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Abstract
Background: Platelets are multifunctional cellular mediators in many physiological 
and pathophysiological processes such as thrombosis, angiogenesis, and inflamma-
tion. Several members of galectins, a family of carbohydrate-binding proteins with a 
broad range of immunomodulatory actions, have been reported to activate platelets.
Objective: In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand 
for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2).
Methods: Platelet spreading, aggregation, and P-selectin expression in response to 
Gal-9 were measured in washed platelet suspensions via static adhesion assay, light 
transmission aggregometry, and flow cytometry, respectively. Solid-phase binding 
assay and protein phosphorylation studies were utilized to validate the interaction 
between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphoryl-
ation. Wild-type (WT), GPVI-knockout (Gp6−/−), and GPVI and CLEC-2-double knock-
out (Gp6−/−/Gp1ba-Cre-Clec1bfl/fl) mice were used.
Results: We have shown that recombinant Gal-9 stimulates aggregation in human and 
mouse washed platelets dose-dependently. Platelets from both species adhere and 
spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the 
binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated 
tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and 
CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. 
GPVI-deficient murine platelets exhibited significantly impaired aggregation in response 
to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets.
Conclusions: We have identified Gal-9 as a novel platelet agonist that induces activa-
tion through interaction with GPVI and CLEC-2.
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C-type lectin-like receptor 2, galectin-9, glycoprotein VI, immunoreceptor tyrosine-based 
activation motif, platelet
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1  |  INTRODUC TION

Platelets, anucleate cytoplasm fragments shed by megakaryo-
cytes, constitute the second most abundant cellular component 
in human blood following erythrocytes with their classically de-
scribed role in hemostasis and thrombosis.1,2 Additionally, the 
multifunctionality of activated platelets has been proposed to 
modulate many other physiological processes, for example, wound 
healing and leukocyte trafficking, and a wide range of pathological 
diseases such as atherosclerosis, autoimmune diseases, and can-
cer metastasis.3,4

Galectins (Gals) are a family of highly evolutionary-conserved 
immunoregulatory glycan-binding proteins that have been reported 
to play a role in autoimmunity, cancer, and numerous cardiovascular 
diseases.5–7 To date, 12 members of the galectin family have been 
identified in humans, most of which are characterized by the capa-
bility of binding N-acetyl-lactosamine-based carbohydrate domains 
of glycans, proteins, and lipids calcium-independently.8,9

Over the past decade, several galectins—Gal-1, -3, and -8—have 
been shown to stimulate various platelet functions in vitro such as 
adhesion, spreading, aggregation, and degranulation, highlighting 
their potential in platelet biology.10–12 In this study, we focused on 
Gal-9, a 34–39 kDa tandem-repeat member composed of a peptide 
linker with joining N-terminal and C-terminal carbohydrate recog-
nition domains.13 Since its discovery,14–17 Gal-9 has been shown to 
have a positive inflammatory role in certain immune-inflammatory 
diseases,13 and to be a therapeutic target in cancer for its role in 
tumor apoptosis.7 A recent study reported that the circulating level 
of Gal-9 in patients with large artery atherosclerotic stroke is sig-
nificantly higher than in healthy donors.18 This increase was also 
observed in patients with stable coronary artery disease; however, 
lower levels of Gal-9 were detected in the peripheral circulation of 
patients with non-ST-segment elevation acute coronary syndrome 
and ST-segment myocardial infarction compared to healthy con-
trols.19 Collectively these studies highlight an association of Gal-9 
with cardiovascular events, in which platelets play a non-negligible 
role.

Glycoprotein VI (GPVI) is a critical receptor of platelet sig-
nalling in hemostasis expressed exclusively in the megakaryo-
cyte lineage,4,20 while C-type lectin-like receptor 2 (CLEC-2) has 
been demonstrated to be crucial for the development of cere-
brovascular and lymphatic systems as well as the maintenance 
of post-development vascular integrity, with a comparatively 
minor contribution to hemostasis.21,22 Nonetheless, both GPVI 
and CLEC-2 have been proposed to participate in thrombo-
inflammation.4 Signal transductions of GPVI and CLEC-2 both rely 
on the presence of the immunoreceptor tyrosine-based activation 
motif (ITAM).23 Upon binding to collagen, GPVI clusters24,25 and 
transduces the signal via its association with dimeric Fc receptor γ-
chain causing a signalling cascade which involves phosphorylation 
of the Src family kinases (SFKs) and spleen tyrosine kinase (Syk), 
assembly of a downstream signalosome comprising linker of acti-
vated T cells (LAT) and diverse effectors including phospholipase 

Cγ2, and results in platelet degranulation, inside-out activation of 
integrins.4,23 CLEC-2 signals through a similar axis to GPVI, with Syk 
crosslinking two receptors through a phosphorylated hemITAM 
sequence in the cytosolic tail.22 To date, several other ligands for 
GPVI have been reported, for example, laminin,26 adiponectin,27 
fibronectin,28 vitronectin,29 basigin,30 fibrin,31–33 and fibrinogen,34 
whereas only two endogenous ligands, podoplanin35 and heme/
hemin,36 have been proposed to interact with CLEC-2.

More recently, Gal-3 was demonstrated to be a novel bind-
ing partner of GPVI inducing platelet adhesion and ATP release.12 
Interestingly, the N-terminal carbohydrate recognition domain of 
Gal-9 shares considerable similarities with the structure of Gal-3 
carbohydrate recognition domain.37 Furthermore, endothelial cells 
have been proposed to be a source of Gal-9,38,39 with externaliza-
tion of Gal-9 observed in vitro upon endothelial cell activation.38 
Endothelial cells from inflamed tissue and after interferon-γ treat-
ment in vitro overexpress Gal-9.40–42 However, to the best of our 
knowledge, whether Gal-9 contributes platelet activation remains 
unclear.

Here, we have expanded on the current knowledge of Gal-9 biol-
ogy by identifying it as a novel endogenous ligand in the vasculature 
system, interacting with GPVI and CLEC-2 and inducing activation of 
human and murine platelets.

2  |  MATERIAL S AND METHODS

2.1  |  Reagents

Human recombinant galectin-9 (GA-2045) was purchased from R&D 
Systems, bio-techne, UK. Recombinant human dimeric GPVI-Fc 
construct (GPVI residues 1-183), its variant GPVI (NQ)-Fc fusion, 
and the C-terminal human IgG1 Fc segment were generated by the 
Sigplg+ mammalian expression vector (R&D Systems) as previously 
described.33,43 Nanobody 2 (Nb2), raised against GPVI through VIB 
Nanobody core (VIB Nanobody Service Facility), was expressed in 
pMECS plasmid and purified as formerly reported.43 Fab fragments 
of monoclonal anti-GPVI antibody JAQ1 were kindly provided by 
Prof. Bernhard Nieswandt. Rhodocytin was kindly provided by Dr. 

Essentials

•	 Galectin-9 (Gal-9) is a glycan binding protein with a 
range of immunomodulatory functions.

•	 Responses of human, wild-type, and genetically modi-
fied murine platelets to Gal-9 was assessed.

•	 Gal-9 was identified as a novel platelet agonist mediat-
ing multiple platelet functions.

•	 Gal-9 activates platelets through interaction with glyco-
protein VI and C-type lectin-like receptor 2.
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Johannes A. Elbe. Further detailed information on other materials 
used in the present study can be found in Table  S1 in supporting 
information.

2.2  |  Generation of AYP1

The monoclonal anti-human CLEC-2 antibody AYP1 IgG1 was 
produced from mouse hybridoma cells. The cell culture superna-
tant was harvested, centrifuged, and filtered to remove cell de-
bris and went through protein G affinity chromatography. After 
IgG binding, AYP1 was eluted by Tris-glycine buffer and then dia-
lyzed into phosphate buffered saline (PBS). F(ab)2 fragments of 
AYP1 were made with Pierce Fab preparation kit (Thermo Fisher 
Scientific). The whole IgG and fragments were then character-
ized by sodium dodecylsulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) to verify molecular weight and purity. Biological 
activities of AYP1 whole IgG and F(ab)2 fragments were also veri-
fied by CLEC-2 binding and rhodocytin blockade on human plate-
let aggregation.

2.3  |  Animals

All animal experiments were designed and performed in accordance 
with Home Office regulations under the licence PP9677279. Gp6−/− 
mice on Bl6J background were bred as homozygotes with purchased 
wild-type (WT) mice from Charles River on the same background 
as controls. Gp6−/−/Gp1ba-Cre-Clec1bfl/fl (further referred to as 
Gp6−/−/Clec-2−/−) mice were bred as previously described.21 In line 
with the ARRIVE guidelines and the principles of 3Rs on the use of 
minimal number of animals required for experimentation we per-
formed a power calculation prior to our experiments. We used pre-
vious data generated from our lab to determine our desired effect 
size and based on the power calculation a sample size of three to 
four mice per group was required to achieve a statistical significance 
of 5%.

2.4  |  Preparation of human washed 
platelet suspension

The present study was approved by the local research ethics com-
mittee (QMERC2014/61). Healthy donors who had not taken any 
anti-platelet medication 10  days prior to donation were included 
and provided informed written consent in accordance with the 
Declaration of Helsinki. Human and mouse washed platelets were 
retrieved from platelet-rich plasma by centrifugation with the pres-
ence of prostacyclin (Caymen Chemicals) and resuspended with 
modified Tyrode’s buffer (134  mM NaCl, 2.9  mM KCl, 0.34  mM 
Na2HPO4, 12  mM NaHCO3, 20  mM HEPES, 1  mM MgCl2, 5  mM 
glucose; pH 7.3) as previously described.31,44 Before being tested, 
freshly washed platelets were left for 30 min.

2.5  |  Light transmission aggregometry

Aggregation was assessed in human and murine washed platelet 
suspensions (2  ×  108/ml) via a Born Aggregometer (Model 700, 
CHRONO-LOG) under the stirring condition of 1200 rpm at 37°C. 
Human washed platelets were prewarmed for 5 min (2 min for mice) 
at 37°C before measurement and left being stirred for 1 min on the 
aggregometer before agonist stimulation. In some conditions, pre-
treatment with PP2 (Selleck Chemical), PRT (SYNkinase), Nb2, JAQ1 
Fab, and AYP1 F(ab)2 were carried out for 10  min, while apyrase 
(Sigma) and indomethacin (Sigma) were added 5 min before agonist 
addition. Light transmission of platelets was monitored for 6  min 
after addition of agonists. Aggregation traces together with their 
maximal amplitude (Amax) and area under the curve (AUC) were re-
corded and calculated on Aggrolink 8 (CHRONO-LOG).

2.6  |  Flow cytometry

Washed platelets (2 × 107/ml) were stimulated with vehicle, 300 nM 
Gal-9 (R&D Systems, Bio-techne) or 10 µg/ml collagen-related pep-
tide (CRP; CambCol Laboratories) and incubated with fluorescein 
isothiocyanate (FITC)-conjugated α-human CD41/CD61 antibody 
(clone: PAC-1; BioLegend) and phycoerythrin (PE)-conjugated α-
human CD62P antibody (BioLegend), or with PE-conjugated α-
mouse CD41/CD61 antibody (clone: JON/A; Emfret Analytics) and 
FITC-conjugated α-mouse CD62P antibody (Emfret Analytics) for 
30 min at 37°C. The platelets were then fixed with 10% neutral buff-
ered formalin (CellPath Ltd.) for 20 min at room temperature (RT) 
after incubating with the antibodies. Samples were assessed on BD 
Accuri C6 Plus flow cytometer (BD Biosciences). Histograms were 
plotted on FlowJo version 10.0.7.

2.7  |  Platelet spreading assay

Following incubation with 600  nM human recombinant Gal-9 or 
10  µg/ml Horm collagen (Takeda Austria) at 4°C overnight, cov-
erslips (VWR) were blocked in 5 mg/ml fatty acid–free and heat-
denatured bovine serum albumin (BSA) in PBS. Pre-treatments 
with PP2 (Selleck Chemicals) and PRT (SYNkinase) in washed 
platelet (2  ×  107/ml) in some conditions were carried out for 
10 min at 37°C. After washing, the coverslips were incubated with 
washed platelets for 30 min (human specimens) or 45 min (mouse 
specimens) at 37°C and then washed again with PBS. Adherent 
platelets on the coverslips were fixed with 10% neutral forma-
lin (CellPath) for 10 min, incubated for 10 min in 50 mM ammo-
nium chloride, permeabilized for 5  min using 0.1% Triton X-100, 
and stained with Alexa Fluro® 488-Phalloidin (Cell Signaling) for 
45 min at RT. Each of the former four processes was followed by 
three wash steps with PBS. Coverslips were mounted on slides 
(VWR) with Hydromount (National Diagnostics). Digital images 
of platelet spreading were taken under Axio Observer 7 inverted 
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epifluorescence microscope (×630; Carl Zeiss Microscopy) and 
Zen 2.3 Pro software. Analysis of spreading parameters was car-
ried out with the open-source platforms KNIME45 version 4.0.1 
and ilastik46 version 1.3.2 as described by Pike et al.47

2.8  |  Avidity-based extracellular interaction 
screening assay

GPVI and other bait proteins were incubated in streptavidin-coated 
96-well microtiter plates (Nunc) for 1 h at 22°C. The bait protein-
coated plate was incubated with recombinant human Gal-9 for 
1 h at 22°C. The bound Gal-9 was detected with goat anti-human 
Gal-9 antibody (R&D Systems) followed by horseradish peroxidase 
(HRP)-conjugated anti-goat IgG (Invitrogen). Three wash steps were 
performed between each incubation using 0.1% (v/v) PBS-Tween 
20. After addition of 1-Step™ Slow TMB substrate (Thermo Fisher 
Scientific) and incubated for 1 h at 22°C, the reaction was stopped by 
addition of a sulfuric or phosphoric acid. Absorbance was measured 
at 485 nm on a VersaMax microplate reader (Molecular Devices).

2.9  |  Solid-phase binding assay

Both direct and competitive methods were carried out in the present 
study. During the competitive binding assay, 96-well microplates were 
coated in the presence of 4 µg/ml Horm collagen overnight at 4°C. 
After blocking the collagen-coated wells with fatty acid–free and 
heat-denatured 3% (w/v) BSA for 1 h, plates were washed and human 
recombinant Gal-9 at different concentrations (10–3000  nM), to-
gether with 25 nM recombinant human dimeric GPVI-Fc fusion were 
added and incubated at RT. In the direct binding assay, the plates were 
coated in the presence of 10 nM Gal-9, blocked, and incubated with 
recombinant GPVI-Fc, GPVI (NQ)-Fc, and Fc segment at the same 
concentrations from 10 to 3000 nM, respectively. Wells were then 
labelled with HRP-conjugated anti-human IgG antibody (Invitrogen) 
for 1 hour at RT. After washing, 3, 3′, 5, 5′-tetramethylbenzidine liquid 
substrate (Sigma-Aldrich) was added for 30 min at RT before the ad-
dition of the stop solution (1M H2SO4). Absorbance at 450 nm was 
measured with a VersaMax microplate reader (Molecular Devices).

2.10  |  Protein phosphorylation

Human washed platelet suspension (4 × 108/ml) pre-incubated with 
9 µM eptifibatide was stimulated with 300 nM Gal-9 or 10 µg/ml CRP 
for 5 min under 1200 rpm stirring condition at 37°C, in some condi-
tions pre-treatment with 20 µM PP2 or 10 µM PRT were carried out. 
Protein lysates were subsequently obtained by the addition of SDS 
sample buffer being further stirred for 30 s and then boiled for 5 min. 
Before being transferred onto polyvinylidene fluoride membranes 
(Bio-Rad), proteins in the lysates were separated via SDS-PAGE on 
4%–12% (w/v) pre-cast Bis-Tris gels (NuPAGE, Invitrogen) under 

reducing conditions. Following transfer, the membranes were blocked 
by 4% BSA for 1 h and incubated with anti-phosphotyrosine (clone 
4G10; Millipore), phospho-Syk (Tyr 525/526; Cell Signaling), and 
phospho-LAT (Tyr 200; Abcam) antibodies at 4°C overnight, respec-
tively. Species-relevant HRP-conjugated secondary antibodies were 
added to membranes for 1 h at RT. All incubations were carried out on 
a shaker and with three washing intervals between each incubation. 
Membranes were developed by an enhanced chemiluminescence de-
tection system (Thermo Scientific), and re-probed using pan-anti-Syk 
antibody (Santa Cruz) and pan-anti-LAT antibody (Millipore). Western 
blots were all imaged with autoradiographic film.

2.11  |  Immunoprecipitation

Human washed platelets (4 × 108/ml) in the presence of 9 µM epti-
fibatide were stimulated by 300 nM Gal-9 for 5 min 1200 rpm stir-
ring condition at 37°C and subsequently lysed with equal volume of 
2× Nonidet P-40 Extraction buffer (20 mM Tris-HCl, 300 mM NaCl, 
2 mM EGTA, 2 mM EDTA, 2% Nonidet P-40, 2 mM AEBSF, 5 mM 
Na3VO4, 10  µg/ml leupeptin, 10  µg/ml aprotinin, 1  µg/ml pepsta-
tin; pH 7.5). The whole lysates were precleaned with GammaBind™ 
Plus Sepharose™ (GE Healthcare). Immunoprecipitation was car-
ried out by incubating the cleaned lysates with 2  µg/ml of AYP1 
whole IgG for 30  min and GammaBind Plus Sepharose for 1  h at 
4°C, and cooling centrifugation at 16 000 g for 15 min. Precipitated 
proteins were resuspended with SDS sample buffer, separated by 
SDS-PAGE, western blotted against anti-phosphotyrosine antibody 
(clone 4G10; Millipore), and re-probed with pan-anti-CLEC-2 anti-
body (R&D Systems) as described above.

2.12  |  Statistical analysis

The data are presented as mean ± standard deviation, unless other-
wise stated. Student’s t-test was used for the comparison between 
two groups, while multiple comparisons were conducted via one-
way analysis of variance with Tukey’s or Dunnett’s post hoc test. 
P-values <.05 were considered significant (*P  <  .05, **P  <  .01, 
***P  <  .001, ****P  <  .0001). Logarithmic dose-response/inhibition 
curves were generated through four-parameter nonlinear regression 
analysis with variable slopes. All statistics were analyzed on Prism 
version 8.0.2 (GraphPad Software).

3  |  RESULTS

3.1  |  Galectin-9 induces aggregation and secretion 
in human washed platelets

To validate whether Gal-9  has a role in platelet activation, we 
first investigated its effects on platelet aggregation. Recombinant 
human Gal-9 induced aggregation of human washed platelets in a 
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dose-dependent manner (Figure 1Ai). Gal-9 had an EC50 of ~124 nM 
and stimulated maximal platelet aggregation at 300 nM (Figure 1Aii). 
From 100 to 300 nM, Gal-9 mediated prominent biphasic aggregation 
in human washed platelets, suggesting participation of feedback ago-
nists (Figure 1Ai), which is further corroborated by the substantial re-
duction in Gal-9-induced aggregation following administration of ADP 
scavenger enzyme apyrase and cyclo-oxygenase inhibitor indometha-
cin (Figure S1 in supporting information). The GPIIb/IIIa antagonist ep-
tifibatide blocked platelet aggregation to Gal-9 at 300 nM (Figure 1B), 
indicating active aggregation rather than platelet agglutination. A simi-
lar blockade pattern was also observed following CRP-induced platelet 
aggregation (Figure S2 in supporting information). Platelets stimulated 
by Gal-9 (300 nM) showed a significant increase in the percentage of 
GPIIb/IIIa activation assessed using CD41/CD61 antibody (PAC-1; 
Figure 1Cii), and an increasing trend in medium fluorescent intensity 
(Figure 1Ciii; P = .06). Gal-9 also induced P-selectin expression on the 
surface of human platelets assessed by flow cytometry (Figure 1D), 
indicating release of α-granule contents. Platelets stimulated with CRP 
were used as positive control (Figure 1C-D).

3.2  |  Gal-9 mediates human platelet 
aggregation and spreading via an ITAM-based 
signalling pathway

Collectively, the data presented here indicate that Gal-9 can activate 
human platelets. We subsequently sought to identify signalling path-
ways involved in this interaction. The effect of Gal-9 on human platelet 
aggregation was blocked by 25 mM lactose but not by sucrose at the 
same concentration (Figure 2A), consistent with lactose binding to Gal-
9.13 As a control, lactose (25 mM) had no effect on aggregation to a 
collagen mimetic, CRP (Figure S3 in supporting information). This result 
demonstrates that β-galactoside binding is essential for Gal-9–induced 
platelet aggregation. Administration of SFK inhibitor (PP2) and Syk in-
hibitor (PRT) substantially blocked platelet aggregation in response to 
Gal-9 (Figure 2B). We next measured tyrosine phosphorylation of Syk 
and LAT, which are downstream of the ITAM-based signalling pathway, 
in human platelet lysates following stimulation with Gal-9 (Figure 2C). 
Gal-9 induced a similar pattern of tyrosine phosphorylation to CRP, 
with an increase in both phospho-Syk and phospho-LAT. PP2 and PRT 
significantly reduced the signals of phospho-Syk and phospho-LAT trig-
gered by Gal-9 (Figure 2C). Moreover, spreading of human platelets on 
immobilized Gal-9 (Figure S4 in supporting information) was substan-
tially inhibited by pre-treatment with PP2 and PRT compared to the 
vehicle (Figure 3B). These results illustrate that Gal-9 activates human 
platelets through an ITAM receptor–based pathway.

3.3  |  Activation of human platelets by Gal-9 is 
partially blocked by antibodies to GPVI

To identify potential counter-receptors of Gal-9 on human plate-
lets, we used the Avidity-based Extracellular Interaction Screening 

Assay,48 and found the platelet collagen receptor GPVI as a signifi-
cant binding partner of Gal-9 in vitro (Figure S5 in supporting infor-
mation). Gal-9 competitively inhibited the binding of recombinant 
dimeric GPVI-Fc (25 nM) to a Horm collagen (10 nM)–coated surface 
in the solid-phase binding assay, with an approximate IC50 of 220 nM 
(Figure 4Ai), suggesting that the Gal-9 binding site may overlap with 
the collagen binding site found within D1. No prominent difference 
in the binding of Gal-9 (10 nM) to native GPVI-Fc (EC50 ≈ 153 nM) 
and its un-glycosylated variant GPVI (NQ)-Fc (EC50 ≈ 257 nM) was 
observed in the direct binding assay (Figure 4Aii), which indicates a 
protein–protein interaction between Gal-9 and GPVI. The Fc seg-
ment of GPVI constructs was also independently expressed and 
tested in the binding assay as a control; it did not exhibit binding 
affinity for Gal-9 (Figure 4Aii).

To further study the interaction between Gal-9 and GPVI, we 
tested whether the aggregation response caused by recombinant 
human Gal-9 was interfered with by the anti-GPVI blocking bio-
logics, Nb243 and Fab fragments of the monoclonal antibody JAQ1, 
both of which completely blocked CRP-mediated platelet aggrega-
tion (Figure S6A,B in supporting information). JAQ1 Fab but not Nb2 
partially attenuated the aggregation triggered by Gal-9 (Figure 4B,C 
and Figure S7), implying that platelet activation by Gal-9 is partially 
mediated by GPVI but at a site that is distinct from the binding site of 
Nb2. The partial inhibition suggests that a secondary receptor that 
also signals though Src and Syk tyrosine kinases may also contrib-
ute to activation. Human platelets express two other ITAM recep-
tors, FcγRIIA and CLEC-2.23 Hence, the washed platelets were also 
pre-treated with AYP1 F(ab)2, dimeric Fab fragments of the mono-
clonal antibody AYP1 against CLEC-2, which completely abolishes 
the effect of rhodocytin on platelet aggregation (Figure S8 in sup-
porting information). Administration of AYP1 F(ab)2 did not induce a 
significant reduction in aggregation triggered by Gal-9 compared to 
vehicle (Figure 4Cii, P = .92; Figure 4Ciii, P = .92). Combined treat-
ment with JAQ1 Fab and AYP1 F(ab)2 also showed no significant 
difference from JAQ1 Fab alone (Figure 4Cii, P =  .63; Figure 4Ciii, 
P = .80). However, phosphorylation of CLEC-2 induced by Gal-9 was 
detected in platelet lysates (Figure  4D). Hence, the lack of effect 
of AYP1 could be due to Gal-9 binding a distinct site from which it 
interacts with rhodocytin and podoplanin.

3.4  |  Galectin-9 induces mouse platelet activation 
through GPVI and CLEC-2

To further address the interaction between Gal-9 and platelet 
ITAM receptors GPVI and CLEC-2, we employed genetically defi-
cient mouse strains including Gp6−/− and Gp6−/−/ Clec-2−/−. Similar 
to human platelets, Gal-9  stimulated WT platelet aggregation 
(Figure  5A), the conformational change in GPIIb/IIIa to the acti-
vated form of the integrin (Figure 5B) and expression of P-selectin 
(Figure  5C). WT platelets also adhered and spread on recombi-
nant Gal-9–coated surfaces under static conditions compared to 
BSA (Figure  S9 in supporting information). Pre-treatment of WT 
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platelets with SFK (PP2) and Syk (PRT) inhibitors completely in-
hibited Gal-9–induced aggregation (Figure  6A) and spreading 
(Figure 6B). Most WT platelets fully spread on immobilized Gal-9 
being characterized by formation of lamellipodial sheets and actin 
stress fibers (Figure 6Bi–ii). PRT significantly reduced the percent-
age of fully spread platelets (Figure 6Bii) and mean coverage area of 
WT platelets (Figure 6Biii) on immobilized Gal-9. PP2-treated plate-
lets also showed a decreasing trend in the proportion of fully spread 

platelets (Figure 6Bii; P = .18) and mean platelet area (Figure 6Biii; 
P =  .14). A much higher proportion of platelets underwent partial 
spreading and formed filopodia and actin nodes on Gal-9 in both 
inhibitor-treated groups (Figure  6Bi–ii). The results demonstrate 
that WT platelet spreading, but not adhesion (Figure 6Biv), on im-
mobilized Gal-9 is dependent upon ITAM receptor signalling.

Gp6−/− platelets showed significantly impaired aggregation in re-
sponse to Gal-9 compared to WT controls (Figure 7A). Consistent 
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with the results of human platelets, aggregation was not completely 
blocked by GPVI deficiency (Figure 7Aii–iii), which implies that GPVI 
is not the only receptor involved in the activation of murine platelets 

mediated by Gal-9. We therefore investigated platelet activation 
in mice double deficient in GPVI and the second ITAM receptor, 
CLEC-2. Murine Gp6−/−/Clec-2−/−platelets exhibited an augmented 

F I G U R E  1  Galectin-9 (Gal-9) stimulates platelet aggregation and secretion. A, The dose-dependent effect of Gal-9 on human platelet 
aggregation. Ai, Representative aggregation traces. Aii, The concentration-response curve of Gal-9 in platelet aggregation (EC50 ≈ 124 nM; 
n = 3). Data are presented as mean ± standard deviation (SD). B, The effect of eptifibatide (9 µM) on human platelet activation triggered 
by Gal-9 (300 nM). Bi, Representative aggregation traces. Bii, Maximal amplitude (Amax) and (Bii) area under the curve (AUC) of traces 
in eptifibatide-treated groups compared with the vehicle (phosphate-buffered saline) control (n = 3). Mean ± SD *P < .05, **P < .01, by 
paired Student’s t-test. C, Gal-9 stimulates activation of glycoprotein (GP)IIb/IIIa in human platelets. Ci, Representative histogram of 
human platelets activated by collagen-related peptide (CRP; 10 µg/ml) and Gal-9 (300 nM), respectively. Cii, Frequency and (Ciii) medium 
fluorescent intensity (MFI) of Gal-9 or CRP-stimulated platelets labelled by fluorescein isothiocyanate-conjugated human CD41/CD61 
antibody (PAC-1) compared to the unstimulated platelets (n = 3). Mean ± SD **P < .01, by one-way analysis of variance (ANOVA) with 
Dunnett’s post hoc test. D, Gal-9 (300 nM) triggers P-selectin expression in human platelets. Di, Representative histogram of human 
platelets stimulated by CRP (3 µg/ml) and Gal-9 (300 nM), respectively. Comparison between Gal-9 or CRP-stimulated and unstimulated 
platelets in terms of percentages (Dii) and MFI (Diii) of phycoeyrthrin-conjugated human CD62P antibody labelling (n = 3). Mean ± SD 
*P < .05, ***P < .001, by one-way ANOVA with Dunnett’s post hoc test

F I G U R E  2  Characterization of binding and signalling of galectin-9 (Gal-9)–induced platelet activation. A, Platelet aggregation to Gal-9 
(300 nM) in the presence of sucrose (25 mM) or lactose (25 mM). Ai, Representative aggregation traces. Aii, Maximal amplitude (Amax) 
and (Aiii) area under the curve (AUC) of traces in the vehicle (modified Tyrode’s buffer), sucrose, and lactose group were quantified 
for comparison (n = 3). Mean ± standard deviation (SD) *P < .05, **P < .01, ***P < .001, by one-way analysis of variance (ANOVA) with 
Tukey’s post hoc test. B, Gal-9 (300 nM)–mediated human platelet aggregation under PP2 (20 µM) and PRT-060318 (10 µM) treatment. Bi, 
Representative aggregation traces. Bii, Amax and (Biii) AUC of the traces in vehicle (1% DMSO), PP2 and PRT-060318 treated groups were 
compared (n = 3). Mean ± SD *P < .05, by one-way ANOVA with Dunnett’s post hoc test. C, Protein phosphorylation induced by Gal-9 
(300 nM) with or without PP2 (20 µM) and PRT-060318 (10 µM) pre-treatment. The data are representative of three experiments
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reduction in aggregation to Gal-9, compared to platelets from 
Gp6−/− mice (Figure  7Aii–iii). Furthermore, the capability of mouse 
platelets to develop lamellipodial sheets and actin stress fibers on 
immobilized Gal-9 was significantly impaired by GPVI deficiency; 
however, we did not observe any further difference between Gp6−/− 
and Gp6−/−/Clec-2−/− groups (Figure  7Bi–ii). Significant proportions 
of Gp6−/− and Gp6−/−/Clec-2−/− platelets partially spread on Gal-9–
coated surfaces showing filopodia and actin nodes (Figure  7Bii). 
Mean platelet coverage area of Gp6−/− and Gp6−/−/Clec-2−/− groups 
substantially decreased, while GPVI and CLEC-2 double deficiency 
failed to further amplify this reduction (Figure 7Biii). Intriguingly, we 
did not observe significant differences in the numbers of platelets 
adhered between the three genotypes (Figure 7Biv), which indicates 
that additional receptor types may be involved in platelet adhesion 
on immobilized Gal-9 under static conditions, while platelet spread-
ing on Gal-9 is mainly supported by GPVI. A similar result was also 
found with collagen whereby GPVI deficiency inhibited platelet 

spreading, but adhesion remained similar between WT and Gp6−/− 
(Figure  S10 in supporting information). These results suggest that 
activation of mouse platelets by Gal-9 is predominantly by GPVI 
with a secondary role of CLEC-2.

4  |  DISCUSSION

Here, we show a novel function for Gal-9 as a platelet agonist that 
activates various platelet functions via interaction with the platelet 
ITAM receptor GPVI and CLEC-2. Gal-9 was observed to promote 
human and murine platelet aggregation in a dose-dependent man-
ner. The substantially blocked aggregation to Gal-9 by eptifibatide 
and detection of fibrinogen-binding site exposure on GPIIb/IIIa upon 
the stimulation of Gal-9 confirmed the response as metabolically ac-
tive aggregation, rather than passive agglutination. Administration 
of apyrase and indomethacin further corroborated the participation 

F I G U R E  3  Human platelet spreading on immobilized galectin-9 (Gal-9). A, Influence of vehicle (1% DMSO), PP2 (20 µM), and PRT (10 µM) 
on human platelet spreading mediated by immobilized Gal-9. Ai, Representative images of phalloidin-Alexa488 stained platelets for each 
treatment. Scale bar = 10 µm. Aii, Quantitation of platelet types (un-spread, partially, and fully spread) in each treatment. Aiii, Mean platelet 
area and (Aiv) number of adherent platelets in each group were also compared. Mean ± standard deviation *P < .05, ***P < .001, by one-way 
analysis of variance with Dunnett’s post hoc test, five fields of view (FOV) from n = 3 experiments were analyzed
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of secondary mediators, ADP and thromboxane A2 in Gal-9-induced 
aggregation in human platelets, which is consistent with most classic 
platelet agonists.49,50 Immobilized Gal-9 also supported human and 
murine platelet adhesion and spreading under static conditions. P-
selectin expression on both human and murine washed platelets was 
induced by Gal-9, which is consistent with similar results reported 

with Gal-1, -3, and -8.10–12 Altogether, our results support a novel 
role of Gal-9 that mediates platelet aggregation, adhesion, spread-
ing, and secretion.

In the past decade, the role of galectins in platelet biology 
has been expanding.10–12,51–54 Gal-1 was first reported to interact 
with the GPIIb subunit of GPIIb/IIIa initiating outside-in signals 

F I G U R E  4  Galectin-9 (Gal-9) activates glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) on human platelets. Ai, The 
competitive binding assay shows recombinant human GPVI-Fc dimer (25 nM) is displaced from a collagen-coated surface (coated in the 
presence of collagen [10 nM]) by increasing concentrations of Gal-9 (IC50 ≈ 220 nM; n = 3 experiments). Mean ± standard error of the mean. 
Aii, The dose-binding curves of GPVI-Fc (EC50 ≈ 153 nM), GPVI (NQ)-Fc (EC50 ≈ 257 nM), and Fc segment on Gal-9-coated surface (coated 
in the presence of 10 nM Gal-9). The data of one experiment in triplicate are presented as mean ± standard deviation (SD). B, The effect of 
nanobody 2 (Nb2) on Gal-9 (300 nM)-mediated platelet aggregation. Bi, Representative aggregation traces. Bii; Biii, Traces of Nb2 (100 nM) 
and vehicle (phosphate-buffered saline [PBS]) treatment were quantified and compared (n = 3). Mean ± SD by paired Student’s t-test. C, 
The effect of 10 µg/ml JAQ1 Fab and/or 10 µg/ml AYP1 Fab2 on human platelet aggregation induced by 300 nM Gal-9. Ci, Representative 
aggregation traces. Multiple comparisons in (Cii) maximal amplitude (Amax) and (Ciii) area under the curve (AUC) among vehicle (PBS), JAQ1 
Fab, AYP1 Fab2, and JAQ1 Fab + AYP1 Fab2-treated groups (n = 3). Mean ± SD **P < .01, by one-way analysis of variance with Tukey’s post 
hoc test. D, Gal-9 induced CLEC-2 phosphorylation in platelet lysates. The data are representative of three experiments
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and activating human platelets in both soluble and immobilized 
forms,10,52 while GPIb was proposed to be the essential counter-
receptor for exogenous Gal-8 signalling in human platelet activation 
in vitro.11 Endogenous Gal-8 expressed on megakaryocyte surface 
was demonstrated to support factor V endocytosis.55 Furthermore, 
cancer cell–derived Gal-3 has been found to be a novel ligand for 
platelet GPVI facilitating tumor metastasis,12,56 although whether 
Gal-3-GPVI interaction could contribute to hemostasis or thrombo-
sis remains unknown.

The effect of Gal-9 on platelet aggregation and spreading implies 
its potential contribution to thrombus formation. In addition, the inter-
play between P-selectin expressed on platelets in response to Gal-9 

and P-selectin glycoprotein ligand-1 expressed on leukocytes poten-
tially facilitates platelet–leukocyte heterotypic aggregation playing a 
central role in platelet-mediated leukocyte recruitment and inflamma-
tion.3,57 Thus, apart from directly mediating leukocyte chemoattrac-
tion and trafficking,58 Gal-9 could enhance leukocyte recruitment via 
activating platelets, which is a novel mode of action for this protein.

Gal-9 has been shown to be widely expressed by endothelial 
cells in a variety of tissues38,39 and overexpressed by endothe-
lial cells following activation by pro-inflammatory cytokines such 
as INF-γ,41,42 which could provide a potential substrate for plate-
lets. A recent study reported the elevation of plasma Gal-9 in 
COVID-19 patients, up to 60 times more than in healthy controls, 

F I G U R E  5  Galectin-9 (Gal-9) stimulates mouse platelet activation. A, Gal-9 in murine platelet aggregation. Comparisons between 
aggregation induced by 30 nM and 300 nM Gal-9 based on (Aii) maximal amplitude (Amax) and (Aiii) area under the curve (AUC) of 
each trace (n = 3 mice per group). Mean ± standard deviation (SD) ***P < .001, by paired Student’s t-test. B, Conformational change of 
glycoprotein (GP)IIb/IIIa on murine platelets mediated by Gal-9 (300 nM). Bi, Representative histogram of GPIIb/IIIa activation. Significant 
differences between Gal-9–stimulated and -unstimulated groups in the (Bii) frequency and (Biii) geometric mean fluorescence intensity 
(gMFI) of murine platelets labelled with phycoeyrthrin-conjugated mouse CD41/CD61 antibody (JON/A; n = 3 mice). Mean ± SD *P < .05, 
***P < .001, by paired Student’s t-test. C, P-selectin expression on murine platelets induced by Gal-9 (300 nM). Ci, Representative histogram 
of P-selectin expression. Comparison between Gal-9-stimulated and unstimulated groups in terms of the (Cii) frequency and gMFI of murine 
platelets labelled by fluorescein isothiocyanate-conjugated mouse CD62P antibody (n = 3 mice). Mean ± SD **P < .01, by paired Student’s 
t-test
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with blood-derived immune cells including neutrophils and mono-
nuclear cells as a putative source.59 Nonetheless, endotheliopathy 
caused by SARS-CoV-2 infection could also be a non-negligible 
factor to consider in leading to Gal-9 overexpression.60  The 
substantial elevation of Gal-9 expression and its possible local 

concentration in the injured vasculature during SARS-CoV-2 in-
fection could be a factor promoting the characteristic platelet-
rich thrombus formation in multi-organ vasculature, particularly 
small and medium pulmonary arteries,61,62 and potential platelet 
hyperactivity.60,63

F I G U R E  6  Mouse platelet spreading on galectin-9 (Gal-9). A, The influence of PP2 (20 µM) and PRT (10 µM) on mouse platelet 
aggregation and spreading induced by Gal-9 (300 nM). Ai, Example aggregation traces. Aii, Maximal amplitude (Amax) and (Aiii) area 
under the curve (AUC) of vehicle (1% DMSO), PP2, and PRT-treated groups were compared (n = 3 mice). Mean ± standard deviation (SD) 
*P < .05, **P < .01, one-way analysis of variance (ANOVA) with Tukey’s post hoc test. B, Murine platelet spreading on immobilized Gal-9 
in the presence of PP2 (20 µM) and PRT (10 µM). Bi, Representative images of phalloidin-Alexa488 stained platelets. Scale bar =10 µm. Bii, 
Percentages of un-spread, partially (vehicle vs. PRT, P = .21), and fully spread (vehicle vs. PRT, P = .18) platelets in vehicle (1% DMSO), PP2, 
and PRT treated groups were compared, respectively. Multiple comparisons based on mean platelet area (Biii) and normalized number of 
platelets per field of view (FOV; Biv) were also carried out. Mean ± SD *P < .05, **P < .01, RM one-way ANOVA with Dunnett’s post hoc 
test. Five FOV from n = 3 experiments were analyzed
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According to the screening assay, Gal-9 exhibited affinity for re-
combinant GPVI. Given the ability of the galectins to recognize and 
bind glycosylated ligands Ca2+-independently,9 the identification 

of GPVI as a binding partner of Gal-9  seems reasonable. In our 
study, the substantial blockade of Gal-9 by lactose suggests a 
carbohydrate-dependent action is also involved in aggregation 

F I G U R E  7  Glycoprotein VI and C-type lectin-like receptor 2 deficiency in murine platelet activation induced by galectin-9 (Gal-9). A, 
The effect of Gal-9 (at 300 nM) on the aggregation of wild-type (WT), Gp6−/−, and Gp6−/−/Clec-2−l− murine platelets. (AiExample aggregation 
traces. Multiple comparison of Gal-9–mediated aggregation among WT, Gp6−/−, and Gp6−/−/Clec-2−l− groups based on the (Aii) maximal 
amplitude (Amax) and (Aiii) area under the curve (AUC) of original traces (n = 5 mice). Mean ± standard deviation (SD) *P < .05, **P < .01, 
***P < .001, ****P < .0001, by one-way analysis of variance (ANOVA) with Tukey’s post hoc test. B, Platelet spreading on Gal-9–coated 
coverslips (coated in the presence of 600 nM Gal-9) in WT, Gp6−/−, and Gp6−/−/Clec-2−l− groups. Bi, Representative images of Phalloidn-
Alexa488 labelled platelets. Scale bar = 10 µm. Bii, Percentages of un-spread, partially, and fully spread platelets in WT, Gp6−/−, and 
Gp6−/−/Clec-2−l− groups were compared, respectively. Multiple comparisons based on (Biii) mean platelet area and (Biv) number of platelets 
per field of view (FOV) among the three groups. Mean ± SD *P < .05, ***P < .001, ****P < .0001, by one-way ANOVA with Tukey’s post hoc 
test. Five FOV from n = 3 experiments were analyzed
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induced by Gal-9. The formation of supramolecular lattice upon 
binding to multivalent ligands64 could potentially lead to clustering 
and subsequent activation of GPVI.24,25 The competition between 
Gal-9 and collagen for binding GPVI in turn suggested potential 
overlap with the collagenbbinding site of GPVI in this interaction. 
Apart from one consensus site N72GS74 of D1 domain reported to 
be N-linked glycosylated,65 D1 and D2 domains of GPVI are not 
glycosylated.43 Accordingly, the un-glycosylated variant GPVI (NQ), 
of which the original N72 residue was mutated into glutamine to 
remove the only N-glycosylated site in D1 domain, was employed 
to investigate whether the binding of Gal-9 to GPVI was dependent 
on the glycosylation at N72. However, similar binding levels of Gal-9 
to GPVI and GPVI (NQ) were detected on solid-phase binding assay, 
which indicates a protein–protein interaction between recombinant 
Gal-9 and the two GPVI constructs. Nanobody 2, a potent GPVI 
blocker against collagen binding, did not interfere with the aggrega-
tion to Gal-9 in human platelets, which not only reflects high selec-
tivity of this biologic, but also implies the binding manners of Gal-9 
and collagen to GPVI are not identical. It is important to note that 
both of these recombinant GPVI-Fc and GPVI (NQ)-Fc fusions used 
in the binding assays consist of the D1 and D2 portions (residues 
1--183) without the stalk domain, which is different from other re-
combinant constructs like Revacept.66 Hence, we cannot rule out 
that the stalk, which is rich in O-linked glycosylation, also plays a 
role in the interaction between Gal-9 and GPVI.

In the present study, we have demonstrated that the ITAM re-
ceptor signalling is essential in platelet aggregation and spreading 
mediated by Gal-9, as these two functions of human and murine 
platelets were substantially inhibited by PP2 and PRT. The reduced 
aggregation in GPVI-deficient mouse platelets and JAQ1 Fab-treated 
human platelets corroborated the critical role of GPVI signalling in 
this interaction with Gal-9. Nevertheless, GPVI did not appear to be 
the only receptor accounting for Gal-9-mediated platelet activation, 
as the aggregation was not completely abolished by GPVI deficiency 
or JAQ1. Therefore, we also examined another platelet ITAM re-
ceptor CLEC-2, which contains an extracellular lectin-like recogni-
tion domain lacking the Ca2+ binding site and a short cytosolic tail 
harboring a single YxxL sequence termed hemITAM. Gal-9 induced 
phosphorylation of CLEC-2, but AYP1 F(ab)2 failed to alter human 
platelet aggregation to Gal-9 on its own or in combination with 
JAQ1 Fab. The aggregation of Gp6−/−/Clec-2−/− murine platelets in 
response to Gal-9 decreased significantly compared to Gp6−/− plate-
lets, which led us to postulate that Gal-9 may bind to a site which is 
distinct from podoplanin or rhodocytin on CLEC-2. Indeed, as pre-
viously reported, AYP1 failed to block human platelet aggregation 
induced by heme/hemin, which is another novel binding partner of 
CLEC-2.36 Interestingly, while spreading was impaired in Gp6−/− and 
Gp6−/−/Clec-2−/− platelets, adhesion remained unaffected. This ob-
servation could be in part due to the presence of other receptor(s) 
involved specifically in adhesion rather than spreading on Gal-9.

In conclusion, we have identified Gal-9 as a novel platelet ago-
nist, which triggers signal transduction of the ITAM receptors GPVI 
and CLEC-2 in human and mouse platelets and supports multiple 

platelet functions including aggregation, secretion, and spreading. 
Given the new aspect of Gal-9 biology illustrated by the present 
study, we believe this protein should attract more interest in hemo-
stasis and thrombosis research. Therapeutic targeting of Gal-9 could 
be a potentially novel strategy for treating thrombotic or thrombo-
inflammatory diseases.
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