UNIVERSITYOF
BIRMINGHAM

iversit}/]of iIrmingham
esearch at Birmingham

Root-of-trust abstractions for symbolic analysis

Fotiadis, Georgios; Moreira-Sanchez, Jose; Giannetsos, Thanassis; Chen, Liqun; Ronne,
Peter B.; Ryan, Mark; Ryan, Peter Y.A.

DOI:
10.1007/978-3-030-91859-0_9

License:
Other (please specify with Rights Statement)

Document Version _
Peer reviewed version

Citation for published version (Harvard):

Fotiadis, G, Moreira-Sanchez, J, Giannetsos, T, Chen, L, Ronne, PB, Ryan, M & Ryan, PYA 2021, Root-of-trust
abstractions for symbolic analysis: application to attestation protocols. in R Roman & J Zhou (eds), Security and
Trust Management: 17th International Workshop, STM 2021, Darmstadt, Germany, October 8, 2021,
Proceedings. 1 edn, Lecture Notes in Computer Science, vol. 13075, Springer, Cham, pp. 163-184.
https://doi.org/10.1007/978-3-030-91859-0_9

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This version of the contribution has been accepted for publication, after peer review (when applicable) but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-
3-030-91859-0_9. Use of this Accepted Version is subject to the publisher's Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1007/978-3-030-91859-0_9
https://doi.org/10.1007/978-3-030-91859-0_9
https://birmingham.elsevierpure.com/en/publications/c9ec6475-bca1-4c0a-85ad-8d590e27dfe9

Root-of-Trust Abstractions for Symbolic
Analysis: Application to Attestation Protocols

Georgios Fotiadis', José Moreira?, Thanassis Giannetsos®, Liqun Chen?*,
Peter B. Rgnne!, Mark D. Ryan?, and Peter Y.A. Ryan'

1 SnT, University of Luxembourg, Luxembourg
{georgios.fotiadis,peter.roenne,peter.ryan}@uni.lu
2 School of Computer Science, University of Birmingham, United Kingdom
{j .moreira-sanchez,m.d.ryan}@cs.bham.ac.uk
3 Ubitech Ltd., Digital Security & Trusted Computing Group, Greece
agiannetsos@ubitech.eu
4 Surrey Centre for Cyber Security, University of Surrey, United Kingdom
liqun.chen@surrey.ac.uk

Abstract. A key component in building trusted computing services is
a highly secure anchor that serves as a Root-of-Trust (RoT). There are
several works that conduct formal analysis on the security of such com-
modity RoTs (or parts of it), and also a few ones devoted to verifying
the trusted computing service as a whole. However, most of the existing
schemes try to verify security without differentiating the internal cryp-
tography mechanisms of the underlying hardware token from the client
application cryptography. This approach limits, to some extent, the rea-
soning that can be made about the level of assurance of the overall system
by automated reasoning tools. In this work, we present a methodology
that enables the use of formal verification tools towards verifying complex
protocols using trusted computing. The focus is on reasoning about the
overall application security, provided from the integration of the RoT ser-
vices, and how these can translate to larger systems when the underlying
cryptographic engine is considered perfectly secure. Using the Tamarin
prover, we demonstrate the feasibility of our approach by instantiating
it for a TPM-based remote attestation service, which is one of the core
security services needed in today’s increased attack landscape.

Keywords: Trusted Computing - Remote attestation - TPM modelling
- Formal Verification - Tamarin-prover - SAPiC.

1 Introduction

In the last years, academia and industry working groups have made substan-
tial efforts towards realizing next-generation smart-connectivity “Systems-of-
Systems”. These systems have evolved from local, standalone systems into safe
and secure solutions distributed over the continuum from cyber-physical end de-
vices, to edge servers and cloud facilities. The core pillar in such ecosystems is
the establishment of trust-aware service graph chains, comprising both resource-
constrained devices, running at the edge, but also container-based technologies.
The primary existing mechanism to establish trust is by leveraging the concept

2 G. Fotiadis et al.

of trusted computing, which addresses the need for verifiable evidence about a
system and the integrity of its trusted computing base and, to this end, related
specifications provide the foundational concepts such as measured boot, sealed
storage, platform authentication and remote attestation.

An essential component in building such trusted computing services is a
highly secure anchor (either software- or hardware-based) that serves as a Root-
of-Trust (RoT), providing cryptographic functions, measuring and reporting the
behavior of running software, and storing data securely. Examples include pro-
grammable Trusted Execution Environments (TEEs), and fixed-API devices,
like the Trusted Platform Module (TPM) [24]. Such components are considered
inherently secure elements and implement hardened protections (e.g., tamper-
proof or side-channel protections), because any vulnerability on them can com-
promise the security assurance of the overall system. This sets the challenge
ahead: Because such RoTs by definition are trusted, all internal operations in-
cluding handling of cryptographic data can be idealized. However, this does not
directly translate to the overall application security that leverages such RoTs.

Thus, formal verification of protocols and interfaces has become a fundamen-
tal process to identify bugs or misuse cases when building complex interacting
systems, as several earlier works have shown, e.g., [23,0]. There are two notewor-
thy difficulties when considering formal verification in these settings. First, the
inherent fact that protocol verification is an undecidable problem for unbounded
number of protocol executions and unbounded size of the terms. And second, the
additional difficulty faced by protocol verification tools when considering pro-
tocols with non-monotonic mutable global states, which may provoke numerous
false attacks or failure to prove security; see [7]. Trusted computing protocols
fall into both categories, because the non-volatile memory of the RoTs can be
regarded as a state that may change between executions of the protocol.

Indeed, several works on symbolic verification of hardware RoTs that are
part of other high-level functionalities take into account the usage of persistent
state [2,7]. Some notable examples in the context of the TPM are the works
by Shao et al., which cover specific subsets of TPM functionalities, such as En-
hanced Authorization (EA) [23] or HMAC authorization [22], identifying misuse

cases. Also, Xi et al. [30] and Wesemeyer et al. [29] conduct formal analysis
and verification of the the Direct Anonymous Attestation (DAA) protocol of
the TPM. On the other hand, Delaune et al. [10], propose a Horn-clause frame-

work where they prove its soundness and use ProVerif to approximate the TPM
internal state space, helping to address non-termination issues.

A recurrent characteristic when formally verifying the aforementioned sce-
narios is that there is usually no distinction between the cryptography used for
self-consumption of the RoT (e.g., the mechanism it uses for secure storage) and
cryptography that is provided specifically for the overall application. This has
the inherent drawback that reasoning about the security of a large application
or service forces reasoning about the internals of the security device itself, and
thus limiting or hampering the scope of the reasoning that automated analysis
tools can achieve.

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 3

Contribution. The main objective of the present work is to propose a method-
ology for proving security in scenarios based on services that make use of RoTs,
by idealizing the internal functionalities of the security device, except those that
provide explicit cryptographic functionalities for the service being offered. In
order to illustrate our methodology, we concentrate on a class of remote attes-
tation services based on the TPM. Even though we focus on a particular case of
attestation, we build an abstract model for a subset of TPM primitives sufficient
to implement the core functionalities of generic attestation services. From the
perspective of formally verifying RoT-based applications, this model represents
a means of reasoning about security and privacy (of offered services) without
being bogged down by the intricacies of various crypto primitives considered
in the different platforms. We conduct our analysis in the symbolic model of
cryptography (Dolev-Yao adversary [11]) through the Tamarin prover [4] and its
front-end SAPIC [17]. We define a number of security properties relevant for the
considered scenario, and successfully verify them with this framework.

2 Background

In this section we summarize specific notions related to RoT, TPM and remote
attestation that will be needed in our discussion to follow. For more details, we
refer the reader to [24,25,26,3,21,14].

2.1 The TPM as a Root of Trust

The Trusted Computing Group (TCG) splits the responsibility of the RoT into
three categories: measurement, storage and reporting [24]. The RoT for mea-
surement is usually the first piece of BIOS code that is executed on the main
processor during boot, and starts a chain of measurements. The RoT for storage
and reporting are responsibilities assigned to the TPM, typically implemented
as a tamper-resistant hardware embedded in a host device. The TPM and the
host device form a platform.

A measurement chain of trust is a mechanism that allows to establish trust
from the low-level RoT for measurement to a higher-level object, e.g., the OS.
Each component in the chain measures the next component and these measure-
ments are checked against reference values, typically provided by the platform
manufacturer, before passing control to the next component. For instance, the
RoT will measure the (remaining part of) the BIOS, the BIOS will measure the
bootloader, and so on. Each component in the chain updates the TPM’s Plat-
form Configuration Registers (PCRs), which are a set of special registers that
store the representation of the measurements as a hash chain.

The TPM contains an embedded key pair known as the Endorsement Key
(EK) generated and certified by the platform manufacturer. The private part of
the EK never leaves the TPM. This key pair uniquely identifies the platform.
If this key pair is used to sign platform measurements it will compromise the
platform privacy. Therefore, the TPM offers mechanisms to generate an arbitrary

4 G. Fotiadis et al.

number of Attestation Keys (AKs) that can be used to attest the platform state
by signing the PCR contents. These AKs are generated in such a way that it
can be ensured to an external verifier that the signature was generated by a
legitimate TPM, without revealing the identity of the TPM. See Sec. 2.2 below.

Moreover, the TPM offers mechanisms to restrict access to TPM commands
and objects by defining authorization policies. Most notably, in TPM 2.0, the
Enhanced Authorization (EA) mechanism allows to define flexible, fine-grained
authorization policies by combining a number of assertions through logical con-
nectors. For instance, a system administrator could create a TPM key and asso-
ciate with it a policy that allows the usage of that key when (i) the PCRs are in
a given state, or (ii) a password is provided and the user is physically present.
The authorization policy is stored, within the TPM object, as a hash chain
called authPolicy. An authorization session is the mechanism used to pass in
authorization values or policies, and to maintain state between subsequent com-
mands. To load or use a TPM object a session must be created, and the user will
indicate what assertions must be checked. The TPM checks the assertions and
updates the session attribute policyDigest (a hash chain) if they succeed. If
policyDigest matches the authPolicy for a given object, then access to that
object is granted. We refer the reader to [24, §19.7] for the complete details. For
illustration purposes, we provide an example in Appendix A.

2.2 Remote Attestation

Remote attestation [21,14] is a mechanism to provide evidence of the integrity
status of a platform. It is typically realized as a challenge-response protocol
that allows a third party (verifier) to obtain an authentic and timely report
about the state of an untrusted, and potentially compromised, remote device
(prover). The TPM allows implementing privacy-preserving remote attestation
protocols. Remote attestation services are currently used in a variety of sce-
narios, ranging from attestation for isolated execution environments based on
the —now outdated— Intel’s Trusted Execution Technology [15], to more modern
approaches used together with Intel’s Software Guard Extensions, e.g., [28,10].

From a high-level perspective, a remote attestation protocol requires that the
user first creates an AK that will be used to sign attestation reports (quotes).
A quote is essentially composed of the contents stored in selected PCRs (which
reflect the platform state) signed with with the AK. As commented above, the
user has the ability to create as many AKs as they wish, but each AK is required
to be certified by a third party called the Privacy Certification Authority (PCA).
The certification process, detailed in Sec. 4, implies that the PCA knows the
relationship between EK and AKs, but the PCA is trusted not to reveal this
information, which would break the anonymity of the platform. A verifier can
trust the platform if it successfully verifies that a quote is a valid signature over
expected PCR values with an AK certified by a PCA.

We also note that the TCG has an alternative method for performing remote
attestation without revealing the EK to a trusted third party, which is known as
the Direct Anonymous Attestation (DAA) [5]. However, DAA works by design

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 5

only in conjunction with the TCG specification for TPMs. Since the aim in this
paper is to formalize the notion of secure remote attestation in a more general
context, we focus on the first approach, i.e., attestation using a PCA. Such
protocols represent most of the real-world applications and they do not modify
the core characteristics of the remote attestation service. Further, we argue that
the formalization methods that we present here can be used as the basis for
other hardware-based remote attestation instances, not only TPMs.

2.3 The Tamarin prover and SAPiC

For our modelling approach we have chosen the Tamarin prover [4,19] and its
front-end SAPIC [17]. SAPIiC allows modelling protocols in (a dialect of) the
applied pi-calculus [1], and converts the processes specification into multiset

rewrite rules (MSRs) that can be processed by Tamarin. Security properties
can be expressed as first-order logic formulas. Everything that SAPiC does can
be expressed in MSRs in Tamarin, but it provides an encoding (e.g., for locks,
reliable channels, state handling) which is likely more concise than an ad-hoc
modelling a user would come up with using MSRs. In this context, SAPiC has
a better chance for termination. We refer the reader to Appendix B for a brief

description of the SAPiC syntax; see [1,17] for the complete details.
Tamarin and SAPiC have already been used successfully for modelling TPM
functionalities in existing works, e.g., [23,22,29], and they offer a convenient

syntax for modelling protocols with global state. However, as mentioned above,
it is rather challenging to model protocols with arbitrarily mutable global state,
as it is required in the scenario presented in this paper. Therefore some technical
alternatives and manual intervention have been adopted in order to define a
realistic adversary. See Sec. 5 below.

3 A Methodology for Modelling protocols with RoT's

The key idea in our modelling approach is to consider a further layer of abstrac-
tion within the traditional symbolic model of cryptography [11] and idealize the
internal functionalities of the RoT, except those providing cryptography to a
consumer application like hashing, asymmetric encryption or signatures, captur-
ing their intended semantics rather than their implementation. This is done by
replacing cryptographic functionalities of the RoT with non-cryptographic mech-
anisms, for example using a combination of strong access control with channels
not visible to the adversary where honest parties interact (private channels). We
call this approach the idealized model of cryptography, which in addition to re-
stricting the adversary capability in computing terms using only cryptographic
function symbols, it also idealizes the internal operations of the RoT, assuming
they are “perfect.” We provide a comparison of the assumptions considered in
the computational, symbolic and idealized models Table 1.

Thus using this approach, one has to prove, or assume two facts. First, the
particular RoT under analysis implements securely those high-level functionali-
ties that are part of a certain application or service. This can be proved under

6 G. Fotiadis et al.

Computational

Symbolic

Idealized

Messages are bitstrings,
and the cryptographic
primitives are functions

Messages are terms in an
algebra on cryptographic
primitives defined as

Messages are terms in an
algebra, on exposed
cryptographic primitives

defined as function
symbols.

from bitstrings to
bitstrings.

function symbols.

The adversary is restricted
to compute only using
these primitives.

The adversary is restricted
to compute only using
these primitives, and to
only interact with the RoT
through its interface.

The adversary is any
probabilistic Turing
machine with a running
time polynomial in a
security parameter.

Cryptography is
implemented securely.
Cryptographic operations
of the RoT that are not
exposed to the application
are assumed to be secure.

Cryptography is Cryptography is
implemented securely with implemented securely.
overwelming probability in

the security parameter.

Table 1. Assumptions considered in the three models.

some model of cryptography which might require significant effort, but this effort
will be required to be done only once. Second, that the system is secure when we
use an idealized version of the RoT instead of the real device. This task indeed
cannot be reused, and needs to be done for each application or service considered.
Idealizing cryptography used internally in a RoT allows to carry out an analy-
sis of the cryptography that is relevant to the application itself more concisely,
where this analysis can be supported by the use of a more broadly accessible
set of tools than those used so far to analyze such applications. Further, it al-
lows to address more complex protocols and larger use cases and compositions
of Systems-of-Systems with current formal verification technologies.

The overall overview of our methodology is as follows:

i. Identify and select the subset of the RoT functionalities that apply to the
service.

ii. Obtain an idealized model, and identify the best approach to model them.

Assume or prove security of the idealized functionalities.

Model the application-specific scenario using the idealized device.

Define and model the set of security properties that we want to consider.

iii.
iv.

The strategy of idealizing as much of the cryptography as possible should make
the task of proving that an application or a system is secure, for some specific
notion of security, more manageable. Therefore, simplifying the RoT internal
cryptographic components is a worthy consideration. To illustrate our method-
ology, we focus on an attestation protocol based on TPMs. We describe the
complete scenario in Sec. 4 and we instantiate our methodology in Sec. 5.

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 7

4 Remote Attestation Using a PCA

The goal of the TPM-based remote attestation protocol presented in this section
is to establish a secure communication channel between a Client and a Service
Provider (SP), while ensuring the trust status of the Client. The protocol is
based on [13], and it is a generic version of a network management protocol
presented in [8,9]. There are four devices that participate in the protocol: the
Client, a TPM embedded in the Client, the PCA Server, and the SP. See Fig. 1.

Notation. For an entity A, we denote Apy, and Ay, its public and private
keys, respectively. We denote cert 4(x) a certificate for object x issued by entity
A, and sign 4 (y) a signature of y using private key Apyiv. Also, for a TPM key
k we denote kpu, and kpy its public and private key parts, kname its name,
Eauthpolicy its EA policy, and ky, its TPM object handle [24, §15]. For clarity
of exposition, we omit session management objects in the description of the
protocol and command parameters.

First of all, the Client receives the PCA certificate, signed with the SP key
and initializes the TPM by extending the PCR to the current firmware/software
values. In order to achieve the establishment of a secure communication channel
between the Client and the SP the following phases are executed: (1) The Client
creates an AK using the TPM and this AK is certified by the PCA. (2) the
Client creates a TLS key using the TPM, which is certified by the PCA and
signed by the SP. (3) Finally, the Client uses the TLS key to establish a secure
communication channel with the SP, for exchanging encrypted messages and
attests its status. The three phases are described in detail below.

Phase 1: Creation and Certification of AK. In the first step, the Client
creates an AK via the TPM, which is certified by the PCA in a similar way
as in [13]. This initial AK is not bound to a PCR state through EA, because
authorization for the AK will be accomplished with the certificate that will be
issued by the PCA. The AK certification sub-protocol works as follows. Upon
receiving the EK, the AK and a desired fully-qualified domain name (FQDN),
the PCA creates a random challenge and protects it using the TPM command
TPM2_MakeCredential(ekpyp, challenge, akname), which outputs the values:

— secret: random seed encrypted with ekpup,

— credBlob: encrypt-then-MAC of the challenge using keys derived from secret.
The Client receives this pair of values and uses the TPM to execute:

TPM2_ActivateCredential(eky, aky, credBlob, secret)

which outputs the challenge after performing some validation checks. Then, the
Client sends it to the PCA. If the challenge matches, the PCA is convinced that
the AK and EK are bound to a legitimate TPM and issues the AK certificate
certpoa ({akpub, fgdn)). See Fig. 1(a).

Phase 2. Creation and certification of the TLS key. In this phase, the
Client creates a TLS signing key using the TPM, which is bound to PCR state
through EA. At this point, the PCR have already been extended with appropri-
ate firmware/software measurements using a succession of TPM2_PCRExtends.

8

TPM

;:E EK: eky, ekpup , €Fpriv

1

G. Fotiadis et al.

Client PCA Server SP Server
Q fadn PCAL| O SPpub
PCA,y SPpriy

certgp ((PCApuw, fgdnse))

TPM2_PCR_Extend(pcry, swHash)

verify and parse
PCA certificate

Create AK, AK session

akpriv, akpub, akpup,

akn, akname akn, akname

ekpub ; apub, akname

TPM2_ActivateCredential

Is ekpyp trusted?

Yes

new challenge

(credBlob, secret) compute (credBlob, secret) ()

(ekn, akn, cred Blob, secret)

verify and decrypt credBlob

challenge

, - - - - Phase 1: Creation and certific. of AK = - - {

\

challenge

verify challenge

certpoa ((akpup, fgdn)) compute certpcy ((akpub, fgdn)

Create TLS key, TLS key session

HSprivy tlSpub s tspun,

tlsh, tSname tlsh, tlSname

TPM2_Certify(tlsy, aky)

certInfo = (tlsyub, tlSauthpolicy)

certInfo, o erimfo = sign,y (certInfo)

TPM2_Sign(tlsy, (tlsyu, skae))

skae = (certInfo, o certinfo)

Tesr = signy, ({tlspuy, skae))

Phase 2: Creation and certific. of TLS key - ~

4
11

~

csr = ((tlspub, skae), ocer)

verify csr and skae
csr

generate certificate
for tls key

certsp (tspub)

K——————— Establish a TLS 1.3 connection using the certified TLS key. ———

session key syey established

sess. key sy, established

new gData
enc,, (gData)

decrypt ¢Data
TPM2_Quote(aks, gData, perSelection)

read perDigest from PCRs
quote = H(pcrDigest| qData)
O quote = Sign,, (quote)

quote, o quote

Phase 3: TLS comunic. and attest.

.-

quote, 0 guote, certpca ((akpus, fgdn))

Fig.1. Remote attestation protocol using a PCA.

verify o quote
verify that quote matches expected trust status

(*) The PCA can com-

pute credBlob and secret on its own, or by calling the convenience command
TPM2_MakeCredential(ekpun, challenge, akname) on a local TPM.

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 9

Let tlspyiv, tlspu, be the generated TLS key pair. The Client executes the
command TPM2_Certify(tlsy, aky), which attests the TLS key, in order to vouch
that it is protected by a genuine, but unidentified TPM. This attestation is a sig-
nature oceremfo by the AK over information that describes the key, which we ab-
stract as the tuple certInfo = (tlspup, tlSauthpoliCy>. The signed tuple, plus some
additional information, is known as Subject Key Attestation Evidence (SKAE),
and it is an X.509 certificate extension [27], skae = (certInfo, o certinfo)-

Next, the Client creates a Certification Signing Request (CSR) for the TLS
key. The CSR is composed of the message (tlspup, skae) and the signature on this
message with the private part of the TLS key. This is done using the command:

Ocsr = TPM2_Sign(tlsy, (tlspun, skae)).

The value csr = ((tlspun, skae), ocsr) is sent to the PCA, which verifies both csr
and skae signatures, using t/sp,, and the AK certificate, and forwards CSR to
the SP. The SP issues certgp (t/spup), which is sent to the Client. See Fig. 1(b).

Phase 3. TLS communication and device attestation. The last step is
where the secure communication channel between the Client and the SP is es-
tablished. The Client, and the SP execute the TLS 1.3 protocol [20] using the
TLS key that was created in the previous step, to establish a common symmet-
ric encryption session key syey. The SP encrypts some random data gData with
skey and sends the ciphertext to the Client. Upon receipt, the Client decrypts
the ciphertext obtaining gData. For the attestation part, the Client executes:

(quote, signature) = TPM2_Quote(aky, gData, pcrSelection),

to quote the PCR referenced in perSelection, where quote = H(perDigest ||
gData) and signature = sighay, . (quote). The pair (quote, signature) and the
AK certificate are sent to the SP, who verifies the signature and the PCR values
that reflect the trust status of the platform. See Fig. 1(c).

5 Application of the Modelling Methodology

In this section we apply the modelling methodology, specifically Steps i.iii., dis-
cussed in Sec. 3, to the use case presented in Sec. 4. We address the verification of
security properties (Step iv.) in Sec. 6. Once again, we recall that the objective is
to come up with high-level abstractions of the relevant RoT commands that will
allow us to model those functionalities that do not provide direct cryptographic
operations to the application.

Adversarial model. We consider the usual Dolev-Yao model [11] for an adver-
sary sitting between the Client and the two servers (PCA, SP). This is because
we assume that there is a trusted infrastructure supporting the interactions
between the two servers and it is not a viable target for the adversary. Conse-
quently, we consider three processes in our model, the Client, the TPM and the
Server, representing both the PCA and the SP, and the adversary is allowed to

10 G. Fotiadis et al.

monitor and interfere in the communication between the Client and the Server.
However, the communication between the Client and the TPM is treated inde-
pendently. More precisely, we allow the adversary a certain degree of control over
the communication channel between the Client and the TPM. For example, the
adversary can behave as a passive adversary, in order to capture more relaxed
trust assumptions, such as the case where the Client has malware installed.

i. Identify and select the subset of the RoT functionalities. Since the
focus is on attestation services, we concentrate on a specific subset of commands
that are common in most reference scenarios and application domains in rela-
tion with this functionality. Such commands are related to object creation, au-
thorization sessions, EA, PCR extension, remote attestation, and cryptographic
operations. Concretely, the commands that we have considered are:

— Key and session management: TPM2_StartAuthSession, TPM2 PolicyPCR,
TPM2_PCRExtend, TPM2 Create

— Attestation: TPM2 MakeCredential, TPM2_ActivateCredential, TPM2_Sign,
TPM2_Certify, TPM2_Quote

These commands provide TPM functionalities that are crucial in establishing
chains of trust in generic heterogeneous environments. Our intuition is that the
models that we will describe for these commands will serve as both a basis for
reasoning about the security of a wide set of TPM-based applications and for
reasoning about the security of the TPM’s mechanisms themselves.

ii. Obtain an idealized model. Our models for the TPM commands men-
tioned above are presented in Fig. 2 using SAPiC syntax (see Appendix B).
The cryptographic operations that we need to abstract are the creation of hash
chains, which are used for updating PCR, and policy digest values, secure storage,
as well as object and session management in general. We describe our modelling
key points to achieve this.

— Modelling hash chains. PCR values are the results of measurements of
a platform or software state. When the command TPM2_PCRExtend(pcry, v)
is executed, the TPM extends the contents of the PCR referenced by pcry,
as perDigest = H(perDigest || v). Applying TPM2_PCRExtend iteratively, a
single digest is obtained, representing the sequence of measurements of the
platform state. An object can be sealed to a PCR value, meaning that it can
only be accessed when the PCR has been appropriately extended to that
particular value. As such, the actual semantics to get access to the object
is performed by comparing a digest value stored in the object blob with a
PCR hash value. However, the intended semantics is that the object can only
be accessed if a certain number of PCR extensions have been executed with
corresponding specified values. Therefore, in our idealized approach, we need
to find an alternative description for the PCR extension that captures that
intended semantics. The idea is to keep a record of all PCR extensions in
a list pcry;s¢ as global, mutable state, and append each new digest provided
by the Caller to this list. More concretely, the idealization of the process of

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols

11

let StartAuthSession =
in (‘TPM2_Start AuthSession’);
new ~sh;
lock ‘device’;
insert (‘policyDigest’, ~sy), nil;
out(~sn);
unlock ‘device’

let PCR_Extend =
in((“TPM2_PCR_Extend’, value));
lock ‘device’;
lookup ‘PCR’ as pcrist in
insert ‘PCR’, (value, pcrist);
unlock ‘device’

let Create =
in ((‘TPM2_Create’, authPolicy));
new ~ky;
new ~Fkpriv;
lock ‘device’;
let kp“b = pk(Nk'priv) in
insert (‘authPolicy’, ~ky), authPolicy;
insert (‘privPart’, ~kun), kpriv;
insert (‘pubPart’, ~ku), kpub;
out({~kn, kpub));
unlock ‘device’

let PolicyPCR =
in((‘TPM2_PolicyPCR’, s1));
lock ‘device’;
lookup ‘PCR’ as periist in
lookup (‘policyDigest’, sn) as pdiist in
insert (‘policyDigest’, su),
(perise, “TPM_CC_PolicyPCR’, pdist);
unlock ‘device’

let Sign =
in((‘TPM2_Sign’, ksn, kn, m));
lock ‘device’;
lookup (‘policyDigest’, ken) as kpa in
lookup (‘authPolicy’, ky) as kap in
if kpa = kap then
lookup (‘privPart’, kn) as kpriv in
out(signkpm(m));
unlock ‘device’
else
unlock ‘device’

let Certify =
in ((‘TPM2_Certify’, ksn, kn, akn));
lock ‘device’;
lookup (‘policyDigest’, ken) as kpa in
lookup (‘authPolicy’, kn) as kap in
if kpa = kap then
lookup (‘pubPart’, kn) as kpub in
lookup (‘privPart’, akn) as akpriv in
out(signakpriv((/cpumkap)));
unlock ‘device’
else
unlock ‘device’

let ActivateCredential =

in((“TPM2_ActivateCredential’, ksn, kn, aksn, akn, credBlob));

lock ‘device’;
lookup (‘policyDigest’, aksn) as akpq in
lookup (‘authPolicy’, akn) as akap in
if akpa = akap then
lookup (‘pubPart’, aky) as apun in
lookup (‘privPart’, kn) as kpriv in
if verifyCredential (akpub, kpriv, credBlob) = true then

let challenge = activateCredential(akpub, kpriv, credBlob) in

out(challenge) ;
unlock ‘device’
else
unlock ‘device’
else
unlock ‘device’

let Quote =
in((‘TPM2_Quote’, ksn, kn, gData))
lock ‘device’;
lookup ‘PCR’ as pcrist in
lookup (‘policyDigest’, ksn) as kpa in
lookup (‘authPolicy’, kn) as kap in
if kpa = kap then
lookup (‘privPart’, kn) as kpriv in
out(sign, ((gData, periist)));
unlock ‘device’
else
unlock ‘device’

Fig. 2. Idealized TPM commands (sketch). See Appendix B for an overview of SAPiC

syntax.

extending a value v, to pcri;s:, translates to:

append(vy,, periist) = perise = (v1, v, . .

-y Un—1, Un)

previous pcry;st

Then, the adversary cannot gain access to a TPM object that is sealed to
PCR, unless he extends the pcry;s¢ with the corresponding values in the
intended order, and not only any combination of extensions leading to the
same hash value. We apply the same idea to the case of policy digests, which
consists of hash chains similar to PCRs.
— Usage of equational theories. We model cryptographic equational the-
ories as usual, e.g., for the signature generation and verification we use the
Tamarin built-in function symbols pk/1, sign/2 and verify/3 satisfying

12 G. Fotiadis et al.

verify(sign(m, k), m, pk(k)) = true. The command TPM2_MakeCredential,
discussed above, is used to protect a randomly generated value challenge,
with (a variation of) the encrypt-then-MAC scheme. The seed for the sym-
metric keys is protected with the public part of the EK. Note that this com-
mand does not make use of any TPM protected object, and it relies entirely
on public components. Therefore we do not need to model the TPM side
for this command. On the other hand, TPM2_ActivateCredential will re-
trieve the value challenge after being provided with the appropriate private
keys and execute some internal checks. These commands can be abstracted
by the equational theory with function symbols pk/1, makeCredential/3,
activateCredential/3 and verifyCredential/3. For an object name n
and a private key k it must be satisfied that:

verifyCredential(n, k,makeCredential(pk(k), challenge,n)) = true
activateCredential(n, k,makeCredential(pk(k), challenge,n)) = challenge.

The first equation verifies the correctness of challenge, hence emulates the
HMAC operation. The second retrieves the challenge, which models the
symmetric decryption process.

— Secure storage and object management. As a resource-constrained de-
vice, the TPM offers the possibility of offloading memory contents into the
host in the form of encrypted blob. The object can then be loaded again
if appropriate authorization is provided. We idealize this functionality by
assuming that the TPM has unlimited memory space. This is achieved by
using as many memory cells as objects or sessions are required. Therefore, we
do not model the command TPM2 Load, and assume that objects are readily
available through their handles after invoking TPM2 Create. In a real sce-
nario a user might want to offload memory objects (e.g., when the TPM is
switched off). But if a security property holds without offloading memory
objects it will also hold when these objects are offloaded, since the adversary
will have access to less objects. The communication to/from the TPM needs
to be carefully addressed, since if this channel is made fully available to the
adversary it would be an overestimation of his capabilities: he could detach,
interact with and reattach the TPM at his will at any time. Therefore we
need to implement access control (e.g., through private channels) when using
some critical commands. This is discussed below.

iii. Model the application-specific scenario using the idealized device.
As commented above, in our model we aggregate the PCA and the SP servers
depicted in Fig. 1 as a single Server process. The main purpose is to capture the
communication between the three processes (Client, TPM, Server) in a way that
replicates the real-world interactions and modes of operation, to the best possi-
ble extent, according to the proposed adversarial model. Modelling the channel
between the Client and the TPM as a “standard” private channel in applied pi-
calculus caused various technical difficulties for the tool in completing the proofs.
For this reason, we have considered several strategies in SAPiC that allow the
adversary to observe, but not interfere in that channel:

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 13

let Client = (//sending TPM command
let tpm_send_cmd =

(CmdCode, parama, ... params) in
event TPM_SendCmd(tpm_send_cmd);
out(tpm-_send_cmd);
P)

let TPM = (//receiving TPM command
let tpm_recv_cmd =

(CmdCode, parama, . .. paramg) in
in(tpm-recv_cmd);
event TPM_RecvCmd(tpm_recv_cmd);
Q) //TPM processess command here.

Fig. 3. Tamarin restrictions for sending/receiving TPM commands

— Tamarin restrictions. Used in order to limit the capabilities of the adver-
sary. We use the templates for sending/receiving TPM commands depicted
in Fig. 3, and the following restriction on the execution traces:

Ve, i. TPM_RecvCmd(c)@i (RestrictionTPMCommand)
= ((3j. TPM_SendCmd(c)@Qj A (j < ©))
A =(3k. TPM_RecvCmd(c)@k A —(k = 1)))

This ensures that in order for a TPM to receive and process a message, an
(injective) TPM call must have been executed by the Client process. This
forbids an external adversary from calling the TPM arbitrarily, but it allows
an internal (e.g., malware) adversary access to the TPM.

— Usage of the public channel. Whenever it is possible, we output the
response of the TPM to the public channel (e.g., when it produces public
keys). To some extent, this overestimates the capabilities of the adversary,
as it assumes that he can listen to the communication channel between the
TPM and the Client. Still, the adversary does not have access to internal
secrets such as the EK or private parts of the objects. That is, in most cases,
we can assume that the output of the TPM is available to the adversary to
prove the security properties we are interested in.

— Direct usage of multiset rewrite rules. The SAPiC calculus has an
advanced feature which allows direct access to the multiset rewrite system
of Tamarin. In order to emulate asynchronous message transfers between the
Client and the TPM, we perform the following updates in Fig. 3:

replace out(tpm_send_cmd) with [| —[] =[CmdNameln(tpm_send_cmd))
replace in(tpm_recv_cmd) with [CmdNameln(tpm_send_cmd)]—[|—]]

The state fact CmdNameln(tpm_send_cmd) is produced by the Client, con-
sumed by the TPM process, and it is not available to the adversary at any
time point. A similar approach can be devised for the TPM outputs, i.e., the
TPM produces a state fact that is consumed by the Client process.

Source code. Our model is split in three parts, corresponding to the three
phases of the protocol from Sec. 4, namely AK certification, TLS certification
and attestation. The SAPiC models are available at [12].

14 G. Fotiadis et al.

6 Verification

We address our last step (Step. iv.) by describing a number of high-level security
properties, defined for the protocol that is presented in Sec. 4. These properties
are expressed as first-order logic formulas using Tamarin lemmas [4] and they fo-
cus on achieving integrity, confidentiality and attestation in the different phases.
The notation “Ev(pi,...,pn)@t" below stands for an execution of event fact
with name “Ev” with parameters pq,...,p, executed at time ¢.

Sanity-check properties: We model a number of properties to guarantee the
existence of execution traces that reach the end of each possible branch in the
protocol. Whereas these reachability properties do not encode any security guar-
antee in particular, they are required in order to ensure a non-trivial verification
of the remaining correspondence properties. That is, a property of the form
Event2 = Eventl will be trivially satisfied if Event2 is never reached. Therefore,
for a given party A we define a number of events AFinish i(), where 7 ranges
over the number of branches of the process that defines party A. We then define
the following collections of exists-trace lemmas (one for each branch):

3t;. AFinish_i()Qt;. (Reachability)

Availability of keys at honest processes: We define a number of properties
that ensure that all honest parties have initial access to the trusted key material
required, so that they can build a chain of trust and successfully complete each
phase of the protocol. This property can be treated as a premise in our models.
We define the event HasKey(label, pid, k), where label is the key identifier (e.g.,
‘EK’, ‘AK’), pid is a unique process identifier, and k is the key value. This event
is launched at the start of the process representing each principal.

Viabel, pidy, pida, k1, ka, t1, ta. (pidy # pide) N HasKey(label, pidy , k1)@t A
HasKey (label, pida, ko)Qty = (k1 = k2). (KeyAvailability)

Key freshness: This property ensures that the created key material is not
reused as a new key during the execution of the protocol. This applies both to
asymmetric keys (e.g., AK public and private parts), as well as to symmetric
keys (e.g., session keys). We define the event GenerateKey(label, tid, k), where
label is the key identifier, tid stands for thread execution of the principal process,
and k is the value of the generated key. The property is captured by the lemma:

Viabeltidy, tids, k, t1,t2. GenerateKey(label, tidy, k)Qt1 A
GenerateKey (label, tida, k)Qty = (tidy = tids). (KeyFreshness)
Key secrecy: This property ensures that the sensitive key material, namely
private or symmetric session keys, is not available to the adversary. Similarly,
we define the lemma SecretKey(label, k), where label is the key identifier and k

represents its value. This event is launched after the corresponding key material
has been created in each processes. This is modeled through the lemma:

Viabel, k, t1. SecretKey(label, k)Qt; = —(Ity. K(k)Qty), (KeySecrecy)

where K(...) is the event fact denoting adversary knowledge.

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 15

Authentication: We consider the agreement property from Lowe’s hierar-
chy [18] in the parameters exchanged in each phase of the protocol. Whenever
it is possible (e.g., for a session key), we also require injective, mutual agree-
ment. As customary, we encode this property through the usage of the events
ARunning(id 4, idg, pars) and BCommit(idp, id 4, params), where the former is
placed on the party A being authenticated, and the latter is placed in party
B, to whom the authentication is being made. The placement of these events
has some flexibility, but not all placements are correct. The ARunning event
must be placed before party A sends its last message, and the BCommit event
must be placed after party B receives and verifies the last message sent by A.
The variable pars capture the set of parameters which are being agreed. The
corresponding lemma has the following form in its injective version:

Vida,idg, pars,t;. BCommit(idg,id, pars)Qt, =
((3t2. ARunning(ida, idg, pars)Qtg A (ta < t1))A
—(Jid'g, id’y, t3. BCommit(idy,id'y, pars)Qts A =(t3 = t1))). (Agreement)

In case the agreement is mutual, we require an additional lemma where the roles
of A and B are reversed.

Transfer of information as generated: Such lemmas ensure that infomation
generated at different stages in the protocol, such as certificates or attestation
reports, are received at the destination process as generated by the process of
origin. We model this property through the events GenerateValue(label,v) and
ReceiveValue(label, v), executed at the sender and receiver side respectively:

Viabel, v, t1,ts. ReceiveValue(label, v)Qt; =

(3t2. GenerateValue(label, v)@ta A (ty < t1)).
(CorrectTransfer)

No reuse of key: This property ensures that a specific key is used only once
in its intended context. We consider this property mainly used for single-use
session keys. We therefore define the event UseKey(label, k) and lemma

Viabel, k,t1,t2. UseKey(label, k)Qty A UseKey(label, k)Qty = (t1 = t2).
(NoKeyReuse)

No attestation of corrupted Client: This property signifies that a Client
that is in a corrupted (untrusted) state will not be able to perform a success-
ful attestation. Note that the PCR value of the Client’s TPM will be extended
to an expected reference value only if its configuration is in a trusted state.
SAPiC offers a non-deterministic branching construct which we use to model the
fact that the Client might be in a trusted or untrusted state, but the remain-
ing parties in the model do not know a priori which one. We define the event
Corrupted(id4), which is launched at the beginning of the corrupted branch,

16 G. Fotiadis et al.

Phase 1 Phase 2 Phase 3

Property Objects Steps|Objects Steps|Objects Steps
Reachability — 37— 103|— 18
KeyAvailability |[EK, AK, PCA,,p 1378|AK, TLS, SPpus 537|AK, SPpub 24
KeyFreshness |AK 4|TLS 4|Skey, gData 4
KeySecrecy |EK, AK, PCApry 12| TLSpriv, SPpriv 10[AK, Skey 6
Agreement certpca (AK), AK, TLS, Skey

challenge 403|(swHash 2987|qData 2237
CorrectTransfer|certpca (AK) 383|CSR 406|quote 9
NoKeyReuse |n/a n/aln/a n/a|skey 8
Corrupted n/a n/aln/a n/al- 1699

Table 2. Summary of verified properties in SAPiC/Tamarin

and reuse the event ServerCommit(idg,ida, pars), launched after a successful
verification of the Client attestation report. We express this property as follows

Vida,t1. Corrupted(id4)Qt; =

—(Fidp, pars,te. ServerCommit(idp, ida, pars)Qta A =(t; < t2))).
(Corrupted)

Table 2 summarizes the results of our analysis using SAPiC/Tamarin and
the objects to which each property is related, and the number of steps to prove
the corresponding lemmas. The simulations have been executed in a VM 3 cores,
4GB RAM on Intel(R) Core(TM) i5-4570 @ 3.20GHz. The tool has been able
to successfully verify them as expected, showing the feasibility of our approach
in abstracting the functionalities of the TPM as a RoT for reporting.

7 Conclusion

In this paper, we introduce a new formal verification methodology, in which our
focus is to idealize the internal functionalities of the RoT in such a way that we
exclude the cryptographic actions carried out by the RoT and replace them with
non-cryptographic approaches. This idealized model of cryptography allows for a
more effective verification process, especially when complex protocols and exten-
sive use case scenarios are considered. We formalized the notion of secure remote
attestation towards trust aware service graph chains, in “Systems-of-Systems”,
and verified Tamarin security proofs showing that our models satisfy the three
key security properties that entail secure remote attestation and execution: in-
tegrity, confidentiality, and secure measurement. Furthermore, in order to model
this service, we also considered additional TPM processes such as the creation
of TPM keys, the Enhanced Authorization (EA) mechanism, the management
of the Platform Configuration Registers (PCRs), and the creation and manage-
ment of policy sesssions. We argue that the included TPM commands cover a
wide range of TPM-based applications and hence they can serve as a baseline for
modelling additional TPM functionalities, in various application domains in the
literature. Finally, we believe that our methodology of idealizing the cryptogra-
phy can be used as an extensible verification methodology that enables rigorous
reasoning about the security properties of a RoT in general.

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 17

References

10.

11.

12.

13.

14.

15.

16.

Martin Abadi and Cédric Fournet. Mobile values, new names, and secure commu-
nication. In ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 104-115, London (UK), January 2001. ACM.

Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark D Ryan. Statverif: Verifi-
cation of stateful processes. Journal of Computer Security, 22(5):743-821, 2014.
Will Arthur and David Challener. A practical guide to TPM 2.0: using the Trusted
Platform Module in the new age of security. Apress, 2015.

David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt
Schmidt. Tamarin prover (v. 1.6.0), September 2020. https://tamarin-prover.
github.io/.

Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attesta-
tion. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick D. McDaniel, editors,
Proceedings of the 11th ACM Conference on Computer and Communications Se-
curity, CCS 2004, Washington, DC, USA, October 25-29, 2004, pages 132—145.
ACM, 2004.

Liqun Chen and Mark Ryan. Attack, solution and verification for shared authorisa-
tion data in TCG TPM. In International Workshop on Formal Aspects in Security
and Trust, volume 5983 of LNCS, pages 201-216, Eindhoven, The Netherlands,
November 2009. Springer.

Vincent Cheval, Véronique Cortier, and Mathieu Turuani. A little more conver-
sation, a little less action, a lot more satisfaction: Global states in ProVerif. In
2018 IEEE 31st Computer Security Foundations Symposium (CSF), pages 344—
358. IEEE, 2018.

The FutureTPM Consortium. FutureTPM use case and system requirements. De-
liverable D1.1, FutureTPM, June 2018.

The FutureTPM Consortium. Demonstrators implementation report — first release.
Deliverable D6.3, FutureTPM, April 2020.

Stephanie Delaune, Steve Kremer, Mark D. Ryan, and Graham Steel. Formal
Analysis of Protocols Based on TPM State Registers. In IEEE Computer Security
Foundations Symposium, pages 66—-80. IEEE, Jun 2011.

Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198-208, 1983.

Anonymized for peer review. Repository for SAPiC/Tamarin models. https://
drive.google.com/drive/folders/10JAKL6QF6Ulm7b2maxga-anB04cX1xHI, 2021.
Ken Goldman. Attestation Protocols. Technical report, IBM,
December 2017. https://www.ibm.com/developerworks/library/
1-trusted-boot-openPOWER-trs/index.html.

Kenneth Goldman, Ronald Perez, and Reiner Sailer. Linking remote attestation to
secure tunnel endpoints. In Proc. ACM Workshop on Scalable Trusted Computing
(STC), page 21-24, Alexandria, VA, November 2006. ACM.

James Greene. Intel Trusted Execution Technology: Hardware-based
Technology for Enhancing Server Platform Security, 2013. Available
at: https://www.intel.com/content/dam/www/public/us/en/documents/

white-papers/trusted-execution-technology-security-paper.pdf.

Zhou Hongwei, Ke Zhipeng, Zhang Yuchen, Wu Dangyang, and Yuan Jinhui.
TSGX: Defeating SGX Side Channel Attack with Support of TPM. In Asia-Pacific
Conference on Communications Technology and Computer Science (ACCTCS),
pages 22-24. IEEE, April 2021.

https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://drive.google.com/drive/folders/1OJAkL6QF6Ulm7b2maxga-anBO4cX1xHI
https://drive.google.com/drive/folders/1OJAkL6QF6Ulm7b2maxga-anBO4cX1xHI
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html
https://www.ibm.com/developerworks/library/l-trusted-boot-openPOWER-trs/index.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/trusted-execution-technology-security-paper.pdf

18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

G. Fotiadis et al.

Steve Kremer and Robert Kiinnemann. Automated analysis of security protocols
with global state. Journal of Computer Security, 24(5):583-616, 2016.

Gavin Lowe. A hierarchy of authentication specifications. In Proceedings 10th
Computer Security Foundations Workshop, pages 31-43. IEEE, 1997.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin
prover for the symbolic analysis of security protocols. In International Conference
on CAV, pages 696—701. Springer, 2013.

Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC,
8446:1-160, 2018.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In USENIX
Security Symposium (USENIX Security), San Diego, CA, August 2004. USENIX
Association.

Jianxiong Shao, Yu Qin, and Dengguo Feng. Formal analysis of HMAC authorisa-
tion in the TPM2.0 specification. IET Information Security, 12(2):133-140, March
2018.

Jianxiong Shao, Yu Qin, Dengguo Feng, and Weijin Wang. Formal analysis of en-
hanced authorization in the TPM 2.0. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, pages 273-284. ACM,
2015.

Trusted Computing Group (TCG). TPM 2.0 library specification - part 1: Architec-
ture. Available at: https://trustedcomputinggroup.org/wp-content/uploads/
TCG_TPM2_r1pb59_Partl_Architecture_pub.pdf.

Trusted Computing Group (TCG). TPM 2.0 library specification - part 2: Struc-
tures. Available at: https://trustedcomputinggroup.org/wp-content/uploads/
TCG_TPM2_r1pb59_Part2_Structures_pub.pdf.

Trusted Computing Group (TCG). TPM 2.0 library specification - part 3: Com-
mands - code. Available at: https://trustedcomputinggroup.org/wp-content/
uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf.

Trusted Computing Group (TCG). TCG Infrastructure Workgroup Subject Key
Attestation Evidence Extension. Available at: https://trustedcomputinggroup.
org/wp-content/uploads/IWG_SKAE_Extension_1-00.pdf.

Samuel Weiser and Mario Werner. SGXIO: Generic Trusted I/O Path for Intel
SGX. In Proc. ACM Conf. Data and Appl. Security Privacy (CODASPY), pages
261-268, New York, NY, USA, Mar 2017. ACM.

Stephan Wesemeyer, Christopher J. P. Newton, Helen Treharne, Liqun Chen, Ralf
Sasse, and Jorden Whitefield. Formal analysis and implementation of a TPM 2.0-
based direct anonymous attestation scheme. In Hung-Min Sun, Shiuh-Pyng Shieh,
Guofei Gu, and Giuseppe Ateniese, editors, ASIA CCS ’20: The 15th ACM Asia
Conference on Computer and Communications Security, Taipei, Taiwan, October
5-9, 2020, pages 784-798. ACM, 2020.

Li Xi and Dengguo Feng. Formal Analysis of DAA-Related APIs in TPM 2.0.
In Network and System Security, pages 421-434, Cham, Switzerland, Nov 2015.
Springer.

A Create a TPM key with PCR . policy

We show a simplified example on the usage of EA. We note that, for clarity, we
are omitting many details on TPM internals and TPM objects; see [24,25,206,3].

https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_code_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_SKAE_Extension_1-00.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_SKAE_Extension_1-00.pdf

RoT Abstractions for Symbolic Analysis: Applic. to Attestation Protocols 19

TPM Client

{0 (]

TPM2_StartAuthSession(TRIAL)

new trialy,

trialpyq = nil o trialy

TPM2_PolicyPCR(trialy, pery, swHash)

trialyg = ¢
H(trialy | TPM_CC_PolicyPCR||swHash)
TPM2_PolicyGetDigest(trialy)

trialyg
TPM2_Create(authPolicy) ¢ authPolicy = trialy

new ki, ¢
new kv ¢
kap = authPolicy ¢
generate objectBlob ¢

with kap and Kpriv object Blob

® store object Blob
TPM2_StartAuthSession(EA)
new sy, ¢
Spd = il ¢ s
TPM2_PolicyPCR(sy, pern, swHash)

Spd =

H{(spq|| TPM_CC_PolicyPCR||swHash)
TPM2_Load sy, object Blob)

get k,p, from object Blob 4
if spq = kap load object ¢
Ky kpub , Kpriv ¢

Fuame = H(kpub) 1 Fius Kput» Kaame

Fig. 4. Create a TPM key with PCR policy

In brief, the user execute the command TPM2_StartAuthSession(TRIAL) in
order to initiate a fresh trial session. The TPM creates a handle trialg, for this
session, initiates the policy digest trialyq to zero and returns trials, to the user.
The user executes the command TPM2 PolicyPCR(trialsy, pcry, swHash), which
asks the TPM to update the policy digest of the trial session as:

trial,a = H(trialpq| TPM_CC_PolicyPCR’||swHash),

where H() is a has function. The user executes TPM2 PolicyGetDigest(trialgy,)
in order to obtain trialyq and calls TPM2_Create(trial,q). The TPM will create a
new object (key) k = (keYpriv, keypus) with authorization policy keya, = trialpq
and returns to the user the protected object blob. Now the user creates a policy
session s with TPM2_StartAuthSession(EA) and the TPM sets spd = nil and re-
turns the handle sy, to the Client. The Client executes TPM2_PolicyPCR(sy, pery, swHash)

20 G. Fotiadis et al.

in order to update the policy digest spq, and then TPM2_Load(sy, object Blob) and
obtains kn, Epub, Ename. This procedure is summarized in Fig. 4.

B SAPiC Syntax

Fig. 5 describes the SAPiC syntax. The syntax allows to define a protocol as
a process. It is then translated into a set of rules that adhere to the semantics
of the calculus, which is a dialect of the applied pi-calculus [1], and comprises
an order-sorted term algebra with infinite sets of publicly known names PN,
freshly generated names FN, and variables V. It also comprises a signature 3/,
i.e., a set of function symbols, each with an arity. The messages are elements of
a set of terms 7 over PN, FN, and V, built by applying the function symbols
in Y. Notation: n € FN,x € V,M,N € T,F € F. As opposed to the applied
pi-calculus [1], SAPiC’s input construct in(M, N); P performs pattern matching
instead of variable binding. See [1] for the complete details.

(M,N) :==z,y,z€V variables
| p€ PN public names
|neFN fresh names
| f(My,...,My,) st. f € X of arity n function application
(P,Q) == processes
| 0 terminal (null) process
| P|Q parallel execution of processes P and Q
| 1P replication of process P
| vn; P binds n to a new fresh value in process P
| out(M, N); P outputs message N to channel M
| in(M,N); P inputs message N to channel M

| if Pred then P [else Q]

| event F; P FeF

| P+Q

| insert M, N; P

| delete M; P

| lookup M as z in P [else Q)]

| lock M; P

| unlock M; P

| 1) 4A}s [RE P (L, R, A € F*)

P if predicate Pred holds; else Q
executes event (action fact) F'
non-deterministic choice

inserts N at memory cell M

deletes content of memory cell M

if M exists, bind it to z in P; else Q
gain exclusive access to cell M
waive exclusive access to cell M
provides access to Tamarin MSRs

Fig. 5. SAPiC syntax

	Root-of-Trust Abstractions for Symbolic Analysis: Application to Attestation Protocols

