

University of Birmingham

OSNN
Soares, Rodrigo; Minku, Leandro

DOI:
10.1109/TNNLS.2021.3132584

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Soares, R & Minku, L 2021, 'OSNN: an online semisupervised neural network for nonstationary data streams',
IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3132584

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1109/TNNLS.2021.3132584
https://doi.org/10.1109/TNNLS.2021.3132584
https://birmingham.elsevierpure.com/en/publications/99f47b61-95a6-46a0-a4d6-2d8eee50eeed

1

OSNN: An Online Semisupervised Neural Network
for Nonstationary Data Streams

Rodrigo G. F. Soares, Leandro L. Minku, Senior Member, IEEE,

Abstract—Learning from data streams that emerge from non-
stationary environments has many real-world applications and
poses various challenges. A key characteristic of such a task
is the varying nature of target functions and data distributions
over time (concept drifts). Most existing work relies solely on
labeled data to adapt to concept drifts in classification problems.
However, labeling all instances in a potentially life-long data
stream is frequently prohibitively expensive, hindering such
approaches. Therefore, we propose a novel algorithm to exploit
unlabeled instances, which are typically plentiful and easily
obtained. The algorithm is an Online Semisupervised Radial
Basis Function Neural Network (OSNN) with manifold-based
training to exploit unlabeled data while tackling concept drifts in
classification problems. OSNN employs a novel Semisupervised
Learning Vector Quantization (SLVQ) to train network centers
and learn meaningful data representations that change over
time. It uses manifold learning on dynamic graphs to adjust
the network weights. Our experiments confirm that OSNN can
effectively use unlabeled data to elucidate underlying structures
of data streams while its dynamic topology learning provides
robustness to concept drifts.

Index Terms—Data stream learning, Nonstationary environ-
ments, Online Semisupervised learning, manifold learning, neural
networks

I. INTRODUCTION

Tackling concept drift is a challenging problem, and many
approaches have been proposed for that [1]. Most existing
work relies on incoming labeled training examples to react
and adapt to concept drift in classification or regression
problems. However, labeling all instances in a potentially
infinite data stream is usually impractical. This is because,
despite unlabeled data being typically abundant and relatively
cheap to acquire through automated mechanisms, labeling such
instances is frequently a manual task that relies on human
resources, being potentially very costly and time consuming.
For example, in software effort estimation [2], an entire team
may need to keep track of the effort that they are spending on
a given project, throughout the course of the project, to label
a single software project instance. In contrast, input attributes
describing the software project are more readily available [3].

Rodrigo G. F. Soares is with the Department of Statistics and
Informatics of the Federal Rural University of Pernambuco, Recife,
Brazil. rodrigo.gfsoares@ufrpe.br.

Leandro L. Minku is with the School of Computer Science, The University
of Birmingham, Birmingham B15 2TT, UK. L.L.Minku@cs.bham.ac.uk.

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) under Grant Number EP/R006660/2 and the
European Union’s Horizon 2020 research and innovation programme under
grant agreement number 766186.

To deal with this problem, a potential approach would be
to make use of the abundant unlabeled incoming instances
together with a small number of labeled incoming points
through online semisupervised learning. In this sense, the
otherwise discarded unlabeled instances could, in fact, help
data stream applications to react and adapt to concept drift
and find better predictive models. However, the use of the
distribution of unlabeled data to aid the training of semisu-
pervised classification algorithms often requires the entire
unlabeled dataset at disposal beforehand [4], which is not
possible in data stream scenarios. Therefore, the majority of
the semisupervised classification methods are not designed
or easily extended to online learning. Very few studies in-
vestigated Online SemiSupervised Classification (OSSC), and
most are unable to deal with concept drift [5], [6]. The only
approaches [7], [8] able to perform online learning based on
mixed labeled and unlabeled data that have considered concept
drift are limited to specific types of concept drift and have been
proposed in the context of active learning, potentially requiring
a human annotator to label specifically chosen instances.

Therefore, our work aims at developing a more flexible
OSSC approach for classification problems with nonstationary
data streams where any incoming instance may or may not
have a label and any type of concept drift may occur. Each
instance (labeled or unlabeled) is learned as soon as it arrives.
Overall, we answer the following Research Questions (RQs):

RQ1: How can a neural network benefit from unlabeled data
in online data stream learning of nonstationary classification
problems? Radial Basis Function Network (RBFN) have the
ability to learn compact data representations through the
training of their hidden layer [9], [10], whilst adjusting a
decision boundary through the weights of the output layer.
The training of the hidden layer can be performed with
both labeled and unlabeled data, meaning that RBFNs lend
themselves to semisupervised learning. Therefore, we answer
RQ1 by proposing the first RBFN that is able to perform OSSC
in nonstationary data streams, called Online Semisupervised
Radial Basis Function Neural Network (OSNN).

RQ2: Is the proposed approach able to benefit from un-
labeled data to improve predictive performance over its su-
pervised counterpart when we have nonuniform labeling dis-
tributions? And when we have uniform labeling distribution?
We consider stream learning scenarios where the probability
of labeling an instance is uniform across the input space. This
analysis is based on stream applications where the presence of
labels is not a systematic event, that is, the knowledge to label
instances is available entirely at random, independent from any
underlying process. We also study streams with nonuniform

2

labeling distribution, where the probability of labeling an
instance differs depending on the value of the input attributes.
Such a scenario simulates stream learning applications where
the knowledge to label instances is only available at certain
regions of the input space within a given concept.

RQ3: How does the proposed approach perform compared
to existing data stream learning approaches in the uniform
and nonuniform labeling distribution cases? To establish the
effectiveness and robustness of OSNN to the different factors
involved in OSSC, we answer RQ3 by performing a compar-
ative study with OSNN and state-of-the-art stream learning
algorithms. We will investigate these approaches with different
amounts of labels, types of drift and streams.

Experiments have been performed to answer the RQs,
where we validate our approach, compare OSNN to its fully
supervised counterpart and analyze its performance versus sev-
eral state-of-the-art methods. The results showed that OSNN
can exploit unlabeled data to improve generalization; was
effective in the vast majority of the comparisons with existing
approaches; and is robust to different types of concept drift
and numbers of labels.

Our novel contributions are i) a Semisupervised Learning
Vector Quantization (SLVQ) training algorithm that continu-
ously adjusts basis functions to represent data and to implicitly
handle concept drifts; ii) an online manifold regularization
mechanism that employs the graph produced by SLVQ to
train the network weights; iii) the first efficient and robust
OSSC RBFN algorithm that is able to use unlabeled data to
improve predictive performance in nonstationary environments
compared to supervised online RBFNs.

The remainder of this paper is organized as follows. Section
II presents the definitions of OSSC. Section III presents the
state-of-the-art of stream learning. Section IV introduces our
approach to OSSC. The experimental studies to answer RQ1,
RQ2 and RQ3 are in Sections V, VI and VII, respectively.
And Section VIII presents our conclusions and future work.

II. PROBLEM FORMULATION

Online learning algorithms update predictive models when-
ever a new training example becomes available, possibly also
making use of a limited number of past examples stored in
memory [11]. In particular, sliding window approaches store
a buffer containing the N most recent training examples. This
buffer can be referred to as a sliding window, minibatch or
chunk of size N . These methods iterate over chunks to produce
good decision boundaries for noisy or difficult classification.

A data stream is a sequence of instances(
s(1), . . . , s(t), . . .

)
, where s(t) = (x(t), y(t)) if s(t) is

labeled or s(t) = x(t) if s(t) is unlabeled; x(t) ∈ RD
and y(t) ∈ {y1, . . . , yCL} denote the labels. In this
work, CL = 2, i.e., we focus on binary classification
problems. Each value of t is referred to as a time step. A
classifier may store a limited amount of the latest N > 0
instances in a minibatch B(t) = {s(t−N+1), . . . , s(t)}. In
online learning, the classifier is updated whenever a new
s(t) becomes available by using the minibatch. We also
define the sets B

(t)
l = {s | s ∈ B(t) ∧ s is labeled} and

B
(t)
u = {s | s ∈ B(t) ∧ s is unlabeled} of size L and U ,

respectively. We assume that both labeled and unlabeled data
are received over time, and not only in the initial portion
of the data stream as in extreme verification latency [12]
scenarios. Online supervised algorithms use only B

(t)
l for

learning, whereas online semisupervised methods use both
B

(t)
l and B(t)

u .
We assume labeled instances are drawn from an unknown

distribution P(t) and unlabeled points follow the marginal
distribution p(t)(x) of P(t). The fundamental assumption of
SemiSupervised Classification (SSC) and, more specifically,
OSSC is that p(t)(x) and the conditional p(t)(y|x) have a
relationship that, if found, can be exploited for better function
learning [13]. In other words, SSC methods attempt to induce
p(t)(x) via unlabeled data to improve generalization over
methods that use solely labeled data. When the context is clear,
we will omit the time step superscript to simplify notation.

A concept drift is a change in the joint distribution, that is,
p(t+1)(x, y) might differ from p(t)(x, y) within the length of
a stream. Such changes can be categorized according to the
rate at which a new concept becomes the true target. There are
two types of drift: abrupt, in which the change occurs instantly
(in one time step); and gradual, where the new concept takes
place slowly over time.

To exploit unlabeled data, SSC algorithms follow assump-
tions over p(t)(x) [4]. Many effective SSC methods assume
that p(t)(x) follows cluster structures [4] (cluster assumption).
They often implement clustering procedures [10] to estimate
p(t)(x), which incurs in a computational overhead and in the
tuning of clustering hyperparameters. In contrast, the manifold
assumption states that a meaningful structure of the data lies in
a low-dimensional nonlinear manifold embedded in the high
dimensional input space [4].

III. RELATED WORK

Several RBFNs have been employed to handle online learn-
ing [14], [15], [16]. Huang et al. proposed the approaches
Growing and Pruning RBFN (GAP-RBF) [14] and General-
ized GAP-RBF (GGAP-RBF) [15] to dynamically adjust the
architecture of the network via growing and pruning strategies.
Later, Zhang et al. [16] proposed Fast GAP-RBF (FGAP-
RBF), which extended GAP-RBF with improved growing
and pruning techniques for better predictive performance.
However, these approaches are unable to use unlabeled data
and are not prepared to tackle concept drift. In [5], the authors
proposed an efficient algorithm that performs OSSC under
severe time and memory constraints. Goldberg et al. [17]
proposed to use either a buffer to save a small amount of
data points or online random projection trees to represent the
manifold structure in an online manifold update procedure via
label propagation. Shen et al. [6] proposed an LVQ approach to
OSSC that handles labeled and unlabeled data separately. They
proposed a conditional log-likelihood mechanism to adjust
prototypes with labeled data and used Gaussian Mixture Model
and Neural Gas to include unlabeled data. Except for [17],
all these techniques cannot handle nonstationary streams and
may degrade their generalization accuracy when a new concept

3

emerges. Despite being prepared for nonstationary streams, the
technique in [17] was shown to be outperformed by methods
that cannot handle concept drifts [6].

A few approaches to OSSC within different application
contexts exist. Shen et al. [8] use a self-organizing neural
network to represent the data topology and to divide nodes
into different clusters. OASIS [7] is a Bayesian model that
introduces a semisupervised likelihood function along with
an efficient online Bayesian updating rule. Semi-Supervised
Adaptive Novel Class Detection and Classification over Data
Stream (SAND) [18] is a semi-supervised ensemble that
estimates classifier confidence in predicting instances from
evolving data stream. These approaches may require a human
annotator to label specific queried instances, which is not the
scenario tackled by this paper. In addition, Shen et al. [8]’s
approach only contains mechanisms to efficiently deal with
concept drifts affecting p(y|x) when such drifts are associ-
ated to changes in p(x). And, even though the acceptance
probability used to move particles in OASIS [7] is prepared
for concept drifts, the posterior of each particle is updated
based on a rule that is unprepared for concept drifts.

The COMPOSE framework [12] and the Stream Classifi-
cation Algorithm Guided by Clustering (SCARGC) [19] also
use unlabeled data in data streams. However, they consider
an extreme verification latency scenario where the approaches
cannot benefit from labeled data that may arrive after an
initial learning stage, which is not the scenario tackled in this
paper. COMPOSE also assumes that the concept drifts are
gradual, i.e., take several time steps to complete. Our proposed
algorithm is applicable not only to gradual, but also abrupt
drifts, i.e., drifts that happen suddenly.

Data stream learning algorithms for nonstationary envi-
ronments are typically categorized into explicit – which use
explicit methods to detect concept drifts and activate an
adaptation procedure – or implicit – where the algorithm is
continuously updated over time without explicit drift detection.
Explicit algorithms are often the most effective techniques
for abrupt drifts. Implicit approaches often deliver better
generalization for gradual drifts [1].

State-of-the-art online classifiers for nonstationary data
streams employ ensemble learning. They require larger compu-
tational resources and are not capable of using unlabeled data.
Since adapting to concept drifts is crucial to nonstationary
data stream applications, these algorithms are, in fact, more
closely related to our study than the aforementioned semisu-
pervised techniques. Diversity for Dealing with Drift (DDD)
[20], Diversity Pool (DP) [21] and Concept Drift Handling
Based on Clustering in the Model Space (CDCMS) [22] are
explicit ensemble approaches that employ diversity to select
and train base learners. Recurring Concept Drift (RCD) [23]
is an explicit ensemble approach that employs a statistical
test and memory management to identify recurring concepts.
Online Accuracy Update Ensemble (OAUE) [24] is an implicit
ensemble approach that maintains a weighted majority vote
ensemble with a pruning mechanism. A base learner frequently
adopted in data stream learning ensembles is Hoeffding Tree
(HT) [25], which is an incremental decision tree algorithm able
to handle large-scale data. While these ensembles produce high

generalization accuracy, they have the computational burden
of training multiple base learners which is aggravated by the
amount of data that must be processed in typical data stream
applications.

Some approaches have also been proposed to enable tack-
ling unstructured data such as images based on deep learn-
ing. The Parsimonious Network (ParsNet) [26] is an explicit
self-evolving deep neural network designed for the weakly-
supervised learning scenario. It uses self-labeling with the
hedge method to address the accumulation of mistakes in
generating pseudo-labeled instances. ParsNet depends on a
drift detection mechanism to add and prune hidden neurons. Li
et al. [27] proposed an incremental semi-supervised learning
algorithm formed of a generative network, a discriminant
structure and a bridge. Being composed of deep neural net-
works, these approaches may also lead to a computational time
overhead on data stream learning.

IV. A NEURAL NETWORK FOR ONLINE SEMISUPERVISED
LEARNING

In this section, we present our novel RBFN OSSC training
algorithm for nonstationary environments.

A. OSNN loss function

In this section, we introduce our novel loss function. By em-
ploying relevant manifolds instead of the original input, classi-
fiers may improve generalization [4]. Typically, such methods
perform manifold learning by maximizing smoothness of their
output over graphs [13]. To use the induced p(t)(x) to improve
generalization, we employ Manifold Regularization (MR) [13].
It assumes that one can approximate p(t)(x) with a compact
manifold used in a regularizer to learn a smooth function along
the manifold, that is, the regularization minimizes the function
complexity along the manifold. The classifier smoothness can
be interpreted as the sum of the local variations of the classifier
function among nearby instances [28].

OSNN assumes that network centers C(t) = {c1, . . . , cH}
and incoming instances B(t) can be interpreted as vertices
V (t) = C(t) ∪ B(t) and the similarity between them forms
edges in a graph with similarity (adjacency) matrix S(t). Any
similarity measure can be used. See Section IV-C for details.
OSNN outputs posterior class probabilities, fi = f (t)(xi),
where 0 ≤ fi ≤ 1 and xi ∈ B(t). We estimate the smoothness
of the classifier function f using estimates (pseudolabels) ui of
the desired target according to the classifier outputs obtained
in the vicinity of points xi. Each 0 ≤ ui ≤ 1 of each vertex i
is

ui =

∑
j∈V (t) Sij ŷj∑
j∈V (t) Sij

, (1)

where ŷj = yj if xj is labeled and ŷj = fj otherwise.
To encourage smoothness along nearby points, we use these

estimates to penalize the classifier if f changes abruptly for
adjacent points. Since we are focusing on binary classification,
we employ cross entropy to define such a regularization

4

(second term) and to determine the supervised loss (first term)
in our loss function:

L(B(t),w) =− 1

L

∑
i∈B(t)

l

[yi ln(fi) + (1− yi) ln(1− fi)]

− λ

U

∑
i∈B(t)

u

[ui ln(fi) + (1− ui) ln(1− fi)]

+
α

2N
||w||2,

(2)

where the first term is the supervised cross-entropy; the
second term is the manifold regularization, which captures the
smoothness of the classifier outputs; the third term ||w||2 is the
l2 regularization on the network weights w = [w1, . . . , wH]>;
and the hyperparameters λ and α control the degrees of the
manifold and l2 regularizations, respectively.

The manifold assumption fits our purpose as we can use
a dynamic graph to represent ever-changing concepts. Since
data stream scenarios only provide one instance at a time, our
approach is based on manifold regularization that incremen-
tally keeps track of the current data distribution while being
able to continuously adapt to sudden or gradual concept drifts.

MR requires all data to build a graph, which is not possible
with data stream applications. A sparse representation accounts
for a meaningful portion of information of a signal within
a linear combination of elementary signals (basis). In this
context, RBFN would fit an online manifold-based method
well, as the centers in the hidden layer, along with the current
labeled and unlabeled data at each time step can be interpreted
as a sparse estimate of the current manifold and could be
continuously optimized so that new concepts are learned;
and the output layer is a classifier that could be regularized
according to the smoothness of the learned function over the
current manifold. Next sections introduce the proposed RBFN
learning algorithm, which is based on this idea.

B. Semisupervised learning vector quantization

In this section, we present our novel SLVQ. RBFN consists
of three feedforward layers. The input layer corresponds to the
input vector xi ∈ RD. The hidden layer is formed of H nodes
with basis functions φij = φ(xi, cj , σj) = exp

(
−||xi−cj ||2

2σ2
j

)
,

where cj is the center and σj is the width of the radial basis
function φij of node j. In this study, we are considering binary
classification, hence the output layer has a single node with
activation fi = 1

1+exp(−zi) , where zi =
∑H
j=1 wjφij .

Our approach to MR uses the basis function centers c ∈ RD,
the instances B(t) available at a time t, and a similarity matrix
to form a graph and estimate a manifold. Centers can be
trained by gradient descent [29]. However, such a method
incurs problems, such as choosing learning rates and avoiding
local minima. There is also a tendency of widths to grow large,
producing nonlocalized basis functions [9]. Learning Vector
Quantization [30] has shown good predictive performance for
training RBFN centers in the offline supervised setting [29].
Since only one new instance becomes available at a time,

we consider these centers as a smoothed sparse representa-
tion of data. Such centers should incrementally and sparsely
approximate the geometry of a potential manifold with each
incoming instance. Since MR requires the minimization of
local variations of f , we propose the Semisupervised Learning
Vector Quantization (SLVQ) to use centers and unlabeled data
to approximate p(t)(x). We introduce a closed-form solution
that does not present the issues of gradient descent.

Our method extends the LVQ variation in [31], which has
more stable convergence than the original LVQ. As suggested
in [31], to enforce each center to summarize the local geometry
of the manifold, we use 1-Nearest-Neighbor (1NN) as the
quantizer for SLVQ. A Vector Quantization (VQ) of dimension
D and size H is the mapping from an input space in RD into
a set of centers (codebook) C(t). Each center has a region of
influence in which corresponding input points are mapped to
it according to 1NN. Each region is defined as

Ri =

{
x | d(x, ci) = min

j=1,...,H
d(x, cj)

}
,

where d(x, ci) is a distance measure. The VQ mapping q(x)
is denoted by q(x) =

∑H
i=1 1(x ∈ Ri)ci, where 1(·) is the

indicator function.
A modified version of the Bayesian expected loss was pro-

posed in [31]. This approach employed a modified probability
density function gi(x) that returns zero values on Bayesian
borders instead of typical class-conditional probability density
function. Our proposed SLVQ introduces a second term to
account for unlabeled data to the loss functional proposed in
[31], so that it encourages the codebook to follow the marginal
distribution p(t)(x) induced by unlabeled data. It minimizes
the quantization loss d(x, q(x)) along p(t)(x) to represent
the data geometry. Hence, SLVQ consists of finding a set
of centers C(t) that minimizes the average quantization error
defined by the functional

I1[q] =

CL∑
i=1

∫
Qi

d(x, q(x))gi(x)dx+∫ ∞
−∞

d(x, q(x))p(x)dx,

(3)

where Qi is the Bayes region for class yi, CL is the number of
classes (in this work, CL = 2) and d(x, q(x)) =

∑H
i=1 1(x ∈

Ri)d(x, ci) denotes the loss associated to the VQ q(x). The
modified density function is

gi(x) =
p(x|y′i)p(y′i)− p(x|y′′i)p(y′′i)

Ki
,

where y′i and y′′i are the classes with highest and lowest
posteriors in the Bayes region Qi, respectively. The constant
Ki is a scaling factor that ensures that gi is a probability
density function. Assuming there exists a Bayes region Qij
for every Rj that satisfies Qij ∩ Rj ≈ Rj and substituting

5

d(x, q(x)), Equation 3 can be approximated by

I2[q] =

H∑
j=1

∫
Rj

d(x, cj)g
′
j(x)dx+

H∑
j=1

∫
Rj

d(x, cj)p(x|Rj)dx,

(4)

where

g′j =
p(x|y′j , Rj)p(y′j |Rj)− p(x|y′′j , Rj)p(y′′j |Rj)

K ′j

is the 1NN class-conditional density for the winner class y′j
of the region Rj and K ′j is a constant that ensures that g′j is
a probability density function.

As the class-conditional probability functions are unknown,
it is not possible to solve Equation 4. However, by using
empirical risk minimization, I2[q] can be approximated by

Iemp[q] =
1

L

[∑
i∈C(t)

∑
j∈B(t)

l

1(xj ∈ Ri)1(yj = y′i)d(xj , ci)−

∑
i∈C(t)

∑
j∈B(t)

l

1(xj ∈ Ri)1(yj = y′′i)d(xj , ci)

]
+

1

U

∑
i∈C(t)

∑
j∈B(t)

u

1(xj ∈ Ri)d(xj , ci)

(5)

Since only the instances in region Ri affect its center,
Equation 5 only evaluates locally-defined distances between
instances and centers, which corresponds to the manifold
assumption [4]. Using the Euclidean distance d(xj , ci) =

||xj − ci|| and solving ∂Iemp[q]
∂ci

= 0 for each ci, we have

∂Iemp[q]

∂ci
=

1

L

∑
j∈B′

li

(ci − xj)−
∑
j∈B′′

li

(ci − xj)

+

1

U

∑
j∈Bui

(ci − xj) = 0,

where B′li and B′′li contain the labeled instances of the ma-
jority and minority classes of region Ri that belong to B

(t)
l ,

respectively, as a consequence of employing 1NN quantizer to
minimize Equation 3. The set Bui has the unlabeled instances
that belong to region Ri. We expand this equation and obtain

1

L
(|B′li|ci − |B′′li|ci) +

1

U
|Bui|ci =

1

L

∑
j∈B′

li

xj −
∑
j∈B′′

li

xj

+
1

U

∑
j∈Bui

xj ,

which can be rewritten as

ci =

1
L

(∑
j∈B′

li
xj −

∑
j∈B′′

li
xj

)
+ 1

U

∑
j∈Bui

xj
1
L (|B′li| − |B′′li|) + 1

U |Bui|
(6)

Equation 6 trains each center ci to minimize its distances to
the majority class in its region Ri and to avert instances from

the minority class, while moving towards a position of higher
density of unlabeled points. In contrast to [6], SLVQ considers
the relationship between labeled and unlabeled points. Centers
are only affected by incoming instances that fall into their
region. Only the appropriate centers are updated to represent
such incoming data, whilst the other centers still represent
other regions of previously learned data. This enables one-
pass learning if desired, as the knowledge stored by the set of
centers is not reset when N = 1. The codebook C(t) is then
optimized to follow the intrinsic geometry of both labeled and
unlabeled input data.

The width σi of basis function with center ci is set to a
proportion β of the mean of the Euclidean distances to the
other centers [29] as

σi =
β

H

∑
j∈C(t)

||ci − cj || (7)

The hyperparameter β controls the radius of influence of
each basis function. Both the centers ci and the widths σi are
calculated at each time step, so that the basis functions are
rescaled to handle concept drifts, otherwise these functions
would be left unlocalized.

C. Semisupervised weight training

Our novel weight training method consists of minimizing
Equation 2. Since N and H can be relatively small, we employ
the Iterative Reweighted Least Squares (IRLS) with a Newton-
Raphson update rule [9] as it delivers high predictive perfor-
mance despite the time complexity of inverting the Hessian
matrix. One might use a first order optimization method to
improve time complexity at the cost of generalization ability.

To obtain the similarity matrix S(t) used to calculate each
pseudolabels ui, we augment the set of centers with the current
minibatch V (t) = C(t) ∪ B(t). We define S(t) = {Sij}H+N

i,j=1

for each vi,vj ∈ V (t) based on an RBF kernel:

Sij = exp

(
−||vi − vj ||2

2σ2
i

)
, (8)

where the width σi = γminj 6=i ||vi − vj || is a proportion γ
of the minimum Euclidean distance between vi and the other
vertices in V (t). The hyperparameter γ regulates the influence
of neighboring instances on the pseudolabels ui.

We use this scheme to leverage the centers C(t) – which
were trained to contain information about the current manifold
– and the available instances in the current batch B(t) –
which also stores knowledge about the current manifold. By
using both sets of points, OSNN can learn a more accurate
representation of the current data distribution.

Since the classifier outputs posterior class probabilities, we
use logistic sigmoid fi = 1/(1 + exp(−zi)) as the activation
function for the output node. The activation and loss functions
of OSNN are a natural pair [9]. We optimize the smoothness of
the output function f over a graph by evaluating the classifier
f at each vertex v ∈ V (t) and calculating the pseudolabels u
using Equation 1.

6

To obtain the corresponding IRLS algorithm for OSNN, we
define the Newton-Raphson update, in which the weight vector
w is trained according to

w(t+1) = w(t) −∆wi, (9)

where
∆wi = ηH−1∇wL,

and η is a learning rate trained with a backtracking line search
[32] to obtain better convergence and to disregard η as another
hyperparameter to be tuned. We used the Cholesky decompo-
sition for matrix inversion [33] and employed l2 regularization
[34], [9] and manifold regularization [13] to avoid problems
with oscillations and slow convergence when the gradient is
small. Since the loss is calculated based on the most recent
minibatch B(t), the learning rate will be automatically adjusted
to deal with concept drift based on the minibatch. The smaller
the minibatch, the faster OSNN will adapt to drifts and more
sensitive it will become to noise. The bigger the minibatch,
the better OSNN will learn the current concept and the more
robust it will become to noise. This adaptive learning rate helps
to deal with different types of concept drift, as it increases
when larger steps for quicker adaptation are necessary (e.g.
abrupt concept drifts) or decreases when the rate of the drift
is slower. This mechanism allows the forgetting rate to be
automatically adjusted according to the speed of the drift. The
stopping criterion 0 < ε� 1 for the line search can be fixed
in hyperparameter tuning. The gradient ∇wL is

∇wL =
1

L

∑
i∈B(t)

l

(fi − yi)φi +
λ

U

∑
i∈B(t)

u

(fi − ui)φi +
α

N
w,

and the Hessian matrix H = ∇∇wL is defined as

H =
1

L

∑
i∈B(t)

l

fi(1−fi)φiφ
>
i +

1

U

∑
i∈B(t)

u

fi(1−fi)φiφ
>
i +

α

N

We initialize OSNN by assigning the first H instances as
centers and small normally distributed random values drawn
from N (0, 0.01) as weights. OSNN can use N = 1, as its
weights are not reset and only the centers corresponding to
the regions of influence that contain the new minibatch are
updated. Hence, our approach becomes one-pass learning if
required, e.g. when the rate of incoming instances is very high.
Moreover, the adaptive learning rate η also helps our approach
to be more robust to different choices of N .

OSNN is summarized in Algorithm 1. Each iteration re-
ceives a new data point and the chunk of data B(t) is updated
based on it (lines 3-5). If the amount of data received so far
is less than the number of hidden nodes H (line 6), then
the new point is added to the codebook C(t) (line 7) and a
new network weight is randomly added (line 8). When OSNN
receives enough data to complete the codebook with size H ,
it starts training the centers with SLVQ in line 10. Then, the
widths of the RBF kernel with centers C(t) are updated in line
12. OSNN now proceeds to the training of the RBFN weights
(lines 13-23). It uses a backtracking line search to adjust the
learning rate η and train the weights (lines 13-14). It calculates
the pseudolabels for the unlabeled data (line 15) and then

computes the new weights of the output layer of the neural
network. Following the line search, line 17 checks whether the
new weights with the current η represent a significant decrease
in our loss function. If so, the weights are updated with that
specific η; otherwise η is halved until a tolerance ε is met.
This algorithm yields a trained OSNN model at time step t
and is capable of predicting the next instance st+1.

Algorithm 1 OSNN algorithm
Inputs: Stream D, chunk size N , number of hidden neurons
H , amount of manifold regularization λ, amount of l2 regu-
larization α, manifold RBF width β, RBFN width γ
Outputs: Trained OSNN and predictions on D

1: t← 1, C(0) ← ∅
2: while t < end of stream do
3: B(t) ← s(t−N+1), . . . , s(t) ∈ D
4: B

(t)
l ← {s | s ∈ B(t) ∧ s is labeled},

5: B
(t)
u ← {s | s ∈ B(t) ∧ s is unlabeled}

6: if t < H then
7: C(t) ← C(t−1) ∪ s(t)
8: w← [w1, . . . , wt,N (0, 0.01)]>

9: else
10: Train centers C(t) as in Equation 6 using B(t)

11: end if
12: Update widths σ as in Equation 7 using β, λ and C(t)

13: η ← 1
14: while η > ε do
15: Calculate pseudolabels as in Eq. 1 with α and γ
16: wnew ← New weights as in Equation 9
17: if L(B(t),wnew) < L(B(t),w) then
18: w← wnew
19: Exit While
20: else
21: η ← η

2
22: end if
23: end while
24: Predict s(t+1)

25: Yield trained OSNN (i.e., C(t), σ, w) and the pre-
diction s(t+1) as outputs and then continue to the next
iteration of the loop with t← t+ 1

26: end while

D. Time complexity

SLVQ consists of adjusting centers and widths according to
equations 6 and 7, respectively, which are calculated across
all pairs of centers and instances in the current minibatch.
Hence, SLVQ is performed in O(DHN). If implemented with
the Newton-Raphson method, the weight update evaluates the
pseudolabels, ∇wf , H, H−1 and performs a line search. Such
a procedure is in O(HN(D + H) + D(H2 + N2) + H3).
Hence, OSNN is in O(HN(D +H) +D(H2 +N2) +H3).
Alternatively, the weight training can be implemented with a
first-order method, e.g. stochastic gradient descent. The time
complexity can be reduced to O(DHN+D(H2+N2)). How-
ever, first-order optimizers do not have the same convergence
properties of second-order methods as they do not exploit

7

curvature information in the update process. In the presence
of abrupt concept drifts, smaller H and N are intuitively
more effective in forgetting the old concept, while the fast
convergence of Newton-Raphson technique is useful for a
reliable adaptation to the new concept with small H and
N . In contrast, first-order methods converge generally slower,
which causes a slower adaptation to the new concept. These
differences might cause a lower predictive performance for
first-order optimizers when all the stream data is considered,
despite the lower time complexity. In fact, in our preliminary
experiments, OSNN with Newton-Raphson required smaller H
and N when compared to gradient descent. With this trade-off,
the time complexity of inverting H is mitigated.

It is difficult to assess the time complexity of state-of-the-
art online classifier ensembles as it heavily depends on the
choice of base learners and on drift detection mechanisms
(if present). For example, let tbase be the computational time
of a base learner and Hens be the number of base learners,
then OzaBag and DDD take O(Henstbase). Nevertheless, the
time complexities of such base learners are dependent on the
minibatch size. The main difference in computational time
of these base learners to OSNN is the choice of the model
complexity H . Our experiments show that, with a relatively
small H , OSNN can produce comparable generalization to
classifier ensembles.

V. RQ1 – VALIDATING THE PROPOSED OSNN

Section IV answers RQ1 by proposing the OSNN approach.
The current section complements the answer to RQ1 by
checking whether OSNN behaves as expected when the man-
ifold assumption does or does not hold. In particular, OSNN
should be able to benefit from unlabeled data (which would
be discarded by supervised learning algorithms) to improve
predictive performance when the manifold assumption holds.
However, when this assumption does not hold, the algorithm
is expected to fail to improve predictive performance due to
the learning of irrelevant structures. To examine the influence
of the presence of manifold structures on OSNN, we assess
OSNN’s predictive performance in comparison with its super-
vised counterpart, which does not use the unlabeled portions
of the data streams for training.

A. Data streams

We used two datasets from [4, Ch.21] as data streams:
g241d and Digit1. Both datasets have 1500 instances, 241 di-
mensions and two classes. G241d possesses a potentially mis-
leading cluster structure and no manifold structure. Semisu-
pervised classifiers are expected to have lower generalization
performance in such a dataset as the fundamental SSC assump-
tion – marginal data distribution helps to elucidate posterior
class probabilities – does not hold, which tend to degenerate
decision boundaries. In contrast, the data in Digit1 contains
images of the digit “1” that lie close to a five-dimensional
manifold embedded in a high-dimensional space and does not
show a meaningful cluster structure. Manifold-based methods
are expected to improve generalization on supervised learning.

TABLE I: Mean and standard deviation of the prequential
accuracy, and p-value of the comparison between OSNN and
its supervised counterpart.

Stream/Classifier OSNN (Supervised) OSNN p-value
g241d 54.74±3.12 51.26±3.36 3.56e-233
Digit1 54.95±3.82 59.44±4.34 1.38e-165
Highlighted values denote significant superior performance.

B. Experimental setup

The supervised version of our approach is trained exactly
as OSNN is, except that Equation 6 is calculated without the
terms for unlabeled data (Bu = ∅) and λ = 0 for the weight
training. We followed the experimental setting in [4, Ch.21],
except we used the first set of 10 labeled points provided in
[4, Ch.21] for each dataset to form the validation streams
for hyperparameter tuning and the 12th set of 10 labeled
points to compose the test stream. We employed the Wilcoxon
signed-rank test with 5% of significance level to compare the
approaches. The hyperparameter tuning was performed via
randomized search on the validation streams [35]. For both
versions of OSNN, N and H were uniformly selected from
[1, 1000]. The trade-off values, λ and α, were uniformly drawn
from [0, 1]. We set λ = 0 and B

(t)
u = ∅ for the supervised

approach. The width proportions β and γ were randomly
drawn from exponential distributions with mean µ = 1 and
µ = 2, respectively. And ε was fixed at 2−8.1

To replicate real-world learning scenarios in this and in
the next experimental setups, classifiers have access to a data
stream only once and are trained and evaluated on that stream
at that single opportunity. The training and evaluation of each
method are performed prequentialy [36], that is, classifiers
are tested and then trained with each incoming instance.
In supervised methods, unlabeled instances are not used for
training. We used a prequential accuracy estimator with a
fading factor of 0.999 [36]. We assess the average prequential
accuracy over the entire length of each stream.

C. Results of the experiments

Table I shows the mean and standard deviation of each
method on each stream. As expected, the supervised version
of our approach presented significant superior performance for
g241d, which indicates that the manifold regularization is in
fact degrading the decision boundary produced by OSNN. It
is learning a structure that has no relation to the actual target
function. Moreover, the training of the centers might have been
misled and produced irrelevant basis functions in suboptimal
regions. On the other hand, OSNN delivered statistically su-
perior generalization accuracy for Digit1. Such a fact suggests
that the lack of labels (only 10 labeled points) was mitigated
by the learning of the digit “1” as a manifold, which is crucial
to the learning of the correct decision boundary. This result
indicates that SLVQ can effectively train centers to represent
the underlying structure of the image; and the weight training
can exploit such a manifold to regularize and improve its
decision boundary. Therefore, the use of unlabeled data in

1An analysis on OSNN’s sensitivity to N and H is in the Supplementary
Material due to space restrictions.

8

the learning of informative manifolds was beneficial to the
predictive performance of OSNN.
We answered RQ1 by proposing OSNN, a technique that
can exploit unlabeled data to improve generalization on data
streams. We complemented this answer by showing that
OSNN indeed outperforms its supervised counterpart when
the manifold assumption holds.

VI. RQ2 – THE IMPACT OF THE LABELING DISTRIBUTION
ON OSNN

In this section, we answer RQ2 by studying the influence
of the distribution of labels on OSNN. We compare OSNN
with its supervised counterpart over artificial and real-world
streams with uniform and nonuniform labeling distributions.

A. Data streams

We employed four different data stream generators to simu-
late streams with different types of concept drift to assess the
classifiers’ ability in adapting to new concepts with various
amounts of labeled data. The Sine generator [37] produces
various forms of the sine function. The Agrawal generator
[38] contains categorical and ordinal attributes to predict
groupings of individuals. The SEA generator [39] has only
numerical attributes and its decision boundary is a hyperplane.
STAGGER [40] contains categorical attributes – size, color
and shape – for the prediction of a simple binary function of
a set of objects. Each generator has a set of functions {ri}
that produce a sequence of different concepts. Each concept
has a length of 4000 time steps. Abrupt and gradual drifts take
one and 400 time steps to complete, respectively. To assess the
adaptation mechanisms of the classifiers, we produced multiple
versions of these streams with different types of concept
drift, including abrupt, gradual, recurrent, non-recurrent and
different levels of severity. The data streams are summarized in
Table II. Section VII of the Supplementary Material also shows
the severities. We generated 10 artificial data streams with
abrupt and 10 with gradual concept drifts. Both versions follow
the settings in Table II. Each version of data stream stemmed
into three versions with 5%, 10% and 20% of unlabeled data.
We used a total of 2∗3∗10 = 60 synthetic data streams in this
study. We preprocessed these streams by transforming ordinal
attributes into real-valued variables and categorical attributes
into binary vectors. All attributes were scaled into [−1, 1] and
all streams have two classes.

We also used real-world data streams to evaluate classifiers.
The Electricity Pricing Data (Elec) [41] stream contains data
from the electricity market. The NOAA stream [42] has many
decades of weather data. It contains daily measurements of
temperature, pressure, visibility, and wind speed. The classifi-
cation task is to predict whether or not rained in a particular
day. The Power Supply stream [43] contains three years of
hourly measurements of electricity supply. The task consists of
identifying at which hour of the day a given power supply has
been recorded. To perform binary classification, we grouped
these 24 classes (hours) into two classes: day and night. The
Sensor stream [43] contains temperature, humidity, light and

TABLE II: Summary of data streams.

Stream Concept sequences Number
of inst.

Dim.

Artificial data streams
Sine1 r3 → r4 → r3 12000 4
Sine2 r1 → r2 → r3 → r4 → r1 20000 4

Agrawal1 r1 → r3 → r4 → r7 → r10 20000 36
Agrawal2 r7 → r4 → r6 → r5 → r2 → r9 24000 36
Agrawal3 r4 → r2 → r1 → r3 → r4 20000 36
Agrawal4 r1 → r3 → r6 → r5 → r4 20000 36

SEA1 r4 → r3 → r1 → r2 → r4 20000 3
SEA2 r4 → r1 → r4 → r3 → r2 20000 3

STAGGER1 r1 → r2 → r3 → r2 16000 7
STAGGER2 r2 → r3 → r1 → r2 16000 7

Real-world data streams
Elec – 27549 7

NOAA – 18159 8
Power S. – 29928 2
Sensor – 130073 5

sensor voltage collected from sensors in a research laboratory.
The classifier aims to identify the sensor that provided a
given measurement. We only used the two largest classes in
this stream: sensors 29 and 31. These real-world streams,
summarized in Table II, also have three versions with 5%,
10% and 20% of labeled data, totaling 12 real-world streams.
In the next sections, we will consider two versions of these 72
streams: with uniform and nonuniform labeling distributions.

To implement uniform labeling distribution in this and in the
next experimental setup, we uniformly sample the appropriate
amount of instances (5%, 10% or 20% of points) that will
have labels. To implement nonuniform labeling distribution,
for each stream, we adopt the following procedure: for each
concept and for each class, we run k-means with k = 5
and reveal the labels of instances in each cluster until the
appropriate number of instances is reached. For real-world
streams, the entire stream is clustered at once. Hence, the
probability of labeling an instance varies depending on x.

B. Experimental setup

Due to the nature of stream learning, we tuned the hy-
perparameters of each algorithm with additional (validation)
streams. For artificial streams, we generated one validation
stream for each generator (Sine, Agrawal, SEA and STAG-
GER). These validation streams have random sequences of
concepts, length and central point of each concept drift. For
real-world streams, we extracted the first 10% of the instances
of each stream to compose the respective validation stream.

The hyperparameter tuning follows Subsection V-B. We em-
ployed the Wilcoxon signed-rank test with 5% of significance
level to compare both versions of our approach across data
streams, following the recommendations in [44].

C. Results with uniform labeling probability

The supervised version of our technique was statistically
superior to OSNN (p-value = 5.4e-8). Such a result, along
with the results from Section V, indicate that the majority of
streams does not possess meaningful manifold structures and

9

this labeling procedure preserves the original data distribu-
tions, favoring the supervised learner.2

D. Results with nonuniform labeling probability

In contrast to the previous result, when streams have
nonuniform labeling probability, OSNN could significantly
outperform its supervised counterpart (p-value = 1.4e-6). In the
scenario where the labeling process is only capable of labeling
instances in particular regions of the space, the supervised
method may be misguided by the lack of labels in structures
that are important to the learning of the correct decision
boundary, despite these structures being now formed by unla-
beled data. Such a limitation might degrade its generalization.
Whereas OSNN could still learn the instances that formed
those meaningful structures via unlabeled data and produce
better predictive performance than the supervised method.
RQ2 – OSNN can improve generalization in comparison
to its supervised counterpart when labels of meaningful
structures in the input space become unavailable to the
supervised learner. OSNN is able to induce such structures
using unlabeled data and learn better decision boundaries.

VII. RQ3 – COMPARISON OF OSNN AND THE
STATE-OF-THE-ART

In this section, we answer RQ3 by comparing OSNN to
existing algorithms, analyzing how the amount of labels, type
of drift and streams affect generalization.

A. Experimental setup

This section uses the same streams as in Subsection VI-A
and experimental setup as in Subsection VI-B. To evaluate
how OSNN performs compared to other data stream learning
approaches, we include six existing online algorithms in our
study. Hoeffding Tree with Naive Bayesian Learning (HTNB)
is employed as a benchmark for a single learner. It does not
have the ability to handle concept drifts. OzaBag is a popular
online bagging ensemble classifier that does not possess any
mechanism to tackle concept drift. It will clarify OSNN’s
ability to adapt to new concepts. We investigate OAUE as it is
an implicit method as OSNN. OAUE, RCD, DDD and DP are
state-of-the-art algorithms that have the extra computational
complexity of ensemble learning with drift detection mech-
anisms. All ensemble classifiers have HTNB as base learner.
They are expected to deliver higher prediction accuracy among
the compared methods. We aim to investigate how OSNN, a
single learner that uses unlabeled data, compares to them.

We used the Scott-Knott multiple comparison procedure to
evaluate statistical differences in prequential accuracy. This
test was recommended in [45], as it can separate statistically
different methods into non-overlapping groups and contains
strategies to reduce the number of comparisons that need to
be performed to create such groups, thus gaining power.

2Means and standard deviations of prequential accuracy from the analyses
in Subsections VI-C, VI-D, VII-B and VII-C are in the Supplementary
Material due to space restrictions.

TABLE III: Statistical ranking of prequential accuracy on
streams grouped by factors with uniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN

Grouped by amount of labeled data
5% 2 2 2 1 1 1 1
10% 2 2 2 1 1 1 1
20% 2 2 2 1 1 1 1

Grouped by type of concept drift
Abrupt 2 2 2 1 1 1 1
Gradual 2 2 2 1 1 1 1

Real-world 1 1 1 1 1 1 1

Grouped by streams
Sine 3 3 3 1 1 1 2

Agrawal 2 2 2 2 2 2 1
SEA 1 1 2 1 1 1 1

STAG. 4 4 4 3 1 1 2
Elec 1 1 1 1 1 1 1

NOAA 2 2 2 2 1 2 1
Power S. 1 1 2 1 2 1 1
Sensor 2 1 1 2 1 1 1

All streams 2 2 2 1 1 1 1
Highlighted ranks denote significant superior performance.

Explicit approaches were optimized with DDM, EDDM and
ADWIN change detectors [21]. The batch and period-related
hyperparameters were tuned in [1, 1000]; ensemble sizes were
optimized in [1, 20] [21]. The p-value in RCD was optimized
in [0.01, 0.05] [23]. The diversity measure in DP was either
Entropy or Q-Statistics [21]. The diversity level of DDD was
optimized in [0.0005, 0.5]; pl and ph were tuned in [5∗10−4, 5∗
10−1] [20]. For OSNN, hyperparameter tuning was based on
randomized search [35] as in Subsection V-B.

Different data stream learning approaches tend to be more or
less adequate for different types of concept drift. In addition,
different types of models (e.g., RBFNs, decision trees) tend
to perform best for different problems. Therefore, to provide
a more detailed comparison of the data stream learning ap-
proaches under uniform and nonuniform labeling distributions,
we group their 72 streams according to type of drift, amount
of labels and data stream in this analysis.

B. Results with uniform labeling probability

The Scott-Knott test was performed for each group and
their rankings are shown in Table III. Best-performing methods
are successively assigned ranks 1, 2, . . . , 7. The first grouping
in Table III shows that OSNN consistently outperformed the
single learner HTNB and two classifier ensembles: OzaBag
and OAUE, both are implicit classifiers as OSNN. Although
more labeled data was revealed, these approaches could not
use the extra information to compensate for the learning
mechanisms employed in OSNN. Our approach delivered
statistically similar performance to RCD, DDD and DP, which
are explicit ensemble algorithms that depend on mechanisms
with extra complexity to detect concept drifts. Even with 20%
of labels, their performance remained similar to OSNN’s. This
fact indicates that OSNN could, in general, exploit unlabeled
data to balance the lack of label information across most
streams.

We now analyze these methods according to the type of
concept drift: abrupt or gradual. Drifts in real-world streams
are unknown. OSNN could handle abrupt and gradual concept
drifts as effectively as explicit approaches (RCD, DDD and

10

DP), despite their additional burden of explicitly evaluating
potential drifts. OSNN could also outperform HTNB, OzaBag
and OAUE. Such a result shows that SLVQ is able to adapt
the basis function centers to new concepts, regardless of their
speed, while the weight training can produce relatively up-to-
date decision boundaries. In real-world streams, all methods
delivered similar performance. This fact might be due to the
selected instances to have labels being sufficient to reconstruct
the necessary structures for the learning of good decision
boundaries. Nevertheless, OSNN had similar generalization to
state-of-the-art methods.

Table III also shows the ranks grouped by stream gen-
erators (for artificial streams) and real-world streams. Sine
and STAGGER are relatively simple functions that might
not present meaningful manifold structures. In this context,
RCD, DDD and DP could find better decision boundaries,
whereas the use of unlabeled data might have been harmful
for OSNN. Nevertheless, OSNN could significantly outper-
form HTNB, OzaBag and OAUE. Moreover, HTNB might
be a better base learner than RBFN for these streams, so
as long as there is a mechanism at ensemble level to deal
with concept drift, ensembles with HTNB as base learner
might generalize better than RBFN. All algorithms had similar
performance with the SEA generator streams. In contrast,
OSNN was significantly superior to all other algorithms on
Agrawal streams. Such a result might denote the presence of
relevant manifolds that OSNN could find and use to learn
improved decision boundaries. Explicit methods generally
produce good generalization with Elec [20]. However, the lack
of labels might have incurred a worse performance in those
algorithms and all classifiers obtained similar performance.
OSNN could outperform HTNB, OzaBag, OAUE, RCD and
DP for the NOAA stream. Such a result might indicate the
presence of informative manifolds embedded in weather data.
In Sensor streams, OSNN was able to outperform HTNB
and RCD and to produce similar generalization to the other
ensembles. The overall performance across all streams was
also assessed. OSNN regularly outperformed HTNB, OzaBag,
OAUE and produced similar generalization to RCD, DDD
and DP. Independent of the factors of our analysis, OSNN
is consistently among the highest ranked approaches. OSNN’s
ability to adapt and to exploit unlabeled data could compensate
for the use of ensembles in existing methods when very few
labels are available.

In Figure 1, we plot the prequential accuracy for Agrawal
and Power Supply with uniform labeling distribution. We show
the accuracy of the highest and lowest scoring ensemble, and
of HTNB and OSNN (single learners). Figure 1a shows that,
for Agrawal1 with abrupt drifts, OSNN maintained relatively
stable performance in the presence of concept drifts, and was
able to learn and adapt more quickly than other methods in
each drift. These figures show that OSNN is able to recover
from each sudden drifts more rapidly than the other classifiers
for the Agrawal1 data stream.

In terms of gradual drifts, in Figures 1b, OSNN also outper-
formed state-of-the-art algorithms in the majority of concepts.
In fact, from the third concept, the performance of OSNN
increases drastically, which could indicate that the incoming

TABLE IV: Statistical ranking of prequential accuracy on
streams with nonuniformly distributed labels.

Groups HTNB OZABAG OAUE RCD DDD DP OSNN

Grouped by amount of labels
5% 2 2 2 2 1 2 1
10% 1 1 1 1 1 1 1
20% 2 2 2 2 1 2 1

Grouped by type of concept drift
Abrupt 2 2 2 2 1 2 1
Gradual 2 2 2 2 1 2 1

Real-world 1 1 1 1 2 2 1

Grouped by stream
Sine 3 3 3 3 2 3 1

Agrawal 2 2 2 2 2 2 1
SEA 1 1 2 1 1 2 1

STAGGER 2 1 2 2 1 1 1
Elec 1 1 1 1 1 1 1

NOAA 2 2 2 2 2 1 1
Power S. 1 1 1 1 1 1 1
Sensor 1 1 2 2 3 3 2

All streams 2 2 2 2 2 2 1
Highlighted ranks denote significant superiority.

concepts have more informative manifolds. The other methods
do not present such a gain in accuracy.

For Power Supply (Figure 1c), OSNN could produce higher
accuracy than state-of-the-art methods for most of the length
of the streams, independent of the amount of labeled data.
The results in Figure 1 indicate that OSNN is more robust to
sudden drifts than state-of-the-art methods. The SLVQ algo-
rithm was able to naturally and rapidly update the manifold
representation (basis functions) of the current data and the
MR technique for weight update could also adapt the weights
quickly and effectively, whereas OAUE could not handle the
lack of label information and the other ensemble methods in
this study depend on drift detection mechanisms to start the
model adaptation.

C. Results with nonuniform labeling probability

Table IV shows the Scott-Knott rankings for streams with
nonuniform labels grouped according to the analysed factors
– amount of labels, type of concept drift and streams. When
labels are severely scarce (5% of labels is available), the
true target function becomes more difficult to be learned as
only very few regions of the input space have labels. OSNN
outperforms HTNB, OzaBag, OAUE, RCD and DP in such
a scenario, which indicates that it could successfully exploit
unlabeled data to identify relevant structures despite their
hidden labels. When the amount of labels was doubled, more
informative labels were revealed and all methods delivered
similar performance. DDD is a stacked ensemble that uses
diversity to select the optimal subensemble to be trained
and evaluated to handle concept drifts. Nevertheless, with
20% of labels, OSNN obtained similar performance to DDD
and superior generalization to the other methods. Such a
result indicates that SLVQ and the manifold regularization in
OSNN could effectively find important structures to improve
its decision boundaries.

For groups by type of drift, OSNN delivered greater ac-
curacy than HTNB, OzaBag, OAUE, RCD and DP, and
similar performance to DDD for both abrupt and gradual
drifts. However, for real-world streams, DP and DDD were

11

0 0.5 1 1.5 2

Time step 10
4

40

50

60

70

80

90

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

Agrawal1-Abrupt-5% of labels

HTNB

OAUE

DP

OSNN

(a)

0 0.5 1 1.5 2

Time step 10
4

40

50

60

70

80

90

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

Agrawal1-Gradual-5% of labels

HTNB

OAUE

DP

OSNN

(b)

0 1 2 3

Time step 10
4

50

55

60

65

70

75

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

Power Supply - 5% of labels

HTNB

RCD

DDD

OSNN

(c)

Fig. 1: Prequential accuracy on data streams with uniform labeling distribution. Dashed vertical lines denote time steps where
known abrupt (gradual) concept drifts happen (are centered). Plots for other label percentages are in the Supplement.

outperformed by the other methods, whereas OSNN continued
to be the highest ranked approach. In this sense, SLVQ could
adapt OSNN’s basis functions to every drift by providing in-
formative up-to-date vector quantization to the weight training
without generating irrelevant basis functions. This adaptation
demonstrates OSNN’s robustness in tackling drifts of different
types, including unknown drifts in real-world streams.

For stream groups, Table IV presents somewhat contrasting
results to Table III. OSNN was the highest ranked approach for
all artificial streams. In fact, OSNN was superior to all other
methods for Sine and Agrawal streams and was not inferior to
any of the other techniques. When label arrival depends on the
region of input space instead of time, the advantages of the
data representation and regularization mechanisms in OSNN
over single and ensemble learners become more evident. For
Elec and Power Supply, all methods had similar performance.
OSNN and DP were the superior techniques for NOAA.
However, for Sensor, OSNN and DP degraded to rank 2 and
3, respectively. Decision trees seem to be more adequate to
Sensor with nonuniform labeling distributions. Nevertheless,
OSNN was the approach with highest performance in the
vast majority of cases. In fact, when we grouped all streams,
OSNN produced superior generalization compared to all other
algorithms. Such a result demonstrates that OSNN is the most
robust classifier to scarce labels, different types of concept drift
and diverse data from different environments, with uniformly
and nonuniformly distributed labels.

According to Figure 2a, OSNN is the least affected by
abrupt drifts, whilst being the technique with highest accuracy
for most new concepts. For gradual drifts – Figure 2b – OSNN
delivered the highest prequential accuracy, while being the
least affected by the drifts. Its recovery was the fastest among
these methods. OAUE is an implicit ensemble that was affected
by the lack of labels. Even though DDD has a drift detection
mechanism, its performance was more degraded during each
drift than OSNN’s. For real-world stream NOAA (Figure
2c), OSNN consistently produced superior generalization than
HTNB, RCD and DP across all amounts of labeled data.
OSNN’s ability to recover from drifts shows the robustness
of the SLVQ and MR weight update methods. According
to Figure 2a, OSNN is the least affected by abrupt drifts,

whilst is the technique with highest accuracy for most new
concepts. For gradual drifts – Figure 2b – OSNN delivered the
highest prequential accuracy, while being the least affected by
the drifts. Its recovery was the fastest among these methods.
OAUE is an implicit ensemble that was affected by the lack
of labels. Although DDD uses a drift detection mechanism,
its performance decayed after each drift more severely than
OSNN’s. For real-world stream NOAA (Figure 2c), OSNN
consistently produced superior generalization than HTNB,
RCD and DP across all amounts of labeled data. OSNN’s
ability to recover from drifts shows the robustness of the SLVQ
and MR weight update methods.

In Figure 3a, we show the training of C and η throughout
the Sine1 stream with abrupt concept drifts as an example.
We plot η and the function ∆C =

∑
i ||c

(t)
i − c

(t−1)
i || as

a measure of the adaptation of C at each time step. OSNN
automatically adjusts η so that it takes larger steps when a
concept drift occurs and smaller steps within a stable concept.
From the figure we can see that OSNN was able to increase
η following the drifts in time steps 4000 and 8000 for greater
exploration, plasticity and faster adaptation, while encouraging
more stability (smaller η) for more stable input data. SLVQ
also helps OSNN adapting to changing concepts. In particular,
note that the peaks in codebook changes in Figure 3a coincide
with the peaks of η. A similar behavior is observed for the
gradual drifts in Figure 3b, though in this case the η varied
more smoothly and had a lower peak, and the changes in
the codebook over time were smaller, reflecting the fact that
the drift was gradual. This demonstrates OSNN’s success in
automatically adjusting the learning rate and adapting the
codebook to both abrupt and gradual concept drifts, enabling
quick recovery and proper learning of the incoming concept.

RQ3 – Besides being able to adapt to new concepts, OSNN
could make use of both labeled and unlabeled data to main-
tain or improve generalization over state-of-the-art single and
ensemble methods for the majority of incoming concepts.
OSNN was particularly effective with nonuniform labeling
distribution due to its ability to compensate for the lack of
labels in important regions by using unlabeled data to learn
meaningful structures in such regions.

12

0 0.5 1 1.5 2

Time step 10
4

40

50

60

70

80

90

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

Sine2 - Abrupt - 5% of labels

HTNB

OAUE

DDD

OSNN

(a)

0 0.5 1 1.5 2

Time step 10
4

40

50

60

70

80

90

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

Sine2 - Gradual - 5% of labels

HTNB

OAUE

DDD

OSNN

(b)

0 0.5 1 1.5 2

Time step 10
4

45

50

55

60

65

70

75

P
re

q
u
e
n
ti
a
l
a
c
c
u
ra

c
y
 (

%
)

NOAA - 5% of labels

HTNB

RCD

DP

OSNN

(c)

Fig. 2: Prequential accuracy on data streams with nonuniform labeling distribution. Dashed vertical lines denote time steps
where known abrupt (gradual) concept drifts happen (are centred). Plots for other label percentages are in the Supplement.

0 2000 4000 6000 8000 10000 12000

Time step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Sine1 with abrupt concept drifts.

0 2000 4000 6000 8000 10000 12000

Time step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Sine1 with gradual concept drifts.

Fig. 3: Adaptive C and η for Sine1 with uniform labeling
distribution. Vertical dashed lines mark the center of the drifts.

VIII. CONCLUSIONS

In this work, we studied data stream learning in nonsta-
tionary environments in which instances may arrive with or
without labels and how to exploit the incoming unlabeled
data to improve classification accuracy in the presence of
concept drifts. We proposed OSNN, a RBF neural network

that is able to continuously adapt to different concepts and
to use unlabeled data to learn underlying manifolds in data
to improve generalization when labels are scarce. The basis
function training in OSNN is performed by SLVQ, a novel
training algorithm that adjusts basis function centers in order to
represent structures of the current concept of a stream based on
labeled and unlabeled data. We also proposed a novel training
algorithm for the RBF weights, which uses pseudolabels to
estimate targets that optimize the smoothness of OSNN output
over a manifold identified by basis functions training. Such es-
timates were used in a weight regularization technique to learn
decision boundaries improved by the manifold assumption.

We performed a comprehensive empirical study to provide
evidences of OSNN’s effectiveness with both synthetic and
real-world streams. Such a study investigated diverse learning
scenarios with multiple streams, different types of concept drift
and various amounts of labeled data. OSNN was compared
to state-of-the-art stream learning algorithms and delivered
consistently top predictive performance in the majority of sce-
narios, especially when labels were nonuniformly distributed.

The performance of SSC algorithms depends on the validity
of their assumptions. Further investigations on the interactions
of SSC assumptions in OSSC remain important in clarifying
how the cluster assumption could be used in this context and
how to use and balance the demand for multiple assumptions
that might emerge as new concepts. We also intend to study
OSNN-based ensembles and how different OSNN configura-
tions can be automatically selected for each new concept. A
new approach to self-tune hyperparameters such as H could
also be proposed.

REFERENCES

[1] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” IEEE CIM, vol. 10, no. 4, pp. 12–25,
2015.

[2] R. G. F. Soares, “Effort estimation via text classification and autoen-
coders,” in IJCNN, pp. 01–08, 2018.

[3] E. Kocaguneli, B. Cukic, T. Menzies, and H. Lu, “Building a second
opinion: learning cross-company data,” in Proc. of PROMISE, pp. 12.1–
12.10, 2013.

[4] O. Chapelle, B. Schölkopf, and A. Zien, eds., Semi-Supervised Learning.
MIT Press, 2006.

13

[5] T. Wagner, S. Guha, S. Kasiviswanathan, and N. Mishra, “Semi-
supervised learning on data streams via temporal label propagation,”
in ICML, vol. 80, pp. 5095–5104, PMLR, July 2018.

[6] Y.-Y. Shen, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu, “Online semi-
supervised learning with learning vector quantization,” Neurocomputing,
2020.

[7] A. Goldberg, X. Zhu, A. Furger, and J.-M. Xu, “Oasis: Online active
semi-supervised learning,” in AAAI, vol. 1, (San Francisco, California,
USA), pp. 7–11, August 2011.

[8] F. Shen, H. Yu, K. Sakurai, and O. Hasegawa, “An incremental on-
line semi-supervised active learning algorithm based on self-organizing
incremental neural network,” Neural Comput. Appl., vol. 20, no. 7,
pp. 1433–3058, 2011.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[10] R. G. F. Soares, H. Chen, and X. Yao, “Efficient cluster-based boost-
ing for semisupervised classification,” IEEE TNNLS, vol. 29, no. 11,
pp. 5667–5680, 2018.

[11] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, 2014.

[12] K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE TNNLS, vol. 25, no. 1, pp. 12–26, 2014.

[13] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
JMLR, vol. 7, pp. 2399––2434, dec 2006.

[14] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient
sequential learning algorithm for growing and pruning RBF (GAP-
RBF) networks,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 34, no. 6,
pp. 2284–2292, 2004.

[15] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 16, no. 1,
pp. 57–67, 2005.

[16] R. Zhang, G.-B. Huang, N. Sundararajan, and P. Saratchandran, “Im-
proved GAP-RBF network for classification problems,” Neurocomput-
ing, vol. 70, no. 16, pp. 3011–3018, 2007.

[17] A. B. Goldberg, M. Li, and X. Zhu, “Online manifold regularization:
A new learning setting and empirical study,” in Mach. Learn. Knowl.
Disc. Data., (Berlin, Heidelberg), pp. 393–407, 2008.

[18] A. Haque, L. Khan, and M. Baron, “Sand: Semi-supervised adaptive
novel class detection and classification over data stream,” in Proc. of
the 13th AAAI Conf. Artif. Intell., pp. 1652—-1658, AAAI Press, 2016.

[19] V. M. A. Souza, D. F. Silva, J. ao Gama, and G. E. A. P. A. Batista, “Data
stream classification guided by clustering on nonstationary environments
and extreme verification latency,” in Proc. of the 2015 SIAM Int. Conf.
Data Min., pp. 873–881, 2015.

[20] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing
with concept drift,” IEEE TKDE, vol. 24, no. 4, pp. 619–633, 2012.

[21] C. W. Chiu and L. L. Minku, “Diversity-based pool of models for dealing
with recurring concepts,” in IJCNN, pp. 1–8, 2018.

[22] C. W. Chiu and L. L. Minku, “A diversity framework for dealing with
multiple types of concept drift based on clustering in the model space,”
IEEE TNNLS, pp. 1–11, 2020.

[23] P. M. Gonçalves Jr and R. S. M. D. Barros, “RCD: A recurring concept
drift framework,” Pattern Recognit. Lett., vol. 34, pp. 1018––1025, july
2013.

[24] D. Brzezinski and J. Stefanowski, “Combining block-based and online
methods in learning ensembles from concept drifting data streams,” Inf.
Sci., vol. 265, pp. 50–67, 2014.

[25] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
KDD, (New York, NY, USA), pp. 71—-80, Association for Computing
Machinery, 2000.

[26] M. Pratama, A. Ashfahani, and A. Hady, “Weakly supervised deep
learning approach in streaming environments,” in Proc. IEEE Int. Conf.
Big Data, (Los Alamitos, CA, USA), pp. 1195–1202, IEEE Computer
Society, dec 2019.

[27] Y. Li, Y. Wang, Q. Liu, C. Bi, X. Jiang, and S. Sun, “Incremental
semi-supervised learning on streaming data,” Pattern Recognit., vol. 88,
pp. 383–396, 2019.

[28] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in NIPS, (Cambridge, MA, USA),
pp. 321––328, MIT Press, 2003.

[29] F. Schwenker, H. A. Kestler, and G. Palm, “Three learning phases for
radial-basis-function networks,” Neural Netw., vol. 14, no. 4, pp. 439–
458, 2001.

[30] T. Kohonen, “Improved versions of learning vector quantization,” in
IJCNN, vol. 1, pp. 545–550, 1990.

[31] S. Bermejo and J. Cabestany, “A batch learning vector quantization
algorithm for nearest neighbour classification,” Neural Process. Lett.,
vol. 11, pp. 173–184, Jun 2000.

[32] L. Armijo, “Minimization of functions having lipschitz continuous first
partial derivatives.,” Pacific J. Math., vol. 16, no. 1, pp. 1–3, 1966.

[33] A. Krishnamoorthy and D. Menon, “Matrix inversion using Cholesky
decomposition,” in Proc. of the Signal Process. - Algorithms Archit.
Arrange. Appl. Conf. Proc. SPA, pp. 70–72, 2013.

[34] I. Nabney, “Efficient training of rbf networks for classification,” in Ninth
International Conference on Artificial Neural Networks. ICANN 99.,
vol. 1, pp. 210–215, 1999.

[35] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” JMLR, vol. 13, pp. 281—-305, 2012.

[36] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Mach. Learn., vol. 90, pp. 317—-346, Mar. 2013.

[37] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in SBIA, (Berlin, Heidelberg), pp. 286–295, Springer, 2004.

[38] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a perfor-
mance perspective,” IEEE TKDE, vol. 5, no. 6, pp. 914–925, 1993.

[39] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in KDD, (New York, NY, USA), pp. 377—-
382, Association for Computing Machinery, 2001.

[40] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Mach. Learn., vol. 1, pp. 317—-354, March 1986.

[41] M. Harries, “SPLICE-2 comparative evaluation: Electricity pricing,”
tech. rep., Uni. of New South Wales, Sch. Comp. Sci. and Eng., 1999.

[42] NOAA, “Fed. climate complex global surface summary of day data -
version 7 - usaf datsav3 station n. 725540,” 2012. [Online; accessed
2020-02-01].

[43] X. Zhu, “Stream data mining repository,” 2010. [Online; accessed 2020-
02-01].

[44] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
JMLR, vol. 7, pp. 1–30, December 2006.

[45] T. Menzies, Y. Yang, G. Mathew, B. Boehm, and J. Hihn, “Negative
results for software effort estimation,” EMSE, vol. 22, no. 5, pp. 2658–
2683, 2017.

Rodrigo G. F. Soares is a Lecturer at the Federal
Rural University of Pernambuco, Recife, Brazil. He
received the B.Sc. degree in Computer Engineering
from the Federal University of Rio Grande do Norte
(UFRN), Brazil, in 2005. And the M.Sc. degree in
Computer Science from the Federal University of
Pernambuco (UFPE), Brazil, in 2008. He has been
the recipient of Brazilian Council for Scientific and
Technological Development (CNPq) scholarships in
both degrees. He received the Ph.D. degree in
Computer Science at the University of Birmingham,

UK, in 2014 with a scholarship from the CAPES Foundation, Brazil. His
research interests include data stream learning, semi-supervised learning,
neural networks, clustering and evolutionary computation.

Leandro L. Minku is an Associate Professor at
the University of Birmingham (UK). He received
the PhD degree in Computer Science from the
University of Birmingham (UK) in 2010. Among
other roles, Dr. Minku is Associate Editor-in-Chief
for Neurocomputing, and Associate Editor for IEEE
Transactions on Neural Networks and Learning
Systems, Empirical Software Engineering Journal,
and Journal of Systems and Software. Dr. Minku’s
main research interests are machine learning in non-
stationary environments / data stream learning, on-

line class imbalance learning, ensembles of learning machines and computa-
tional intelligence for software engineering.

