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 16 

Key points 17 

• The Permian–Triassic mass extinction (252 Ma) resulted in a substantial reduction of global 18 

biodiversity, with the extinction of 81–94% of marine species and 70% of terrestrial 19 

vertebrate families. 20 

• Sedimentary, palaeontological and geochemical records during the mass extinction indicate 21 

that a cascade of environmental changes caused the extinction. 22 

• The environmental changes can be linked (and attributed to) the effects of volcanic emissions 23 

(for example CO2, SO2, and metals) during the eruption of the Siberian Traps large igneous 24 

province. 25 

• Inferred volcanically driven environmental perturbations include global warming, oceanic 26 

anoxia, oceanic acidification, and (potentially) ozone reduction, acid rain, and metal 27 

poisoning. 28 

• The crisis on land likely started ~60–370 kyrs before that in the ocean, indicating different 29 

response times of terrestrial and marine ecosystems to Siberian eruptions. 30 
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• The causes of marine extinctions are inferred from geochemical and sedimentary evidence, 31 

but the reasons for the earlier terrestrial ecological crises remain poorly understood, but likely 32 

include rapid atmospheric change.  33 



Abstract 34 

The link between the Permian–Triassic mass extinction (PTME; 252 Ma) and the emplacement of the 35 

Siberian Traps Large Igneous Province (STLIP) was first proposed over 30 years ago. However, the 36 

complex cascade of volcanic-driven environmental and biological events that led to the largest known 37 

extinction in life’s history is still difficult to reconstruct. In this Review, we critically evaluate the 38 

geologic evidence and discuss the current hypotheses surrounding PTME kill mechanisms. Data 39 

indicate that the initial STLIP extrusive/pyroclastic volcanism was coeval with widspread crisis of 40 

terrestrial biota and marine animal species stress at high northern latitudes. The following onset of 41 

extensive magmatic intrusions is linked with the rapid (~60 kyr) extinction of 81–94% of marine 42 

species. The terrestrial to deep water extinctions are thought to have been caused by a combination of 43 

global environmental perturbations driven by the emissions from STLIP. Nevertheless, it remains 44 

difficult to understand the ultimate reason for the exceptional severity of the PTME. Future research 45 

needs improved geochronology of STLIP and sedimentary sequences (especially terrestrial) to better 46 

resolve the timing of volcanic phases and extinctions. Further ecological and physiological studies are 47 

needed to understand temporal and spatial extintion patterns. Improved modelling is necessary to 48 

reconstruct the causal relations between volcanism, environmental perturbations and ecosystem 49 

collapse. 50 

 51 

Introduction 52 

Many mass extinction [G] events punctuated the history of life and changed evolutionary trajectories 53 

1. Most of past biological crises are coeval with the emplacement of Large Igneous Provinces (LIPs) 54 

[G], which drove widespread environmental perturbations.  LIP emissions of CO2 and other gasses are 55 

comparable to current anthropogenic emissions, and future climate projections predict a scenario 56 

similar to the major Phanerozoic extinctions. Hence, undestanding past events will help define the 57 

tipping points that lead to a major biological crisis 2. 58 

The Permian–Triassic mass extinction (PTME; 252 Ma) was the most severe biological crisis of the 59 

Phanerozoic (Fig. 1). It almost competely eliminated Palaeozoic fauna and flora, setting the stage for 60 

the evolution of modern ecosystems. Across the Permian–Triassic boundary (PTB), 81–94% of 61 

marine species went extinct 3–5 (Fig. 2 and 3). On land, 89% of tetrapod genera and 49% of families 62 

disappeared 6 (Fig. 4). Recovery began in the Early Triassic 7–9, but became significant only in the 63 

Middle Triassic, five million years later 10–12. 64 



Data from the fossil, sedimentary, and geochemical record of the PTME suggest there were major 65 

environmental changes in marine and terrestrial settings 13–15 (Fig. 2 and 3). The global crisis is 66 

coeval with the emplacement of the Siberian Traps Large Igneous Province (STLIP) 16–18 (Fig. 5), 67 

that saw a relatively rapid (<1 Ma) eruption of 2–7 million km3 19–22 of basalt, together with volcanic 68 

emissions of CO2, SO2, halogens and metals that were capable of causing global climate and 69 

environmental catastrophe. 70 

Detailed timing of events has improved remarkably in recent years thanks to advances in high-71 

precision radioisotope dating [G], and high-resolution biostratigraphy [G] and chemostratigraphy [G] 72 

studies (especially C-isotope and Hg stratigraphy; BOX 1 and 2). Analysis of events from 252 million 73 

years ago at a high temporal resolution allowed identification of distinct phases of STLIP eruptions 74 

18,23 and separate pulses of extinction among marine animals 4,24,25. Particularly interesting 75 

developments include the increasing evidence that the terrestrial crisis was very likely underway 76 

several tens to hundreds of thousands of years before the marine extinction 26–28, clearly indicating 77 

that the PTME was not a single, instantaneous catastrophic event. Whilst these findings are expanding 78 

knowledge of STLIP volcanism, environmental changes, and extinction patterns, linking them 79 

remains difficult. The geological record tells a complex and partly obscure story of multiple, co-80 

occurring phenomena, all playing a role in perturbing the ecosystems, and all probably interlinked in a 81 

cascade of environmental disasters. 82 

In this Review we discuss the PTME pattern in the ocean and on land, the age and volcanic style of 83 

the STLIP, the evidence of a link between STLIP phases and the PTME, and the environmental crises 84 

triggered by the volcanic emissions and their role in the extinction and observed selectivity. We 85 

discuss the apparent diachrony between some recorded enviromental changes and extinctions. We 86 

then construct a likely chronology of the events based on the current evidence, propose a working 87 

hypothesis for future research, and highlight the open problems. 88 

 89 

Pattern of the PTME 90 

The exact temporal relationship between the marine and terrestrial extinctions is still debated. 91 

However, there is increasing evidence for an earlier onset of the terrestrial crisis and marine stress at 92 

high northern latitudes. The age and pattern of the marine PTME at low latitudes are very well 93 

constrained, and these provide a stratigraphic framework that allows the level of terrestrial crisis to be 94 

pinpointed. Here we examine the marine crisis first. 95 



Marine extinction. Across the PTB, the Palaeozoic evolutionary fauna [G] was devastated at all 96 

ecological levels, resulting in the largest marine extinction of the entire Phanerozoic (Fig. 1a and 97 

Supplementary Information). It has been estimated that 81–94% of marine species went extinct 3–5. 98 

The PTME appears to have been selective (Fig. 3). Some groups completely disappeared, such as 99 

trilobites, rugose and tabulate corals, fusulinid foraminifers, and blastoid echinoderms 4,29–31; others, 100 

such as rhynchonelliforms (articulate brachiopods), crinoids, stenolaemate bryozoans, calcisponges, 101 

radiolarians, ammonoids, and ostracods, came close to annihilation with only a handful of surviving 102 

species 4,32; whilst a few groups, including bivalves, gastropods, conodonts, and fishes, experienced 103 

“only” severe to moderate extinction rates 4,33–35 (Fig. 2). Extinction selectivity is not only evident in 104 

the taxonomic composition of the marine fauna, but also in ecological and physiological traits. Body-105 

size selectivity is seen in foraminifers, conodonts brachiopods, and bivalves 36–39, with larger bodied 106 

organisms showing higher extinction rates, but this factor is less obvious in other groups 34,36,40 (Fig. 107 

3). 108 

It has been shown that physiologically buffered taxa that can regulate intracellular chemistry and 109 

counterbalance environmental chemical changes, like molluscs, ostracods, arthropods, and fish, 110 

experienced lower extinction rates than unbuffered taxa such as brachiopods and echinoderms 41–44 111 

(Fig. 3). Moreover, non-motile taxa could in general be affected more by changing environmental 112 

conditions than motile animals, especially swimming animals 12: Fish were relatively little affected 113 

compared to other groups 44. However, statistical analysis shows that selectivity between these two 114 

groups was not significant (Fig. 3). 115 

Taxa with limited geographic distribution are generally more prone to extinction than widely 116 

distributed groups because they are more dependent on local environmental conditions. However, this 117 

phenomenon is not so strong during the PTME 43,45,46 (Fig. 3), suggesting harsh marine environments 118 

were global in extent; there was no escape even for cosmopolitan species. Indeed, weak geographic 119 

range selectivity appears to be a general pattern with the major mass extinctions, being observed also 120 

at the end-Triassic and the end-Cretaceous 45 (Fig. 1a). 121 

The pace of the PTME extinction pattern is long debated 32, with contrasting hypotheses of gradual vs 122 

abrupt extinction, and single vs discrete extinction pulses. The gradual disappearance of marine 123 

species observed in several PTB successions below the main extinction horizon 3,47 could be 124 

attributed, for most groups, to the Signor-Lipps effect [G] in the fossil record whereby rarer species 125 

are last recorded some time before their final demise 3,48,49. The one exception is the ammonoid 126 



extinction pattern observed in the succession of Iran where, considering the age confidence interval of 127 

each species, ammonoid diversity indeed shows a gradual decline before the PTME 47.  128 

The marine extinction was a geologically brief event in the latest Permian–earliest Triassic 50. Well-129 

studied sections from South China, such as Meishan GSSP [G], show enormous losses at the base of 130 

the latest Permian Clarkina meishanensis zone 3,51. Abrupt extinction in the latest Permian has also 131 

been documented in Italian foraminifera and Iranian brachiopods, foraminifera, and algae 48,52. Thus, 132 

the crisis is often referred to as the end-Permian mass extinction, implying a single, geologically 133 

instantaneous (~30 kyr) event at the end of the Permian, just before the stratigraphic PTB 3,51 (Fig. 2). 134 

However, a significant diversity of Permian taxa, including brachiopods, foraminifers and ostracods 135 

survived beyond this level to become extinct either in the final part of the Permian or in the earliest 136 

Triassic 53–55. Combining data from sections encompassing a spectrum of water depths shows that 137 

there was an especially intense final extinction phase in South China at the base of the Isarcicella 138 

isarcica Zone 4. It is noteworthy that the second extinction pulse was proportionally intense but not as 139 

large in magnitude in terms of species loss. 140 

Multi-phase extinction pattern has also been reported in the Dolomites, Italy 24,25. Here, the main/first 141 

phase (which correlates to the first extinction pulse in South China), witnessed the loss of calcareous 142 

algae, foraminifera, and large-sized brachiopods and molluscs, with a genus extinction rate of 64% 25 143 

(Fig. 2). 68% of survivors and newcomers subsequently went extinct in the interval ranging from the 144 

upper H. changxingensis to lower H. parvus zones 25, with a second extinction pulse that is somewhat 145 

slightly earlier than the second pulse in South China 4 (Fig. 2). 146 

Adequate sampling obviously play an important role in the assessment of the extinction pattern. When 147 

fossil occurrences are rare, statistical confidence in the precise timing and number of pulses of 148 

extinction declines. Moreover, the importance of examining extinction patterns in different 149 

environments is highlighted by the record of foraminifer which shows a single extinction pulse in 150 

shallow platform facies but two episodes of extinction in deep slope facies 56. In contrast, brachiopods 151 

suffered two episodic extinctions in shallow platform 57 and deep slope 3 and basin facies 58. 152 

The latest U-Pb zircon ages from Meishan show that the two pulses of extinction happened at 251.941 153 

and 251.880 Ma, respectively, separated by an interval of ~60 kyrs 59 (Fig. 2). It is unclear if the 154 

intervening interval should be considered a time of high stress or if the two pulses of extinction 155 

represent discrete events. The interlude was certainly an intriguing time, it saw the proliferation of 156 

microbialites and oolitic strata in low latitudes 60,61, whilst origination rates [G] increased 4, pointing 157 



to a temporary improvement in environmental conditions either within the extinction interval, or 158 

between the two main extinction pulses (Fig. 2). 159 

Terrestrial extinction. The PTME was the Phanerozoic’s largest and most severe extinction of 160 

terrestrial plants and animals, at all latitudes and trophic levels (Fig. 4). Terrestrial floras suffered a 161 

worldwide catastrophic die-off of many plant groups in different geographical and climate zones 162 

during the PTME, which reset plant evolutionary history and was followed by an Early–Middle 163 

Triassic “coal gap”: an interval in which peat-forming communities disappeared 10,26,62–67. Some have 164 

argued that plant losses were much more moderate compared to animals 68,69, but the unprecedented 165 

abrupt shutdown of peat formation is a clear signal for major loss of terrestrial biomass across the 166 

PTB. 167 

Plant fossil records from South China show that diversity and abundance of the tropical rainforest-168 

type Gigantopteris flora experienced a sharp decrease with a loss of 95% of species and 50% of 169 

genera 70,71. The Permian gymnosperm-dominated floras of North China and Russia experienced 170 

similar catastrophic losses at the same time 72. In the southern hemisphere (Gondwana), the coal-171 

forming Glossopteris flora went extinct (and coals disappeared) to be replaced by seed-fern shrubs 172 

(Dicroidium) 10,67,73, a stratigraphically long-ranging genus that survived the PTME and migrated 173 

polewards from low-latitudes 74. The subsequent earliest Triassic floras throughout Eurasia and the 174 

southern continents were dominated by lycopods, especially Pleuromeia. 175 

During the crisis, palynological data show widespread spore abundance spikes, accompanied by high 176 

abundances of spore tetrads and teratological [G] pollen, evidencing stressed conditions 67,75–83 (Fig. 177 

4). Peak abundances of Reduviasporonites have been noted as marking fungal or algal bloom events. 178 

The former attribution would indicate proliferation of fungal saprotrophs during terrestrial ecosystem 179 

collapse 67,84–86,  but the affinity of Reduviasporonites and its ecological significance remain 180 

controversial 87,88. 181 

Major changes at the base of the terrestrial food-web, for example in the structure of floral 182 

communities from luxurious forests to less productive lycophyte-dominated floras, triggered a 183 

cascade of extinction in terrestrial ecosystems at all higher trophic levels 81,89. It is therefore 184 

noteworthy, but perhaps not surprising, that the mass extinction was the only one to severely affect 185 

insects, with losses of 30% of orders and 50% of families 90–92. 186 

Tetrapods were also severely impacted by the PTME with numerous families lost. Complex latest 187 

Permian ecosystems, dominated by herbivorous pareiasaurs, dicynodonts and carnivorous 188 

gorgonopsians, were replaced by ones with archosaurs and synapsids 93,94. Global tetrapod generic 189 



data suggest there was an 89% generic loss of tetrapods near the PTB 6. Such losses within tetrapods 190 

could have happened during a “sustained extinction interval” of up to ∼1 Myr, as seen in the fossil 191 

record from the Karoo Basin (South Africa) 95 (Fig. 4), although it is difficult to determine rates in the 192 

low quality tetrapod record. Many niches disappeared with studies showing the loss of all small fish- 193 

and insect-eaters, medium and large herbivores and large carnivores in Russia 94,96,97. Coupled to the 194 

terrestrial extinction and vegetation loss, fluvial style changed across the PTME from meandering to 195 

braided rivers and aeolian systems, as observed in the successions of the Karoo Basin, Russia, 196 

Australia and North China (for example ref. 98). 197 

The timing of terrestrial ecosystem crisis relative to extinctions in the oceans is debated. Some studies 198 

argued that the terrestrial extinction was coeval with that in the oceans based on radioisotopic dating, 199 

chemostratigraphy and terrestrial information recorded in marine deposits 71,99,100. However, recent 200 

high-resolution studies show that the terrestrial ecosystems were already stressed before the marine 201 

PTME (Fig. 4). Evidence of an earlier terrestrial crisis is based on improved stratigraphic frameworks 202 

including C-isotope stratigraphy (BOX 1), Hg (and Ni) spikes (BOX 2), magnetostratigraphy, and 203 

high-precision dating methods 26–28,95,101–103 that supersede previous lower resolution studies. This 204 

earlier crisis is seen in palaeofloras from the high-latitude Sydney Basin 26, in the tropical peatland 205 

ecosystems in equatorial South China 27, in the flora and fauna of North China 102, and in the tetrapod 206 

losses in the high-latitude Karoo Basin 28,95 (Fig. 4). Recurrent wildfire and abnormal pollen in the 207 

latest Permian also indicate that terrestrial ecosystems were under great stress before their collapse 208 

and prior to the subsequent marine extinction 26,27,78,101,102,104. 209 

It is important to note that the terrestrial fossil record primarily derives from lowland settings, 210 

especially lacustrine and riparian environments where much sediment accumulates. This is especially 211 

the case for the plant record which is dominated by plants from wetlands, due to their good 212 

preservational conditions in such settings 105. Much less is known about plants from drier and upland 213 

habitats which rarely fossilize, although evidence of upland vegetation loss during the PTME has been 214 

inferred from changing sedimentary facies in the Karoo Basin and Russia 106. Wetland extinctions, 215 

that eliminated the Glossopteris and Gigantopteris mire communities, were not mirrored by equally 216 

severe losses in drier habitats dominated by conifers and pteridosperms 107,108. This pattern may partly 217 

explain why the palynological record, which includes data of widely dispered pollen and spores from 218 

drier and upland habitats mixed with those of lowland floras, often shows a much more muted 219 

extinction intensity during the PTME 107,108. 220 

 221 



The trigger 222 

The two main agents suggested to be responsible for the environmental changes that led to the 223 

PTME―which will be discussed in the next section―are extraterrestrial impact or large-scale 224 

volcanism. 225 

Extraterrestrial impact as the trigger of the PTME was proposed on the basis of geochemical (He3 in 226 

fullerenes) and sedimentological (for example, the finding of chondritic meteorite fragments in the 227 

sedimentary record) data, and of the interpretation of a large structure found in the Indian ocean, the 228 

Bedout High, as a purporter impact crater of supposed PTME age 109,110.  However, the 229 

extraterrestrial impact hypothesis has been largely rejected bacause data have been proven to be 230 

difficult to reproduce, and the age and interpretation of the impact structure and geochemical changes 231 

have been questioned 111,112. Most scientists now agree that there is negligible evidence to support 232 

extraterrestrial impact as the cause of the PTME. 233 

In contrast, overwhelming data support that the PTME was triggered by the eruption of the STLIP. 234 

The STLIP was emplaced during the Permian–Triassic transition in the continental Tunguska Basin 235 

18, the adjacent West Siberian Basin 113 and Taimyr Peninsula 21,114, with a poorly-constrained, 236 

original volume between 2 and 7 million km3 19,21,22 (Fig. 5). Changes in geochemistry and mode of 237 

emplacement of the STLIP magmas during its history, as seen in the most accessible lava pile sections 238 

(Norilsk, Putorana and Maymecha-Kotui) and in outcrops and boreholes from the Tunguska, Taimyr 239 

and West Siberian basins 18,115–119, reveal three phases of magmatic activity 23. 240 

The oldest lava flows and pyroclastic [G] deposits were alkaline [G], mafic to ultramafic, and high in 241 

TiO2 (>2 wt%) 117. These magmas have a deep, pyroxenitic mantle source [G], and were rich in 242 

magmatic Cl 119–122. The gases released by this high-volume, initial phase of magmatism were 243 

probably dominantly mantle-derived, products of recycled oceanic crust entrained by the mantle 244 

plume 119,122, although additional crustal sources are also likely 120,121,123. This first phase of 245 

magmatism started just before 252.27±0.1 Ma, with extensive effusive activity taking place over the 246 

~300 kyr preceding the marine PTME 18,23. Intriguingly these early eruptions did not produce global 247 

changes in the δ13C record nor in Hg concentrations (Fig. 5). However, northern latitude marine 248 

records downwind of the eruption site show pre-extinction shifts in the δ13C and Hg records 124–126, 249 

suggesting limited atmospheric mixing of volatiles released in this early eruption phase. This first 250 

STLIP phase appears to have been coeval with widespread terrestrial crisis 26,27 (Fig. 5). 251 

The second, tholeiitic [G] phase consisting of sills [G] and intrusions in the Tunguska Basin and 252 

Taimyr Peninsula began at 251.907±0.067 Ma, and is coeval with the onset of the marine PTME (Fig. 253 



5). The apparent absence of effusive and/or explosive activity during this phase is debated and may 254 

reflect a lack of sampling in the region 114,127–131. The tholeiitic phase magmas were derived from a 255 

shallow mantle pyroxenitic-peridotitic source 119,132, that underwent widespread interaction with the 256 

crust 132–136, and is poor in juvenile volatiles [G] 137. During this subvolcanic phase the STLIP 257 

intruded a succession of coal, shales, sandstones, evaporites and carbonates in the Tunguska Basin 258 

125,129,130 and their baking may have liberated a large amount of both greenhouse gases and 259 

halocarbons 123,129,130,132,138,139. Explosive basalt pipes and breccia diatremes are widespread in the 260 

Tunguska Basin and are interpreted to have been the result of this gas generation and violent escape to 261 

the atmosphere 128,129,140,141 (although at least some may have erupted later in the Triassic 131). 262 

Contact metamorphism of organic-carbon rich sediments around large-scaled sill intrusions in Taimyr 263 

and the Tunguska Basin (Siberia) likely produced large quantities of isotopically light CO2 and CH4 264 

capable of changing the C-isotope signature of the atmosphere and ocean 21,125,129,138. Indeed, the 265 

onset of intrusive magmatism, given analytical uncertainty, coincides with the start of the negative 266 

shift in δ13C in the C. yini Zone (251.999 ±0.039 Ma; Fig. 2 and 5) 59, providing indirect support for 267 

this notion. 268 

The third and last STLIP phase started at 251.483±0.088 Ma with renewed lava extrusion (alkaline), 269 

and ongoing intrusive activity (alkaline and tholeiitic), in the Maymecha-Kotui 118 and Taimyr 270 

regions 21. These magmas are interpreted as extremely deep and hot products of a volatile-rich source 271 

142, and were likely enriched in mantle-derived CO2 121. A maximum age for the end of this phase, 272 

and STLIP activity overall, is placed at 250.2±0.3 Ma 18. A gradual recovery of the δ13C curve (BOX 273 

1) towards pre-extinction levels is observed in the sedimentary record during the third phase (Fig. 5). 274 

 275 

Environmental crises 276 

The consequences of the volcanic emissions from the STLIP are considered in this section, including 277 

the emissions produced by contact metamorphism caused by magmatic intrusions in the host rocks, 278 

mainly CO2 and CH4, SO2, halogens (for example, Cl, F, Br and halocarbons) and metals (for 279 

example, Hg, Cu). The multiple effects of these emissions are considered separately and are likely to 280 

have operated at different stages in the history of the PTME crisis (Fig. 6). Inferred environmental 281 

crises include global warming, oceanic anoxia, oceanic acidification, and (potentially) ozone 282 

reduction, acid rain, and metal poisoning. 283 

Global warming. Among the gases released by volcanism, SO2 has the potential to trigger short-term 284 

cooling episodes over a duration only a little longer than the eruptive interval 143,144. This is too short 285 



an interval to be detectable, given temporal resolution possible in deep time. Furthermore, it is a moot 286 

point whether such brief cooling intervals are capable of causing appreciable environmental stress, 287 

although episodic cooling events set in a context of longer-term warming could have damaged the 288 

ecosystems 144. 289 

Instead, global warming, due to CO2 and CH4 emissions is the clearest signal to emerge from the 290 

eruption of LIPs. Temperatures across the PTB have been reconstructed using oxygen isotopes (δ18O) 291 

in conodont apatite and brachiopod calcite. Conodont δ18O data from low latitude sections from Iran 292 

145,146, Armenia 147 and South China 148–152, all indicate significant low-latitudinal warming of 8–10° 293 

C from the latest Permian to Early Triassic (Fig. 2 and 4). Despite differences between the analysed 294 

localities due to different palaeolatitude or depositional settings, calculated sea surface temperatures 295 

(SST) indicate pre-extinction (C. nodosa/C. yini Zone) SSTs of ~24–30°C that rapidly increased 296 

across the PTB and into the earliest Triassic SSTs (C. isarcica Zone), ultimately peaking at ~35–39°C 297 

147. Conodont δ18O records indicate that temperatures increased over an interval of ~39 kyrs 147, 298 

although curiously the warming slightly postdates the initial shift in carbonate δ13C 147,151 (Fig. 2). 299 

Warming of 8–10° C likely resulted in a loss of performance of many marine organisms. High 300 

ambient temperatures increase metabolic activity and enhance oxygen demand, causing limited 301 

functional capacity of oxygen supply culminating in hypoxemia, anaerobic metabolism and loss of 302 

protein function 153. Thermal tolerance of marine organisms is also linked with an organisms’ level of 303 

metabolic activity, deoxygenation and also oceanic acidification 154,155. Thus, warming may have 304 

been a major agent of the mass extinction. However, the first phase of the PTME occurred at the onset 305 

of warming when conditions may still have been relatively ameable (Fig. 2), and warming may have 306 

had a stronger role in the second extinction pulse in the earliest Triassic 4. Lethally hot temperature 307 

may have induced selective extinction of marine animals and poleward migration 148,156,157. 308 

However, two opposite patterns of selective extinction across latitudes had been reported 156,157 one 309 

showing the highest extinction rate in the high latitudes 157, the other documenting the highest rate in 310 

the tropics 156. This discrepancy is likely due to the different statistical schemes used. Whilst higher 311 

polar extinction has been inferred, the study only considered the end-Permian extinction pulse 157 312 

whilst higher tropical extinction is calculated considering two pulses (end-Permian and earliest 313 

Triassic) 156. Likewise, in the marine fossil record of South China 4, the calculated extinction rate is 314 

57% if only the first pulse is taken into account, and 93% including both pulses. 315 

Poleward migration of about 10–15° is also observed in tetrapods 148,158. In plants, elevated 316 

temperatures and droughts can inhibit photosynthesis, increase photooxidative stress due to higher 317 



irradiance, burn leaves, and limit plants’ growth and yield, and ultimately cause their death 159. 318 

Warming could have also increased the prevalence of wildfire by increasing seasonality and drought 319 

(Fig. 3), for example as proposed for the records of South China where high charcoal abundance is 320 

found in strata recording the ~60 kyrs initial decline of δ13C, up to the onset of the marine crisis 321 

27,104,160 (Fig. 2). Elevated fire activity would have aided post-fire run-off and erosion 104. 322 

However, the terrestrial extinction appears to have started before the warming trend inferred from the 323 

δ18O of conodont apatite (Fig. 2 and 4). In South China, declining δ13C values coincide with high 324 

charcoal abundance 27 (Fig. 3) suggesting atmospheric pCO2 was increasing during the interval of 325 

higher wildfire activity. Also, along the northwestern margin of Pangea marine environmental stress 326 

began prior to the main extinction event, suggesting that higher latitude oceans were deteriorating as 327 

the terrestrial extinction initiated 125,161,162. Curiously, these changes occurred prior to the warming 328 

trend recorded by conodont δ18O data. 329 

Oceanic anoxia. The PTB coincides with a eustatic sea-level rise and the development of an oceanic 330 

anoxic event (OAE) [G] that has been directly implicated as a cause of the crisis 163. However, marine 331 

anoxia during transgression is often encountered in the geological record, raising the question of why 332 

these conditions caused such a severe extinction crisis? There are likely to have been three reasons: 333 

the anoxia extended in some regions into extremely shallow waters 164, although oxic refugia 334 

remained 165; the Panthalassa superocean also become anoxic throughout much of the water column 335 

111,166; the OAE persisted, with varying intensities, for several million years into the Middle Triassic, 336 

prolonging the stressful conditions for marine life 167–169. Thus, both the extent and duration of anoxia 337 

were exceptional by Phanerozoic standards. 338 

Evidence for anoxia is diverse and found in a broad range of environments. Organic-rich, pyritic, 339 

black shales, the typical manifestation of anoxic deposition, are best developed in the deep ocean 340 

sections now found in the accreted terranes in Japan and New Zealand 111,166,170. Black shales are less 341 

common in shelf and epicontinental seaways, especially in tropical settings, perhaps due to high 342 

organic matter remineralization rates in hot sea water. In the low-latitude carbonate setting of Tethys, 343 

anoxic facies are usually developed as laminated, pyritic micrites such as in northern Italy 50. In 344 

northern Boreal shelf seas, anoxic facies include finely-laminated, argillaceous strata and pyritic 345 

sandstones with abundant framboidal pyrite [G] 161,164. 346 

Intensity of marine anoxia and its extent are inferred from geochemical data. The uranium isotope 347 

ratio of 238U/235U recorded in limestones shows a shift to lower values immediately prior to the first 348 

phase of mass extinction (Fig. 2): a change attributed to the accelerated removal of 238U in anoxic 349 



bottom waters 171. The degree of anoxia driven metal drawdown was such that the oceans become 350 

depleted in trace metals 172. The scale of anoxia also affected the ocean’s sulphate budget. 351 

Increasingly heavy sulphate-sulphur isotope values in the Early Triassic, relates to removal of 352 

isotopically light pyrite sulphur, suggesting reduced seawater sulphate concentrations 173. Biomarkers 353 

also provide evidence for oxygen-poor conditions including the presence of isorenieratane, an 354 

indicator that anoxic conditions extended into the photic zone 174. 355 

The development of intensive anoxia profoundly altered the oceans’ nutrient structure. Phosphorus 356 

recycling enhances under anoxic conditions 175 and, when combined with higher continental runoff, 357 

this leads to high phosphorus availability in the water column. However, nitrogen rather than 358 

phosphorus was more likely the limiting nutrient in the anoxic oceans of the time176,177. Thus, 359 

nitrogen isotope ratios show a significant decrease, from values up to ~10‰ to ~0%, in most of the 360 

basins across the PTB177,178. This suggests strong denitrification accompanied the onset of global 361 

anoxia, likely due to a fundamental shift from a nitrate-dominated to an ammonium-dominated 362 

nutrient supply which would normally favour nitrogen-fixing diazotrophs. However, diazotrophs 363 

require molybdenum and iron for nitrogen fixation and yet these are efficiently removed from anoxic 364 

waters, thereby causing a decrease in the ocean’s total fixed-nitrogen and low levels of productivity 365 

176. Some alternative scenarios favour productivity increase during the extinction interval, driven by 366 

enhanced nutrient run-off 179, but these fail to account for the micronutrient limitations of diazotrophs 367 

in euxinic waters, as well as the absence of organic-rich shales in the Early Triassic 180. 368 

The ultimate cause of the Permian–Triassic OAE has long been attributed to the effects of STLIP with 369 

warming and more sluggish ocean circulation usually invoked 111,163. The Community Earth System 370 

Model with its embedded biogeochemical cycles, shows that an 11°C sea-surface temperature rise (a 371 

realistic value supported by δ18O evidence 148; Fig. 2 and 5), combined with increased freshwater 372 

runoff into high latitude seas, greatly increases ocean stratification and decreases meridional overturn 373 

circulation 157. The result is a dramatic decrease in seafloor oxygenation. The model also successfully 374 

replicates regional variations with the best ventilated area shown to be the Perigondwanan margin of 375 

southern Tethys 157, a finding that closely matches field evidence from this region 54. 376 

Oceanic acidification. Another potentially harmful effect of massive CO2 injection into the 377 

atmosphere–ocean system is oceanic acidification (Fig. 6). Huge amounts of CO2 entering the oceans 378 

acidifies water and decreases carbonate saturation. Evidence for oceanic acidification at the PTB 379 

comes from boron isotope (δ11B) and calcium isotope (δ44/40Ca) records 43,181,182 (Fig. 2), and the 380 

sediment record 43,162,183. However, data from δ11B of bulk carbonates, used to signify acidification 381 

during the second phase of the PTME during the I. isarcica Zone 184, are now generally considered 382 



not to actually reflect marine pH 185. Instead, a composite δ11B record from pristine brachiopod shells 383 

from the Southern Alps (Italy) and South China shows a decline in δ11B values, which suggests 384 

lowering of seawater pH, between the onset of the negative C-isotope excursion and the base of the 385 

parvus Zone, just above the PTB 182 (Fig. 2). This composite δ11B record needs, however, further 386 

validation in other sections and improvement of temporal resolution. Ooidal limestones are 387 

widespread during the inferred lower pH interval 25, indicating saturated conditions, and the analysed 388 

brachiopods come from interbedded levels of microbialites 182. The prevailing carbonates suggest that 389 

under saturation was not achieved. Acidification could have happened in very brief pulses, which are 390 

not recorded by low-resolution datasets, rather as a relatively longer event between the onset of the 391 

marine extinction and the earliest Triassic 182. 392 

A negative δ44/40Ca shift during the PTME interval has been linked to the injection of CO2 from the 393 

STLIP activity on the basis of its stratigraphic correlation with the negative δ13C excursion 186. 394 

Instead of solely indicating oceanic acidification, Ca-isotope data modelling suggests that a complex 395 

scenario controlled seawater δ44/40Ca changes, involving CO2 release, acidification, reduced skeletal 396 

carbonate sink, enhanced weathering of shelf carbonates, changes in carbonate mineralogy and 397 

changes in seawater saturation state 187,188. In detail though, the negative δ13C excursion (in bed 24 at 398 

Meishan) predates the negative δ44/40Ca shift (which occurs above bed 25 186; Fig. 2), complicating the 399 

interpretation of the relationships between the Ca- and C-isotope records. Similar negative δ44/40Ca 400 

excursions, recorded by both conodont apatite and bulk carbonate, are seen at the same stratigraphic 401 

interval in other localities 188–191. 402 

More indirect evidence for oceanic acidification comes from the fossil record which shows that the 403 

crisis saw the preferential extinction of physiologically unbuffered taxa, with low metabolisms and 404 

high energy demand for the production of calcium carbonate skeletons (for example corals, 405 

brachiopods, calcareous sponges, and foraminifera), whilst well-buffered taxa (for example bivalves, 406 

gastropods, ammonoids and conodonts) could have survived the crisis relatively better 4,43,192. 407 

Analysis of the microstructure of brachiopod shells provides evidence to suggest a role for 408 

acidification in brachiopod extinction losses. All brachiopod groups suffered severe losses with the 409 

diverse Strophomenata going extinct. The Rhynchonellata fared somewhat better and it has been 410 

suggested that their higher shell organic content enabled them to better survive acidified conditions 411 

183.  However, at lower taxonomic order the Rhynchonellata suffered severe losses and their story 412 

during the PTME could also be described as a successful re-radiation of the survivors in the earliest 413 

Triassic that saw some genera become widespread 193. In addition, the preferential extinction of 414 



coarsely ornamented ammonoids supports the pressure of oceanic acidification on shell-building costs 415 

for shelled animals 194. 416 

Along the north western margin of Pangea there is also a gradual loss of carbonate producers through 417 

the late Permian creating an empty ecologic niche that was filled by siliceous sponges expanding from 418 

deep environments to become the dominant organism in late Permian shallow shelfs 161,162, 419 

suggesting decreasing pH prior to the extinction. 420 

Ozone disruption. High abundance of teratological sporomorphs during the PTME (Fig. 4) has been 421 

attributed to increased UV-B radiation due to disruption of the ozone layer 76,78,81,195. Experiments on 422 

living Pinus mugo showed increasing exposure of plants to UV-B radiation induced malformation on 423 

pollen grains similar to those observed at the PTME and, although all trees survived, their fertility 424 

markedly decreased 81. Therefore, higher UV-B radiation and lower plant fertility may have triggered 425 

a collapse of the whole terrestrial ecosystem by shutting down most primary productivity. 426 

Ozone depletion could have been driven by the release of halogens and halocarbon compounds from 427 

volcanic activity and the combustion of coals and evaporites intruded by STLIP 196–198 (Fig. 5). 428 

However, the first explosive phase of STLIP activity appears to be coincident with the early terrestrial 429 

decline of plants and the first occurrences of teratological sporomorphs (Fig. 4), whilst the release of 430 

halocarbons (for example CH3Cl) from contact metamorphism (intrusive phase) is thought to have the 431 

strongest impact on the ozone layer 197,198. Teratological sporomorphs are found throughout the 432 

PTME (Fig. 4), but ozone is quickly (~10 yrs) restored in the atmosphere, hence making a long-term 433 

disruption of the global ozone unlikely 198. 434 

Acid rain. Teratological sporomorphs (Fig. 4) alone are not a direct evidence of UV-B radiation, as 435 

they could be the result of other stresses such as acid rain 81,198 and metal poisoning 82. Acid 436 

deposition can potentially kill plants, phytoplankton, vertebrates and invertebrates in terrestrial 437 

aquatic ecosystems, and acidification of non-calcareous soil results in leaching of important nutrients 438 

(Ca, Mg and K), with the effect of weakening plants and increasing their mortality rate 199. 439 

Magmatic degassing of SO2 and halogens from STLIP could have driven acid rain 198. Earth system 440 

modelling shows that, alongside the previously discussed ozone damage, S injected into the 441 

stratosphere during STLIP pyroclastic activity (Fig. 5) could have triggered extensive acid rains at the 442 

PTB, although these were only severe (pH = 2) in the Northern Hemisphere 198. 443 

Possible direct evidence of acid rain comes from one section in northern Italy, where the abundance of 444 

vanillin―a product of pH-dependent enzymatic decomposition of organic matter in soil―could 445 



suggest pulses of soil acidification 200. Vanillin peaks occur before the marine extinction interval 446 

(latest Permian) 25. Hence, acid rains may have affected terrestrial ecosystems already before the 447 

onset of the marine extinction (Fig. 5). Significantly, PTB palaeosols in Antarctica show high 448 

chemical weathering but no indication of acid conditions; there was no leaching of Ca and Mg 201. 449 

Other geochemical evidence for acid rain comes from sulfur isotope and concentration records in the 450 

Karoo Basin (South Africa), where higher accumulation of sulfide was interpreted as the effect of 451 

high sulfate supply to the freshwater environment from acid rain 202. However, the terrestrial 452 

extinction in the Karoo Basin began before the S geochemical changes, making their significance 453 

moot. Currently, exept for these local datasets, there is no conclusive evidence that widespread acid 454 

rain triggered the terrestrial collapse in the latest Permian, especially not in the southern hemisphere. 455 

Metal poisoning. Potentially, metal poisoning may have occurred in marine environments, where an 456 

increase of concentration of toxic metals (Hg, Cr, As, and Co) is observed 125,126,161. High 457 

concentrations of Hg, the most toxic metal, may have been reached after the marine extinction, when 458 

the reduction of bioproductivity could have led to a decrease of Hg drawdown by organic matter and 459 

its potential build-up in marine environments to toxic levels, before it was removed by sulphide 460 

deposition 126. 461 

A coincidence between a peak of teratological lycophyte spore tetrads [G] and high Hg and Cu 462 

concentrations has been found a short distance above the terrestrial extinction level in South China, 463 

indicating that the survivor plants might have experienced stress caused by higher metal 464 

concentrations in the environment 82 (Fig. 4). Reduced plant transpiration, changes to the hydrological 465 

cycle and climatic drying following terrestrial vegetation loss may have resulted in reduced water 466 

availability in freshwater ecosystems leading to such metal concentrations increase. Hg is generally 467 

thought to derive from volcanic activity 203, but Hg isotopes and modelling of Hg cycling indicate 468 

that, superimposed on a general increase of volcanic Hg deposition across the PTME, further Hg 469 

could have been released into the environment due to massive oxidation of terrestrial organic matter 470 

and soil following the collapse of land ecosystems 204 (BOX 2). Similar behaviour could have sourced 471 

Cu 82. Hence, the increase of metal loading in South China during the PTME might actually be the 472 

consequence of the demise of the Gigantopteris rainforests and wetland species 204. 473 

 474 

Linking kill mechanisms and extinction patterns 475 



The latest high-resolution chronology of the PTME (Fig. 6) suggests that the terrestrial ecological 476 

disturbance could have started 60–370 kyr before the marine extinction 26–28,95,101–103. This was 477 

coincidental with the initial, mostly explosive phase of STLIP. However, the temporal resolution of 478 

the terrestrial extinctions remains more poorly known than that of the marine extinctions and may 479 

have been spread over ~1 Myr 95. 480 

The terrestrial extinction mechanism is not clear, and mainly inferred by indirect, often local, and 481 

mainly palaeontological proxies (Fig. 6). Increased seasonality during the initial stage of the negative 482 

δ13C (Fig. 6) could have lead to increase of wildfires 27. Declining  δ13C values coeval with higher 483 

charcoal abundance suggest addition of isotopically light CO2 to the ocean–atmosphere system and 484 

that warming may have played a role. However, the available temperature proxy from marine settings 485 

(conodont δ18O) suggests temperatures did not begin to increase until after the terrestrial crisis had 486 

begun (Fig. 2 and 5). 487 

Temporal decoupling of terrestrial extinctions predating marine extinctions is intriguing and suggests 488 

spatial heterogeneity in the extinction patterns and potentially mechanisms. Delayed onset of marine 489 

extinctions may be partially related to thermal inertia of the oceans and their higher thermal capacity 490 

compared to land that heats and cools quicker 205, but ocean turnover times occur in the order of 1000 491 

years 206 so are unlikely to have operated at a 60–370 kyrs time scale. 492 

Terrestrial stress may have come from emissions of SO2 and halogens and their consequent acid rains 493 

202, and disrupted ozone shield 76,81. Increasing UV-B radiation on Earth’s surface and acid 494 

depositions could have had lethal effects on terrestrial ecosystems, causing stress to the vegetation, 495 

lowering plants’ fertility and eventually leading to their death, with repercussions at all higher trophic 496 

levels. However, long-term disruption of the global ozone during the PTME is unlikely 198. 497 

It is not clear what was the effect on marine ecosystems of the first phase of the STLIP activity (Fig. 498 

6). Beds of coal ash and associated Hg spikes are observed in northwest Pangea prior to the main 499 

negative δ13C excursion as well as Ni isotope anomalies that may record this initial phase of eruptions 500 

impacting the terrestrial environment 125. This region also shows early marine stress 161,162, while 501 

more equitorial records show no marine impacts. 502 

The marine extinction interval has a clear, temporal link with the second mostly intrusive phase of the 503 

STLIP and gas emissions, and persisted for <100 kyrs straddling the PTB. There were two pulses of 504 

extinction intensity at the beginning and end of this interval although significant losses were also 505 

occurring in the interlude interval too. 506 



Taxonomic, morphologic, and ecologic selectivity (Fig. 3) and the magnitude of marine extinction 507 

suggest that a combination of global warming, anoxia, and oceanic acidification best explains the 508 

marine PTME (Fig. 6). Groups intolerant to hypoxia and high temperature were preferentially 509 

eliminated during the PTME, suggesting that these stressors played an important role in the extinction 510 

of marine animals 157,207 (Fig. 3). Physiologically buffered taxa experienced lower extinction rates 511 

than unbuffered taxa 42–44 (Fig. 3).  Oceanic acidification could have been an important stressor for 512 

shelled animals 43, as also supported by the preferential extinction of coarsely ornamented ammonoids 513 

194 (Fig. 3).  Survival animals migrated to higher latitudes or deep seawaters, possibly to escape the 514 

hot temperature in equatorial regions or surface seawaters 56,148,156 (Fig. 6). 515 

 516 

Summary and future directions 517 

The link between the PTME and the eruption of the STLIP has been well established since the late 518 

1990s 17. Dramatically improved absolute dating has strengthened the link to the point where 519 

scenarios involving distinct stages of the emplacement history can be linked with consequent 520 

environmental changes (Fig. 6). The effects of the eruptions were likely experienced first in terrestrial 521 

settings, where plant productivity crashed and coal ceased to form, and in high-latitudes marine 522 

settings in the northern hemisphere. The initial explosive phase of the STLIP emplacement may have 523 

driven this crisis, inlcuding increased seasonality, ozone depletion, with higher UV-B radiation, and 524 

acid rain. 525 

The marine mass extinction is coeval with the mainly intrusive phase of the STLIP. Increasing fossil 526 

and geochemical data resolution indicates that the marine mass extinction could have happened either 527 

in two distinct pulses or gradually within an interval straddling the PTB. The thermogenic gases 528 

produced by the interaction of magma with the intruded sediments introduced into the PTB 529 

atmosphere–ocean system triggered a rapid temperature rise, a decline in ocean ventilation, and ocean 530 

acidification, which led to the mass extinction. However, despite the large amount of available data 531 

and significantly improved gochronology, the reconstruction of the complex co-occurring phenomena 532 

interlinked in the fatal cascade that drove the PTME remains difficult. 533 

Future research direction should aim at improving the spatial and temporal resolution of datasets from 534 

PTME terrestrial records. High-precision U-Pb dating of ash beds and detrital zircons, together with 535 

magnetostratigraphy and chemostratigraphy, will increase the chronological constraints of the 536 

terrestrial crisis, clarifying the delay between the beginning of the extinction on land and in the ocean. 537 



Improved spatial coverage of high-precision stratigraphic syntheses will further evaluate extinction 538 

pattern heterogeneity. 539 

Detailed evaluation of PTME palynological assemblages will give a more comprehensive picture of 540 

through-ranging taxa to understand dynamics and composition of upland “refugial” or survivor floras. 541 

The occurrence of teratologies in sporomorphs must be studied in different plants groups, at different 542 

latitudes and throughout the PTME, to identify their ultimate cause and understand whether it 543 

interested worlwide flora, and at which stages of the event. Further S-isotope and biomarker analysis 544 

of PTME terrestrial successions could strengthen the evidence of acid rains during the terrestrial 545 

extinction interval. 546 

The temporal relationship between warming and extinction, both on land and on the ocean, remains 547 

problematic, and further studies, including modelling, should try to understand the apparent lags 548 

between the C-isotope, O-isotope, and fossil records. Future high-resolution studies (δ18O from 549 

conodont apatite or brachiopod shells) will be pivotal in detecting brief temperature changes on the 550 

already manifest long-term CO2-driven warming trend. However, the current limitation is not the 551 

precision of δ18O analysis but sample availablity. Higher resolution can only be achieved by 552 

decreasing the size of conodont samples taken in the field followed by SIMS analyses of individual 553 

conodont elements. 554 

Further ecological and physiological studies are required to link environmental changes and extinction 555 

patterns. Quantitative predictions for extinction selectivity under different changing environmental 556 

conditions are needed to distinguish among potential killing stressors. More consistent geochemical 557 

(δ11B) and palaeontological records of ocean saturation are necessary to properly investigate the role 558 

of ocean acidification. 559 

Furthermore, future endeavours from the geochronology community should be focused on shedding 560 

more light on the temporal correlations between the intrusive and effusive realms of the STLIP, which 561 

are still weak. Moreover, since most of the STLIP deposits are covered, it is difficult to fully assess 562 

the true nature of the eruption history. Drilling programs could significantly expand the knowledge on 563 

the history of the STLIP emplacement. The voluminous tephra deposits and the explosive pipes are 564 

tangible proof of explosive activity of the STLIP and of gas discharge to the atmosphere. Clarifying 565 

the origin and timing of emplacement of these products and structures would contribute greatly to 566 

understanding the link between STLIP emplacement stages and global environmental changes. 567 

Perhaps the most overriding question from the study of mass extinctions driven by volcanic 568 

emissions, of which the PTME is the key example, is what can it tells us about future climate trends. 569 

Clearly, extreme global warming can lead to severe consequences for the life but if these effects lie 570 



tens of thousands of years in the future, then they are of no geopolitical concern. If changes occur 571 

over decades or centuries then their significance increases. Despite the great advances in resolving the 572 

details of the PTME, future studies of the crisis should attempt to decipher rates of change on 100–573 

1000 year scale. 574 

 575 
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FIGURE CAPTIONS 1203 

Figure 1. The Permian–Triassic mass extinction and its world. The PTME, also know as the 1204 

“Great Dying”, is the largest extinction of the entire Phanerozoic, with severe losses both in marine 1205 

and terrestrial ecosystems. The PTME world consisted in one single continent (Pangea) surrounded by 1206 

a vast ocean (Panthalassa), and a giant gulf (Palaeo- and Neo-Thetys). The Siberian Traps Large 1207 

Igneous Province erupted 2–7 million km3 of basalt in the northern hemisphere during the PTME. The 1208 

biological crisis was the result of the environmental changes triggered by the volcanic emissions from 1209 

the Siberian Traps, including the emissions produced by contact metamorphism caused by magmatic 1210 

intrusions in the host rocks, such as CO2, CH4, SO2, halogens and metals, into the Permo–Triassic 1211 

atmosphere–ocean system. a) Newly calculated Gap-filler (GF) extinction rates 208 (Supplementary 1212 

Note 1) for marine animals show the PTME stands out as the most sever extinction event compared to 1213 

other intervals. Along with the PTME, the Ordovician–Silurian, Frasnian–Famennian, end-Triassic, 1214 

end-Cretaceous mass extinctions are usually regarded as the largest extinction events of the 1215 

Phanerozoic, also known as the “Big 5”.  b) Palaeogeographic reconstruction of Earth during the 1216 

Permo–Triassic transition. Palaeogeography is from ref. 209. GSSP = Global Stratotype Section and 1217 

Point. 1218 

Figure 2. Marine mass extinction. Pattern of the extinction in marine settings and major recorded 1219 

geochemical changes. High-resolution geochemical data coupled to species richness of different 1220 

marine groups. Palaeontological data show two extinction pulses spanning the Permian–Triassic 1221 

boundary (PTB). While the first pulse appears to be synchronous in different areas, the second major 1222 

pulse of extinction may have been diachronous. Geochemical changes mark the marine extincion 1223 

interval (the interval between the two pulses), and tastify for major environmental changes coeval to 1224 

the biological crisis, as global warming (δ18O), oceanic anoxia (Uranium-isotope, δ238U, and sulfur-1225 

isotope of carbonate-associated sulphate, δ34SCAS), and ocean acidification (Boron-isotope, δ11B, 1226 

calcium-isotope, δ44/40Ca). Carbon-isotope (δ13C) data come from the most updated compilations of 1227 

ref. 210,211. Oxygen-isotope (δ18O) data from conodont apatite are from StabisoDB (Stable Isotope 1228 

Database for Earth System Research) 212. δ18O data measured with SIMS (Secondary Ion Mass 1229 

Spectrometer) have been corrected by a factor of -0.6‰ according to estimates by ref. 213 of the offset 1230 

between conodont in-situ SIMS and bulk IRMS (Isotope Ratio Mass Spectrometer) analyses. 1231 

Uranium-isotope (δ238U) data are from ref. 210. δ34SCAS data are from ref. 173,179,214. δ11B data from 1232 

brachiopod calcite are from ref. 182. δ44/40Ca data are from ref. 186. Species richness from numerous 1233 

PTB sections in South China is from ref. 4. Genera richness from the Dolomites (Southern Alps, Italy) 1234 

is from refs. 24,25. 1235 



Fig. 3. Extinction selectivity during the Permian–Triassic mass extinction. The pattern of the 1236 

PTME suggests statistically significant extinction selectivity between different ecological groups, 1237 

shedding lights on the causes of the marine mass extinction. However, even if selectivity clearly 1238 

played a role, high extinction rates are recorded for all marine ecological groups. a) Summary of 1239 

extiction selectivity trends observed in marine animals: Based on refs. 4,37,38,41–44,183,194. b) Extinction 1240 

magnitude among different ecological groups in South China 4. There are significant differences 1241 

(Mann Whitney test, p<0.05) between extinction severity among different ecologic groups, i.e., 1242 

nekton vs benthos, buffered vs unbuffered, bivalve vs brachiopod. Selectivity between motile and non-1243 

motile animals appears to have been less significant (p=0.05). Bars represent 95% confidence 1244 

intervals. c) Ecological selectivity of global extinctions during the PTME 43. A zero log-odds value 1245 

means there is no association between the ecological traits and extinction. The unbuffered and 1246 

carbonate-shell genera were preferentially killed (p<0.05). Selectivity between narrow-geographic- 1247 

and cosmopolitan-range genera is weaker. Selectivity among genera with calcite shell, infaunal, and 1248 

lower abundance of individuals is not significant (p>0.05). 1249 

Figure 4. Terrestrial mass extionction.  Pattern of the extinction in terrestrial settings and major 1250 

recorded geochemical changes. Organic C-isotope (δ13CTOC), Hg and Hg/TOC, and main biological 1251 

events from reference sections of the terrestrial PTME in Northwestern China 102,215–217, South China 1252 

27,71,82, Sydney Basin 26,67 and Karoo Basin 28,95, and correlation with the marine δ13Ccarbonate and 1253 

δ13CTOC (Meishan only) records 217. The δ13CTOC record from Meishan has been used as a 1254 

chemostratigraphic tool to correlate the marine GSSP to the terrestrial sections of Northwestern China 1255 

217. Data from the terrestrial PTME records with high-resolution chemostratigraphic data and/or 1256 

redioisotopic ages, which allow correlation with the marine PTME, indicate that the terrestrial crisis 1257 

started before the marine mass extinction. Gigantopteris and Glossopteris forests collapsed 60 kyrs 1258 

(South China) 27,204 to 370 kyrs (Sydney Basin) 26,67 before the marine extincion. Wildfire activity 1259 

widespreadly increased 27,67. Tetrapods experienced high extinction rates, probably over a relatively 1260 

long interval of up to ~1 Myr 95. Existing data strongly support that the terrestrial crisis started before 1261 

the global marine mass extincion. Evidence of also an earlier marine crisis come from high-latitude 1262 

northwetern margin og Pangea. 1263 

Figure 5. Link between Siberian Traps, extinction, C-cycle changes and global warming. 1264 

Radiomatric ages of the volcanic products (lava, tuff, and sills) of the Siberian Traps Large Igneous 1265 

Province (STLIP) and sedimentary Hg geochemistry (BOX 2) indicate this LIP was active during the 1266 

PTME, and was linked to injection of isotopically-light carbon into the Permian–Triassic atmosphere–1267 

ocean system, as inferred by the C-isotopes (δ13C) record (BOX 1), which rised pCO2 and increased 1268 

global temperature, as shown by O-isotopes (δ18O) of conodont apatite. Different volcanic phases can 1269 



be defined: a first mainly pyroclastic phase (lava and tuff), a second mainly intrusive phase (sills), and 1270 

a final extrusive phase. a) Schematic map of the STLIP (adapted from refs. 119,129) showing the 1271 

predominance of lava, pyroclastic and subvolcanic magmatic products over cratonic and non-cratonic 1272 

regions of this vast province. M-K stands for Maymecha-Kotuy. b) Geochemical data linking the 1273 

STLIP to extinction and environmental changes. Dating U/Pb ages of intrusive and extrusive rocks of 1274 

the Siberian Traps are from ref. 18,21. Hg and Hg/TOC data are from ref. 218,219. Only Hg/TOC data 1275 

with TOC>0.2% have been plotted following the approach of ref. 203. Source of δ13C and δ18O data as 1276 

in Fig. 2. Time span of marine and terrestrial extinction intervals are as defined in Fig. 2. The eruption 1277 

of STLIP was very likely the trigger of the Permian–Triassic mass extinction. 1278 

Figure 6. Extinction mechanisms. Summary of the volcanically-triggered extinction mechanism 1279 

inferred from the geochemical, sedimentary and palaeontological record of the PTME and their 1280 

recorded effects on biota. The initial mainly extrusive–pyroclastic volcanic phase is coeval to the 1281 

initial terrestrial crisis, whilst the onset of intrusive volcanism is coeval with the marine extinction 1282 

interval. The different volcanic styles and linked injection of greenhouse gases, halogens and metals 1283 

(only the most relevant volcanic/volcanogenic gases are represented in the figure) in the end Permian–1284 

earliest Triassic atmosphere–land–ocean system, triggered a cascade of environmental disturbances, 1285 

as summarized in the figure, which firstly affected terrestrial ecosystems and high-latitude marine 1286 

environments, and then marine biota. The effects of the environemtal changes on the physiology and 1287 

ecology of terrestrial and marine biota were multiple, showing that a fatal combination of factors, 1288 

sustained for a relatively long interval and each having selective effects on biota, led to the most 1289 

severe extinction of the Phanerozoic. 1290 

  1291 



BOX 1: The Permian–Triassic boundary C-isotope record 1292 

Carbon isotopes (δ13C) are used as a chemostratigraphic tool to correlate marine and terrestrial 1293 

successions around the world. Many high resolution δ13C records have been collected across the PTB 1294 

and they provide a powerful correlation tool, which helps identifying the PTME interval and link 1295 

biological and environmental phenomena recorded in different locations. Major δ13C shifts in 1296 

carbonate (δ13Ccarbonate) 220–223, and marine and terrestrial total organic carbon (δ13CTOC) 221,224,225, are 1297 

documented during the PTME (Figs. 2 and 3). A 3–6‰ negative δ13Ccarbonate excursion begins 1298 

gradually in the lower C. yini Zone (C. bachmanni Zone) ~60 kyrs below the onset of the marine 1299 

crisis 59,221, before accelerating to reach a minimum values in the earliest Triassic (H. parvus to early I. 1300 

isostichia Zone). Similar shifts are recorded by δ13C values from total organic matter, wood and 1301 

leaves, allowing correlation of non-marine to marine records (for example refs. 217,225–228; Fig. 2 and 1302 

3). However, because δ13CTOC is dependent on variable contributions of algal vs. bacterial and marine 1303 

vs. terrigenous organic matter, some records display non-parallel trends in δ13Ccarbonate and δ13CTOC, as 1304 

documented, for example, at Meishan GSSP section 225. A variety of mechanisms were suggested to 1305 

explain the negative δ13C shifts by the addition of isotopically light carbon to the exogenic carbon-1306 

cycle reservoirs. Besides soil erosion, reduced primary productivity and destabilization of gas 1307 

hydrates, Siberian Traps volcanism and related processes were favoured as the ultimate cause. 1308 

Identification of the source of the isotopically light carbon and its δ13C signature is critical to estimate 1309 

the amount of carbon transferred into the PTB atmosphere–ocean system, and to model atmospheric 1310 

pCO2 increase, temperature rise and seawater pH decline. 1311 

 1312 

 1313 

  1314 



BOX 2: Tracing Siberian Traps activity in the sedimentary record 1315 

Significant increases in mercury (Hg) concentrations above background occur at marine and terrestrial 1316 

PTME boundaries globally, and have been attributed to Hg emissions from the Siberian Traps Large 1317 

Igneous Province (STLIP) 27,126,203. If correct, Hg serves as a ‘fingerprint’ of STLIP in the 1318 

sedimentary record, allowing temporal correlation between the eruption and the extinction with 1319 

resolution on a millennial time scale 229. As a volatile gas Hg has sufficient atmospheric residence 1320 

time for inter-hemispheric mixing, until eventually being transferred through wet or dry deposition to 1321 

the marine and terrestrial environment, and after going through various biogeochemical cycling, 1322 

eventual geologic sequestration in sediments 203,229. In theory then, enhanced Hg emissions related to 1323 

the STLIP should be recorded as an Hg spike in sediments 229. This is not definitive though as 1324 

concurrent changes in sequestration pathways, such as enhanced bioproductivity and consequent 1325 

increased organic matter drawdown, could also create Hg spikes. Careful analyses of Hg data and 1326 

sequestration pathways is required before a linkage with STLIP is possible. Stable isotope data (Fig. 1327 

3), particularly mass independent fractionation (MIF), support Hg anomalies in offshore marine 1328 

deposits being largely derived from a volcanic source 203. However, these same data show nuances in 1329 

the Hg cycle. Nearshore deposits have Hg spikes with a MIF signature of terrestrial vegetation 203, 1330 

likely related to devastation of forest and swamp ecosystems at that time 203,204. Whether Hg 1331 

anomalies are directly from volcanos, or indirectly from terrestrial reservoirs released through STLIP 1332 

induced global warming, they both serve as a fingerprint (or LIP mark) of STLIP. Resolving the 1333 

relative Hg pathways requires further work, along with understanding of how terrestrial and marine 1334 

Hg records can be used to resolve the apparent diachronous extinction. Figure is adapted from ref. 203 1335 
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GLOSSARY (in alphabetic order) 1337 
 1338 
ALKALINE 1339 
Any rock of a magmatic series presenting a high content of alkali (Na2O and K2O) relative to silica 1340 
(SiO2). 1341 
 1342 
BIOSTRATIGRAPHY 1343 
Technique to determine the relative age of sedimentary rocks using their fossil content. 1344 
 1345 
CHEMOSTRATIGRAPHY 1346 
The study of geochemical variations in sedimentary rocks; Globally-recorded chemostratigraphic 1347 
changes are used to correlate sedimentary sequences. 1348 
 1349 
CONODONT 1350 
The hard part of an extinct jawless vertebrates, similar to an eel. 1351 
 1352 
EVOLUTIONARY FAUNA  1353 
A fauna type that typically shows an increase in biodiversity following a logistic curve, i.e., Cambrian 1354 
fauna, Paleozoic fauna, and Modern fauna. 1355 
 1356 
FRAMBOIDAL PYRITE 1357 
Aggregates of pyrite (sulfide mineral, FeS₂) with a “ruspberry” (“la framboise” in french) aspect. It is 1358 
used as a palaeo-redox proxy. 1359 
 1360 
GSSP 1361 
Global Stratotype Section and Point. Reference stratigraphic section and level where boundaries 1362 
between geological stages, for example between the Permian and the Triassic, are defined. 1363 
 1364 
JUVENILE VOLATILE 1365 
A gas species that is dissolved in, or exsolved from, a magma, and is thus newly introduced to the 1366 
atmosphere when the magma reaches the Earth´s surface. 1367 
 1368 
LARGE IGNEOUS PROVINCE  1369 
Rapidly emplaced (<1–5 Myrs) volcanic provinces with areal extents >0.1 million km2 and volumes 1370 
>0.1 million km3. 1371 
 1372 
MASS EXTINCTION 1373 
Global biological events of greatly elevated extinction rates. 1374 
 1375 
OCEANIC ANOXIC EVENT  1376 
Interval of severely reduced dissolved oxygen content in the ocean.  1377 
 1378 
ORIGINATION RATES 1379 
The ratio of the number of newly occurring species/genera to the total number over a given geological 1380 
period. 1381 
 1382 
PYROCLASTIC 1383 
Volcanic rock composed by fragmented pieces of lava. Coarser pyroclastic fragments accumulate in 1384 
proximity to the erupting vent, while finer particles can travel hundreds of kilometres. 1385 
 1386 
PYROXENITIC MANTLE SOURCE 1387 
A mantle source dominated by the presence of pyroxene and by paucity or lack of olivine. They 1388 
represent enriched and very fertile mantle lithologies. 1389 
 1390 
RADIOISOTOPE DATING 1391 
Technique to determine the absolute age of rocks using radioactive decay. 1392 
 1393 
SIGNOR-LIPPS EFFECT 1394 



A paleontological principle which states that the fossil record of organisms is never complete. 1395 
 1396 
SILL 1397 
A tabular subvolcanic magma-body, emplaced roughly concordant or to the general bedding 1398 
(stratification or layering) of its host-rocks. 1399 
 1400 
SPORE TETRAD 1401 
Four connected immature spore grains in tetrahedral or tetragonal fashion produces by meiotic 1402 
microsporogenesis. 1403 
 1404 
TERATOLOGICAL SPOROMORPHS 1405 
Pollen and spores that present congenital abnormalities, such as lack of full development and 1406 
malformations in their structure. 1407 
 1408 
THOLEIITIC 1409 
Sub-alkaline series of magmatic rocks, which undergo iron enrichment during differentiation due to 1410 
their poorly oxidised state. Tholeiites are the products of extensive melting of the mantle.  1411 
 1412 
 1413 
 1414 
 1415 
 1416 
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