheat and 235 

maize straws were the two dominant biofuel in North China because they are the two most common 236 

crops (Chen et al., 2017). Biomass fuels (such as wood and straw) are widely used as the domestic 237 

fuel for cooking/heating in rural areas (Chen et al., 2017). With the help of ratios of levoglucosan 238 

to galactosan (LG/GA) and mannosan (LG/MN), Hou et al. (2021) suggested that wood in Beijing 239 

(both IAP and Pinggu sites) is likely the dominant biofuel in winter. In this study, we also determined 240 

the LG/MN and OC/LG ratios (Table 2). The average LG/MN ratio was 15.2±2.1 (from 11.2 to 241 

19.9), and the OC/LG ratio was 85.7±87.1 (from 61.7 to 150.7). These results also suggest the 242 

dominance of wood combustion (Hou et al., 2021; Mazzoleni et al., 2007). Therefore, we adopted 243 

the average OC/EC value for wood branch 2.19 as (POC/EC)bb based on Sun et al. (2019). Straw 244 

burning activities were forbidden since 2013 in North China Plain but secret burning may still 245 

contribute to OC. This could contribute to some uncertainties in our estimate of (POC/EC)bb. 246 

The uncertainty of OCbb is calculated to be 39.4% based on the following equation: 247 

 U (OC)bb=√𝑈2(𝑃𝑂𝐶/𝐸𝐶)𝑏𝑏 + 𝑈2(𝐸𝐶) + 𝑈2(𝑓𝑁𝐹,𝑓𝑀 , 𝑓𝑟𝑒𝑓) 248 

Here the uncertainty of the (POC/EC)bb is estimated to be 21% and that of ECNF is calculated 249 

to be 33% by combining all the uncertainties from EC measurements (Pang et al., 2017). The 250 

combined uncertainty of fNF, fM and fref is 5%. Note that the uncertainty of OCbb can also affect the 251 

estimation of OCother. 252 

3 Results and discussion 253 

3.1 Overview of chemical composition and sources of PM1 254 

The temporal variations of major chemical species including organics, sulfate, nitrate, 255 

ammonium, and chloride (together defined as OSNAC) in non-refractory-PM1 (NR-PM1), gaseous 256 

pollutants as well as meteorological conditions during Dec 7th 2016 and Jan 8th 2017 are displayed 257 

in Figure 2. The 10-min mass concentrations of OSNAC varied dramatically, from 5.5 to 767.9 g 258 

m-3 with an average concentration ± standard deviation of 153.0±94.6g m-3, which is about 20% 259 

higher than that in Beijing during the same period (135.8 g m-3) (Zhang et al., 2020). Daily PM1 260 

mass concentration exceeded the Chinese PM2.5 standard level (75 g m-3) in 28 out of 31 days 261 

during the field campaign. The average mass concentration of organics, sulfate, nitrate, ammonium 262 

and chloride was 95.8±34.2, 22.4±11.6, 18.1±6.6, 14.4±5.1 and 9.1±3.6g m-3 (Table 2). The mass 263 
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concentration of SO2, NO2, NH3, and O3 was 15.8, 46.4, 35.9, 3.4 ppb respectively, and the average 264 

CO was 3.89 ppm. SO2 is about twice of that in Beijing (8.1ppb) during the same period. Mean 265 

relative humidity was 79% (from 30% to 100%) and the average temperature and solar radiations 266 

was -1.5 C and 62 W m-2 respectively. Wind roses show that about 12% of wind is from south and 267 

7% from southwest (Figure S3). The average wind speed is only 0.9 m s-1. 268 

 269 

 270 
Figure 2. Time series of wind speed and direction (a), solar radiation (left) and temperature 271 

(right) (b), relative humidity (c), gaseous pollutants SO2, NO2, NH3 (d) and O3, CO(e), and PM1 272 

chemical species (f)  273 

 274 

Fig. 2 shows that organics was the predominant NR-PM1 species in Gucheng. They are about 275 

1.5 times higher than that of the inorganic species. The mass concentrations of organics, sulfate, 276 

nitrate, ammonium and chloride was 58.9, 21.8, 30.7, 19.2 and 5.2 g m-3 at an urban site in Beijing 277 

during the same period (Zhang et al., 2018). The organic aerosol in Gucheng was about 50% higher 278 

than that in Beijing. This suggests a significant local emissions and/or regional transport (Li et al., 279 

2020). Nitrate and ammonium levels are lower than that in Beijing, and there is no obvious 280 

difference in sulfate levels at the two sites. Since 2013, coal boilers were banned in Beijing urban 281 

area, and SO2 emission reduced dramatically (Vu et al., 2019). Much of the sulfate and SO2 in 282 

Beijing comes from the regional transport (Zhang et al., 2018). Under the synoptic meteorological 283 

conditions, the mechanisms of sulfate formation in Beijing and Gucheng are likely to be similar. 284 

The lower concentration of nitrate in Gucheng may be ascribed to the lower road traffic emissions 285 

than that in Beijing. Higher ammonium concentration in Beijing could be due to urban emissions of 286 

non-agricultural NH3 in the winter and complex NH3-NH4
+ chemistry (Wu et al., 2019).  287 

 288 

Table 2. Statistics of the chemical species by AMS measurement and filter analysis including LG, 289 
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MN, OC, EC (unit: g m-3) and OC/EC ratio 290 

Organics Sulfate Nitrate Ammonium Chloride OC EC 

95.7±34.2 22.4±11.6 18.1±6.6 14.4±5.1 9.1±3.6 67.8±25.4 11.4±3.4 

       

HOA CCOA BBOA OCCOA MO-OOA LG MN 

11.1±5.9 36.5±21.6 9.1±6.1 11.1±4.7 28.0±13.7 0.77±0.27 0.05±0.02 

Note: HOA=Hydrocarbon organic aerosol, CCOA=coal combustion organic aerosol, BBOA= biomass burning 291 

organic aerosol, OCCOA=oxidized coal combustion organic aerosol and MO-OOA =more oxygenic organic aerosol; 292 

OCAMS=OAAMS / (OM/OC)AMS; LG= levoglucosan, MN= mannasan 293 

 294 

 295 
Figure 3. Temporal variations of chemical components in NR-PM1 (a); box plot of the chemical 296 

species for organics (left axis), sulfate, nitrate, ammonium and chloride (right axis) in PM1 with 297 

mean (line in the middle of boxes), median (cross in the middle of boxes), 5%, 25%, 75% and 298 

95% percentiles (b); and pie charts of non-refractory species (c) and organic components (d) 299 

during the study period. 300 

 301 

Figure 3 presents daily concentrations of chemical species as well as the AMS-PMF resolved 302 

organics in Gucheng. The average concentration of OAs from solid fuel combustion, including 303 

CCOA, OCCOA and BBOA, was 36.5±22.2, 11.1±4.8, 9.1±6.3 g m-3 (Table 2), contributing 38%, 304 

12% and 9% to total OA (Figure 3d). HOA, which is typically considered as traffic-related source 305 

accounted for 12% of total OA. In total, primary organic sources (POA) including HOA, CCOA and 306 

BBOA contributed 59% to OA. The high contribution of CCOA and OCCOA to total OA suggest a 307 

strong influence of coal combustion in Gucheng. As MO-OOA was characterized with higher O/C 308 

12%

38%

9%
12%

29%

d)

Organic

95.8 gm-3

HOA CCOA BBOA CCOA MO-OOAOrg SO4 NO3 NH4 Chl

159.8 gm-3

60%   
14%

11%

9% 6%

c)

NR-PM1

PM1

（g m-3）
245 94 224 180 104 245 309 230 204 293 188 189 188 111

a)

b)
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ratio (0.73), it may be a mixed source of oxidized primary OA and condensed OVOCs. But it is 309 

challenging to assign its precise emissions sources based on AMS-PMF results.  310 

Fig. 3 shows that the chemical compositions of NR-PM1 varied day by day. The most serious 311 

pollution events were recorded on 18th and 21st December with NR-PM1 as high as 300 g m-3. 312 

Zhong et al (2020) attributed the accumulation of PM1 during these pollution events to day-to-day 313 

vertical meteorological variability, particularly diminishing mixing layer height exacerbated by 314 

aerosol-radiation feedback. Low solar radiations (Figure 2b) during these days may further reduce 315 

the vertical mixing of air pollutants. Furthermore, the satellite map shows that the air masses 316 

originated from the south and southwest (such as Taiyuan in Shanxi province and Shijiazhuang) 317 

(Figure S4). It is likely that meteorological variability, regional transport and increased coal 318 

combustion activities at night all contributed to the high PM levels during these events.  319 

3.2 Fossil and non-fossil OC and EC 320 

Figure 4 shows the filter-based mass concentration of OC and EC as well as their modern carbon 321 

fraction (fNF) in PM2.5. Average OC concentration was 67.8±25.4g m-3, varying from 33.2 to 121.8 322 

g m-3, while the EC concentration was 11.4±3.4 g m-3. The average modern fraction fNF in EC, 323 

equivalent to ECbb, was 36±8.5% with a range of 26-57%, suggesting a dominant contribution of 324 

fossil-fuel combustion to EC in Gucheng. This fraction is comparable to those in hazy days at IAP 325 

(32±3%) and Pinggu (39±7%) in wintertime (Hou et al., 2021). The observed fNF in EC is mostly 326 

within the range of previous studies in urban Beijing (Liu et al., 2017; Liu et al., 2020; Zhang et al., 327 

2017a). Non-fossil fuel fraction in EC here is also comparable to those estimated by bottom-up 328 

inventories (i.e. 39%) in China, as well as to that at a background site in South China (38%) (Zhang 329 

et al., 2014a). But it is slightly lower than those found in South Asia, where local/regional biomass 330 

burning contribution to EC was more significant than fossil fuel combustions such as Hanimaadhoo, 331 

Maldives (47%) and Sinhagad, India (49%) (Zhang et al., 2017a). In Europe, urban sites were less 332 

influenced by non-fossil EC emissions than at rural sites. For example, 13% of EC at an urban 333 

background site in Barcelona in winter was originated from non-fossil fuel combustion but this 334 

value increased to 34% at a forest regional background site - Montseny (Minguillón et al., 2011). In 335 

Goteborg, Sweden, winter non-fossil fraction fNF (EC) was 12% and 39% at the urban and rural site 336 

respectively (Szidat, 2009).  337 

 338 
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339 

Figure 4. Temporal variations of TC, OC and EC concentrations (a); and fNF of OC and EC (b)  340 

 341 

Non-fossil contribution to OC varied from 24% to 48% with a mean of 34.9±7.7%, indicating 342 

the dominant contribution of fossil-fuel combustion to OC in Gucheng. This value was comparable 343 

to that in urban Beijing (32%) in winter 2016 (Hou et al., 2021), but much lower than some European 344 

urban site (68±4%), rural site (71±4%) (Szidat et al., 2009), and forest sites (69±4%) in Goteborg, 345 

and urban background site (60±4%) at Barcelona (Minguillón et al., 2011). The more widespread 346 

use of wood for residential heating in Europe is the likely reason the for higher non-fossil fraction 347 

of OC reported there. Since 2013, open burning activities had been banned in NCP. Therefore, the 348 

main non-fossil fuel sources in Gucheng are associated with cooking and residential heating.  349 

3.3 Source apportionment of organic carbon in Gucheng 350 

The relative contributions of fossil and non-fossil fuel carbonaceous aerosols to TC were 351 

summarized in Figure 5. We first categorized OC and EC into fossil and non-fossil subtypes (Figure 352 

5a). Fossil derived OC was the largest contributor to TC (53±9.4%). OCNF accounted for 27% of 353 

TC. The fossil and non-fossil fuel EC contributes 13% and 7% to TC respectively.   354 

We further classified OC into primary fossil OC (POCFF), secondary fossil OC (SOCFF), 355 

biomass burning OC (OCbb) and other non-fossil OC (OCother) using the Extended Gelenscér method 356 

(Figure 5b and Table 3). The mass concentrations of POCFF and SOCFF was 27.9±8.8 and 16.9±17.4 357 

µg m-3, accounting for 35% and 22% of TC, respectively. In total, about 57% of TC is attributed to 358 

fossil fuel sources. More fossil fuel OC was from the primary OC than that from the secondary OCFF, 359 

indicating more local fossil fuel emissions.  360 

a)

b)
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 361 

Figure 5. Relative contributions of fossil and non-fossil fuel OC and EC to TC (a); Relative 362 

contributions of ECNF, ECFF, POCFF, SOCFF, OCbb and OCother to TC (b) 363 

 364 

Carbonaceous aerosol from biomass burning (ECNF+OCbb) is estimated to account for 21% of 365 

TC. OCbb contributes 57% to OCNF and 16% to the TC. Its contribution to TC is higher than that 366 

(10.4%) in Beijing in winter 2016 (Hou et al., 2021). This is reasonable because biomass fuel was 367 

widely burned for cooking and heating in rural area in Northern China (Meng et al., 2019).  368 

OCother is determined by subtracting OCbb from OCNF. About 13% of the TC was estimated to 369 

be OCother in this study. OCother represents OC from non-fossil sources excluding OCbb, so it could 370 

include secondary OC from biogenic emission and primary non-biomass burning emissions, such 371 

as cooking and vegetative detritus as well as particles derived from vehicle tyre wear (e.g., from 372 

natural rubber) (Heal, 2014). A higher signal of m/z 55 than m/z 57 was widely identified as cooking 373 

OA (COA) tracers. This has been shown to work well in urban Beijing, and was confirmed with 374 

concentration peaks at noon and evening meal time (Zhang et al., 2018). But in this study, due to 375 

the absence of a high signal of m/z 55 than m/z57 and the noon and evening concentration peaks, 376 

no COA was resolved by the AMS-PMF method. This could be due to a relatively low contribution 377 

of cooking to OA at Gucheng as a result of relatively low population density than in cities.  378 

Our results support the emission inventory-based study by Meng et al. (2019) who suggested 379 

a significant contribution of solid fuel consumption, particularly coal, on ambient PM2.5 levels in 380 

NCP. Zhang et al. (2021) and Liu et al. (2021) also found strong evidence of the organic aerosols 381 

emitted from the residential sector by using single particle analyses, although they did not provide 382 

a quantitative source apportionment.  383 

 384 

Table 3. Statistics of resolved categories of OC as well as fossil and non-fossil sources of POC and 385 

SOC (unit: g m-3) 386 

fNF(OC)(%) fNF(EC)(%) OCNF OCFF ECNF 

34.9±7.7 36.1±8.5 22.5±6.9 45.3±20.6 4.1±1.6 

     

ECFF OCbb OCother POCFF SOCFF 

7.3±2.3 12.6±4.2 9.9±6.4 27.9±8.8 16.9±17.4 

 387 

Correlations of resolved OC categories based on the EG method and AMS-PMF method are 388 
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further investigated. POCFF displays a good correlation with CCOC, CCOC+HOC and sulfate, with 389 

R2 of 0.55, 0.57 and 0.61 respectively (Figure 6a, b, c), while the slope between CCOC and POCFF 390 

was close to 1 (0.96) and that between CCOC+HOC and POCFF was 1.22. These results suggest an 391 

overestimation of primary fossil emission from the AMS. This could be due to the uncertainties in 392 

AMS-PMF analysis. For example, cooking OA may be misinterpreted as HOC (Sun et al., 2018), 393 

leading to an overestimation of the HOC.  394 

Good correlations were also found between BBOC by AMS-PMF and calculated OCbb and 395 

POCNF by the EG method (R2 =0.58 and 0.65) (Figure 6). The slope shows that AMS-PMF based 396 

BBOC was less than half of the OCbb. One of the possible reasons is that some primary biomass 397 

burning OC having been oxidized into OOA during the haze events, and mixed with other types of 398 

OOA. With the aid of OM/OC ratio (1.75) from AMS (Figure S2) and the calculated OCbb, organics 399 

from biomass burning emission are estimated to be 22.1 g m-3, accounting for 23% of total OA. If 400 

excluding the BBOA estimated from AMS-PMF, oxygenated BBOA (OBBOA) was estimated to be 401 

12.8 g m-3, contributing to 44.5% of MO-OOA. Using levoglucan as a tracer of biomass burning 402 

aerosol, we found that OCbb/LG ratio was 13.4 and their correlation coefficient R2 was 0.49, which 403 

is comparable to the widely used value (12.2) in previous studies (Zhang et al., 2008; Zhang et al., 404 

2007).  405 

 406 

 407 
Figure 6. Correlations between the resolved OC categories based on the EG method and AMS-408 

PMF method  409 

 410 

4. Conclusions 411 

Our study showed that the mass concentrations of the total non-refractory PM1 (OSNAC) 412 

from 7th Dec 2016 to 8th Jan 2017 at the rural site of Gucheng was about 20% higher than that in 413 

Beijing (153.0±94.6 vs. 135.8 g m-3). This suggests that the rural areas in NCP may be a significant 414 

source of air pollution to surrounding megacities such as Beijing and Tianjin in winter. Organic 415 

aerosol was the predominant species in Gucheng, accounting for 60% of total NR-PM1. Fossil fuel 416 

combustion, predominantly coal burning, accounted for 66% of TC in PM2.5. Biomass burning 417 
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contributed to about 21% of TC. These results indicated that solid fuel combustion was the major 418 

source of air pollution in winter 2016 in the rural area. This confirms the need (and benefit) of the 419 

transition to cleaner energy for the residential sector, not only for improving air quality for the rural 420 

but also the urban residents. 421 

Supplementary file 422 

The supplement file include mass spectrums of the different types of OAs during studied period 423 

(Figure S1); Time series of resolved organic components, other independent species including C4H9, 424 

Chloride, SO2 (g), Aromatic Hydrogen (AH)-related (including C6H5+C7H7+C9H7), C2H4O2, sulfate 425 

(Figure S2); Wind rose during studied period in Gucheng site (Figure S3); The satellite pictures by 426 

MODIS combined values from Terra and Aqua data during 16-21 December in 2016 (Figure S4).  427 
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Table 3 Statistics of resolved categories of OC as well as fossil and non-fossil sources of POC and 629 
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 631 

FIGURE LEGENDS: 632 

Figure 1 The topographic map of the NCP and the location of study site (red circle) 633 

Figure 2. Time series of wind speed and direction (a), solar radiation (left) and temperature (right) 634 

(b), relative humidity (c), gaseous pollutants SO2, NO2, NH3 (d) and O3, CO(e), and PM1 chemical 635 

species (f)  636 

Figure 3. Temporal variations of chemical components in NR-PM1 (a); box plot of the chemical 637 

species for organics (left axis), sulfate, nitrate, ammonium and chloride (right axis) in PM1 with 638 

mean (line in the middle of boxes), median (cross in the middle of boxes), 5%, 25%, 75% and 95% 639 

percentiles (b); pie charts of non-refractory species (c) and organic components (d) during the study 640 

period. 641 

Figure 4. Temporal variations of TC, OC and EC concentrations (a); and fNF of OC and EC (b). 642 

Figure 5. Relative contributions of fossil fuel and non-fossil OC and EC to TC (a); Relative 643 

contributions of ECNF, ECFF, POCFF, SOCFF, OCbb and OCother to TC (b) 644 

Figure 6 Correlations between the resolved OC categories based on the EG method and AMS-PMF 645 

method 646 
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 669 

Table 1. Equations for the 14C based Source Apportionment 670 

 671 
 Extended Gelencsér method 

ECNF ECbb = fNF (EC) EC 

ECFF EC-ECNF 

OCNF fNF (OC) OC 

OCFF OC- OCNF 

POCFF ECFF  (POC/EC)FF 

SOCFF OCFF-POCFF 

OCbb ECNF  (POC/EC)bb 

OCother OCNF-OCbb 

OCAMS OAAMS / (OM/OC)AMS 

 672 

 673 

 674 

 675 

Table 2. Statistics of the chemical species by AMS measurement and filter analysis including LG, 676 

MN, OC, EC (unit: g m-3) and OC/EC ratio 677 

Organics Sulfate Nitrate Ammonium Chloride OC EC 

95.7±34.2 22.4±11.6 18.1±6.6 14.4±5.1 9.1±3.6 67.8±25.4 11.4±3.4 

       

HOA CCOA BBOA OCCOA MO-OOA LG MN 

11.1±5.9 36.5±21.6 9.1±6.1 11.1±4.7 28.0±13.7 0.77±0.27 0.05±0.02 

Note: HOA=Hydrocarbon organic aerosol, CCOA=coal combustion organic aerosol, BBOA= biomass burning 678 

organic aerosol, OCCOA=oxidized coal combustion organic aerosol and MO-OOA =more oxygenic organic aerosol; 679 

OCAMS=OAAMS / (OM/OC)AMS; LG= levoglucosan, MN= mannasan 680 

 681 

 682 

 683 

 684 

Table 3. Statistics of resolved categories of OC as well as fossil and non-fossil sources of POC and 685 

SOC (unit: g m-3) 686 

fNF(OC)(%) fNF(EC)(%) OCNF OCFF ECNF 

34.9±7.7 36.1±8.5 22.5±6.9 45.3±20.6 4.1±1.6 

     

ECFF OCbb OCother POCFF SOCFF 

7.3±2.3 12.6±4.2 9.9±6.4 27.9±8.8 16.9±17.4 

 687 

 688 

 689 

 690 

 691 

 692 
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 693 

Figure1. The location of study site (red circle) and surrounding major cities in the NCP. The color 694 

scheme represents the elevation. 695 
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 711 

Figure 2. Time series of wind speed and direction (a), solar radiation (left) and temperature (right) 712 

(b), relative humidity (c), gaseous pollutants SO2, NO2, NH3 (d) and O3, CO(e), and PM1 chemical 713 

species (f)  714 
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 732 
Figure 3. Temporal variations of chemical components in NR-PM1 (a); box plot of the chemical 733 

species for organics (left axis), sulfate, nitrate, ammonium and chloride (right axis) in PM1 with 734 

mean (line in the middle of boxes), median (cross in the middle of boxes), 5%, 25%, 75% and 95% 735 

percentiles (b); pie charts of non-refractory species (c) and organic components (d) during the study 736 

period. 737 
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753 

Figure 4. Temporal variations of TC, OC and EC concentrations (a); and fNF of OC and EC (b)  754 
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 774 

Figure 5. Relative contributions of fossil fuel and non-fossil OC and EC to TC (a); Relative 775 

contributions of ECNF, ECFF, POCFF, SOCFF, OCbb and OCother to TC (b) 776 
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 796 
Figure 6. Correlations between the resolved OC categories based on the EG method and AMS-797 

PMF method  798 
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