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Modularity is a quantity which has been introduced in the context of complex networks in order to quantify
how close a network is to an ideal modular network in which the nodes form small interconnected com-
munities that are joined together with relatively few edges. In this article, we consider this quantity on a
probabilistic model of complex networks introduced by Krioukov et al. (2010, Phys. Rev. E, 82, 036106).
This model views a complex network as an expression of hidden popularity hierarchies (i.e. nodes higher
up in the hierarchies have more global reach), encapsulated by an underlying hyperbolic space. For cer-
tain parameters, this model was proved to have typical features that are observed in complex networks
such as power law degree distribution, bounded average degree, clustering coefficient that is asymptoti-
cally bounded away from zero and ultra-small typical distances. In the present work, we investigate its
modularity and we show that, in this regime, it converges to one in probability.

Keywords: random geometric graphs, hyperbolic plane, complex networks, modularity.

1. Introduction

Granovetter, in his pioneering analysis of social networks [1], pointed out that a fundamental feature of
social networks is the distinction between weak links and strong links. These strengths reflect the intensity
of interaction between two individuals, which may be dependent on measures such as the frequency of
interaction. As Granovetter remarked, an individual is more likely to interact with other individuals
through the strong links. This is expressed in terms of structural features of the social network, whereby
individuals belong to communities, tightly knit by strong links, and these communities are typically
joined through weak links. These ideas postulate that a fundamental characteristic of social networks is
the existence of communities, or modules, within such a network. These are mutually disjoint subsets of
nodes/individuals which have many edges connecting them but are joined to other modules by few edges.

Identifying such a partition in a given social network or any other complex network is computationally
challenging. But before we set out to find algorithms that give even an approximate solution to this
problem, one needs to quantify what is a good partition of the node set of a given network. Such a
quantification was given by Newman and Girvan [2] and is called the modularity score of a given
partition. The highest modularity score among all partitions is called the modularity of a network (cf.
Section 2.2 for the precise definition). The most popular algorithms used to cluster large network data
use the modularity score as a quality function for partitions (see e.g. [3]). In this article, we investigate

© The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/10/1/cnab051/6490112 by U
niversity of Birm

ingham
 user on 06 January 2022



2 J. CHELLIG ET AL.

the modularity of a recent model of complex networks in which a network is sampled as a geometric
random graph on the hyperbolic plane.

1.1 The KPKBV model: a geometric framework for complex networks

Krioukov et al. [4] introduced a model of random geometric graphs on the hyperbolic plane as a model
of complex networks, which we abbreviate as the KPKBV model after its inventors. This is based on
the assumption that the geometry of the hyperbolic plane can accommodate the hidden hierarchy of a
complex network and its intrinsic inhomogeneity. Their basic assumption is that the hierarchies that are
present in a complex network induce a tree-like structure, and this suggests that there is an underlying
geometry of a complex network which is the hyperbolic.

There are several representations of the standard hyperbolic plane H2
−1 of curvature −1. In this article,

we shall use the Poincaré unit disc representation, which is simply the open disc of radius one, that is,
{(u, v) ∈ R

2 : u2 + v2 < 1}, which is equipped with the hyperbolic metric: 4 du2+dv2

(1−u2−v2)2 . This is a
standard formulation of the hyperbolic plane. In particular, a suitable integration of the metric shows that
the length of a circle of (hyperbolic) radius r (centred at the origin) is 2π sinh(r), whereas the area of
this circle (centred at the origin) is 2π(cosh(r)− 1). Hence, a fundamental difference with the Euclidean
plane is that volumes grow exponentially.

The KPKBV model introduced by Krioukov et al. [4] yields a random geometric graph on H2
−1.

Consider the Poincaré disc representation of the hyperbolic plane H2
−1. The random graph will have n

vertices and this is the parameter we take asymptotics with respect to. Let ν > 0 be a fixed constant and
let R = R(n) > 0 satisfy n = νeR/2.

Consider the disc DR of hyperbolic radius R centred at the origin of the Poincaré disc (i.e. the set of
points of the Poincaré disc at hyperbolic distance at most R from its origin).

We take a random set of points of size n that are the outcomes of the i.i.d. random variables v1, . . . , vn

taking values on DR. (We will be referring to the random variables vi as vertices, meaning their values on
DR.) More specifically, assume that v1 has polar coordinates (r, θ). The angle θ is uniformly distributed in
(0, 2π ] and the probability density function of r, which we denote by ρn(r), is determined by a parameter
α > 0 and is equal to

ρn(r) =
{

α sinh(αr)
cosh(αR)−1 , if 0 ≤ r ≤ R

0, otherwise
. (1.1)

The aforementioned formulae for the area and the length of a circle of a given radius imply that if we set
α = 1, the distribution described in (1.1) is the uniform distribution on DR (under the hyperbolic metric).
For general α > 0 Krioukov et al. [4] called this the quasi-uniform distribution on DR. Let us remark
that in fact this is the uniform distribution on a disc of hyperbolic radius R within H2

−α2 (the hyperbolic
plane that has curvature −α2).

Given the point process Vn = {v1, . . . , vn} on DR ⊂ H2
−1 and the fixed parameters α and ν we define

the random graph G(n; α, ν) on the point-set of Vn, where two distinct points form an edge if and only
if they are within (hyperbolic) distance R from each other. Figure 1 (below) shows the ball of radius
R around a point p ∈ DR, denoted by B(p; R). Thus, any point/vertex of G(n; α, ν) that falls inside the
shaded region becomes connected to p.
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 3

Fig. 1. The ball of radius R centred at point p, within DR.

2. Typical properties of the KPKBV model

For α ∈ (1/2, ∞), Krioukov et al. [4] show that the tails of the distribution of the degrees in G(n; α, ν)

follow a power law with exponent 2α + 1. This was verified rigorously by Gugelman et al. in [5].
Thus, when α ∈ (1/2, 1) the exponent is between 2 and 3. There has been experimental evidence that
this is indeed the case in a number of networks that emerge in applications (the survey [6] contains a
comprehensive list of such examples). Krioukov et al. [4] also observe that the average degree of G(n; α, ν)

is also tuned by the parameter ν for α ∈ (1/2, ∞). This was also proved by Gugelman et al. [5]. They
showed that the average degree tends to 8α2ν/π(2α − 1)2 in probability. However, when α ∈ (0, 1/2],
the average degree tends to infinity as n → ∞. Thus, in this sense, the regime α ∈ (1/2, ∞) corresponds
to the so-called thermodynamic regime in the context of random geometric graphs on the Euclidean
plane [7].

Gugelman et al. [5] also showed G(n; α, ν) has clustering coefficient that is a.a.s. bounded away from
0. More precise results about the scaling of the local clustering coefficient in terms of the degrees of the
vertices were obtained by Stegehuis et al. [8]. More recently in [9], convergence in probability of the
clustering coefficient to an explicitly determined constant was derived.

When α is small, the density ρn induces more points near the origin and one may expect increased
graph connectivity there. In [10], Bode et al. proved that α = 1 is the critical point for the emergence
of a giant component in G(n; α, ν). (Let us abbreviate as a.a.s. the term ‘asymptotically almost surely’
which in our context means ‘with probability that approaches 1 as n → ∞’—see below for the precise
definition.) When α ∈ (0, 1), the fraction of the vertices contained in the largest component is bounded
away from 0 a.a.s. [10], whereas if α ∈ (1, ∞), the largest component is sub-linear in n a.a.s (see
Figure 2). For α = 1, the component structure depends on ν. If ν is large enough, then a giant component
exists a.a.s., but if ν is small enough, then a.a.s. all components have sub-linear size [10].

The above results were strengthened in [11]. In that paper, it was shown that the fraction of vertices
which belong to the largest component converges in probability to a certain constant which depends on
α and ν. More specifically, when α = 1, it turns out that there exists a critical value ν0 ∈ (0, ∞) such
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4 J. CHELLIG ET AL.

Fig. 2. Three samples of G(n; α, ν) with a fixed n = 150, ν = 2 and variable α. From left to right: α = 0.6, α = 1 and α = 1.8

that when ν crosses ν0 a giant component emerges a.a.s. The papers [12] and [13] consider the size of
the second largest component. Therein, it is shown that when α ∈ (0, 1) the second largest component
has polylogarithmic order a.a.s.

The connectivity of G(n; α, ν) was considered by Bode et al. in [14]. There, it is shown that for
α < 1/2 the random graph G(n; α, ν) is a.a.s. connected, it is disconnected for α > 1/2. When α = 1/2,
it turns out that the probability of connectivity converges to a certain constant which is given explicitly
in [14].

The a.a.s. disconnectedness of G(n; α, ν) for α > 1/2 follows easily from the a.a.s. existence of
isolated vertices. Recently, asymptotic distributional properties of the number of isolated as well as the
extreme points in the poissonisation of G(n; α, ν) were derived in [15]. (A point is called extreme, when
it is not connected to any other point of larger radius.) The authors showed that the former satisfies a
central limit theorem when α > 1, but it does not when α < 1. However, the number of extreme points
satisfies a central limit theorem for any α > 1/2. This is due to the fact that the number of isolated
vertices is sensitive on the existence of a few vertices close to the centre of DR. Those a.a.s. appear when
1/2 < α < 1. On the other hand, extreme points involve only local dependencies.

Bounds on the diameter of G(n; α, ν) were derived in [12] and [16]. Therein, polylogarithmic upper
bounds on the diameter are shown. These were improved by Müller and Staps [17] who deduced a
logarithmic upper bound on the diameter. Furthermore, in [18] it is shown that for α ∈ (1/2, 1) the largest
component has doubly logarithmic typical distances and it forms what is called an ultra-small world.

2.1 Poissonisation of the KPKBV model

In this paper, we will work on the Poissonization of the above model. Recall that DR was defined to be
the disc of hyperbolic radius R around the origin O of the Poincaré disc representation of the hyperbolic
plane of curvature −1. Here, the vertex set is the point-set of a Poisson point process on DR with intensity

n
1

2π
ρn(r)drdθ .

We denote it by Pα,ν,n. We also denote by κα,ν,n the Borel measure on DR given by

κα,ν,n(S) = 1

2π

∫
S
ρn(r)drdθ ,
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 5

for any Borel-measurable set S. Hence, the number of points that Pα,ν,n has inside S is distributed as
Po
(
n · κα,ν,n(S)

)
. Moreover, the numbers of points in any finite collection of pairwise disjoint Borel-

measurable subsets of DR are independent Poisson-distributed random variables.
We will define the random graph whose vertex set is the set of points of Pα,ν,n in DR. As in G(n; α, ν),

two vertices/points of Pα,ν,n are adjacent if and only if their hyperbolic distance is at most R. We denote
the resulting graph by P(n; α, ν).

2.2 The modularity of P(n; α, ν)

The notion of modularity was introduced by Newman and Girvan in [2]. For a graph G = (V , E) with
m ≥ 1 edges, define the modularity score associated with the partition A of the vertex set V to be

modA(G) =
∑
A∈A

(
e(A)

m
−
(

vol(A)

2m

)2
)

,

where e(A) denotes the number of edges within part A and vol(A) = ∑
v∈A deg(v) denotes the volume of

A, that is, the sum of the degrees of the vertices in A.
For graphs G without edges define modA(G) = 0. Note that the definition of modularity extends

naturally to weighted graphs and is often used in the weighted form in applications. The term e(A)

becomes the sum of the weights of edges in A and the degree of a vertex deg(v) is the sum of the
weights of the edges incident to v. This sum is effectively a comparison between the given network G
and a random network with the same degree sequence. The first term 1

m

∑
A∈A e(A) is the probability

that a randomly chosen edge of G will lie inside one of the parts, whereas the term
∑

A∈A (vol(A)/2m)2

represents the probability that a random edge lies in one of the parts in a uniformly random graph with
the same degree distribution as G. On one extreme if there were no edges between the parts of A, then
1
m

∑
A∈A e(A) = 1. If A consists of a large number of parts that are comparable in volume, then the second

term
∑

A∈A (vol(A)/2m)2 is small. Hence, such a highly modular partition will have a modularity score
close to 1. With P(V) denoting the set of all partitions of V the modularity of graph G is then

mod(G) = max{modA(G) : A ∈ P(V)}.

The set P(V) includes the trivial partition {V} placing all vertices into the same part. Note that the
modularity score of {V} is zero for any graph. Hence for any graph 0 ≤ mod(G) < 1 with values
near 1 taken to indicate a high level of community structure and values near 0 taken to indicate a lack of
community structure. Newman [19] determined the modularity of several examples of complex networks,
not only social, finding them ranging between 0.3 and 0.8. Among these examples, higher modularity
(> 0.7) was found in the social network of co-authorship among scientists working on condensed matter.

Brandes et al. [20] showed that finding the modularity of a given graph is NP-hard. Further it was
established by Dinh et al. that it is NP-hard to approximate modularity to within any constant factor [21].
However, community detection in networks has been a central theme in network science. Newman [22]
used modularity to design a spectral algorithm for community detection in a given network. A popular
algorithm, the Louvain method, is an iterative clustering technique using the modularity function to
compare candidate partitions [23]. Methods that utilize random walks on the network in order to trace
its community structure are the Infomap algorithm [24] and the Walktrap algorithm [25]. The Label
propagation algorithm [26] on the other hand uses an approach that is similar to majority dynamics where
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6 J. CHELLIG ET AL.

the states of the nodes are labels that indicate different communities. More recently, Wang et al. [27]
came up with another method which uses the notion of local expansion. We further note that in [27] give
a comparison of these methods on a number of networks that emerge in a variety of settings. According
to Table 3 therein, typically, the modularity of these networks, as it is evaluated by these algorithms, is
far from 1 (we see values ranging from 0.39 to 0.94).

For binomial random graphs from the G(n, p) model, where on a set of n vertices, each pair is included
as an edge independently with probability p, there is a transition the typical behaviour of mod(G(n, p))

that is determined by np. In particular, the third author together with McDiarmid showed [28] that when
np ≤ 1 + o(1), then mod(G(n, p)) is concentrated around 1, but when np exceeds and is bounded away
from 1, then it scales like (np)−1/2. They have also shown [29] that for random d-regular graphs of
bounded degree, it is bounded away from 0 and 1 with high probability and scales approximately like
1/

√
d when d is large. Recently, Lichev and Mitsche [30] showed that for d = 3 the modularity exceeds

2/3 (confirming a conjecture of McDiarmid and Skerman) and is below 0.8 with high probability. They
further considered the modularity of random graphs having a given degree distribution with bounded
maximum degree.

The relation between topological properties of a graph and its modularity was explored in [29, 31].
In particular, Lasoń and Sulkowska [31] showed that the class of graphs with an excluded minor and
sub-linear maximum degree have modularity that approaches 1 as their number of vertices grows.

The main theorem of this article is that with high probability the modularity of P(n; α, ν) is close
to 1.

Theorem 2.1 For any α > 1/2 and ν > 0, we have

mod(P(n; α, ν)) → 1,

as n → ∞, in probability.

Unlike the G(n, p) model, the modularity of P(n; α, ν) approaches 1 as n → ∞, without any dependence
on the average degree or the existence of a giant component. Very recently, Kovács and Palla consider an
empirical approach to community structure in hyperbolic networks. In particular, they show that almost
optimal modularity scores (greater than 0.95) can be achieved, using simulations of the hyperbolic random
graph; however, they work in a range of parameters where the resulting random graph exhibits a high
clustering coefficient and large α. In light of this, our results show that for sufficiently large networks
this dependency on parameters is no longer required to achieve optimal modularity.

In the context of community driven models, Zuev et al. [32] introduced a model (preferential geomet-
ric attachment) which encapsulates the notion of an underlying hyperbolic space of hierarchies where
the angle of each vertex is not selected uniformly at random, but it follows a distribution which is
biased towards sectors that are more densely populated. This aims at modelling the notion of homophily
through a preferential attachment mechanism: a newly arrived node is more likely to be located in a
region/community of larger size. In this model, the notion of soft communities is considered in which
nodes form a community if they are close to each other in terms of their relative angle. This model recti-
fies the lack of community structure that is a exhibited in the popularity–similarity–optimization model
that was introduced by Papadopoulos et al. [33]. Later on Muscoloni and Cannistraci [34] introduced
the non-uniform popularity-similarity-optimization model which is also a strengthening of the model of
Zuev et al. This model gives the opportunity to fix the number and the size of communities and tune their
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 7

mixing. Furthermore, the authors use in [35] this model as a benchmark for the algorithms we described
above.

On the other hand, the classic preferential attachment model of Barabási and Albert [36] has mod-
ularity which is bounded away from 1. In particular, Ostroumova Prokhorenkova et al. [37] observed
that this is bounded away from 1 with high probability (in the version of the model where each newly
arriving vertex is attached to m ≥ 2 existing vertices—in fact, they show that for m ≥ 3 the modularity
is at most 15/16 with high probability). This is not the case for the spatial preferential attachment model
which was introduced by Aiello et al. [38]. This is a geometric version of the preferential attachment
model where vertices arrive one at a time at the d-dimensional unit cube and are allocated uniformly
therein. They are attached to existing vertices if they are within the sphere of influence of the latter. The
size of this is proportional to their degree. Ostroumova Prokhorenkova et al. [37] showed that the modu-
larity of the resulting random graph approaches 1 with high probability as the number of vertices tends
to infinity.

Notation

We now introduce some notation which we use throughout out proofs. If En is an event on the probability
space (�n, Pn, Fn), for each n ∈ N, we say that sequence En occurs asymptotically almost surely (a.a.s.)
if Pn(En) → 1 as n → ∞. In our context, we will be using the term a.a.s. for the sequence of probability
spaces of the random graphs P(n; α, ν).

2.3 Approximating a ball around a point—geometric notation

The main lemma in this section provides a useful (almost) characterization of two vertices being within
hyperbolic distance R, given their radii. The lemma reduces a statement about hyperbolic distances to a
statement about the relative angle between two points. Let us first introduce some notation. For a point
p ∈ DR, we let θ(p) ∈ (−π , π ] be the angle ˆpOs between p and a (fixed) reference point s ∈ DR (moving
from s to p in the anti-clockwise direction). For θ , θ ′ ∈ (−π , π ], we set

|θ − θ ′|π = min{|θ − θ ′|, 2π − |θ − θ ′|} ∈ [0, π ].

For two points p, p′ ∈ DR we denote by θ(p, p′) ∈ [0, π ] their relative angle:

θ(p, p′) = |θ(p) − θ(p′)|π .

Also, for p ∈ DR we let y(p) denote the defect radius of p in DR. In other words, if r(p) is the radius (the
hyperbolic distance of p from O), then y(p) = R − r(p). The following lemma gives a characterization of
what it is to have hyperbolic distance at most R in terms of the relative angle between two points. For r, r ′

such that r + r ′ > R, let θR(r, r ′) ∈ (−π , π ] be such that if two points p, p′ with r(p) = r and r(p′) = r ′

have θ(p, p′) = θR(r, r ′) iff dH(p, p′) = R. In other words, θR(r, r ′) is the relative angle of two points of
radii r and r ′, respectively, which are at distance R (see Figure 3).

Also, we set TR(y, y′) = 2 · e−R/2e
1
2 (y+y′), for y, y′ ∈ [0, R]. The following lemma is a consequence of

Lemma 28 in [11].
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8 J. CHELLIG ET AL.

Fig. 3. An example of θR(r, r′) for two points at a distance of r and r′ from the centre

Lemma 2.2 Let κ ∈ (0, 1). For any δ > 0 and any n sufficiently large, uniformly for any p, p′ ∈ DR with
y(p) + y(p′) ≤ κR the following holds ∣∣∣∣ θR(r(p), r(p′))

TR(y(p), y(p′))
− 1

∣∣∣∣ < δ.

Proof. Lemma 28 in [11] states that there exists a constant K > 0 such that, for every ε > 0 and for R
sufficiently large, the following holds: with

�(r, r ′) := 1

2
eR/2 arccos

(
(cosh r cosh r ′ − cosh R)/ sinh r sinh r ′),

For every r, r ′ ∈ [εR, R] with r + r ′ > R we have that

e
1
2 (y+y′) − Ke

3
2 (y+y′)−R ≤ �(r, r ′) ≤ e

1
2 (y+y′) + Ke

3
2 (y+y′)−R, (2.1)

where y := R − r, y′ := R − r ′. The above is a consequence of the hyperbolic law of cosines. Take two
points p and p′ inside DR having radii r and r ′, respectively, and consider the triangle pOp′. If the distance
between p and p′ is R, then the angle opposite that side is θR(r, r ′) and satisfies:

cosh(R) = cosh r cosh r ′ − sinh r sinh r ′ cos(θR(r, r ′)).

Therefore,

θR(r, r ′) = 2e−R/2�(r, r ′).

So multiplying (2.1) by 2e−R/2 we get

TR(y, y′) − Ke
3
2 (y+y′−R) ≤ θR(r, r ′) ≤ TR(y, y′) + Ke

3
2 (y+y′−R),
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 9

or

1 − K

2
ey+y′−R ≤ θR(r, r ′)

TR(y, y′)
≤ 1 + K

2
ey+y′−R.

But y + y′ ≤ κR whereby y + y′ − R ≤ (κ − 1)R. Since κ < 1, the lemma follows provided that n is
sufficiently large. �

For a point p ∈ DR, we let B(p; R) denote the set of points in DR of hyperbolic distance at most R
from p. We further define

B̌κ ,δ(p) := {p′ ∈ DR : y(p′) + y(p) ≤ κR, θ(p, p′) < (1 + δ)TR(y(p), y(p′))}.

We can think of B̌κ ,δ(p) to be an approximation to the ball B(p; R). Essentially B(p; R) is a subset of
B̌κ ,δ(p), and in subsequent calculations B̌κ ,δ(p) is easier to work with. Let Ar := DR \ Dr denote the
annulus of the disc DR which consists of all points of defect radius at most R − r. The above lemma
implies that for any κ ∈ (0, 1), δ > 0 and any n sufficiently large we have

B̌κ ,−δ(p) ⊂ B(p; R) ∩ A(1−κ)R+y(p) ⊂ B̌κ ,δ(p); (2.2)

hence, the set B̌κ ,δ(p) includes all points in B(p; R) of defect radius at most κR − y(p). Furthermore, the
following holds and will be useful later on during our second moment calculations.

Claim 2.3 If κ ∈ (0, 1) and δ > 0, then for any n sufficiently large whenever θ(p, p′) > 4(1+δ)e−(1−κ)R/2

for points p, p′ ∈ DR with y(p), y(p′) < R/2, we have

(
B(p; R) ∩ A(1−κ)R+y(p)

) ∩ (B(p′; R) ∩ A(1−κ)R+y(p′)
) = ∅.

Proof. By (2.2), it is sufficient to show that

B̌κ ,δ(p) ∩ B̌κ ,δ(p
′) = ∅.

Suppose not and let p′′ ∈ B̌κ ,δ(p) ∩ B̌κ ,δ(p′). Then by the definition of B̌κ ,δ(p) we have

θ(p, p′′) < 2(1 + δ)eR/2e(y(p)+y(p′′))/2 < 2(1 + δ)e−R/2+κR/2.

Similarly,

θ(p′, p′′) < 2(1 + δ)eR/2e(y(p′)+y(p′′))/2 < 2(1 + δ)e−R/2+κR/2.

So,

θ(p, p′) ≤ θ(p, p′′) + θ(p′, p′′) < 4(1 + δ)e−(1−κ)R/2.

This concludes the proof of the claim. �
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10 J. CHELLIG ET AL.

Another result, that will be useful later on, provided a bound on the expected number of point of Pα,ν,n

inside B̌κ ,δ(p).

Claim 2.4 For any κ ∈ (1/2, 1) and δ ∈ (−1, 1), uniformly for any p ∈ DR with y(p) ≤ R/2 we have

E

(
|Pα,ν,n ∩ B̌κ ,δ(p)|

)
= �(ey(p)/2).

Proof. We firstly observe that uniformly for all 0 < ρ < R:

α sinh(αρ)

cosh(αR) − 1
= �

(
eαρ

eαR − 1

)
= �

(
e−α(R−ρ)

)
.

Hence, we may calculate the following

E

(
|Pα,ν,n ∩ B̌κ ,δ(p)|

)
=

= n
1 + δ

2π
· 2e−R/2+y(p)/2 ·

∫ R

(1−κ)R+y(p)

e(R−
)/2 α sinh(α
)

cosh(αR) − 1
d


= �(1) · ey(p)/2

∫ R

(1−κ)R+y(p)

e(1/2−α)(R−
)d


= �(1) · ey(p)/2

∫ κR−y(p)

0
e(1/2−α)ydy

α>1/2= �(ey(p)/2). �

Furthermore, since |Pα,ν,n ∩ B̌κ ,γ (p)| follows the Poisson distribution, the above claim also yields that for
any κ ∈ (1/2, 1) and δ > 0,

E

(
|Pα,ν,n ∩ B̌κ ,δ(p)|2

)
= O(ey(p)), (2.3)

uniformly for any p ∈ DR with y(p) ≤ R/2.

2.3.1 Projecting DR onto R
2 To simplify our calculations, we will transfer our analysis from DR to

R
2. In particular, we will make use of a mapping that was introduced in [11] and reduces our model

to a percolation model on R
2. Our result could in principle be proved without the use of it, but the

proofs would be much heavier. This is achieved using a local approximation of the hyperbolic metric
as given in Lemma 2.2. For a point p ∈ DR, let (θ(p), y(p)) ∈ (−π , π ] × [0, R] denote its angle with
respect to a reference point and its defect radius, respectively. We define the map � : DR → B =
(− π

2 eR/2, π

2 eR/2] × [0, R], mapping a point p = (θ(p), y(p)) ∈ DR to a point (x(p), y(p)) ∈ B

θ(p) �→ x(p) := 1

2
θ(p)eR/2 and y(p) �→ y(p).
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 11

Fig. 4. The ball By(p).

For simplicity, we set I := I(R) := π

2 eR/2. The map � projects the process Pα,ν,n to a point process on B.
We will approximate this process with the Poisson point process on B having intensity

2ν

π
αe−αydxdy.

For any measurable subset S ⊆ B, we set μα,β(S) = β
∫

S e−αydxdy, with β = 2να

π
. We denote this

Poisson process by Pα,β . The analogue of the relative angle between points in DR is defined as follows.
For x, x′ ∈ (−I , I], we let

|x − x′|B := min
{|x − x′|, 2I − |x − x′|} .

For a positive real number y < R, we set B(y) := (− π

2 eR/2, π

2 eR/2] × [0, y]; thus, B(R) = B. We define
the random graph By(n; α, ν) with vertex set the point set of Pα,β ∩ B(y), and for any distinct p, p′ ∈ Pα,β ,
the vertices p, p′ are adjacent if and only if

|x(p) − x(p′)|B < e(y(p)+y(p′))/2.

We define the ball around a point p ∈ B(y) as By(p) = {p′ ∈ B(y) : |x(p) − x(p′)|B < e
1
2 (y(p)+y(p′))}.

Thus, for a point p ∈ Pα,β , the neighbourhood of p in the random graph By(n; α, ν) is By(p) ∩ Pα,β \ {p}.
Figure 4 shows the neighbourhood around a point p ∈ B(y). Thus any point lying in the region bounded
by the x-axis and the two log curves will be connected to p. The rectangular region bounded by the axis
and the dotted line represents a single box in our partition, see Section 5.

3. Mapping P(n; α, ν) into B and the Proof of Theorem 2.1

To prove Theorem 2.1, it suffices to consider a subgraph of P(n; α, ν) which contains most edges of it.
To this end, we use Lemma 5.1 from [28].
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12 J. CHELLIG ET AL.

Lemma 3.1 Let G = (V , E) be a graph with |E| ≥ 1, let E0 be a nonempty subset of E. For E ′ = E\E0,
let G′ = (V , E ′). Then

|mod(G) − mod(G′)| < 2|E0|/|E|.

We will show the following lemma.

Lemma 3.2 For every ε > 0, there exists yε > 0 such that a.a.s.

vol(Pα,ν,n ∩ DR−yε ) ≤ εe(P(n; α, ν)).

For a positive real number y < R, let P≤y(n; α, ν) denote the subgraph of P(n; α, ν) induced by the
points of Pα,ν,n having defect radius at most y. (The subgraph P>y(n; α, ν) is defined analogously.) As the
number of edges incident to points in Pα,ν,n ∩ DR−yε is at most vol(Pα,ν,n ∩ DR−yε ), the above two results
imply that for every ε > 0 there exists yε > 0 such that a.a.s.

|mod(P(n; α, ν)) − mod(P≤yε (n; α, ν))| < 2ε.

Thereby, to prove Theorem 2.1 it suffices to show that

mod(P≤yε (n; α, ν)) → 1, (3.1)

as n → ∞ in probability. To show this, we will couple the random graph P≤yε (n; α, ν) with the random
graph Byε (n; α, ν).

Lemma 3.3 (Lemmas 27 and 30 in [11]) There is a coupling between the point processes Pα,β and Pα,ν,n

such that a.a.s. on the coupling space �(Pα,ν,n) = Pα,β . Furthermore, a.a.s. on the coupling space for any
distinct p, p′ ∈ Pα,ν,n with y(p), y(p′) ≤ R/4 we have dH(p, p′) ≤ R if and only if �(p′) ∈ B(�(p); R).

The above lemma implies that there is a coupling between the processes Pα,β and �(Pα,ν,n) on B
such that for any fixed y > 0 a.a.s., on this coupling space, the two point-sets coincide and moreover the
random graph By(n; α, ν) is isomorphic to P≤y(n; α, ν).

So, we can deduce (3.1) from the following theorem.

Theorem 3.4 For any α > 1/2, ν > 0 and any fixed y > 0, we have

mod(By(n; α, ν)) → 1,

as n → ∞ in probability.

4. Some general properties of the modularity of a graph

Let G = (V , E) be a graph. For A, B ⊂ V , let Ā denote V \ A and, for disjoint A, B, let e(A, B) denote the
number of edges with one end vertex in A and the other in B. Let A be a partition of V . It will sometimes
be helpful to talk separately of the edge-contribution, also called coverage

modE
A(G) = 1

m

∑
A∈A

e(A) = 1 − 1

2m

∑
A∈A

e(A, Ā),
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 13

and the degree tax

modD
A(G) = 1

(2m)2

∑
A∈A

vol(A)2.

The following lemma provides a lower bound on modA(G) with respect to the parameters of a given
partition A.

Lemma 4.1 Let G be a graph with m edges. Suppose the partition A = {A1, . . . , Ak} has the property that
for each 1 ≤ i ≤ k,

e(Ai, Āi) ≤ εm and |vol(Ai) − 2m/k| ≤ 2mδ,

then

modA(G) ≥ 1 − kε

2
− 1

k
− kδ2.

Proof. Define δi to be such that vol(Ai) = (1/k + δi)2m and note that
∑

i δi = 0 and by assumption ∀i
|δi| ≤ δ. We may now bound the degree tax of A,

modD
A(G) = 1

4m2

k∑
i=1

vol(Ai)
2 =

k∑
i=1

(
1

k
+ δi

)2

≤ 1

k
+ kδ2.

The edge contribution of A is modE
A(G) = 1−∑i e(Ai, Āi)/2m ≥ 1−kε/2 and thus we have our required

bound. �

5. The modularity of Br(n; α, ν).

In this section, we prove Theorem 3.4. We shall make use of the following identity which is an application
of the (multivariate) Campbell–Mecke formula (see for example Theorem 4.4 [39]): for a Poisson point
process P on a measurable space S with intensity ρ and a measurable non-negative function h : Sk ×N →
R, where N is the set of all locally finite collections of points in S, we have

E

⎛
⎜⎜⎝ ∑

x1,...,xk∈P
∀i,j,xi �=xj

h(x1, . . . , xk , P \ {x1, . . . , xk})

⎞
⎟⎟⎠

=
∫

S
· · ·
∫

S
E (h(x1, . . . , xr , P ∪ {x1, . . . , xk})) ρ(x1) · · · ρ(xk)dx1 · · · dxk .

(5.1)

We set out to show that for any fixed y > 0, we have mod(By(n; α, ν)) → 1 in probability as n → ∞.
To this end, we will use Lemma 4.1 on a specific partition of the vertex set of By(n; α, ν). More specifically,
we consider a partition of the box By = (−I , I]× [0, y] into 2t boxes Bi := (i · hI , (i + 1) · hI]× [0, y], for
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14 J. CHELLIG ET AL.

i = −1/h, . . . , 1/h−1, where h = 1/t with t ∈ N. Given this partition of the box By, we let Ai = Pα,β ∩Bi,
for i = −t, . . . , t − 1. With A = {A−t , . . . , At−1}, we will show that a.a.s.

modA(By(n; α, ν)) ≥ 1 − 4h − o(1). (5.2)

Therefore, for ε > 0, we take t ∈ N to be such that 4h = 4/t < ε/2 and deduce that a.a.s.

mod(By(n; α, ν)) ≥ 1 − ε.

Let us now proceed with the proof of (5.2). Firstly, note that since the random variables vol(Ai) are
identically distributed, with m denoting the number of edges of the random graph By(n; α, ν), we have

E (vol(Ai)) = 1

2t
E
[

vol(Pα,β ∩ By)
] = E (m)

t
. (5.3)

We will use a second moment argument to show that a.a.s. for each i = −t, . . . , t − 1, we have

2m

(
h

2
− 3h2

)
≤ vol(Ai) ≤ 2m

(
h

2
+ 3h2

)
. (5.4)

Furthermore, we will show the following.

Claim 5.1 There exists a constant C (depending on y) such that a.a.s.

E
(
e(A1, A1)

)
< C.

By the union bound, this implies that a.a.s. for all i = −t, . . . , t − 1

e(Ai, Ai) < log n.

Since a.a.s. m = �(n), we can then deduce (5.2) by applying Lemma 4.1 with ε = log2 n/n, δ = 3h2 and
k = t = 1/h. We will deduce (5.4) from Chebyschev’s inequality having shown that both the expectation
and the variance of vol(Ai) are of order n.

Claim 5.2 We have

E (vol(A1)) = �(n) and Var(vol(A1)) = O(n).

Since the random variables vol(Ai) are identically distributed, the first part of the above claim together
with (5.3) imply that E (m) = �(n) too. Furthermore, Chebyschev’s inequality implies that a.a.s.

2E (m)

(
h

2
− h2

)
≤ vol(A1) ≤ 2E (m)

(
h

2
+ h2

)
.

In turn, the union bound implies that a.a.s. for all i = −t, . . . , t − 1, we have

2E (m)

(
h

2
− h2

)
≤ vol(Ai) ≤ 2E (m)

(
h

2
+ h2

)
. (5.5)
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 15

Furthermore, a.a.s m ≥ E (m) (1 − h3). Indeed, we have by Chebyshev’s inequality that for each i =
−t, . . . , t − 1

P
[|vol(Ai) − E (vol(Ai))| > h3

E (vol(Ai))
] ≤ Var(vol(Ai))

h6E (vol(Ai))
2

Claim 5.2= o(1).

Hence, by the union bound, we have that a.a.s vol(Ai) ≥ (1−h3)E (vol(Ai)) for all i = −t, . . . , t −1.
Therefore by the Handshaking Lemma,

∑t−1
i=−t vol(Ai) = 2m whereby

2m =
∑

−t≤i≤t−1

vol(Ai) ≥
∑

−t≤i≤t−1

(1 − h3)E (vol(Ai)) = 2E (m) (1 − h3)

and,

2m =
∑

−t≤i≤t−1

vol(Ai) ≤
∑

−t≤i≤t−1

(1 + h3)E (vol(Ai)) = 2E (m) (1 + h3).

From the above, we deduce (5.4) since a.a.s. for all i = −t, . . . , t − 1

vol(Ai) ≤
(

h

2
+ h2

)
(1 − h3)−1m ≤

(
h

2
+ h2

)
(1 + h2)m ≤

(
h

2
+ 3h2

)
m,

provided that t ≥ 2 (so that h2 > h3 + h5 which is equivalent to 1 > h + h3 and holds if h ≤ 1/2), and

vol(Ai) ≥
(

h

2
− h2

)
(1 + h3)−1m ≥

(
h

2
− h2

)
(1 − h3)m ≥

(
h

2
− 3h2

)
m.

Proof of Claim 5.1. Firstly, let us point out that if a point p ∈ A1 is far from the boundary of B1,
then it does not contribute to e(A1, A1). To quantify this, let us recall that for another p′ ∈ B(y), if
|x(p′)− x(p)|B > e

1
2 (y(p)+y), then p′ �∈ By(p). Since y(p) ≤ y as well, we can further conclude that for any

point p′ ∈ B(y), if |x(p′) − x(p)|B > ey, then p′ �∈ By(p).
Hence, the only points p ∈ A1 that may contribute to e(A1, A1) are such that 0 ≤ x(p) < ey or

hI − ey ≤ x(p) < hI . Let A(1)

1 denote the set of the former and A(2)

1 the set of the latter. Hence,

E
(
e(A1, A1)

) ≤ E

(
vol(A(1)

1 )
)

+ E

(
vol(A(2)

1 )
)

= 2 · E

(
vol(A(1)

1 )
)

,

where the last equality holds since the random variables vol(A(1)

1 ) and vol(A(2)

1 ) are identically distributed.
For a finite set of points P and a point p ∈ P, we let deg(p; P) = |By(p) ∩ P \ {p}|. Now, we apply the
Campbell–Mecke formula (5.1) and get

E

(
vol(A(1)

1 )
)

= E

⎛
⎜⎝ ∑

p∈Pα,β∩A(1)
1

deg(p; Pα,β)

⎞
⎟⎠

(5.1)= β ·
∫ y

0

∫ ey

0
E
(
deg((x0, y0)); Pα,β ∪ {(x0, y0)}

) · e−αy0 dx0dy0.
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16 J. CHELLIG ET AL.

But E
(
deg((x0, y0)); Pα,β ∪ {(x0, y0)}

) = |By((x0, y0)) ∩ Pα,β | = O(1), uniformly over all x0 ∈ (0, ey] and
y0 ∈ [0, y]. So

E

(
vol(A(1)

1 )
)

= O(1) ·
∫ y

0

∫ ey

0
e−αy0 dx0dy0 = O(1). �

Proof of Claim 5.2. We will calculate E (vol(A1)) with the use of the Campbell–Mecke formula (5.1):

E (vol(A1)) = E

⎛
⎝ ∑

p∈A1∩Pα,β

deg(p; Pα,β ∪ {p})
⎞
⎠

= β ·
∫ hI

0

∫ y

0
E
(
deg((x0, y0); Pα,β ∪ {(x0, y0)})

)
e−αy0 dy0dx0

= βhI ·
∫ y

0
E
(
deg((0, y0); Pα,β ∪ {(0, y0)})

)
e−αy0 dy0, (5.6)

since Pα,β is homogeneous on the x-coordinate and deg((x0, y0); Pα,β ∪{(x0, y0)}) are identically distributed
with respect to x0. Now,

E
(
deg((0, y0); Pα,β ∪ {(0, y0)})

) = 2β ·
∫ y

0
e(y0+y′

0)/2e−αy′
0 dy′

0

α>1/2= 2β

α − 1/2
ey0/2

(
1 − e−y(α−1/2)

)
. (5.7)

We substitute the integrand in (5.6) with the above expression and get

E (vol(A1)) = hI
2β2

α − 1/2

(
1 − e−y(α−1/2)

) ·
∫ y

0
ey0/2−αy0 dy0

= 2hI

[
β

α − 1/2

(
1 − e−y(α−1/2)

)]2

= �(n).

We calculate Var(vol(A1)) = E
(
vol(A1)

2
) − (E (vol(A1)))

2. For convenience, let p0 = (x0, y0) and
similarly p′

0 = (x′
0, y′

0). With the use of the Campbell–Mecke formula (5.1). We write

E
(
vol(A1)

2
) = E

⎛
⎝ ∑

p,p′∈Pα,β∩B1

deg(p; Pα,β) · deg(p′; Pα,β)

⎞
⎠ (5.1)=

∫ y

0

∫ hI

0

∫ y

0

∫ hI

0
E
(
deg(p0; Pα,β ∪ {p0, p′

0})× (5.8)

deg(p′
0; Pα,β ∪ {p0, p′

0})
) · e−αy0 e−αy′

0 dx′
0dy′

0dx0dy0.

We will now argue that for the majority of the pairs of points p0, p′
0 ∈ B1, the expectation that is inside this

integral factorizes. Suppose without loss of generality that x0 < x′
0. In this case, By(p0) ∩ By(p′

0) = ∅ if
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 17

and only if x′
0 −x0 > e(y′

0+y)/2 +e(y0+y)/2. So, if this is the case, the random variables deg(p0; Pα,β ∪{p0, p′
0})

and deg(p0; Pα,β ∪ {p0, p′
0}) are independent.

For given y0, y′
0 ∈ [0, y], we let

S(y0, y′
0) = {(x0, x′

0) ∈ (0, hI] × (0, hI] : 0 < x′
0 − x0 ≤ e(y′

0+y)/2 + e(y0+y)/2}.
With this definition, we split the quadruple integral in (5.8) in the following way:∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′

0)

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
)×

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

+
∫ y

0

∫ y

0

∫
S(y0,y′

0)

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
)×

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0. (5.9)

If (x0, x′
0) ∈ (0, hI]×(0, hI]\S(y0, y′

0), then the random variables deg(p0; Pα,β ∪{p0, p′
0}) and deg(p′

0; Pα,β ∪
{p0, p′

0}) are independent. In the first integral, the integrand is

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
)

= E
(
deg(p0); Pα,β ∪ {p0, p′

0}
) · E

(
deg(p′

0); Pα,β ∪ {p0, p′
0}
)

= E
(
deg(p0); Pα,β ∪ {p0}

) · E
(
deg(p′

0); Pα,β ∪ {p′
0}
)

.

Therefore, we can bound the first integral in (5.9) as follows:∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′

0)

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
)×

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

=
∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]\S(y0,y′

0)

E
(
deg(p0); Pα,β ∪ {p0}

)×

E
(
deg(p′

0); Pα,β ∪ {p′
0}
)

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

≤
∫ y

0

∫ y

0

∫
(0,hI]×(0,hI]

E
(
deg(p0); Pα,β ∪ {p0}

) · E
(
deg(p′

0); Pα,β ∪ {p′
0}
)×

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

=
(∫ y

0

∫ hI

0
E
(
deg(p0); Pα,β ∪ {p0}

)
e−αy0 dx0dy0

)2

.

But by the Campbell–Mecke formula (5.1), the latter is

(E (vol(A1)))
2 =

(∫ y

0

∫ hI

0
E
(
deg(p0); Pα,β ∪ {p0}

)
e−αy0 dx0dy0

)2

.
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18 J. CHELLIG ET AL.

Now, let us consider the second integral in (5.9). We first consider the following claim:

Claim 5.3 Let y > 0 be a constant. Then for every y0, y′
0 ∈ [0, y] and (x0, x′

0) ∈ S(y0, y′
0), we have

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
) = O(1).

Proof. By recalling that p0 = (x0, y0) and p′
0 = (x′

0, y′
0), we note by the Cauchy–Schwarz inequality

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
) ≤ E

(
deg(p0)

2; Pα,β ∪ {p0, p′
0}
)1/2 ×

E
(
deg(p′

0)
2; Pα,β ∪ {p0, p′

0}
)1/2

.

Furthermore, as conditioning on a single point in the process can only change the square of the degree
by a constant factor, we have that

E
(
deg(p0)

2; Pα,β ∪ {p0, p′
0}
) = �(E

(
deg(p0)

2; Pα,β ∪ {p0}
)
).

As the intensity measure is homogeneous on the x co-ordinate, it suffices for us to show that for any
y0 ∈ [0, y],

E
(
deg(0, y0)

2; Pα,β ∪ {(0, y0)}
) = O(1).

Indeed, we note that as a consequence of equation (5.7) and the definition of the point process, the
random variable deg(0, y0) on the probability space of the point process Pα,β ∪{(0, y0)} follows the Poisson

distribution Po
(

2β

α−1/2 ey0/2
(
1 − e−y(α−1/2)

))
. Set λ to be the parameter of this Poisson distribution.

Since y is fixed and y0 ≤ y we have λ = O(1). Using the second moment of the Poisson distribution,
we have:

E
(
deg(0, y0)

2; Pα,β ∪ {(0, y0)}
) = λ2 + λ = O(1). �

We now return our attention to the second integral in (5.9),

∫ y

0

∫ y

0

∫
S(y0,y′

0)

E
(
deg(p0) · deg(p′

0); Pα,β ∪ {p0, p′
0}
)×

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

= O(1) ·
∫ y

0

∫ y

0

∫
S(y0,y′

0)

e−αy0 e−αy′
0 dx0dx′

0dy0dy′
0

= O(1) ·
∫ y

0

∫ y

0

∫ hI

0

∫ x+2ey

x−2ey
e−αy0 e−αy′

0 dx0dx′
0dy0dy′

0

= O(1)

∫ y

0

∫ y

0

∫ hI

0
e−αy0 e−αy′

0 dx′
0dy0dy′

0

= O(n).
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 19

Thus, we conclude that

E
(
vol(A1)

2
) ≤ (E (vol(A1)))

2 + O(n),

whereby

Var(vol(A1)) = O(n). �

6. Proof of Lemma 3.2

Here, we return to the probability space associated with the random graph P(n; α, ν). In particular, we will
work with a subset of the point process Pα,ν,n on DR, which we denote by P(>δR)

α,ν,n : we set P(>δR)
α,ν,n = Pα,ν,n\DδR,

for some δ ∈ (0, 1). In other words, P(>δR)
α,ν,n is Pα,ν,n but without the points inside the disc DδR. The reason

for working with this process is that it is hard to bound the degrees of the points of Pα,ν,n which may
appear close to the centre of DR. However, we can show that the two processes coincide a.a.s. provided
that δ is small enough.

Claim 6.1 If δ < 1 − 1/(2α), then a.a.s.

P(>δR)
α,ν,n = Pα,ν,n.

Proof. This follows from a simple first moment argument. Indeed,

E
(|Pα,ν,n ∩ DδR|

) = n · κα,ν,n(DδR) = n · 1

2π

∫ π

−π

∫ δR

0
ρn(r)drdθ .

But ∫ δR

0
ρn(r)dr =

∫ δR

0

α sinh(αr)

cosh(αR) − 1
dr = cosh(αδR) − 1

cosh(αR) − 1
= O(n−2α(1−δ)).

Therefore,

E
(|Pα,ν,n ∩ DδR|

) = O(n1−2α(1−δ)).

So, if δ < 1 − 1/(2α), then the exponent is negative and this expected value is o(1). �

Note that 1 − 1/(2α) < 1, as α > 1/2. Furthermore, note that the definition of P(>δR)
α,ν,n allows for

both processes to be defined on the same probability space, thus being naturally coupled. The intensity
measure of P(>δR)

α,ν,n is n · κα,ν,n(· \ DδR). For the moment, we shall assume that δ < 1 − 1/(2α), so that the
conclusion of Claim 6.1 holds.

For a point p ∈ DR and a finite set of points P ⊂ DR, we set deg(p; P) = |B(p; R) ∩ P \ {p}|. For
0 ≤ y1 < y2 ≤ R, we let Ay1,y2 ⊂ DR denote the annulus inside DR consisting of those points in DR

having defect radius between y1 and y2. We set

Xy1,y2(P) =
∑

p∈P∩Ay1,y2

deg(p; P).
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20 J. CHELLIG ET AL.

Clearly, for any 0 < y < R on the event {Pα,ν,n = P(>δR)
α,ν,n }, we have

vol(Pα,ν,n ∩ DR−y) = Xy,R(P
(>δR)
α,ν,n )

and,

e(P(n; α, ν)) = 1

2
X0,R(P

(>δR)
α,ν,n ).

So, on {Pα,ν,n = P(>δR)
α,ν,n }, if vol(Pα,ν,n ∩ DR−y) > εe(P(n; α, ν)), for some ε > 0, then

Xy,R(P
(>δR)
α,ν,n ) >

ε

2
X0,R(P

(>δR)
α,ν,n ). (6.1)

We will give a general result on the concentration of the sum Xy,R(Pα,ν,n), parametrized by y. We will
show the following.

Lemma 6.2 For any fixed y ≥ 0, we have

Xy,R(P(>δR)
α,ν,n )

E

(
Xy,R(P

(>δR)
α,ν,n )

) → 1,

as n → ∞ in probability.

Furthermore, we show that E
(
Xy,R(P(>δR)

α,ν,n )
)

decays exponentially in y.

Lemma 6.3 For any 0 ≤ y < R/4 and any n sufficiently large, we have

E
(
Xy,R(P

(>δR)
α,ν,n )

) ≤ 2e−(α−1/2)y · E
(
X0,R(P

(>δR)
α,ν,n )

)
.

The above two lemmas imply that a.a.s.

Xy,R(P
(>δR)
α,ν,n ) ≤ 3e−(α−1/2)yX0,R(P

(>δR)
α,ν,n ).

If we set y = yε := 1
α−1/2 · log(6/ε), it follows from (6.1) that

P(e(P>yε (n; α, ν)) > εe(P(n; α, ν))) ≤ P(Xyε ,R(Pα,ν,n) >
ε

2
X0,R(P

(>δR)
α,ν,n ))

= P(Xyε ,R(Pα,ν,n) > 3e−(α−1/2)yε X0,R(P
(>δR)
α,ν,n )) = o(1).

This concludes the Proof of Lemma 3.2, assuming Lemmas 6.2 and 6.3. We now proceed with the proofs
of these two lemmas.
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 21

Proof of Lemma 6.3. We begin with an upper bound on the expected value of Xy,R(P(>δR)
α,ν,n ). Note that for

S < R we have Xy,S(P(>δR)
α,ν,n ) ≤ Xy,R(P(>δR)

α,ν,n ). So we can bound

0 ≤ Xy,R(P
(>δR)
α,ν,n ) − Xy,R/2(P

(>δR)
α,ν,n ) ≤ 2 · |{p ∈ P(>δR)

α,ν,n ∩ DR/2}|2

+
∑

p∈P(>δR)
α,ν,n ∩AR/2,(1−δ)R

deg(p; P(>δR)
α,ν,n ∩ A0,R/2). (6.2)

We will show that the right-hand side is sub-linear a.a.s.

Claim 6.4 E
(
Xy,R(P(>δR)

α,ν,n )
)− E

(
Xy,R/2(P(>δR)

α,ν,n )
) = o(n).

Proof. The expected value of the first term on the right-hand side of (6.2) is

E
(|{p ∈ P(>δR)

α,ν,n ∩ DR/2}|
) = n · κα,ν,n(DR/2)

< n · α

2π

∫ R/2

0

∫ π

−π

sinh(αr)

cosh(αR) − 1
dθdr

= n · cosh(αR/2) − 1

cosh(αR) − 1
= O(n1−α)

α>1/2= o(n1/2).

Since this random variable is Poisson-distributed, the expected value of its square is proportional to the
square of its expected value. Thereby,

E
(|{p ∈ P(>δR)

α,ν,n ∩ DR/2}|2
) = o(n). (6.3)

We now bound the expected value of the last term in (6.2), using the Campbell–Mecke formula (5.1):

E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩AR/2,(1−δ)R

deg(p; P(>δR)
α,ν,n ∩ A0,R/2)

⎞
⎟⎠

= n · 1

2π

∫ π

−π

∫ R/2

δR
E
(
deg((
, θ); (P(>δR)

α,ν,n ∪ {(
, θ)}) ∩ A0,R/2)
)
ρn(
)d
dθ . (6.4)

For a point p = (
, θ) ∈ DR (here 
 is the radius of p), we set hκ(p) := κR − R + 
. We will use the
upper bound which is a consequence of (2.2): for κ ∈ (0, 1) and γ ∈ (0, 1) and for n sufficiently large

deg((
, θ); (P(>δR)
α,ν,n ∪ {(
, θ)}) ∩ A0,R/2) ≤ |B̌κ ,γ ((
, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |
+|B↑((
, θ); P(>δR)

α,ν,n )|,

where

B↑((
, θ); P) := {p ∈ P : y(p) > hκ((
, θ))}.
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22 J. CHELLIG ET AL.

Thereby,

E
(
deg((
, θ); (P(>δR)

α,ν,n ∪ {(
, θ)}) ∩ A0,R/2)
) ≤

E

(
|B̌κ ,γ ((
, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |
)

+ E
(|B↑((
, θ); P(>δR)

α,ν,n )|) . (6.5)

Now, the first term on the right-hand side of (6.5) can be bounded as follows:

E

(
|B̌κ ,γ ((
, θ)) ∩ A0,R/2 ∩ P(>δR)

α,ν,n |
)

(6.6)

= n
1 + γ

2π
· 2e−R/2+(R−
)/2 ·

∫ R

R/2
e(R−z)/2 α sinh(αz)

cosh(αR) − 1
dz

= �(1) · e(R−
)/2

∫ R

R/2
e(1/2−α)(R−z)dz

= �(1) · e(R−
)/2

∫ R/2

0
e(1/2−α)zdz = �(e(R−
)/2).

Note that this bound is uniform over all 
 ∈ (δR, R/2). Substituting it in (6.4) we get

E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩AR/2,(1−δ)R

|B̌κ ,γ ((
, θ)) ∩ A0,R/2 ∩ P(>δR)
α,ν,n |

⎞
⎟⎠

= O(n)

∫ π

−π

∫ R/2

δR
e(R−
)/2ρn(
)d
dθ

= O(n)

∫ R/2

δR
e(R−
)/2e−α(R−
)d


α>1/2= O(n)e−(α−1/2)R/2 = o(n). (6.7)

For the second term, we have:

E
(|B↑((
, θ); P(>δR)

α,ν,n )|) = n · κα,ν,n({p : y(p) > κR − R + 
})

= n · α

2π

∫ 2R−κR−


0

∫ π

−π

sinh(αr)

cosh(αR) − 1
dθdr

= n · cosh(α(2R − κR − 
)) − 1

cosh(αR) − 1
= O(n · eα(R(1−κ)−
)), (6.8)

uniformly over all R/2 < 
 < R − y. Therefore,

n · 1

2π

∫ R/2

δR

∫ π

−π

E
(|B↑((
, θ); P(>δR)

α,ν,n )|)) ρn(
)dθd


= O(n2) · eαR(1−κ) ·
∫ R/2

δR
e−α
 sinh(α
)

cosh(αR) − 1
d
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MODULARITY OF HYPERBOLIC RANDOM GRAPHS 23

sinh(x)≤ex

≤ O(n2) · eαR(1−κ) ·
∫ R/2

δR
e−α
 eα


cosh(αR) − 1
d


= O(n2) · eαR(1−κ)−αR

∫ R/2

δR
d


= O(R) · n2e−ακR = O(R) · n2(1−ακ) α>1/2= o(n),

provided that 1 − κ is sufficiently small (depending on α). �

We can now consider E
(
Xy,R/2(P(>δR)

α,ν,n )
)
. Applying the Campbell–Mecke identity (5.1) to the point

process P(>δR)
α,ν,n on DR with intensity measure n · κα,ν,n(· \ DδR), we have

E
(
Xy,R/2(P

(>δR)
α,ν,n )

) = E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,R/2

deg(p; P(>δR)
α,ν,n )

⎞
⎟⎠

= n · 1

2π

∫ π

−π

∫ R−y

R/2
E
(
deg((
, θ); (P(>δR)

α,ν,n ∪ {(
, θ)}))) ρn(
)d
dθ . (6.9)

Now, we bound the degree of (
, θ) inside Ay,R/2 with respect to the point process P(>δR)
α,ν,n ∪ {(
, θ)} with

the use of Lemma 2.2.
We apply (2.2) with κ sufficiently close to 1. For γ ∈ (0, 1), and any finite subset P ⊂ DR we bound

|B̌κ ,−γ ((
, θ)) ∩ P| ≤ deg((
, θ); P) ≤ |B↑((
, θ); P)| + |B̌κ ,γ ((
, θ)) ∩ P|,

with

B↑((
, θ); P) := {p ∈ P : y(p) > hκ((
, θ))}.

Let us set

X (κ ,γ )
y1,y2

(P) =
∑

p∈P∩Ay1,y2

|B̌κ ,γ (p) ∩ P \ {p}|.

For the expected value of the first term, we use the calculation in (6.8) which holds uniformly over all
R/2 < 
 < R − y:

n · 1

2π

∫ R−y

R/2

∫ π

−π

E
(
B↑((
, θ); (P(>δR)

α,ν,n ∪ {(
, θ)}) ∩ DR−y)
)
ρn(
)dθd
 = o(n) (6.10)

as in the proof of the previous claim, provided that 1 − κ is sufficiently small (depending on α).
Therefore,

0 ≤ E
(
Xy,R/2(P

(>δR)
α,ν,n )

)− E

(
X (κ ,γ )

y,R/2(P
(>δR)
α,ν,n )

)
= o(n). (6.11)
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24 J. CHELLIG ET AL.

Now, for any real γ such that |γ | ∈ (0, 1), we have

E

(
|B̌κ ,γ ((
, θ)) ∩ P(>δR)

α,ν,n |
)

= n · α

2π
· (1 + γ )2e−R/2 · e

1
2 (R−
)

∫ R

2R−κR−


e
1
2 (R−z) sinh(αz)

cosh(αR) − 1
dz.

Note that since 
 > R/2, for n sufficiently large we have

∣∣∣∣ ρn(z)

e−α(R−z)
− 1

∣∣∣∣ =
∣∣∣∣ 1

e−α(R−z)
· α sinh(αz)

cosh(αR) − 1
− 1

∣∣∣∣ < |γ |.

For real quantities a, b, c, d, with c, d > 0, we write that a = d(b ± c) if d(b − c) ≤ a ≤ d(b + c). So
by the above inequality, the last integral is bounded, for n sufficiently large, as

∫ R

2R−κR−


e
1
2 (R−z) sinh(αz)

cosh(αR) − 1
dz = (1 ± |γ |)

α
·
∫ R

2R−κR−


e( 1
2 −α)(R−z)dz. (6.12)

By applying the fact that 
 > R/2 and 1 − κ is sufficiently small (hence κ is bounded away from
1/2), we can compute the right-hand integral as follows:

∫ R

2R−κR−


e( 1
2 −α)(R−z)dz =

∫ κR+
−R

0
e( 1

2 −α)zdz

α>1/2= 1

(α − 1/2)
·
(

1 − e( 1
2 −α)(κR+
−R)

)

= 1

(α − 1/2)
(1 − o(1)).

Therefore by substituting this expression into (6.12), and taking n to be sufficiently large for any

 > R/2

∫ R

2R−κR−


e
1
2 (R−z) sinh(αz)

cosh(αR) − 1
dz = (1 ± 2|γ |)

α(α − 1/2)
.

By substituting (6.12) and recalling that ν = ne−R/2, and setting Cα,ν = ν/(π(α − 1/2)), it follows
that uniformly for all 
 ∈ [R/2, R − y] and θ ∈ (−π , π ] we have:

E

(
|B̌κ ,γ ((
, θ)) ∩ P(>δR)

α,ν,n |
)

e
1
2 (R−
)

= (1 ± 2|γ |)2Cα,ν .
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Therefore, by the Campbell–Mecke formula (5.1) we get:

E

(
X (κ ,γ )

y,R/2(P
(>δR)
α,ν,n )

)
= n

2π

∫ R−y

R/2

∫ π

−π

E

(
|B̌κ ,γ ((
, θ)) ∩ P(>δR)

α,ν,n |
)

ρn(
)dθd


= (1 ± 2|γ |)2Cα,ν · n

2π

∫ R−y

R/2

∫ π

−π

e
1
2 (R−
)−α(R−ρ)dθd
. (6.13)

Again, we turn our attention to the right-hand integral, as α > 1/2 and y < R/4, we have the
following:

∫ R−y

R/2

∫ π

−π

e
1
2 (R−
)−α(R−ρ)dθd
 = 2π

∫ R−y

R/2
e(1/2−α)(R−
)d


= 2π

∫ R/2

y
e(1/2−α)zdz

= 2π

α − 1/2
e−(α−1/2)y

(
1 − e−(α−1/2)(R/2−y)

)
= 2π

α − 1/2
e−(α−1/2)y(1 − o(1)),

uniformly over y < R/4.
Substituting the above into (6.13), and taking n sufficiently large and setting C′

α,ν = Cα,ν/(α − 1/2),
we have the following:

E

(
X (κ ,γ )

y,R/2(P
(>δR)
α,ν,n )

)
= n(1 ± 3|γ |)2C′

α,νe−(α−1/2)y.

So (6.9) and (6.11) yield, for sufficiently large n

E
(
Xy,R/2(P

(>δR)
α,ν,n )

) = n(1 ± 4|γ |)2 · C′
α,νe−(α−1/2)y.

Combining this with Claim 6.4 we deduce the following result: for γ ∈ (−1, 1), and n sufficiently
large, we have for all 0 ≤ y < R/4,

n(1 − 5|γ |)2C′
α,νe−(α−1/2)y ≤ E

(
Xy,R(P

(>δR)
α,ν,n )

) ≤ n(1 + 5|γ |)2C′
α,νe−(α−1/2)y. (6.14)

By applying (6.14), we bound the following ratio: for |γ | chosen small enough such that (1+5|γ |)/(1−
5|γ |) <

√
2 and n sufficiently large: for all 0 ≤ y < R/4,

Xy,R(P(>δR)
α,ν,n )

X0,R(P
(>δR)
α,ν,n )

≤ n(1 + 5|γ |)2C′
α,νe−(α−1/2)y

n(1 − 5|γ |)2C′
α,ν

= (1 + 5|γ |)2

(1 − 5|γ |)2
e−(α−1/2)y

≤ 2e−(α−1/2)y. �

Proof of Lemma 6.2. Since

0 ≤ E
(
Xy,R(P

(>δR)
α,ν,n )

)− E
(
Xy,R/2(P

(>δR)
α,ν,n )

) = o(n),
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but E
(
Xy,R(P(>δR)

α,ν,n )
) = �(n) (for fixed y > 0) to show the concentration of Xy,R(P(>δR)

α,ν,n ) around its expected
value, it suffices to show that

Xy,R/2(P(>δR)
α,ν,n )

E

(
Xy,R/2(P

(>δR)
α,ν,n )

) → 1

as n → ∞, in probability.
We decompose this random variable as follows:

Xy,R/2(P
(>δR)
α,ν,n ) = Xy,log R(P

(>δR)
α,ν,n ) + Xlog R,R/2(P

(>δR)
α,ν,n ).

By applying the upper bound of (6.14) with y = log R, we deduce that

E
(
Xlog R,R/2(P

(>δR)
α,ν,n )

) = o(n).

For p ∈ DR, we set

deg>hκ (p)(p; P) := |{p′ ∈ (P \ {p}) ∩ B(p; R) : y(p′) > hκ(p)}|
and

deg≤hκ (p)(p; P) := |{p′ ∈ (P \ {p}) ∩ B(p; R) : y(p′) ≤ hκ(p)}|.

Hence, we express

Xy,log R(P
(>δR)
α,ν,n ) =

∑
p∈P(>δR)

α,ν,n ∩Ay,log R

deg>hκ (p)(p; P(>δR)
α,ν,n )

+
∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg≤hκ (p)(p; P(>δR)
α,ν,n ).

Note that deg>hκ (p)(p; P) ≤ |B↑(p; P)|. So, by (6.10), the first term has

E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg>hκ (p)(p; P(>δR)
α,ν,n )

⎞
⎟⎠ = o(n).

For any κ ∈ (0, 1) and any finite set P ⊂ DR, set

X (κ)

y,log R(P) :=
∑

p∈P∩Ay,log R

deg≤hκ (p)(p; P).

Therefore,

E
(
Xy,log R(P

(>δR)
α,ν,n )

) = E

(
X (κ)

r,log R(P
(>δR)
α,ν,n )

)
+ o(n).
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In turn,

E

(
X (κ)

y,log R(P
(>δR)
α,ν,n )

)
= �(n).

too. Hence, to show its concentration around its expected value, it suffices to show that X (κ)

y,log R(P
(>δR)
α,ν,n ) is

concentrated around its expected value: as n → ∞

X (κ)

y,log R(P
(>δR)
α,ν,n )

E

(
X (κ)

y,log R(P
(>δR)
α,ν,n )

) → 1, (6.15)

in probability. Since the expected value scales linearly in n, (6.15) will follow if we show that

Var
(

X (κ)

y,log R(P
(>δR)
α,ν,n )

)
= o(n2).

6.1 Second-moment calculations

To bound the variance of X (κ)

y,log R(P
(>δR)
α,ν,n ), we will use Claim 2.3: we set tκ ,γ ,R := 4(1 + γ )e−(1−κ)R/2 and

write A2
y,log R for the product Ay,log R × Ay,log R.

We apply the Campbell–Mecke formula (5.1)

(2π)2

n2
E

⎛
⎜⎝
⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg<hκ (p)(p; P(>δR)
α,ν,n )

⎞
⎟⎠

2⎞
⎟⎠

=
∫

A2
y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′));

P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}) ρn(
)ρn(


′)dθ ′d
′dθd


=
∫

A2
y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′))×

1|θ−θ ′|π ≤tκ ,γ ,R ; P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}

)
ρn(
)ρn(


′)dθ ′d
′dθd


+
∫

A2
y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′))×

1|θ−θ ′|π >tκ ,γ ,R ; P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}

)
ρn(
)ρn(


′)dθ ′d
′dθd
.

Recall that for r > 0, we defined Ar = A0,R−r . To bound the second integral, let us observe that by
Claim 2.3, if |θ − θ ′|π > tκ ,γ ,R, then

(
BR((
, θ)) ∩ AR−hκ ((
,θ))

) ∩ (BR((

′, θ ′)) ∩ AR−hκ ((
′ ,θ ′))

) = ∅.
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So, the random variable deg<hκ ((
,θ))((
, θ); P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}) and the random variable

deg<hκ ((
′ ,θ ′))((

′, θ ′); P(>δR)

α,ν,n ∪ {(
, θ), (
′, θ ′)}) are independent. Thus, we can write

∫
A2

y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′))×

1|θ−θ ′|π >tκ ,γ ,R ; P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}

)
ρn(
)ρn(


′)dθ ′d
′dθd


=
∫

A2
y,log R

E
(
deg<hκ ((
,θ))((
, θ)); P(>δR)

α,ν,n ∪ {(
, θ)})×

E
(
deg<hκ ((
′ ,θ ′))((


′, θ ′)); P(>δR)
α,ν,n ∪ {(
′, θ ′)})

1|θ−θ ′|π >tκ ,γ ,R · ρn(
)ρn(

′)dθ ′d
′dθd


≤
∫

A2
y,log R

E
(
deg<hκ ((
,θ))((
, θ)); P(>δR)

α,ν,n ∪ {(
, θ)})×

E
(
deg<hκ ((
′ ,θ ′))((


′, θ ′)); P(>δR)
α,ν,n ∪ {(
′, θ ′)}) ρn(
)ρn(


′)dθ ′d
′dθd


=
(∫

Ay,log R

E
(
deg<hκ ((
,θ))((
, θ)); P(>δR)

α,ν,n ∪ {(
, θ)}) · ρn(
)d
dθ

)2

= (2π)2

n2
E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg<hκ (p)(p)

⎞
⎟⎠

2

,

by the Campbell–Mecke formula (5.1).
For the first integral, we bound the product of the degrees by the sum of their squares:

deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((

′, θ ′)) ≤

deg2
<hκ ((
,θ))((
, θ)) + deg2

<hκ ((
′ ,θ ′))((

′, θ ′)).

So, by symmetry, we bound the first integral as follows:

∫
A2

y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′))×

1|θ−θ ′|π ≤tκ ,γ ,R ; P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}

)
ρn(
)ρn(


′)dθ ′d
′dθd


≤ 2 ·
∫

A2
y,log R

E
(
deg2

<hκ ((
,θ))((
, θ); P(>δR)
α,ν,n ∪ {(
, θ)})) · 1|θ−θ ′|π ≤tκ ,γ ,R ×

ρn(
)ρn(

′)dθ ′d
′dθd


= 4tκ ,γ ,R

(∫
Ay,log R

E
(
deg2

<hκ ((
,θ))((
, θ); P(>δR)
α,ν,n ∪ {(
, θ)})) ρn(
)dθd


)
×
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(∫
A2

y,log R

ρn(

′)dθ ′d
′

)
. (6.16)

But by (2.2), we have

deg<hκ ((
,θ))((
, θ); P(>δR)
α,ν,n ∪ {(
, θ)}) ≤ |P(>δR)

α,ν,n ∩ B̌κ ,γ (p)|.

So by (2.3), we have

E
(
deg2

<hκ ((
,θ))((
, θ)); P(>δR)
α,ν,n ∪ {(
, θ)}) = O(eR−
),

uniformly over all R − log R < 
 < R − y. Therefore,

∫
Ay,log R

E
(
deg2

<hκ ((
,θ))((
, θ)); P(>δR)
α,ν,n ∪ {(
, θ)}) ρn(
)dθd


= O(1) ·
∫ R−y

R−log R
eR−
 sinh(α
)

cosh(αR) − 1
d


= O(1) ·
∫ R−y

R−log R
e(R−
)(1−α)d


= O(1) ·
∫ log R

y
e(1−α)zdz

α>1/2= O(1) · R1/2. (6.17)

Furthermore,

∫
Ay,log R

ρn(

′)dθ ′d
′ = 2π

cosh(α(R − y)) − cosh(α(R − log R))

cosh(αR) − 1
= O(1). (6.18)

Using (6.17) and (6.18) into (6.16), we get

∫
A2

y,log R

E
(
deg<hκ ((
,θ))((
, θ)) · deg<hκ ((
′ ,θ ′))((


′, θ ′))×

1|θ−θ ′|π ≤tκ ,γ ,R ; P(>δR)
α,ν,n ∪ {(
, θ), (
′, θ ′)}

)
ρn(
)ρn(


′)dθ ′d
′dθd


= O(1) · tκ ,γ ,RR1/2 = O(1) · e−(1−κ)R/2R1/2

= O(1) · n−(1−κ)R1/2.

Therefore, we obtain

E

⎛
⎜⎝
⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg<hκ (p)(p)

⎞
⎟⎠

2⎞
⎟⎠
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≤ E

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg<hκ (p)(p)

⎞
⎟⎠

2

+ O(1) · n2−(1−κ)R1/2.

Rearranging the above, we get

Var

⎛
⎜⎝ ∑

p∈P(>δR)
α,ν,n ∩Ay,log R

deg<hκ (p)(p)

⎞
⎟⎠ = O(1) · n1+κR1/2 = o(n2).

�

7. Discussion

In this article, we have considered the modularity value of the KPKVB model of a random graph on the
hyperbolic plane. We have shown that for all α > 1/2 and ν > 0 we have that mod(P(n; α, ν)) → 1
as n → ∞ in probability. The partition we consider is that of dividing the Poincaré disc into a constant
number of equal sectors. We show that the modularity of this partition is closely related to the box partition
given in By(n; α, ν). Following from this, we observe that for any ε > 0 a.a.s the modularity of By(n; α, ν)

is at least 1 − ε and thus mod(P(n; α, ν)) → 1, as n → ∞, in probability.
As we have now shown that the modularity value of the KPKVB model tends to 1 in probability, a

natural question is the order of 1 − mod(G). This is also referred to as the modularity deficit of the graph
[28]. The modularity deficit of a partition, 1 − modA(G), quantifies how much a given partition A differs
from optimal modularity. Trees on n nodes with maximum degree � have modularity deficit O(�

1
2 n− 1

2 )

[29], while the torus graph on n nodes in dimension d has deficit O(n−1/2d) [40]. While we deduce that
the modularity deficit of the sector division in the KPKVB model can be made arbitrarily small, it is open
to determine whether we can explicitly express the rate of convergence asymptotically. It is also open to
determine for a given growth rate, whether we can exhibit a partition that possesses such a deficit.

A modular community structure is characterized by a vertex partition where edge density within parts
is much greater than expected, while density between parts is much smaller. While a high a modularity
value (>0.3) can be indicative of an underlying modular community structure, a high value alone does not
guarantee that such a community structure exists. This tends to occur in sparse networks. For example,
in regimes where the average degree is bounded, the Erdős–Rényí random graph can exhibit a high
modularity value in probability, without possessing a modular community structure [28].

In the case of the KPKBV model, the high modularity may be a consequence of the tree-like structure
of the random graph. Generally, trees with sub-linear maximum degree demonstrate an almost optimal
modularity value; see [29]. Here, the term “tree-like” does not refer to the lack of short cycles (in fact,
the presence of clustering implies that there are many short cycles with high probability). It refers to
the existence of a hierarchy on the set of vertices of the random graph, which resembles the natural
hierarchy that a rooted tree exhibits. Let us note that as a consequence of the negative curvature of
hyperbolic space, tangential distances in the Poincaré disc expand exponentially with the respect to the
radial distance from the centre. Pairs of vertices near the boundary of the disc are much less likely to
connect, as they must possess a much smaller relative angle for this to happen. In contrast, vertices near the
centre have relatively high degree, as the balls of radius R around them cover almost all of the disc. This
means that the communities tend to have an underlying hierarchical structure, where the communities are
formed from the mutual descendants of nodes with larger defect radii. Each part of the sector partition
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tends to capture a large proportion of one of these rooted sub-trees; therefore, this may suggest why the
modularity score of the sector partition tends to one, in probability.
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