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ABSTRACT

Harvesting wind energy resources is a major part of the UK strategy to diversify the power supply portfolio and mitigate environmental
degradation. Based on wind speed data for the period 1981–2018, collected at 38 surface observation stations, this study presents a
comprehensive assessment of wind speed characteristics by means of statistical analysis using the Weibull distribution function. The
estimated Weibull parameters are used to evaluate wind power density at both station and regional levels and important, turbine-specific
wind energy assessment parameters. It is shown that the Weibull distribution function provides satisfactory modeling of the probability
distribution of daily mean wind speeds, with the correlation coefficient generally exceeding 0.9. Site-to-site variability in wind power density
and other essential parameters is apparent. The Weibull scale parameter lies in the range between 4.96 m/s and 12.06 m/s, and the shape
parameter ranges from 1.63 to 2.97. The estimated wind power density ranges from 125W/m2 to 1407W/m2. Statistically significant
long-term trends in annual mean wind speed are identified for only 15 of the 38 stations and three of the 11 geographical regions. The
seasonal variability of Weibull parameters and wind power density is confirmed and discussed.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0038001

I. INTRODUCTION

Harvesting renewable energy resources represents one of a range
of strategies to reduce carbon dioxide emission and decelerate environ-
mental degradation. Reportedly, the accumulated installation of
renewable energy was sufficient to provide an estimate of 27.3% of
global electricity generation at the end of 2019.1 Notable among the
increase in the use of renewable energy technologies is the rapid
increase in the use of wind energy, with worldwide installation of new
wind power generation exceeding 60GW in 2019, a 19% increase
compared to 2018, leading to a total installation capacity of approxi-
mately 650GW.2 In particular, the wind power resources in the UK
are significant on a national scale,3,4 and wind power development in
the UK has met a rapid growth, with the cumulative total installation
capacity increased from 5.2GW in 2010 to 23.9GW in 2019.5,6

Despite increasing interest in offshore wind power generation, onshore
wind power still plays a dominant role in the UK wind power market,
accounting for 57.7% of the total installation capacity and 12% of total
electricity demand in 2019.6

While the benefits of harnessing wind energy are evident, the
implementation may be subject to a number of practical difficulties
and uncertainties, one of which is the intermittent and unsteady

nature of wind. The theoretical energy carrying by wind (P) is linked
to the third power of wind speed, as shown in Eq. (1), where q is the
air density, A represents the area swept out by the rotor blades perpen-
dicular to the prevailing direction of the wind, and v is the wind
speed.7 Hence, accurate understanding of wind speed characteristics is
imperative in different aspects of wind energy development, ranging
from the identification of desirable sites to predicting the economic
viability of wind farms to structural design of wind turbines,

P ¼ 1
2
Aqv3: (1)

However, precise prediction of wind is not an easy task since wind,
like many other meteorological parameters,8 often exhibits significant
variability over a range of scales, both spatially and temporally.9,10 In the
view of wind power development, the variation of wind speed at a given
location is generally characterized by a probability distribution,11 which
indicates the likelihood that a given wind speed will occur. Most com-
monly used for wind energy assessments is the two-parameter Weibull
distribution, which has been shown to accurately capture the skewness
of the wind speed distribution, f vð Þ; than other statistical functions11

and has been used in a number of studies (e.g., Refs. 12–20). The
Weibull distribution function, as given in Eq. (2), generally contains a
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scale parameter, c, in units of wind speed, which determines the abscissa
scale of the wind speed distribution, and a dimensionless shape parame-
ter, k,which reflects the width of the distribution,

f vð Þ ¼ k
c

� �
v
c

� �k�1
exp � v

c

� �k
" #

v > 0; k; c > 0ð Þ: (2)

In the UK, estimation of Weibull parameters for wind energy
analysis has been carried out previously by Earl et al.,21 Fr€uh,22and
Brayshaw et al.23 Based on two-year surface wind observation at 72
stations, Fr€uh22 concluded that the shape parameter ranges from 1.43
to 2.23, and the scale parameter at 10 m height ranges from 4.76 m/s
to 8.71 m/s. Given that the assertion of Gross et al.24 shows that at least
seven years of wind speed data are required due to year-to-year vari-
ability (this variability has been estimated as about 4%25), the two-year
period seems short, but a similar range of shape parameters is also
reported by Earl et al.21 from a much longer (31-yr) dataset. Earl et al.
also noted that the Weibull shape parameter depends strongly on both
the strength of mean wind and the topographic effect of the site.

It is important to note that the wind characteristics in the UK
depend heavily on the climate of the northeast Atlantic region, which
not only exhibits substantial decadal variability in storminess but also
reveals considerable inter- and intra-annual variability in extreme
wind speeds.21 As mentioned earlier, Watson et al.25 found an annual
variability of 4% and also showed a long-term slight decrease in wind
speed across the UK in all regions expect the southeast, which experi-
enced a slight increase. However, it is not clearly stated which of these
trends is statistically significant, and the variation over the whole
network of stations examined was shown not to be. Earl et al.21 also
reported pronounced local variability in UK hourly mean wind speeds
within the period from 1980 to 2010, over which 15 of the 40 observa-
tion sites displayed a statistically significant decrease (95% confidence
level) on inter-annual basis, whereas 8 indicated an increase, of which
two were statistically significant. Hewston and Dorling26 focused on
the long-term variability in daily maximum gust speed (DMGS) mea-
sured at 43 surface stations over a 26-yr period spanning from 1980 to
2005. It was shown that the DMGS values generally exhibit a statisti-
cally significant decrease within the considered period, declining 5%
across the observation network, while the extreme DMGS values (i.e.,
the 98th percentile of DMGS, which refers to 190 days in the
1980–2005 record with the highest observed gust speeds) show a sta-
tistically significant decrease of 8%.

In such context, the main goal of this study is to provide an
updated assessment of long-term and seasonal wind speed variation
over the UK at local, regional, and national levels, including changes
in Weibull distributions and implications for wind power generation.
Data from 1981 to 2018 from 38 surface observation stations across
the UK are analyzed. The remaining contents in this paper are orga-
nized as follows: Sec. II details the data used and their processing.
Section III introduces the determination of various parameters
involved in this study. The results from statistical analysis are docu-
mented and discussed in Sec. IV, and the main conclusions and sum-
mary are given in Sec. V.

II. APPLICATION OF THE WEIBULL DISTRIBUTION
FUNCTION

Statistical analysis of wind speed and wind energy using the
Weibull distribution requires the calculation of the scale and shape

parameters. A number of different methods have been proposed and
evaluated with the aim of determining the best practice (e.g., Refs.
19, 20 and 27–33) but with no clear consensus. To illustrate, Chang28

compared six common numerical methods in estimating Weibull
parameters for wind energy applications, which showed that the maxi-
mum likelihood method (MLM) is most suitable in accordance with
double checks of potential energy and cumulative distribution func-
tion. Ahmed30 and Mohammadi et al.20 reported that the traditional
empirical method, i.e., the mean-standard deviation method, is some-
times more efficient regarding the determination of parameters in the
Weibull distribution function. Moreover, Mohammadi and
Mostafaeipour19 and Mohammadi et al.20 concluded that the power
density method (PDM) tends to be more preferable for describing
wind speed distribution and predicting wind power potential due to its
higher statistical accuracy. In this study, four of the most common
methods were applied to the data [the empirical method of Justus
(EMJ)34 is based on the mean and standard deviation of wind speed;
V and rv , respectively; v is used herein for instantaneous wind speeds].
The Weibull scale and shape parameters are calculated using

k ¼ rv

V

� ��1:086
1 � k � 10ð Þ; (3)

c ¼ V
C 1þ 1=kð Þ ; (4)

where C is the gamma function.
Once the shape parameter, k, is estimated based on Eq. (3), an

alternative, empirical method was also proposed by Lysen35 to deter-
mine the corresponding scale parameter, c, as follows:

c ¼ V 0:568þ 0:433
k

� ��1
k

: (5)

The maximum likelihood method (MLM) is a mathematical like-
lihood function of the wind speed data in time series format20 in which
the Weibull scale and shape parameters are derived based on extensive
numerical iterations,27,28,32

k ¼

Xn
i¼1

vki ln við Þ

Xn
i¼1

vki

�

Xn
i¼1

ln við Þ

n

2
66664

3
77775

�1

; (6)

c ¼ 1
n

Xn
i¼1

vki

 !1=k

; (7)

where vi is the wind speed data measured at the time interval i and n
is the number of non-zero datasets.

The power density method (PDM), originally proposed by
Akdag and Dinler,36 calculates the shape parameter using

Epf ¼
v3

V3 ; (8)

k ¼ 1þ 3:69

Epfð Þ2
; (9)

where v3 is the mean of the cubed wind speed. The scale parameter in
the PDM is estimated in the samemanner as in the EMJ, as shown in (4).
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Once these Weibull parameters are determined, they can be
applied to estimate a number of parameters that are important to
wind power assessment. Each model of wind turbine has several char-
acteristic wind speeds: the cut-in wind speed, vc, the cutoff wind speed,
vf , and the rated wind speed, vr . Below vc or above vf , the turbine will
not operate, while energy production is maximal at vr . The probability
that a turbine will be in operation can, therefore, be calculated based
on the cumulative Weibull distribution function,37

P vc < v < vfð Þ ¼ exp � vc
c

� �k
" #

� exp � vf
c

� �k
" #

: (10)

Moreover, as discussed by Sasi and Basu,38 the estimated Weibull
parameters can be utilized well to compute the capacity factor (CF) of
a wind turbine,

CF ¼
exp � vc

c

� �k
" #

� exp � vr
c

� �k
" #

vr
c

� �k

� vc
c

� �k � exp � vf
c

� �k
" #

: (11)

This represents the ratio of predicted actual energy output to the
maximum possible (i.e., if the wind speed is constantly at vr) over a
year of operation. The Weibull distribution also allows quantification
of two useful characteristic wind speeds. The first is the most probable
wind speed (vmp) and second the wind speed carrying maximum
energy (vmax:E). The latter is closely tied to the rated wind speed of the
turbine being assessed, vr , with the turbine operating most efficiently if
vr ffi vmax;E . These speeds are given by28,39

vmp ¼ c 1� 1
k

� �1=k

; (12)

vmax:E ¼ c 1þ 2
k

� �1=k

: (13)

For engineers and specialists involved in the wind energy indus-
try, the wind power density (WPD) is an important parameter that
reflects how energetic the winds are at the location of interest. In the
light of several previous studies,12,13,28 the WPD can be determined
using the Weibull parameters as follows:

WPD ¼ P
A
¼
ð1
0

1
2

q v3 f vð Þdv ¼ 1
2

q c3 C 1þ 3
k

� �
; (14)

where q is the density of ambient air (often adopted as 1.225 kg/m3).

III. DATA COLLECTION AND PROCESSING
A. Data collection and quality control

Hourly mean wind speed and wind direction data have been
extracted from the Met Office Integrated Data Archive System
(MIDAS) via the British Atmospheric Data Center (BADC).
Explicitly, “hourly mean” is herein used to signify the mean of data
recorded over an entire hour, rather than a once-an-hour recording of
a 10-min mean speed as used in some contexts. Data covering the
period 1981–2018 are used, which are taken from 38 observation sta-
tions spread across the country (see Fig. 1 and Table I). All of the
observation sites meet the UK Met Office (UKMO) site exposure

requirements, which are reasonably representative of open exposure
conditions. Wind speed data are recorded using a cup anemometer
mounted at a height of 10 m above the local ground, with the wind
direction measured by a traditional wind vane at the same height.41

All the records archived in the MIDAS have an attribute version num-
ber, which may take a value of 0 and 1 only. Essentially, a record with
a version number of 1 represents the best available value of the data at
the time in the sense that they have been properly corrected in accor-
dance with a rigorous quality control.41 On this account, a non-zero
criterion, similar to that performed by Watson et al.,25 is applied dur-
ing the data extraction process in this study, which aims to minimize
the risk of irregular or erroneous values in the dataset.

Previous statistical analyses of wind energy have been carried out
using wind data at various temporal resolutions: 10-min, hourly, and
daily. In the current study, the recorded hourly wind speeds are aver-
aged over each day to provide the corresponding daily mean values. It
has been shown that, when performing long-term estimate of the full-
load duration and electricity generation, the results based on daily and
hourly wind data are overall equivalent, with the correlation coefficient
of the regression fit exceeding 0.95.42 The use of daily observation of
mean wind speed for wind energy analysis can also be found in several
previous studies.16,43–45 A further discussion on the use of daily wind
data will be given hereinafter in Sec. IV.

In addition, the UK is one of the countries that are most
frequently affected by extratropical cyclones, which are associated
predominantly with areas of low atmospheric pressure over the North
Atlantic. These cyclonic windstorms are the major contributor in

FIG. 1. Surface observation network involved in this study, modified based on Earl
et al.21 Marked regions are in accordance with the Met. Office classification for UK
regional climate.40
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TABLE I. Surface observation network involved in this study, modified based on Earl et al.21

Region Station number Station name Altitude ðmÞ
Gradient of linear
fit ðms�1=yrÞ Fit p-value

Significant at
95% level?

Northern Scotland 36 Stornoway Airport 15 0.026 0.001 Y
37 Kirkwall 26 �0.015 0.008 Y
38 Lerwick 82 0.008 0.352 N

Regional mean 0.006 0.297 N

Eastern Scotland 31 Salsburgh 277 �0.033 0.000 Y
32 Leuchars 10 �0.004 0.860 N
34 Kinloss 5 �0.001 0.960 N
35 Lossiemouth 6 0.006 0.521 N

Regional mean �0.008 0.081 N

Western Scotland 28 West Freugh 11 �0.001 0.521 N
29 Eskdalemuir 242 �0.006 0.339 N
30 Machrihanish 10 �0.001 0.841 N
33 Dunstaffnage 3 �0.020 0.000 Y

Regional mean �0.007 0.179 N

Northern Ireland 27 Aldergrove 68 �0.021 0.000 Y
Regional mean �0.021 0.000 Y

North–West England 25 Blackpool Squires Gate 10 0.001 0.870 N
26 Ronaldsway 16 �0.007 0.320 N

Regional mean �0.003 0.734 N

North–East England 23 Bingley 262 �0.034 0.000 Y
24 Church Fenton 8 0.028 0.000 Y

Regional mean �0.003 0.538 N
Midlands 12 Bedford 85 �0.009 0.020 Y

14 Wittering 73 0.005 0.128 N
18 Shawbury 72 0.008 0.068 N
19 Nottingham Watnall 117 �0.015 0.000 Y

Regional mean �0.003 0.489 N

Eastern England 13 Wattisham 89 �0.010 0.007 Y
20 Cranwell 62 0.009 0.061 N
21 Coningsby 6 0.001 0.880 N
22 Waddington 68 0.004 0.513 N

Regional mean 0.001 0.772 N

South–East England 6 Hurn 10 0.002 0.589 N
7 Middle Wallop 90 �0.006 0.043 Y
8 Lyneham 145 �0.006 0.242 N
9 East Malling 33 0.038 0.010 Y
10 Manston 44 0.008 0.308 N
11 Heathrow 25 0.034 0.000 Y

Regional mean 0.012 0.002 Y

South–West England 1 Culdrose 78 �0.006 0.782 N
2 Camborne 87 �0.024 0.000 Y
3 Plymouth Mountbatten 50 �0.007 0.213 N
4 Chivenor 6 �0.002 0.660 N
5 Yeovilton 20 �0.003 0.489 N

Regional mean �0.008 0.078 N
Wales 15 Aberporth 115 �0.008 0.159 N
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terms of high wind speed records in long-term time series and some-
times may generate extreme wind speeds that result in wind turbines
being shut down.4 Differentiation of different types of windstorms is
often considered crucial for extreme wind speed analysis.46–49

However, given the nature of the present study and the relatively low
likelihood of the occurrence of the extreme wind speeds,4 no addi-
tional attempt has been made to separate out different windstorms. In
order to distinguish between local effects (e.g., changes in local surface
roughness) and larger scale changes in the wind climate, the 38 sta-
tions have been divided into regions (see Fig. 1 and Table I).

To further highlight the necessity of this study, the long-term var-
iability of mean annual wind speed across different UK regions is
examined based on extended wind speed data from 1981 to 2018, as
shown in Fig. 2. Region-to region variability is apparent. To illustrate,
the annual mean wind speed recorded at Midlands, North–West
England, and Eastern England remains relatively unchanged; the val-
ues at South–East England exhibits a pronounced upward trend,
whereas those at Northern Ireland, Western Scotland, and Wales tend
to reveal an opposite trend in which the annual mean wind speed is
shown to decrease. Both Earl et al.21 and Hewston and Dorling26

reported that there is no distinguishable geographic pattern to the dis-
tribution of stations exhibiting statistically decrease (or increase)

changes. The difference in the long-term variability of wind speed at
different stations could provide important implication for the strategic
optimization of the integration of wind power into the UK electricity
network, e.g., with increasing integration of wind power in regions
where wind speed shows a long-term increase.

B. Extrapolation of wind speed data

It is recognized that the wind within the atmospheric boundary
layer is mainly modulated by the underlying surface roughness and
the atmospheric stability, and the consequent vertical profile of wind
speed typically follows a monotonic-type increase with the height. For
accurate estimation of wind energy, it is, therefore, necessary to correct
the wind speed to compensate for the height of modern wind turbines.
Note that a variety of wind speed profile models have been established
to describe the height dependence of wind speed,14 among which the
simple power-law model is more often used as a handy tool to conduct
vertical wind speed extrapolation in the wind energy community,50

v ¼ vR �
z
zR

� �a

; (15)

where v is the daily wind speed estimated at the prospective hub height
of a wind turbine, z (i.e., rotor’s height above the ground level), vR is

FIG. 2. The variation of annual mean wind speed between 1981 and 2018 across different UK regions. The p-value and slope for the linear regression fit are also
demonstrated.

TABLE I. (Continued.)

Region Station number Station name Altitude ðmÞ
Gradient of linear
fit ðms�1=yrÞ Fit p-value

Significant at
95% level?

16 Bala 163 �0.032 0.000 Y
17 Valley 10 0.006 0.258 N

Regional mean �0.011 0.037 Y
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the reference wind speed measured at the reference height zR (e.g., 10 m
above the ground), and a is the power law coefficient. It is to be noted
that the power law coefficient does not remain constant for all locations
and may vary as a function of numerous factors, such as the nature of
terrain, wind speed, and atmospheric stratification conditions.51–56 For
instance, Touma56 found that the power law coefficient typically
increases in magnitude when the atmosphere becomes more stable and
decreases when atmospheric unstability strengthens. Gualtieri55 and
Rehman and Al-Abbadi52 showed that the power law coefficient is sub-
jected to distinct diurnal and seasonal variability. By contrast, Rehman
and Al-Abbadi53 addressed that no regular seasonal trend exists in the
power law coefficient, whereas the diurnal variation is apparent, with
larger values observed during nighttime and early morning and lower
values midday. It should be noted that this study examined wind field

characteristics in Saudi Arabia, where thermal effects are likely to be
extreme. The common value of the power law coefficient lies in the
range of 0.1–0.4, with the most frequent adopted value of 0.143 (1/7)
for wind power analysis.51 Accordingly, in this study, the MIDAS wind
data measured at the standard level of 10 m above the ground are con-
verted to a wind turbine hub height of 100 m using the 1/7th power law
when applied directly to the wind turbine function. All the graphic rep-
resentations of analysis results given in this study were produced using
MATLAB, unless otherwise specified.

IV. RESULTS AND DISCUSSION
A. Current UK wind climate

The prevailing wind direction over the wind direction is broadly
south–west (see Fig. 1) due to the location of the UK at a latitude

FIG. 3. Wind rose plots at selected locations.
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where the wind climate is dominated by the eastward passage of large
weather systems.57 The mean wind direction ranges from 181� to 212�

over the network. The large-scale topographical effects noted by, for
example, Lapworth and McGregor58 are evident with the highland

over Wales, Northern England, and Scotland having a distinct effect
on the mean direction. Topographic effects at a relative localized scale
are also important—for example, Station 29 is located in a northeast-
to-southwest orientated valley, which results in a wind rose plot with a

FIG. 4. Distribution of mean wind speed and turbulence intensity.

FIG. 5. Distribution of Weibull scale parameter (c) and shape parameter (k).
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clearly defined prevailing wind direction, while in south and central
England (e.g., Stations 7, 10, and 12), there is a much wider spread
(Fig. 3).

The site-to-site variability of mean wind speed [Fig. 4(a)] and
turbulence intensity [Fig. 4(b)] is also apparent due to the effect of
geographic diversity. Clearly, the western coastal regions and Orkney
and Shetland islands are generally the windiest regions, whereas the
wind speeds associated with inland and eastern regions are much
smaller in magnitude. The estimated hub height wind speed ranges

between 4.44 m/s at Bala (Station 16) and 10.69 m/s at Lerwick
(Station 38). Note that extreme low wind speeds (i.e., <5.5 m/s) are
found mostly at the observation sites (e.g., Stations 16, 19, 23, and 29)
where the topographic-induced sheltering is likely. In general, the
wind speed map generated in this study demonstrates a good agree-
ment with those reported in previous studies,21,26,59 in which it has
been well documented that the spatial variability of wind speed in the
UK is mainly modulated by two factors, i.e., the exposure to fetch over
the Atlantic Ocean and Irish Sea and the relative location to the storm

FIG. 6. Comparison of wind data histogram with different Weibull distribution fits.
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track. Typically, the higher and farther north an observation site is, the
stronger the wind due to reduced friction and closer proximity to the
higher storm track density region to the south and east of Iceland.59

As for the distribution of turbulence intensity [see Fig. 4(b)], the larg-
est value occurs at Bala, which may be attributed to the surround
mountainous terrain both shielding the site causing extreme roughness
levels; conversely, central and eastern England, where the terrain is rel-
atively open and flat, produce lower turbulence intensities.

The considerable site-to-site variability in mean wind speed and
turbulence intensity leads to variations in the corresponding Weibull
parameters (Fig. 5). From a practical point of view, the value of the
scale parameter reflects how windy an observation site is, and the
shape parameter indicates how peaked the distribution of wind speed
is. As can be seen from Fig. 5(a), the distribution of the scale parameter
is more or less consistent with that of mean wind speed, where the

observation sites located in the western coasts and Scotland possess
larger values. In contrast, the scale parameters obtained at the southern
part of England are generally the smallest. The spread of the scale
parameter in this study lies in the range from 4.96 m/s at Station 16 to
12.06 m/s at Station 38. The shape parameter, on the other hand, is
also subject to distinct spatial variations [Fig. 5(b)], with larger shape
parameters occurring in the southeast and central England where the
turbulence intensity is lower, indicating a smaller temporal variation
in wind speed, which is reflected in the narrower spike in the probabil-
ity density function. Overall, the spatial distribution of the shape
parameter is in line with that summarized by Earl et al.21 Numerically,
the shape parameter derived in this study ranges from 1.63 to 2.97,
which appears to be larger than those given in previous studies,21,22

but this may be due to the vertical extrapolation of wind speed to a
larger hub height.

Earl et al.21 found that the Weibull shape parameter, calculated
using hourly mean wind speed data, showed a slight positive correla-
tion (not statistically significant) with mean wind speed. Such a corre-
lation is not evident in the current study (Fig. 6), nor is any significant
difference between the Weibull estimation methods. To examine the
goodness of Weibull distribution fit to the histogram of measured
wind speed, the coefficient of correlation (R2) is obtained as follows:

R2 ¼ 1�

Xn
i¼1

fm við Þ � fp við Þ
� �2

Xn
i¼1

fm við Þ � fm
� �2

2
66664

3
77775; (16)

where fm is the probability determined from the wind speed histogram
for wind speed vi, fp is the probability predicted by the Weibull distri-
bution function for vi, and i indexes the n wind speed intervals used to
construct the histogram. The correlation coefficient across the obser-
vation network varies between 0.90 and 0.96, with 9 of the 38 sites
having a value exceeding 0.95 and 36 above 0.90. Furthermore, the
goodness of fit was found to be an inverse function of the shape
parameter (not shown), i.e., the larger the shape parameter, the lower
the R2 value. Furthermore, it is noteworthy that the Weibull distribu-
tion fit based on the power density method (PDM) generally possesses
the largest correlation coefficient compared to the other methods,
implying that the PDM is more preferable in terms of approximating
the distribution of wind speeds in this study. For the remainder of this
paper, only the PDM is presented, and it may be considered represen-
tative of all.

Once the scale and shape parameters are determined, the wind
power density at different sites across the network can be evaluated.
It should be noted that this calculation does not take into account
the operating limits of the particular turbine installed and therefore
represents the potential available wind energy rather than what a
turbine can extract. The network average of wind power density is
about 458W/m2, with the largest value (1407W/m2) obtained at
Lerwick (Station 38) and the lowest value (125W/m2) obtained
at NottinghamWatnall (Station 19). In terms of the regions defined in
Fig. 1, the variation is seen in the mean wind power density over each
region, and Northern Scotland has the highest mean value at 1010W/
m2, followed by North–West England (677W/m2), Wales (590W/
m2), and Western Scotland (544W/m2). North–East England and
South–East England have the lowest regional wind power densities,
with mean values of 198 and 221W/m2, respectively.

TABLE II. Specifications of the wind turbines considered in this study.

Manufacturer Siemens Vestas

Model SWT-2.3-93
(Ref. 60)

V80-2.0
(Ref. 61)

Hub height (m) 101 100
Cut-in wind speed (m/s) 3.5 4
Rated wind speed (m/s) 13 15
Cutoff wind speed (m/s) 25 25

FIG. 7. Distribution of wind power density across the observation network.
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Likewise, Figs. 8(a) and 8(b) demonstrate the distribution of the
most probable wind speed Vmpð Þ and the wind speed carrying maxi-
mum energy Vmax:Eð Þ based on the corresponding Weibull parame-
ters, respectively. The estimated Vmp lies in the range between 2.75
and 9.52 m/s, with a network average of 6.30 m/s. As shown in

Fig. 8(a), larger Vmp values are associated predominantly with sites in
the western coast of England, Wales, and Scotland and in the southeast
part of England. The distribution of Vmax:E follows a similar north–-
west-to-south–east pattern, the magnitude of which ranges from
6.63 m/s to 15.67 m/s.

FIG. 9. Distribution of the estimated capacity factor and operation probability of the Siemens SWT-2.3-93 wind turbine.

FIG. 8. Distribution of Vmp and Vmax.E across the observation network.
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B. Current UK wind climate—case study

In order to demonstrate the real-world impact of these wind
characteristics, the Weibull parameters are applied to determine the
capacity factor and operation probability of two commercial wind tur-
bines, namely, the Siemens SWT-2.3–93 and Vestas V80–2.0 (specifi-
cations are shown in Table II). The selected wind turbines have similar
hub heights and cutoff wind speeds, but the Siemens has lower cut-in
and rated wind speeds. The distribution pattern of the estimated
capacity factor is similar for both turbines (Figs. 9 and 10) and gener-
ally matches the WPD distribution (Fig. 7). The operation probability
is generally the largest in the coastal western and northern regions and
the south–east coast of England, though the latter is an area of low
capacity factory, including South–East and South–West England,
Wales, and Scotland. Notwithstanding the similarities in the spatial
pattern, considerable differences can still be found in the magnitude
of the capacity factor and operation probability depending on different

wind turbines. For example, the spread of the capacity factor
associated with Siemens SWT-2.3–93 ranges from 7% to 56% with a
network average value of 25.7%, whereas the values associated with
Vestas V80–2.0 lie between 4% and 46% with a network average of
18.3%. Likewise, the operation probability for Siemens SWT-2.3–93
varies between 57% and 95% and that for Vestas V80–2.0 ranges from
49% to 93%. This clearly shows that at a given location, wind turbines
with different design properties may result in different performances
for the same wind characteristics.

C. Long-term trends

As stated in Sec. I, previous studies (e.g., Refs. 21 and 25) have
indicated variations in both regional and individual station wind
speeds between 1980 and 2010. Extending this to 2018, 15 of the 38
stations show statistically significant (at the 95% level) changes over
the period, determined using the Mann-Kendall test implemented in

FIG. 11. Annual mean wind speeds at the Wales regional stations.

FIG. 10. Distribution of the estimated capacity factor and operation probability of the Vestas V80-2.0 wind turbine.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 13, 023303 (2021); doi: 10.1063/5.0038001 13, 023303-11

VC Author(s) 2021

https://scitation.org/journal/rse


Ref. 62. However, the variation is only significant in three of the 11
regions: Northern Ireland, South–East England, and Wales. Northern
Ireland only contains a single station, and therefore, local variations in
ground roughness (vegetation growth and construction) cannot be dis-
counted. In South–East England, where Watson et al.25 observed a
small increase, three of the six stations in South–East England have
significant variations. Two of these are positive, with the negative
change being approximately a factor of 6 smaller, giving a regional
change of 0:012ms�1=yr, though this equates to an increase in the
mean wind speed of only approximately 0:5ms�1. In Wales, only the
change at Bala is statistically significant, with the remaining two sta-
tions not (Fig. 11).

Following the assertion of Gross et al.24 that seven years’ data are
required for an accurate assessment of site wind characteristics, the
Weibull shape and scale parameters have been calculated for each year
from 1987 to 2018 using the seven years’ data up to and including the
year in question (Figs. 12 and 13).

The link between the scale parameter and the mean wind speed
is clear from comparison of the gradients (Tables III and I), with the
sign of the gradient of each being the same for each region. At the 95%
level, more of the regions have a significant change in the scale param-
eter than in the mean wind speed. This is due to the dependence of the
estimation of the Weibull parameters on both the scale parameter and
the shape parameter—the latter is seen to follow a significant, increas-
ing trend for all regions (Table III and Fig. 13).

The implications of these changes for wind power production
can be seen from the WPD and the variation of its seven-year value
with time (Table III and Fig. 14). In Northern Scotland, where the
WPD is the greatest (�1W/m2), there is no significant trend. All other

regions apart from Eastern England and South–East England have sta-
tistically significant decreases—the trend in Eastern England is insig-
nificant, and South–East England has a mean rise of 0.4% per year
though from a low mean value of 226W/m2. In the case of
South–West England and Wales, which have relatively high WPD and
therefore show good potential for wind energy investment, these
decreases (1.2% and 0.7%, respectively) are arguably important in the
long term.

D. Long-term trends—case study

Examination of the long-term trends for the seven-year capacity
factor and operational probability of the example turbines (Siemens
SWT-2.3–93 and Vestas V80–2.0) reveals the same regional trends for
each turbine, as would be expected (Table IV). The capacity factor
decreases for all regions with statistically significant trends for both
turbines, with the exception of Northern Scotland where an increase
of 0.1% per year is seen. This amounts to 1% per decade. Northern
Ireland, North–East England, and South–East England have seen
mean decadal decreases of 3%, 2%, and 2%, respectively. Operational
probability increases in all regions with statistically significant trends
apart from Northern Ireland. As discussed previously, Northern
Ireland is represented by a single station, and it seems likely that local
effects have an influence on this station. The other stations have an
annual increase of 0.1%, with the exception of South–East England
where the increase is 0.3% (Siemens) and 0.4% (Vestas). The relatively
large increase seen in this region is likely due to the low wind speeds in
the area, with the trend for increasing wind speed (Table I) having a
larger impact in bringing the wind speed above the cut-in speed than in
other regions.

FIG. 12. Seven-year Weibull scale parameter by region.
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E. Seasonal variation

In addition to the spatial distribution of mean wind characteris-
tics, the seasonal wind characteristics are also of essential importance
in the interest of predicting the variation of wind power generation
within an annual cycle, which may have implications to strategize the
operation and management of the electricity network. Sinden4,63

addressed that the electricity demand in the UK is subjected to the
pronounced seasonal variation, in which winter is often the season
requiring most electricity power output due to heating and lighting
purposes, whereas the electricity demand is at its lowest in summer. In
2019, approximately 79.70 TWh of electricity is consumed in spring,
69.35 TWh in summer, 67.51 TWh in autumn, and 78.71 TWh in

TABLE III. Trends in the seven-year Weibull parameters.

Region

Scale parameter ðms�1Þ Shape parameter Wind power density

Gradient
of linear fit
ðms�1=yrÞ

Fit
p-value

Significant
at 95%
level?

Gradient
of linear fit
ðms�1=yrÞ

Fit
p-value

Significant
at 95%
level?

Gradient of
linear fit
ðms�1=yrÞ

Fit
p-value

Significant
at 95%
level?

Mean WPD
Wm�2ð Þ

Annual
changea

%ð Þ

Northern Scotland 0.017 0.001 Y 0.008 0.000 Y 0.912 0.783 N 1003 0.10
Eastern Scotland �0.004 0.089 N 0.005 0.000 Y �1.976 0.000 Y 376 �0.50
Western Scotland �0.016 0.000 Y 0.003 0.000 Y �4.510 0.000 Y 565 �0.80
Northern Ireland �0.034 0.000 Y 0.003 0.001 Y �4.774 0.000 Y 298 �1.60
North–West England �0.006 0.008 Y 0.002 0.000 Y �1.861 0.001 Y 693 �0.30
North–East England �0.017 0.001 Y 0.006 0.002 Y �3.223 0.000 Y 281 �1.10
Midlands �0.004 0.062 N 0.010 0.000 Y �1.896 0.000 Y 262 �0.70
Eastern England 0.006 0.017 Y 0.008 0.000 Y �0.651 0.277 N 345 �0.20
South–East England 0.025 0.000 Y 0.013 0.000 Y 0.795 0.001 Y 226 0.40
South–West England �0.022 0.000 Y 0.004 0.000 Y �5.485 0.000 Y 518 �1.10
Wales �0.013 0.001 Y 0.004 0.002 Y �4.701 0.000 Y 658 �0.70

aRatio of the mean annual change (gradient) to mean WPD.

FIG. 13. Seven-year Weibull shape parameter by region.
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winter.64 In parallel, the seasonal variability of wind speed across the
UK is also obvious, which is mainly driven by the depressions in
the mid-latitudes of the northern hemisphere. The depressions are
likely to be more vigorous in winter than that in summer, and
consequently, the storminess in winter tends to be more severe.65,66

Correspondingly, as can be seen in Fig. 15, the seasonal variation of

Weibull distribution fit is clearly distinguishable, where the wind speed
distribution during the summer months of June, July, and August
tends to be more peaked with a smaller scale parameter (i.e., abscissa
of the distribution peak), whereas those during the winter months of
December, January, and February appear to be much wider with lower
peaks. Figure 16 reveals that the wind power density during winter is

FIG. 14. Seven-year wind power density by region.

TABLE IV. Trends in the seven-year capacity factor and operational probability for two example wind turbines.

Region

Capacity factor Operational probability

Siemens Vestas Siemens Vestas

Gradient
of linear
fit ð%=yrÞ

Signif. at
95% level?

Mean
ð%Þ

Gradient
of linear
fit ð%=yrÞ

Signif.
at 95%
level?

Mean
ð%Þ

Gradient
of linear
fit (%=yrÞ

Signif. at
95% level?

Mean
ð%Þ

Gradient of
linear fit
ð%=yrÞ

Signif.
at 95%
level?

Mean
ð%Þ

Northern Scotland 0.1 Y 48 0.1 Y 40 0.1 Y 89 0.1 Y 86
Eastern Scotland �0.1 Y 28 �0.1 Y 21 0.1 N 77 0.1 N 71
Western Scotland �0.1 Y 36 �0.1 Y 28 0.0 N 82 0.0 N 78
Northern Ireland �0.3 Y 24 �0.2 Y 18 �0.1 Y 77 �0.2 Y 71
North–West England 0.0 Y 41 0.0 Y 32 0.0 N 86 0.0 N 82
North–East England �0.2 Y 23 �0.2 Y 17 0.0 N 73 0.0 N 67
Midlands �0.1 Y 22 �0.1 Y 16 0.1 Y 77 0.1 Y 71
Eastern England 0.0 N 27 �0.1 Y 20 0.1 Y 81 0.1 Y 76
South–East England 0.0 Y 20 0.0 N 14 0.3 Y 72 0.4 Y 65
South–West England �0.2 Y 35 �0.2 Y 27 0.0 N 82 0.0 N 78
Wales �0.1 Y 38 �0.1 Y 30 0.0 N 81 0.0 N 77
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typically higher than those during summer. Quantitatively, the major-
ity of the observation sites (36 of 38) possess twice as much wind
power density during winter than that during summer, and 14 of the
38 stations possess triple the wind power density during winter than
that during summer. The network average wind power density is esti-
mated to be 392W/m2 in spring, 210W/m2 in summer, 347W/m2 in
autumn, and 639W/m2 in winter. At the regional scale, the degree of
seasonal variability also appears to be somewhat different. The most
significant seasonal variability in wind power density is observed at
Wales, with a coefficient of variation of 55%, followed successively by
Northern Scotland (53%), Western Scotland (51%), and North–West
England (51%). In contrast, the seasonal variability is at its lowest in
South–East England with a coefficient of variation of 35%. Based on
the results and existing statistics, the seasonal contribution of wind
power to electricity demand can be estimated to be 12% in spring, 7%

in summer, 10% in autumn, and 18% in winter. The results here
further support the conclusion by Sinden4 that there exists a positive
relationship between the wind power output and the electricity
demand in the UK, i.e., the availability of wind power during times of
peak electricity demand is higher than that at times of low electricity
demand. Overall, the broad similarities in the seasonal pattern of wind
power and electricity demand are encouraging.

V. CONCLUSIONS AND SUMMARY

Given its abundant availability and environment friendly nature,
wind energy has been developing at a remarkable pace over the past
few decades and is anticipated to grow rapidly in the interest of diver-
sifying the power supply portfolio and mitigating climate change and
environmental degradation. To inform this development, this study
presents an updated overview of wind speed and wind energy

FIG. 15. Weibull distribution of seasonal wind speed at selected stations.
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characteristics across the UK based on the statistical analysis of
long-term (1981–2018) surface wind observations at 38 stations,
extending previous studies and bringing our understanding of
trends up to date. This analysis has been conducted at both station
and regional levels, based on the regions defined by the UK

Meteorological Office. The important conclusions drawn from this
work are as follows:

(1) Statistically significant, long-term changes in annual mean
wind speed are seen at 15 of the 38 stations. However, there is

FIG. 16. Distribution of seasonal mean power density.
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no region that shows a consistent increasing or decreasing trend
across all its stations, with the exception of Northern Ireland,
which includes a single station.

(2) The lack of consistent trends over all stations in a region
implies the importance of local topographical effects.

(3) South–East England has a statistically significant increase in
annual mean wind speed, but this amounts to less than
0:5ms�1 over the entire period.

(4) The probability distributions are modeled well using a Weibull
distribution. The scale parameter follows trends that are similar
to those of the annual mean wind speed, though with a greater
proportion of statistical significance; the trends in the shape
parameter are significant for all regions.

(5) Application of the Weibull parameters to determine the capac-
ity factor and operational probability for two representative
wind turbines (Siemens SWT-2.3–93 and Vestas V80–2.0)
shows a small (typically �1% per decade) decrease in the capac-
ity factor for all regions with a significant trend. Conversely, the
operational probability is generally increasing but again by the
same small magnitude with the exception of South–East
England where an increase of about 4% per decade is seen, with
the caveat that this region has low wind power density.

(6) In addition to the considerable variability in space, the esti-
mated wind power density across the network is also subject to
clear seasonality, with wind power density during winter
months at least twice that during summer months.
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