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On gradual-impulse control of continuous-time Markov decision

processes with exponential utility

Xin Guo∗, Aiko Kurushima†, Alexey Piunovskiy‡ and Yi Zhang §

Abstract: We consider a gradual-impulse control problem of continuous-time Markov decision pro-
cesses, where the system performance is measured by the expectation of the exponential utility of the
total cost. We show, under natural conditions on the system primitives, the existence of a determin-
istic stationary optimal policy out of a more general class of policies that allow multiple simultaneous
impulses, randomized selection of impulses with random effects, and accumulation of jumps. After
characterizing the value function using the optimality equation, we reduce the gradual-impulse con-
trol problem to an equivalent simple discrete-time Markov decision process, whose action space is the
union of the sets of gradual and impulsive actions.

Keywords: Continuous-time Markov decision processes. Exponential utility. Impulse-gradual con-
trol. Risk-sensitive criterion. Optimality equation.

AMS 2000 subject classification: Primary 90C40, Secondary 60J75

1 Introduction

This paper considers a gradual-impulse control problem for continuous-time Markov decision processes
(CTMDPs) with the performance to be minimized being the expected exponential utility of the total
cost. In this model, the decision maker can control the process gradually via its local characteristics
(transition rate), and also has the option of affecting impulsively the state of the process. The system
dynamics is depicted in Figure 1 below.

There is no lack of situations, where an action can affect the state of the controlled process in-
stantaneously. For example, in a Susceptible-Infected-Recovered (SIR) epidemic model, the controller
elaborates the immunization policy, affecting the transition rate from the susceptibles to the infec-
tives, as well as the isolation policy, which reduces instantaneously the number of infectives. Let us
formulate another simple example, which contains some features motivating the present paper.

Example 1.1 A rat (or intruder) may invade the kitchen. For each time unit it remains alive in the
“kitchen”, a constant cost of l ≥ 0 is incurred. The rat spends an exponentially distributed amount of
time with mean 1

µ > 0 in the kitchen, and then goes outside and settles down in another house (and
thus never returns). When the rat is in the kitchen, the housekeeper (defender) can decide to shoot
at it, with a chance of hitting and killing the rat being p ∈ (0, 1). If the rat dodged, it remains in the
kitchen. Each bullet costs C > 0. Assume that the successive shootings are independent.
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Let us mention some features in the above example. “Shoot” is an impulse. The location of the rat
is the state. The effect of an impulse on the post-impulse state is random, as the shooting may be
dodged. It is costly for each time unit the rat is present in the kitchen. Suppose the cost of impulse
is relatively low. It can happen that after one impulse, if the rat is still alive and in the kitchen,
then it is reasonable to immediately shoot again. This means, one should allow multiple impulses at
a single time moment in this problem. We will return to this problem in Example 3.1 below, which
demonstrates the situations when applying only one impulse is insufficient for optimality.

Most previous works on gradual-impulse control do not allow multiple simultaneous impulses at a
single time moment, see [3, 4, 6, 14, 17, 18, 21]. Extra conditions are imposed therein to guarantee
there is no need to apply more than one impulse at a single time moment. Example 1.1 described a
situation when those conditions are not satisfied. There is convenience if only one impulse is allowed at
a given time moment, because at each time moment, there is only one state, so that one can construct
the process under control in the (original) state space of the gradual-impulse control problem. When
there is only gradual control, it is convenient to construct the CTMDP using a marked point process
with the mark space being the same as the state space of the original control problem. If multiple
impulses were applied in a sequence at a single time moment, then there would be multiple states
associated with the single time moment. If one wishes to construct the problem using a marked
point process, then the mark space must be enlarged, so that a sequence of impulses applied at the
single time moment and the post-impulse states are merged as a single “mark”, which will be called
an intervention. Necessarily this leads to a more complicated marked point process with each mark
corresponding to a sample path of a discrete-time Markov decision process (DTMDP). This idea was
employed and implemented in [7].

Another way of constructing rigorously a gradual-impulse control problem of CTMDPs admitting
multiple simultaneous impulses comes from [24]. The idea is to keep the original state space, but to
enlarge the time t ∈ [0,∞) to (n, t) with the first coordinate, roughly speaking, counting the number
of impulses applied at the time t. Consequently, several concepts about stochastic processes needed
be extended.

In the present work, we follow the construction of [7] but with more general control policies. Com-
pared to the previous literature on impulse or gradual-impulse control problems of CTMDPs, to the
best of our knowledge, we consider the most general setup: the policy allows to make relaxed grad-
ual controls and randomized impulsive controls with randomized consequences, multiple simultaneous
impulses are allowed, and accumulation of jumps of the process is not excluded. We study the gradual-
impulse control problem of CTMDPs with the system performance measure being the expectation of
the exponential utility of the total cost to be minimized. For risk-sensitive CTMDPs with gradual
control only and total or average cost criteria, see e.g., [11, 12, 16, 19, 22, 25]. In close relation to
the present paper, the risk-sensitive optimal stopping problem of a continuous-time Markov chain was
recently considered in [1], which is a special impulse control problem but with a more general utility
function.

The main optimality results of this paper lie in the following. We characterize the value function
of the gradual-impulse control problem for CTMDPs in terms of the optimality equation, and show
the existence of deterministic stationary optimal policies, under quite general and natural conditions
compared to the literature. For example, the growth on the gradual cost rates and impulse cost
functions, as well as the transition rate can be quite general. In comparison, only bounded transition
and cost rates were allowed in [7], which deals with a discounted problem with linear utility. The
boundedness conditions were to guarantee that the Dynkin formula is applicable to functions of interest
therein, which is important for the argument therein.

The method of investigations in the present paper is different from [7], but is closer to [25], which
studies a similar problem for CTMDPs but with gradual control only. Although both the present paper
and [25] follow the same idea of reducing the original problem to a DTMDP, the implementation for
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the gradual-impulse control problem becomes more involving. In particular, the connection between
a strategy in the induced DTMDP and a policy in the gradual-impulse control problem, which is at
the core of the justification of the reduction, becomes more delicate, see Subsection 4.2 below.

In the induced DTMDP, an action is a triplet, including the time until the next time of applying
an impulse (if no natural jump occurred by then), the next impulse itself, and the decision rule
for the selection of gradual controls. Apart from being with a more complicated action space than
the original problem, the induced DTMDP model is not so convenient. For example, it is not a
semicontinuous model even if the system primitives of the gradual-impulse control problem satisfy the
compactness-continuity conditions. Consequently, the existence of an optimal policy does not follow
automatically from the reduction to this DTMDP. In this connection, we mention that Lemma 5.12
of [25] is inaccurate unless further conditions were imposed therein. Here we incidentally show that
the optimality results in [25] remain correct in spite of that error. Accordingly, the second step in the
investigation is to reduce further the DTMDP model to yet another one, which is a semicontinuous
model, and with a simple action space (the union of the set of gradual actions and impulses). This
second reduction is done based on the investigation of the optimality equation of the DTMDP obtained
from the first reduction.

The rest of the paper is organized as follows. We present the rigorous construction of the controlled
process and problem statement in Section 2. Section 3 consists of the main optimality results, whose
proof is postponed to Section 5. The argument is based on the connection with a DTMDP model,
which is introduced in Section 4. The paper is finished with a conclusion in Section 6. To improve
the readability, we summarize the relevant notions and facts about DTMDPs in the appendix.
Notation and conventions. In what follows, B(X) is the Borel σ-algebra of the topological space
X, I stands for the indicator function, and δx(·) is the Dirac measure concentrated on the singleton
{x}, assumed to be measurable. A measure is σ-additive and [0,∞]-valued. Here and below, unless
stated otherwise, the term of measurability is always understood in the Borel sense. Throughout this
paper, we adopt the conventions of 0

0 := 0, 0 · ∞ := 0, 1
0 := +∞, ∞−∞ :=∞. For each function f

on X, let ||f || := supx∈X |f(x)|.

2 Model description and problem statement

2.1 System primitives of the gradual-impulse control problem

We describe the primitives of the model as follows. The state space is X, the space of gradual controls
is AG, and the space of impulsive controls is AI . It is assumed that X, AG and AI are all Borel
spaces, endowed with their Borel σ-algebras B(X), B(AG) and B(AI), respectively. The transition
rate, on which the gradual control acts, is given by q(dy|x, a), which is a signed kernel from X×AG,
endowed with its Borel σ-algebra, to B(X), satisfying the following conditions: q(Γ|x, a) ∈ [0,∞)
for each Γ ∈ B(X), x /∈ Γ; q(X|x, a) = 0, x ∈ X, a ∈ AG; q̄x := supa∈AG qx(a) < ∞, x ∈ X,

where qx(a) := −q({x}|x, a) for each (x, a) ∈ X × AG. For notational convenience, we introduce
q̃(dy|x, a) := q(dy \ {x}|x, a), ∀ x ∈ X, a ∈ AG. If the current state is x ∈ X, and an impulsive
control b ∈ AI is applied, then the state immediately following this impulse obeys the distribution
given by Q(dy|x, b), which is a stochastic kernel from X × AI to B(X). Finally, given the current
state x ∈ X, the cost rate of applying a gradual control a ∈ AG is cG(x, a) and the cost of applying
an impulsive control b ∈ AI is cI(x, b, y), where cG and cI are [0,∞)-valued measurable functions
on X ×AG and X ×AI ×X, respectively. Throughout this paper, we assume that AG and AI are
compact Borel spaces. It is without loss of generality to regard AG and AI as two disjoint compact
subsets of a Borel space Ã = AG ∪AI . Furthermore, we assume that

sup
a∈AG

cG(x, a) <∞, ∀x ∈ X. (1)
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The system dynamics in the concerned gradual-impulse control problem can be described as follows.
In absence of impulses, the system is just a controlled Markov pure jump process in the state space X,
where the (gradual) control, selected from AG, acts on the local characteristics of the process, leading
to natural jumps. This is conveniently described as a marked point process, which consists of the
pairs of subsequent jump moments and the the post-jump states (marks). The mark space is thus X.
We would still describe the system in the concerned gradual-impulse control problem using a marked
point process. However, when the decision maker is allowed to apply a finite or countably infinite
sequence of impulses from AI at a single time moment, and each impulse results in a post-impulse
state, there would be a sequence of states in X at a single time moment. Moreover, the order of the
impulses and their resulting states are also relevant. Therefore, the marked point process we use now
is in an enlarged mark space. More precisely, each mark contains a sequence of impulses applied at
the same time moment, the state before the impulses are applied, and all the states resulted by these
impulses. Each jump moment is either triggered by an impulse (or a sequence of impulses), or by a
natural jump. A mark in this marked point process is referred to as an intervention. This term is
naturally understandable when the mark consists of impulses. Having said so, we will also allow that
an “intervention” does not contain any impulse or say an empty sequence of impulses. This appears
when the decision maker chooses not to apply any impulse immediately after a natural jump. In the
rest of this section, following the method of [7], we will elaborate this idea and describe rigorously
the concerned continuous-time gradual-impulse control problem. To this end, we will firstly state the
precise definition of an intervention in the next subsection.

2.2 Definition and interpretation of an intervention

At the beginning of an intervention, the decision maker chooses whether to apply an impulse, and
which one to apply. If the current state is x ∈ X, after an impulse b ∈ AI is chosen, the new state
say y ∈ X is instantaneously realized, following the distribution Q(dy|x, b). Then based on x, b, y, the
decision maker will choose the next impulse, if any at all, and so on. To be consistent, a cemetery
point ∆ /∈ AI∪X is artificially fixed, which is chosen when the decision maker decides not to apply any
more impulse at the current instant, and it leads to the post-impulse state, also denoted as ∆, which
is absorbing, i.e., Q(∆|∆,∆) ≡ 1. Therefore, an intervention is itself a sequential decision process.
More precisely, an intervention can be regarded as a trajectory of the following DTMDP, which we
refer to as the “intervention” DTMDP model, to distinguish it from several other DTMDP models to
appear subsequently.

Definition 2.1 The intervention DTMDP model is specified by the tuple {X∆,A
I
∆, Q}, which is de-

fined in terms of the primitives of the gradual-impulse control problem given in Subsection 2.1, where
the state space is X∆ := X ∪ {∆} with ∆ /∈ X ∪ AI being a cemetery point, the action space is
AI

∆ := AI ∪ {∆}, the one-step transition probability from X∆ ×AI
∆ to B(X∆) is Q(dy|x, b). Here we

have accepted that Q({∆}|x, b) := 1 if x = ∆ or b = ∆.

Let the initial distribution in the intervention DTMDP be always concentrated on X. Then its
canonical sample space is Y := (

⋃∞
k=0 Yk)∪(X×AI)∞, where for each∞ > k ≥ 1, Yk := (X×AI)k×

(X × {∆}) × ({∆} × {∆})∞, and Y0 := (X × {∆}) × ({∆} × {∆})∞. Here, if y ∈ Yk, ∞ > k ≥ 0,
then there are k impulses applied in the intervention y. Similarly, if y ∈ (X ×AI)∞, then there are
infinitely many impulses applied in the intervention y.

Now we give the following definition.

Definition 2.2 An intervention is an element of Y.

In other words, Y defined above is the space of all interventions. It will be the mark space of the
marked point process {(Tn, Yn)} introduced in the next subsection.
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With the notation introduced above, we now reiterate, more rigorously compared to the one in the
beginning of this subsection, the interpretation of an intervention as follows. Given the current state
x ∈ X, if the controller decides to use ∆, then it means, no more impulse is used at this instant, and
the intervention DTMDP is absorbed at ∆ in the next step; if the controller decides to use an impulse
b ∈ AI , then the post-impulse state follows the distribution Q(dy|x, b). At the next post-impulse state
y, if y = ∆, then the only decision is ∆; if y 6= ∆, then the controller either decides to use no impulse,
leading to the next post-impulse state ∆, or to use impulse b′, leading to the next post-impulse state,
which follows the distribution given by Q(·|y, b′), and so on. In other words, an intervention consists of
a state and a finite or countable sequence of pairs of impulsive actions and the associated post-impulse
states. In particular, no impulse is applied in an intervention if the intervention belongs to Y0, see
Figure 1 and its caption for an example. Let Y∗ := Y \Y0 = (

⋃∞
k=1 Yk) ∪ (X×AI)∞ be the set of

interventions, where some impulses are applied.
In an intervention, locally, the selection of impulses (including the “pseudo” impulse ∆) from AI

∆

is governed by a strategy in the intervention DTMDP model. This adverb “locally” is understood
in comparison with the definition of a policy for the gradual-impulse control problem, as given in
Definition 2.3 below, which governs the selection of impulsive controls as well as gradual controls, and
is thus “global”. Let Ξ be the set of (possibly randomized and history-dependent) strategies σ in the
intervention DTMDP. We refer the reader to the appendix for standard terminologies of DTMDPs.
The way how a strategy in the intervention DTMDP model is incorporated into a policy in Definition
2.3 below is through its strategic measure. Let βσ(·|x) denote the corresponding strategic measure of a
strategy σ of the intervention DTMDP, given the initial state x ∈ X. By the Ionescu-Tulcea theorem,
see e.g., Proposition C.10 in [13], the mapping x ∈ X→ βσ(·|x) is measurable. Let PY be the collection
of all such stochastic kernels generated by some strategy σ ∈ Ξ, and PY(x) := {βσ(·|x) : σ ∈ Ξ} for
each state x ∈ X. Let PY∗ := {β(·|·) ∈ PY : β(Y∗|x) = 1, ∀ x ∈ X}, and for each x ∈ X,
PY∗(x) := {β(·|x) : β(·|·) ∈ PY, β(Y∗|x) = 1}.

2.3 Construction of the controlled process

Let us now describe the promised marked point process {(Tn, Yn)}∞n=1 for the system dynamics of the
concerned gradual-impulse control problem, where the mark space is the space of interventions. Then
the continuous-time process {ξt}t≥0 under control is defined based on this marked point process.

Let Y∆ := Y ∪ {∆}, Ω0 := Y × ({0} × Y) × ({∞} × {∆})∞, and Ωn := Y × ({0} × Y) ×
((0,∞) × Y)n × ({∞} × {∆})∞ for all n = 1, 2, . . . . The canonical space Ω is defined as Ω :=
(
⋃∞
n=0 Ωn) ∪

(
Y × ((0,∞) × Y)∞

)
and is endowed with its Borel σ-algebra denoted by F . The

following generic notation of a point in Ω will be in use: ω = (y0, θ1, y1, θ2, y2, . . .). Below, unless
stated otherwise, x0 ∈ X will be a fixed notation as the initial state of the gradual-impulse control
problem. Then we put

y0 := (x0,∆,∆, . . . ), θ1 ≡ 0. (2)

The sequence {θn}∞n=1 represents the sojourn times between consecutive interventions. Here θ1 = 0
corresponds to that we allow the possibility of applying impulsive control at the initial time moment,
c.f. (5) below.

For each n = 0, 1, . . . , let

hn := (y0, θ1, y1, θ2, y2, . . . θn, yn) = (y0, 0, y1, θ2, y2, . . . θn, yn),

where the second equality holds because θ1 ≡ 0, see (2). The collection of all such partial histories hn
is denoted by Hn. Let us introduce the coordinate mappings:

Yn(ω) = yn, ∀ n ≥ 0; Θn(ω) = θn, ∀ n ≥ 1.
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The sequence {Tn}∞n=1 of [0,∞]-valued mappings is defined by Tn(ω) :=
∑n

i=1 Θi(ω) =
∑n

i=1 θi and
T∞(ω) := limn→∞ Tn(ω) for all ω ∈ Ω. Let Hn := (Y0,Θ1, Y1, . . . ,Θn, Yn). Finally, we define the
controlled process

{
ξt
}
t∈[0,∞)

by

ξt(ω) =

{
Yn(ω), if Tn ≤ t < Tn+1 for n ≥ 1;
∆, if T∞ ≤ t,

.

It is convenient to introduce the random measure µ of the marked point process {(Tn, Yn)}∞n=1 on
(0,∞) ×Y: µ(dt × dy) =

∑
n≥2 I{Tn<∞}δ(Tn,Yn)(dt × dy). Let Ft := σ{H1} ∨ σ{µ((0, s] × B) : s ≤

t, B ∈ B(Y)} for t ∈ [0,∞).
We will use the following notation in the next definition. For each intervention

y = (x0, b0, x1, b1, . . . ) ∈ Y,

define x̄(y) := xk if ∞ > k = 0, 1, . . . is the unique integer such that y ∈ Yk (if k ≥ 1, then x̄(y)
is the state after the last impulse in the intervention y); if such an integer k does not exist, then
y ∈ (X×AI)∞ and x̄(y) := ∆. The previous equality corresponds to that we kill the process after an
infinite number of impulses was applied at a single time moment. An example of a trajectory of the
system dynamics in the gradual-impulse control problem is displayed in Figure 1.

Definition 2.3 A policy is a sequence u = {un}∞n=0 such that u0 ∈ PY and, for each n = 1, 2, . . . ,
un =

(
Φn,Πn,Γ

0
n,Γ

1
n

)
, where Φn is a stochastic kernel on (0,∞] given Hn such that Φn({∞}|hn) = 1

if yn ∈ (X×AI)∞, Πn is a stochastic kernel on AG given Hn× (0,∞), Γ0
n is a stochastic kernel on Y

given Hn × (0,∞)×X satisfying Γ0
n(·|hn, t, x) ∈ PY(x) for each hn ∈ Hn, x ∈ X and t ∈ (0,∞), and

Γ1
n is a stochastic kernel on Y given Hn satisfying Γ1

n(·|hn) ∈ PY∗(x̄(yn)) for each hn ∈ Hn. (The
above conditions apply when yn 6= ∆; otherwise, all the values of Φn, Πn, Γ0

n and Γ1
n are immaterial

and may be put arbitrarily.)

The set of policies is denoted by U .
Let us provide an interpretation of how a policy u acts on the system dynamics. Roughly speaking,

an intervention is over as soon as the (possibly empty) sequence of simultaneous impulses is over. Given
that the nth intervention is over, the kernel Φn specifies the conditional distribution of the planned
time until the next impulse (or next sequence of impulses). The (conditional) distribution of the time
until the next natural jump (if there were no interventions before it) is the non-stationary exponential
distribution with rate

∫
AG qx̄(Yn)(a)Πn(da|Hn, t). Below, we put q∆(a) := 0 for each a ∈ AG. In other

words, Πn is the (decision rule of) relaxed gradual control. Given that the nth intervention is over,
the next intervention is triggered by either the next planned impulse or the next natural jump; in the
former case, the new intervention has the distribution given by Γ1

n, and in the latter case the new
intervention has the distribution given by Γ0

n. This interpretation will be seen consistent with (3) and
(4) below, where one can see how a policy u acts on the conditional law of the marked point process
{(Tn, Yn)}∞n=1. See also the caption of Figure 1.

Suppose a policy u = {un}∞n=0 is fixed. Let us now present the conditional law of the marked point
process {(Tn, Yn)}∞n=1 under the policy u, which determines the underlying probability measure Pux0

on (Ω,F), where x0 ∈ X is the fixed initial state of the system dynamics. For brevity, we introduce
the following notations for each n ≥ 1, Γ ∈ B(X) and hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn:

λun(Γ|hn, t) :=

∫
AG

q̃(Γ|x(yn), a)Πn(da|hn, t), Λun(Γ|hn, t) :=

∫ t

0
λun(Γ|hn, s)ds.

Now, for each n ≥ 1, we introduce the stochastic kernel Gun on (0,∞]×Y∆ given Hn as follows. For
each hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn,

Gun({+∞}× {∆}|hn) := δyn({∆}) + δyn(Y)e−Λun(X|hn,+∞)Φn({+∞}|hn), (3)
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Figure 1: Illustration of the system dynamics in the gradual-impulse control problem, and how the policy
acts on the system dynamics. Here X = [0,∞). The second coordinate indicates the impulse (including the
“pseudo” impulse ∆) used at that state, which is recorded in the first coordinate. At the initial time t = θ1 ≡ 0,
three impulses are applied in turn. The first jump in the indicated sample path of the marked point process
{(Tn, Yn)}∞n=1 takes place at t2 = θ2. It is triggered by a natural jump because x′0 6= x3. Along the displayed
sample path, the system state remains to be x3 before the first jump of the marked point process. The second
jump of the marked point process is triggered by a planned (or say active) impulse, because x′′0 = x′0. Infinitely
many impulses are applied at t3 = t2 +θ3, so that the process is “killed” after the infinitely many impulses at t3,
i.e., ω = (y0, 0, y1, θ2, y2, θ3, y3,∞,∆,∞,∆, . . . ). Note also that, under the policy u = {un}∞n=0 in Definition 2.3,
y1 ∈ Y3 is a realization from the distribution u0(·|x0), x̄(y1) = x3; y2 ∈ Y0 is a realization from the distribution
Γ0
1(·|h1, θ2, x′0) as the jump at t2 is triggered by a natural jump, x̄(y2) = x′0; and y3 ∈ (X×AI)∞ is a realization

from the distribution Γ1
2(·|h2) as the jump at t3 is not triggered by a natural jump, x̄(y3) = ∆.
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and

Gun(dt× dy|hn) := δyn(Y)
{

Γ1
n(dy|hn)e−Λun(X|hn,t)Φn(dt|hn)

+

∫
X

Φn([t,∞]|hn)Γ0
n(dy|hn, t, x)λun(dx|hn, t)e−Λun(X|hn,t)dt

}
(4)

on (0,∞)×Y. For each fixed initial state x0 ∈ X, by the Ionescu-Tulcea theorem, see e.g., Proposition
C.10 in [13], there exists a probability Pux0

on (Ω,F) such that the restriction of Pux0
to (Ω,F0) is given

by

Pux0
(({y0} × {0} × Γ× ((0,∞]×Y∆)∞) ∩ Ω) = u0(Γ|x0) (5)

for each Γ ∈ B(Y); and for each n ≥ 1, under Pux0
, the conditional distribution of (Yn+1,Θn+1) given

FTn := σ{Hn} is determined by Gun(·|Hn) and the conditional survival function of Θn+1 given FTn
under Pux0

is given by Gun([t,+∞]×Y∆|Hn).
The cost associated with an intervention y = (x0, b0, x1, b1, . . .) ∈ Y is given by

CI(y) :=

∞∑
k=0

cI(xk, bk, xk+1).

Here, recall that an intervention consists of the current state, the sequence of impulses applied in turn
at the same time moment and the associated post-impulse states; and each impulse b applied at state
x results in a cost cI(x, b, z) if it leads to the post-impulse state z. (We accept that cI(x,∆,∆) := 0
for all x ∈ X∆.) With this notation, we now introduce the performance measure considered in this
paper:

V(x, u) := Eux
[
e
∑∞
n=1

(
CI(Yn)+

∫ Tn+1
Tn

∫
AG

cG(x̄(ξs),a)Πn(da|Hn,s−Tn)ds
)]

for each x ∈ X and policy u ∈ U . Here we recall that T1 = Θ1 ≡ 0, see (2). To illustrate more
explicitly how the policy acts on the impulses, consider the example of only one intervention and null
gradual cost cG(x, a) ≡ 0. Then we may write

Eux
[
eC

I(Y1)
]

=

∫
X×AI×X×...

u0(dx0 × db0 × dx1 × db1 × . . . |x)e
∑∞
k=0 c

I(xk,bk,xk+1)

=

∫
X×AI×X×...

u0(dy|x)eC
I(y).

More generally, one can compute Eux
[
eC

I(Yn+1)
]

= Eux
[
Eux
[
eC

I(Yn+1)|Hn

]]
, where Eux

[
eC

I(Yn+1)|Hn

]
can be written out as a similar integral to the case of n = 0 using the conditional laws (3) and (4).

Let the value function V∗ be denoted by V∗(x) := infu∈U V(x, u) for each x ∈ X. A policy u∗

satisfying V(x, u∗) = V∗(x) for all x ∈ X is called optimal for the gradual-impulse control problem:

Minimize over u ∈ U : V(x, u). (6)

In this paper, we will present conditions on the system primitives that guarantee the existence of an
optimal policy in a simple form as defined next.

Definition 2.4 A policy u is called deterministic stationary if there exist some measurable mappings
(ϕ,ψ, f) on X, where ϕ(x) ∈ {0,∞} for each x ∈ X, ψ and f are AI-valued and AG-valued, such
that Φn({∞}|hn) = 1, Πn(da|hn, t) = δf(x̄(yn))(da) for all t ≥ 0, and u0(·|x) = Γ0

n(·|hn, t, x) =
βπ(·|x) for some deterministic stationary strategy π in the intervention DTMDP model defined by
π({∆}|x0, b0, x1, b1, . . . , xn) = I{ϕ(xn) =∞}, and π(db|x0, b0, x1, b1, . . . , xn) = I{ϕ(xn) = 0}δψ(xn)(db).

In the above definition, Γ1
n was left arbitrary, because, under such a deterministic stationary policy, a

new intervention taking place at some t ∈ (0,∞) is always triggered by a natural jump.
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3 Optimality result

In this section, we present the main optimality results in this paper. In a nutshell, under natural
conditions on the system primitives of the gradual-impulse control problem (6), we show that it can
be solved via problem (21) for a simple DTMDP model, which we refer to as the tilde DTMDP model.
In this way, we show that the gradual-impulse control problem (6) admits a deterministic stationary
optimal policy.

In order to formulate the tilde DTMDP model, we impose the following condition.

Condition 3.1 There exists an [1,∞)-valued continuous function w on X such that cG(x, a)+qx(a)+
1 ≤ w(x) for each (x, a) ∈ X×AG.

If cG is a continuous function, then the above condition is a consequence of Condition 3.2 below and
the Berge theorem, see Proposition 7.32 of [2]. Several statements below do not need the bounding
function w in Condition 3.1 to be continuous. In this connection, we also mention that a Borel
measurable function w satisfying the inequality in Condition 3.1 always exists, see Lemma 1 of [9] and
recall (1).

Recall that Ã = AI ∪AG is the disjoint union of AG and AI . We are now in position to define the
tilde DTMDP model in terms of the system primitives of the gradual-impulse control problem (6).

Definition 3.1 The tilde DTMDP model is specified by {X, Ã, Q̃, l̃}, where X and Ã are its state
and action spaces, and its transition probability Q̃ on X given X× Ã and cost function l̃ are defined
by Q̃(dy|x, a) := q(Γ|x,a)

w(x) + δx(dy), l̃(x, a, y) := ln w(x)
w(x)−cG(x,a)

for all a ∈ AG, and Q̃(dy|x, b) :=

Q(dy|x, b), l̃(x, b, y) := cI(x, b, y) for all b ∈ AI .

For the solvability of problem (21) for the tilde DTMDP model, we impose the following compactness-
continuity condition.

Condition 3.2 The functions cI and cG are lower semicontinuous on X × AI × X and X × AG,
resp., and for each bounded continuous function g on X,

∫
X g(y)Q(dy|x, b) and

∫
X g(y)q̃(dy|x, a) are

continuous in (x, b) ∈ X×AI and (x, a) ∈ X×AG, resp.. (Recall also that AG and AI are compact.)

Under Conditions 3.1 and 3.2, one can easily check that the tilde DTMDP model is semicontinuous,
so that the value function W ∗ for problem (21) of the tilde DTMDP model is lower semicontinuous,
and there exists an optimal deterministic stationary strategy for it, see Proposition A.1(e). We collect
these observations in the next statement for future reference.

Proposition 3.1 Suppose Conditions 3.1 and 3.2 are satisfied. Then the value function W ∗ of prob-
lem (21) for the tilde DTMDP model is the minimal [1,∞]-valued lower semicontinuous function
satisfying

V (x) = inf
ã∈Ã

{∫
X
el̃(x,ã,y)V (y)Q̃(dy|x, ã)

}
, x ∈ X. (7)

(W ∗ is also the minimal [1,∞]-valued lower semicontinuous solution to the optimality inequality ob-
tained by replacing in (7) “=” with “≥”.) A pair of measurable mappings (ψ∗, f∗) from X to AI and
AG, respectively, is a deterministic stationary optimal strategy for problem (21) of the tilde DTMDP
model if and only if, for all x ∈ X there is some x-dependent ã∗ ∈ Ã such that∫

X
el̃(x,ã

∗,y)W ∗(y)Q̃(dy|x, ã∗) = inf
ã∈Ã

{∫
X
el̃(x,ã,y)W ∗(y)Q̃(dy|x, ã)

}
=

∫
X
el̃(x,ψ

∗(x),y)W ∗(y)Q̃(dy|x, ψ∗(x))I{ã∗ ∈ AI}

+

∫
X
el̃(x,f

∗(x),y)W ∗(y)Q̃(dy|x, f∗(x))I{ã∗ ∈ AG}. (8)
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Such a pair (ψ∗, f∗) of measurable selectors exists.

We introduce the notation to be used in the next statement. Define for each [1,∞]-valued univer-
sally measurable function g on X

XG(g) :=

{
x ∈ X :∞ > g(x) = inf

a∈AG

{∫
X
g(y)q̃(dy|x, a)

−(qx(a)− cG(x, a))g(x)
}}

, (9)

and XI(g) :=
{
x ∈ X : g(x) = infb∈AI

{∫
X g(y)ec

I(x,b,y)Q(dy|x, b)
}}

. Proposition A.1 asserts that,

without imposing Condition 3.2, W ∗ is universally measurable so that the integrals
∫
XW

∗(y)q̃(dy|x, a)

and
∫
XW

∗(y)ec
I(x,b,y)Q(dy|x, b) are defined.

Theorem 3.1 Suppose Conditions 3.1 and 3.2 are satisfied. Then the following assertions hold.
(a) The value function W ∗ of problem (21) for the tilde DTMDP model coincides with V∗.
(b) X \XI(W ∗) ⊆ XG(W ∗).
(c) There is a deterministic stationary optimal policy for the gradual-impulse control problem (6),
which can be obtained as follows. For each pair (ψ∗, f∗) of measurable mappings satisfying (8) (and
there exists such a pair by Proposition 3.1), the deterministic stationary policy (ϕ,ψ∗, f∗) is optimal,
where ϕ(x) =∞ for all x ∈ X \XI(W ∗) and ϕ(x) = 0 for all x ∈ XI(W ∗).

The proofs of this and the other statements in this section are postponed to Section 5.
According to Theorem 3.1, roughly speaking, if the current state is in XG(W ∗), then it is optimal

not to apply impulse until the next natural jump; and if the current state is in XI(W ∗), then it
is optimal to apply immediately an impulse. Also, equation (7) is the optimality equation for the
gradual-impulse control problem (6). It can be written out in an equivalent form that does not involve
the function w, which might be more convenient sometimes.

Corollary 3.1 Suppose Conditions 3.1 and 3.2 are satisfied. Then the following assertions hold.
(a) V∗ is the minimal [1,∞]-valued lower semicontinuous function on X satisfying

inf
a∈AG

{∫
X
V∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V∗(x)

}
≥ 0, (10)

∀ x ∈ X∗(V∗) := {x ∈ X : V∗(x) <∞}

and

V∗(x) ≤ inf
b∈AI

{∫
X
ec
I(x,b,y)V∗(y)Q(dy|x, b)

}
, x ∈ X, (11)

whereas at each x ∈ X, the inequality in either (10) or (11) holds with equality.
(b) A pair (ψ∗, f∗) of measurable mappings satisfies (8) if and only if

inf
a∈AG

{∫
X
V∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V∗(x)

}
=

∫
X
V∗(y)q̃(dy|x, f∗(x))− (qx(f∗(x))− cG(x, f∗(x)))V∗(x)

for each x ∈ XG(V∗), and

inf
b∈AI

{∫
X
ec
I(x,b,y)V∗(y)Q(dy|x, b)

}
=

∫
X
V∗(y)ec

I(x,ψ∗(x),y)Q(dy|x, ψ∗(x))

∀ x ∈ X.
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(According to Theorem 3.1, (ψ∗, f∗) gives rise to a deterministic stationary optimal policy for the
gradual-impulse control problem (6).)

To end this section, we present a simple example to demonstrate a situation, where it is natural
and necessary to allow multiple impulses at a single time moment.

Example 3.1 Let us revisit Example 1.1. The model has a state space {1, 2}, where 1 stands for
the rat being present in the kitchen, and 2 indicates the rat either dead or outside the house. The
space of gradual controls is a singleton and will not be indicated explicitly, and the space of impulses is
AI = {0, 1}, with 1 or 0 standing for shooting or not. So the inequalities (10) and (11) for the value
function V∗ read:

V∗(2) = 1;

µV∗(2)− (µ− l)V∗(1) ≥ 0; V∗(1) ≤ min{eCpV∗(2) + eC(1− p)V∗(1),V∗(1)}.

Suppose 1− eC(1− p) > 0. By Theorem 3.1 and Corollary 3.1, if eCp
1−eC(1−p) >

µ
µ−l > 0, then V∗(1) =

µ
µ−l , and the optimal deterministic stationary policy is to never shoot at the rat; otherwise, V∗(1) =

eCp
1−eC(1−p) = E[eCZ ] with Z following the geometric distribution with success probability p, and the

optimal deterministic stationary policy is to keep shooting as soon as the rat is in kitchen until the rat
was hit.

The proofs of the statements in this section are based on the investigation of an optimal control
problem for another DTMDP model, which will be introduced in the next section.

4 The hat DTMDP model

In this section, we describe a DTMDP problem, which will serve the investigations of the gradual-
impulse control problem. To distinguish it from the intervention DTMDP model, we shall refer to
it as the hat DTMDP model. The system primitives of this DTMDP model are defined in terms
of those of the gradual-impulse control problem. We will reveal, in greater detail, the connections
relevant to this paper between the hat DTMDP problem and the gradual-impulse control problem at
the end of this section. For a first impression, roughly speaking, the state process of the hat DTMDP
model comes from the system dynamics of the gradual-impulse control problem in the following way.
The state has two coordinates. Along the (discrete-time) state process of the hat DTMDP model,
the second coordinate records the system state of the graduate-impulse control problem immediately
after a natural jump (of the marked point process {(Tn, Yn)}∞n=1) or an “actual” impulse (thus the
state immediately after the psuedo impulse ∆ will not be recorded). The first coordinate records the
time in the gradual-impulse control problem elapsed between two consecutive states as recorded in
the second coordinate.

The hat DTMDP is with a more complicated action space as compared with the original gradual-
impulse control problem. To describe the action space of the hat DTMDP model, let us recall some
known and general facts as follows. Let R be the collection of P(AG)-valued measurable mappings
on [0,∞) with any two elements therein being identified the same if they differ only on a null set with
respect to the Lebesgue measure. Recall that P(AG) stands for the space of probability measures on
(AG,B(AG)). We endow P(AG) with its weak topology (generated by bounded continuous functions
on AG) and the Borel σ-algebra, so that P(AG) is a Borel space, see Chapter 7 of [2]. It is known,
see Lemma 1 of [23], that the space R, endowed with the smallest σ-algebra with respect to which the
mapping ρ = (ρt(da)) ∈ R →

∫∞
0 e−tg(t, ρt)dt is measurable for each bounded measurable function
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g on (0,∞) × P(AG), is a Borel space. Recall that AI and AG are compact Borel spaces. Then,
according to Section 43 of [6], the space R is a compact metrizable space, endowed with the Young
topology, which is the coarsest topology with respect to which, the mapping ρ = (ρt(da)) ∈ R →∫∞

0

∫
AG g(t, a)ρt(da)dt is continuous for each function g on (0,∞) ×AG satisfying that (a) for each

t ∈ (0,∞), g(t, ·) is continuous on AG; (b) for each a ∈ AG, g(·, a) is measurable on (0,∞); and (c)∫∞
0 supa∈AG |g(t, a)|dt < ∞. Below we shall use, without special reference, the following notation. If
µ is a measure on a Borel space (X,B(X)), then f(µ) :=

∫
X f(x)µ(dx) for each measurable function

f on (X,B(X)), provided that the integral is well defined.

4.1 Primitives of the hat DTMDP model {X̂, Â, p, l}

The state space of the hat DTMDP model is X̂ := {(∞, x∞)} ∪ [0,∞) × X, where (∞, x∞) is an
isolated point, and the action space of the DTMDP is Â := [0,∞] × AI × R. Endowed with the
product topology, where [0,∞] is compact in the standard topology of the extended real-line, Â is
also a compact Borel space. Here, X, AI and AG are the state, impulse and gradual action spaces
in the gradual-impulse control problem. The transition probability p is defined as follows, where the
notation introduced above this subsection is in use, e.g., qx(ρt) :=

∫
AG qx(a)ρt(da) and cG(x, ρt) :=∫

AG cG(x, a)ρt(da). For each bounded measurable function g on X̂ and action â = (c, b, ρ) ∈ Â,∫
X̂
g(t, y)p(dt× dy|(θ, x), â)

:= I{c =∞}
{
g(∞, x∞)e−

∫∞
0 qx(ρs)ds +

∫ ∞
0

∫
X
g(t, y)q̃(dy|x, ρt)e−

∫ t
0 qx(ρs)dsdt

}
+I{c <∞}

{∫ c

0

∫
X
g(t, y)q̃(dy|x, ρt)e−

∫ t
0 qx(ρs)dsdt

+e−
∫ c
0 qx(ρs)ds

∫
X
g(c, y)Q(dy|x, b)

}
=

∫ c

0

∫
X
g(t, y)q̃(dy|x, ρt)e−

∫ t
0 qx(ρs)dsdt+ I{c =∞}g(∞, x∞)e−

∫∞
0 qx(ρs)ds

+I{c <∞}e−
∫ c
0 qx(ρs)ds

∫
X
g(c, y)Q(dy|x, b)

for each state (θ, x) ∈ [0,∞)×X, and
∫
X̂ g(t, y)p(dt× dy|(∞, x∞), â) := g(∞, x∞).

It is known, see e.g., [5, 10], that for each bounded measurable function g on X̂, the above
expressions are indeed measurable on X̂ × Â, and the same also concerns the cost function l on
X̂× Â× X̂ defined as follows:

l((θ, x), â, (t, y)) := I{(θ, x) ∈ [0,∞)×X}
{∫ t

0
cG(x, ρs)ds+ I{t = c}cI(x, b, y)

}
for each (θ, x), â, (t, y)) ∈ X̂× Â× X̂, accepting that cI(x, b, x∞) ≡ 0. Recall that the generic notation
â = (c, b, ρ) ∈ Â of an action in this hat DTMDP model has been in use. The pair (c, b) is the
pair of the planned time until the next impulse and the next planned impulse, and ρ is (the rule
of) the relaxed control to be used during the next sojourn time. The realization of the components
{(Cn, Bn)}∞n=0 of the action process in the hat DTMDP model corresponding to the sample path in
Figure 1 of the gradual-impulse control problem is displayed in Figure 2.

The concerned optimal control problem for the hat DTMDP model reads:

Minimize over σ: Êσ(θ,x)

[
e
∑∞
n=0 l(X̂n,Ân,X̂n+1)

]
=: V ((θ, x), σ) (12)
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Figure 2: The realization of the state process in the hat DTMDP model corresponding to sample path in the
gradual-impulse control problem in Figure 1. The time index is discrete from {0, 1, . . . }. The realizations of
the components {(Cn, Bn)}∞n=0 in the action process {Ân}∞n=0 are indicated above the dashed lines between
consecutive states. For example, (0, b0) next to the state (0, x0) indicates that the decision maker applies an
impulse b0 immediately, which results in the next state (0, x1). All the components x0, x1, . . . , x

′
0, x′′1 , x′′2 and

b1, b2, b
′′
0 , b

′′
1 , b

′′
2 are the same as in Figure 1. The only exception is (c3, b3), which does not appear in Figure

1. Nevertheless, c3 > θ2, because in Figure 1, the first jump in the marked point process therein at the time
moment θ1 + θ2 = θ2 is triggered by a natural jump.
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where {X̂n}∞n=0 and {Ân}∞n=0 are the state and action processes, and the minimization problem is over
all strategies σ in the hat DTMDP model. We denote by V ∗ the value function of this optimal control

problem, i.e., V ∗(θ, x) := infσ Êσx̂
[
e
∑∞
n=0 l(X̂n,Ân,X̂n+1)

]
for each x̂ = (θ, x) ∈ X̂, where the infimum is

over all strategies. Clearly, V ∗(∞, x∞) = 1. It will be seen in Lemma 5.1 that V ∗ depends on (θ, x)
only through x, and a strategy σ is optimal if V ((0, x), σ) = V ∗(x) for each x ∈ X. Below, when the
context is clear, we often consider the restriction of V ∗ on X but still use the same notation.

Let ĥn = ((θ0, x0), (c0, b0, ρ0), (θ1, x1), (c1, b1, ρ1), (θ2, x2), . . . , (θn, xn)) be the generic notation for
an n-history in the hat DTMDP model. A strategy in the hat DTMDP model is a sequence σ =
{σn}∞n=0, where for each n ≥ 0, σn(dâ|ĥn) is a stochastic kernel on Â given ĥn, which specifies the
conditional distribution of the next action (c, b, ρ) given ĥn. In general, a strategy in the hat DTMDP
model can make use of past decision rules of relaxed controls, and the selection of the next relaxed
control, and that of the next planned impulse time and impulse do not have to be (conditionally)
independent. Therefore, a general strategy in the hat DTMDP model does not immediately correspond
to a policy in the gradual-impulse control problem described in the previous section. To relate the
gradual-impulse control problem (6) and the hat DTMDP problem (12), see Proposition 4.1 below,
we introduce the following class of strategies in the hat DTMDP model.

Definition 4.1 A strategy σ in the hat DTMDP model is called typical if under it, given ĥn, the
selection of the next action (c, b) and ρ are conditionally independent, and moreover, the selection of
ρ is deterministic, i.e., σn(dc× db× dρ|ĥn) = σ′n(dc× db|ĥn)δFn(ĥn)(dρ), where Fn(ĥn) is measurable

in its argument and takes values in R, and σ′n(dc× db|ĥn) is a stochastic kernel on [0,∞]×AI given
ĥn.

One can always write σ′n(dc× db|ĥn) = ϕn(dc|ĥn)ψn(db|ĥn, c) for some stochastic kernels ϕn and ψn.
Intuitively, ϕn defines the (conditional) distribution of the planned time duration till the next impulse,
and ψn(db|ĥn, c) specifies the distribution of the next impulsive action given the history ĥn and the
next impulse moment c, provided that it takes place before the next natural jump. Therefore, we
identify a typical strategy σ = {σn}∞n=0 as {(ϕn, ψn, Fn)}∞n=0. For further notational brevity, when
the stochastic kernels ϕn are identified with underlying measurable mappings, we will use ϕn for the
measurable mappings, and write ϕn(ĥn) instead of ϕn(dc|ĥn). The same applies to other stochastic
kernels such as ψn. The context will exclude any potential confusion. Finally, in general, we often do
not indicate the arguments that do not affect the values of the concerned mappings. For example, if
ϕn(ĥn) depends on ĥn only through xn, then we write ϕn(dc|ĥn) as ϕn(dc|xn).

4.2 Relation between gradual-impulse control and hat DTMDP problems

Each policy u as introduced in Definition 2.3 induces a strategy {(ϕn, ψn, Fn)}∞n=0 in the hat DTMDP
model as follows, where we only need consider xn ∈ X, as the definition of the strategies at xn = x∞
is immaterial, and can be arbitrary. For each m ≥ 1, and hm ∈ Hm, there exists a strategy πΓ1

m,hm =

{πΓ1
m,hm

n }∞n=0 in the intervention DTMDP model such that Γ1
m(dy|hm) = βπ

Γ1
m,hm (dy|x̄(ym)). Similarly,

for each x ∈ X, t > 0, there exists a strategy πΓ0
m,hm,t,x = {πΓ0

m,hm,t,x
n }∞n=0 in the intervention DTMDP

model such that Γ0
m(dy|hm, t, x) = βπ

Γ0
m,hm,t,x(dy|x). Finally, there is a strategy πu0 = {(πu0

n )}∞n=0 in
the intervention DTMDP model satisfying u0(dy|x) = βπ

u0 (dy|x) for each x ∈ X.
Consider the case of n = 0. Then we define ϕ0({0}|θ, x) := 1 − πu0

0 ({∆}|x); ϕ0(dc|θ, x) :=
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πu0
0 ({∆}|x)Φ1(dc|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . )) on (0,∞];

ψ0(db|θ, x, c) :=
πu0

0 (db|x)

1− πu0
0 ({∆}|x)

I{c = 0}

+I{c > 0} π
Γ1

1,((x,∆,... ),0,(x,∆,... ))
0 (db|x)

1− πΓ1
1,((x,∆,... ),0,(x,∆,... ))

0 ({∆}|x)

=
πu0

0 (db|x)

1− πu0
0 ({∆}|x)

I{c = 0}+ I{c > 0}πΓ1
1,((x,∆,... ),0,(x,∆,... ))

0 (db|x);

and F 0(θ, x)t(da) := Π1(da|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . ), t), where the second equality in the def-

inition of ψ0(db|θ, x, c) holds because π
Γ1

1,((x,∆,... ),0,(x,∆,... ))
0 ({∆}|x) = 0, which follows from the re-

quirement that Γ1
n(·|hn) ∈ PY∗(x̄(yn)) for all n ≥ 1 in Definition 2.3. Also concerning the def-

inition of ψ0(db|θ, x, c), note that if the denominator 1− πu0
0 ({∆}|x) = 0, we put

π
u0
0 (db|x)

1−πu0
0 ({∆}|x)

as

an arbitrary stochastic kernel. The reason is that in the expression
π
u0
0 (db|x)

1−πu0
0 ({∆}|x)

I{c = 0}, equality

1− πu0
0 ({∆}|x) = 0 would indicate that the probability of selecting an instantaneous impulse is zero,

and so I{c = 0} = 0 almost surely. The same explanation applies to the definitions of ψn(db|ĥn, c)
below, and will not be repeated there. Note that the right hand side does not depend on θ ∈ [0,∞),
because the initial time moment is always fixed to be θ = 0.

The intuition behind the above definition of (ϕ0, ψ0, F
0) is as follows. Recall that, if the initial

system state is x ∈ X, then the intervention y1 ∈ Y at the initial time in the gradual-impulse control
problem is a realization from the distribution u0(·|x) = βπ

u0 (·|x), which is the strategic measure of
some strategy πu0 = {πu0

n }∞n=0 in the intervention DTMDP model. Then πu0
0 ({∆}|x) is the probability

that no impulse is applied at the initial time 0 (given the initial system state x) in the gradual-impulse
control problem. Consequently, 1 − πu0

0 ({∆}|x) is the probability to apply an impulse immediately,
i.e., to wait time 0 until the next impulse, and thus ϕ0({0}|θ, x). This quantity does not depend on
θ, because the initial time is always 0. Then for a measurable subset Γ1 ⊆ (0,∞],

πu0
0 ({∆}|x)Φ1(Γ1|(x,∆,∆, . . . ), 0, (x,∆,∆, . . . ))

= P(no impulse at initial time 0 given initial system state x)

×P(time to wait until next impulse is in Γ1 given no impulse is immediately

applied at the initial time with the initial state x),

which is equal to

P(No immediate impulse, and the time duration until the next planned

impulse is in Γ) = P(the time duration until the next planned impulse is in Γ),

and thus ϕ0(Γ|θ, x), where the equality follows because Γ ⊆ (0,∞]. (Recall that a planned impulse takes
place if no natural jump occurs during the time duration to wait for it.) Finally, as for ψ0(db|θ, x, c),
if c = 0, and Γ2 ∈ B(AI), then

πu0
0 (Γ2|x)

1− πu0
0 ({∆}|x)

=
P(an immediate impulse from Γ2 is applied)

P(an immediate impulse is applied)

= P(an impulse is applied immediately from Γ2

given that an impulse is applied after time duration 0),

which is thus ψ0(Γ2|θ, x, 0). One can understand ψ0(db|θ, x, c) when c > 0 in the same manner. The
very similar intuition guides the definition of (ϕn, ψn, F

n) below.
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Now consider n ≥ 1. Let ĥn be the n-history in the hat DTMDP model. If {1 ≤ i ≤ n : θi > 0} = ∅,
then we define ϕn({0}|ĥn) := 1− πu0

n ({∆}|x0, b0, . . . , bn−1, xn);

ϕn(dc|ĥn) := πu0
n ({∆}|x0, b0, . . . , bn−1, xn)Φ1(dc|y0, 0, (x1, b1, . . . , xn,∆,∆, . . . ))

on (0,∞];

ψn(db|ĥn, c) :=
πu0
n (db|x0, b0, x1, b1, . . . , xn)

1− πu0
n ({∆}|x0, b0, x1, b1, . . . , xn)

I{c = 0}

+I{c > 0} π
Γ1

1,(y0,0,(x0,b0,...,xn,∆,... ))
0 (db|xn)

1− πΓ1
1,(y0,0,(x0,b0,...,xn,∆,... ))

0 ({∆}|xn)

=
πu0
n (db|x0, b0, x1, b1, . . . , xn)

1− πu0
n ({∆}|x0, b0, x1, b1, . . . , xn)

I{c = 0}

+I{c > 0}πΓ1
1,(y0,0,(x0,b0,...,xn,∆,... ))

0 (db|xn);

and Fn(ĥn)t(da) := Π1(da|y0, 0, (x0, b0, . . . , xn,∆,∆, . . . ), t). Recall the notation that was introduced
earlier: y0 = (x0,∆,∆, . . . ).

If {1 ≤ i ≤ n : θi > 0} 6= ∅, then let m(ĥn) := #{1 ≤ i ≤ n : θi > 0}, and l(ĥn) := max{1 ≤ i ≤
n : θi > 0}. When the context is clear, we write m and l instead of m(ĥn) and l(ĥn) for brevity. Let hm
be the m-history in the gradual-impulse control problem contained in ĥn. More precisely, hm is defined
based on ĥn as follows. Let τ0(ĥn) = 0, and τi(ĥn) := inf{j > τi−1 : θj > 0} for each i ≥ 1. Note

that l = τm. Then hm = hm(ĥn) = (y0, 0, y1, θτ1 , y2, . . . , θτm−1 , ym), where y0 = (x0,∆,∆, . . . ); y1 =
(x0, b0, x1, b1, . . . , xτ1−1,∆,∆, . . . ); if θτ1 = cτ1−1, then y2 = (xτ1−1, bτ1−1, xτ1 , bτ1 , . . . , xτ2−1,∆,∆, . . . ),
if θτ1 < cτ1−1, then

y2 = (xτ1 , bτ1 , . . . , xτ2−1,∆,∆, . . . ); . . . ;

if θτm−1 = cτm−1−1, then ym = (xτm−1−1, . . . , xτm−1,∆,∆, . . . ), and if θτm−1 < cτm−1−1, then

ym = (xτm−1 , . . . , xτm−1,∆,∆, . . . ).

For example, if

ĥ5 = ((0, x0), (b0, 0, ρ
0), (0, x1), (b1, 3, ρ

1), (3, x2), (b2, 0, ρ
2), (0, x3),

(b3, 2, ρ
3), (1, x4), (b4, 0, ρ

4), (0, x5)),

then n = 5, m = 2, l = 4, τ1 = 2, τ2 = 4, and h2 = (y0, 0, y1, 3, y2) with y1 = (x0, b0, x1,∆, . . . ) and
y2 = (x1, b1, x2, b2, x3,∆, . . . ). Roughly speaking, the integer m(ĥn) counts the number of interventions
(except y0) contained in the n-history of the hat DTMDP model.
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If 0 < θl = cl−1, we define

ϕn({0}|ĥn) := 1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn);

ϕn(dc|ĥn) := π
Γ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)Φm(dc|hm) on (0,∞];

ψn(db|ĥn, c) :=
π

Γ1
m,hm

n−l+1 (db|xl−1, bl−1, . . . , bn−1, xn)

1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)
I{c = 0}

+I{c > 0} π
Γ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 (db|xn)

1− πΓ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 ({∆}|xn)

=
π

Γ1
m,hm

n−l+1 (db|xl−1, bl−1, . . . , bn−1, xn)

1− πΓ1
m,hm

n−l+1 ({∆}|xl−1, bl−1, . . . , bn−1, xn)
I{c = 0}

+I{c > 0}πΓ1
m+1,(hm,θl,(xl−1,bl−1,...,xn,∆,... ))

0 (db|xn);

Fn(ĥn)t(da) := Πm(da|hm, t).

Finally, if 0 < θl < cl−1, then we define

ϕn({0}|ĥn) := 1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn),

ϕn(dc|ĥn) := π
Γ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)Φm(dc|hm) on (0,∞];

ψn(db|ĥn, c) :=
π

Γ0
m,hm,θl,xl

n−l (db|xl, bl, . . . , bn−1, xn)

1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)
I{c = 0}

+I{c > 0} π
Γ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 (db|xn)

1− πΓ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 ({∆}|xn)

=
π

Γ0
m,hm,θl,xl

n−l (db|xl, bl, . . . , bn−1, xn)

1− πΓ0
m,hm,θl,xl

n−l ({∆}|xl, bl, . . . , bn−1, xn)
I{c = 0}

+I{c > 0}πΓ1
m+1,(hm,θl,(xl,bl,...,xn,∆,... ))

0 (db|xn);

Fn(ĥn)t(da) := Πm(da|hm, t).

To be specific, we call the typical strategy σ = {(ϕn, ψn, Fn)}∞n=0 defined above as the strategy
induced by the policy u. The next statement reveals a connection between a policy u and its induced
strategy σ for the hat DTMDP model.

Proposition 4.1 For each policy u and the strategy σ = {(ϕn, ψn, Fn)}∞n=0 induced by u, V(x, u) =
V ((0, x), σ), and therefore, V∗(x) ≥ V ∗(x) for each x ∈ X.

Proof. One can verify

Eux
[
e
∑n
i=1 C

I(Yi)+
∑n
i=2

∫Θi
0

∫
AG

cG(x(Yi−1),a)Πi−1(da|Hi−1,s)ds
]

= Êσ(0,x)

[
e
∑τn−1
i=0 cI(Xi,Bi,Xi+1)I{Ci=Θi+1}

e
∑n
i=2

∫Θτi−1
0

∫
AG

cG(Xτi−1−1,a)F τi−1−1(Ĥτi−1−1)s(da)ds

]
for each n ≥ 1. Passing to the limit as n → ∞ and an application of the monotone convergence
theorem yield the equality in the statement. The last assertion holds automatically from the first
assertion. 2
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Remark 4.1 A deterministic stationary policy say uD identified by (ϕ,ψ, f) as in Definition 2.4 is
associated with a strategy σD = (ϕ,ψ, F ) in the hat DTMDP model, where F (x)t(da) = δf(x)(da) for

all t ≥ 0, vice versa. It is evident that V(x, uD) = V (x, σD) for each x ∈ X. Thus, if the hat DTMDP
problem (12) has an optimal strategy in this form of σD = (ϕ,ψ, F ), then the previous discussions
lead to V∗(x) = V ∗(x), and that the deterministic stationary policy uD associated with σD is optimal
for the gradual-impulse control problem (6).

To end this section, note that Condition 3.2 does not imply that the hat DTMDP model is
semicontinuous, which is defined in the appendix. In fact, the transition probability p, in general,
does not satisfy the weak continuity condition, even under Condition 3.2. The simplest example is as
follows.

Example 4.1 Suppose qx(a) ≡ 0, and AG and AI are both singletons. Consider ân = (cn, b, ρ),
where cn → ∞ and cn ∈ [0,∞) for each n ≥ 1; and the bounded continuous function on X̂:
g(t, x) ≡ 1 for each (t, x) ∈ [0,∞) × X, and g(∞, x∞) = 0. Then

∫
X̂ g(t, y)p(dt × dy|(θ, x), ân) =∫

X g(cn, y)Q(dy|x, b) = 1 for each n ≥ 1, whereas
∫
X̂ g(t, y)p(dt × dy|(θ, x), (∞, b, ρ)) = g(∞, x∞) =

0 6= 1.

One can also construct examples, where the transition probability p is not continuous with respect to
ρ ∈ R.

5 Proof of the main statements

In this section, we prove the results stated in Section 3. This is based on the investigation of problem
(12) for the hat DTMDP model described in Section 4. In this section, unless specified otherwise, V ∗

is understood as the value function of problem (12) for the hat DTMDP model. The main properties
concerning V ∗ are summarized in the next statement.

Proposition 5.1 (a) V ∗ is a [1,∞]-valued lower semianalytic function on X satisfying

inf
a∈AG

{∫
X
V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥ 0, (13)

∀ x ∈ X∗(V ∗) := {x ∈ X : V ∗(x) <∞}

and

V ∗(x) ≤ inf
b∈AI

{∫
X
ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
, x ∈ X, (14)

whereas at each x ∈ X, the inequality in either (13) or (14) holds with equality.
(b) X \XI ⊆ XG, where XG := XG(V ∗), see (9), and XI := XI(V ∗). (Lemma 5.1 below asserts that

V ∗ is universally measurable so that the integrals
∫
X V

∗(y)q̃(dy|x, a) and
∫
X V

∗(y)ec
I(x,b,y)Q(dy|x, b)

are defined.)

Proof. See Lemmas 5.1, 5.3 and 5.4 below. 2

Lemma 5.1 (a) The value function V ∗ depends on the state (θ, x) only through the second coordinate,
and thus we write V ∗(x) instead of V ∗(θ, x). The function V ∗ is an [1,∞]-valued lower semianalytic
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function satisfying

V (x) = inf
â∈Â

{∫ c

0

∫
X
V (y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt (15)

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V (y)ec

I(x,b,y)Q(dy|x, b)
}
, x ∈ X;

V (x∞) = 1,

and is the minimal [1,∞]-valued lower semianalytic function satisfying the following inequality

V (x) ≥ inf
â∈Â

{∫ c

0

∫
X
V (y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt (16)

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V (y)ec

I(x,b,y)Q(dy|x, b)
}
, x ∈ X;

V (x∞) = 1.

(b) For each ε > 0, there exists an ε-optimal deterministic Markov universally measurable strategy that
depends on the state (θ, x) only through the second coordinate for the hat DTMDP problem (12).
(c) A deterministic stationary strategy that depends on the state (θ, x) only through x is optimal if
and only if it attains the infimum in (15) with V ∗ replacing V , for each x ∈ X.
(d) For each x ∈ X, V ∗(x) = infπ∈ΠU V (x, π), where ΠU is the class of universally measurable
strategies in the hat DTMDP model.

Proof. The fact that the value function V ∗ is the minimal [1,∞]-valued lower semianalytic function
satisfying

g(θ, x) ≥ inf
â∈Â

{∫ c

0

∫
X
g(t, y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
g(c, y)ec

I(x,by)Q(dy|x, b)
}
, x ∈ X;

g(∞, x∞) = 1,

where the inequality can be replaced by equality, follows from Proposition A.1. The existence of an
ε-optimal deterministic Markov universally measurable strategy follows from Proposition A.1, too.
Furthermore, note that the first coordinate in the state (θ, x) does not affect the cost function or the
transition probability, from which the independence on the first coordinate of the state (θ, x) follows,
c.f. [8, 25]. Now assertions (a,b) follow. Finally, the last two assertions follow from Proposition A.1.
2

Lemma 5.2 The function in t ∈ [0,∞) defined by∫ t

0

∫
X
e−
∫ τ
0 (qx(ρs)−cG(x,ρs))dsV ∗(y)q̃(dy|x, ρτ )dτ + e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

is increasing, for each x ∈ X and ρ ∈ R.

19



Proof. Let 0 ≤ t1 < t2 <∞ and x ∈ X be fixed, and we will verify∫ t2

0
e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρτ )dτ

+e−
∫ t2
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

≥
∫ t1

0
e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρτ )dτ

+e−
∫ t1
0 (qx(ρs)−cG(x,ρs))dsV ∗(x),

as follows. It is sufficient to consider the case when the left hand side is finite, for otherwise, the above
inequality would hold automatically. Then the goal is to show, by subtracting the right hand side
from the left hand side,

0 ≤
∫ t2

t1

e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρτ )dτ

+e−
∫ t2
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)− e−

∫ t1
0 (qx(ρs)−cG(x,ρs))dsV ∗(x).

The right hand side of this inequality can be further written as∫ t2−t1

0
e−
∫ t1
0 (qx(ρs)−cG(x,ρs))dse−

∫ τ+t1
t1

(qx(ρs)−cG(x,ρs))ds
∫
X
V ∗(y)

q̃(dy|x, ρτ+t1)dτ + e−
∫ t1
0 (qx(ρs)−cG(x,ρs))ds

(
e−
∫ t2
t1

(qx(ρs)−cG(x,ρs))ds − 1
)
V ∗(x)

= e−
∫ t1
0 (qx(ρs)−cG(x,ρs))ds

{∫ t2−t1

0
e−
∫ τ
0 (qx(ρs+t1 )−cG(x,ρs+t1 ))ds∫

X
V ∗(y)q̃(dy|x, ρτ+t1)dτ +

(
e−
∫ t2−t1
0 (qx(ρt1+s)−cG(x,ρt1+s))ds − 1

)
V ∗(x)

}
.

Introduce ρ̃s := ρt1+s for each s ≥ 0. The target becomes to show∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̃τ )dτ

+e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x) ≥ V ∗(x).

To this end, for a fixed ε > 0, let us consider a deterministic Markov ε-optimal universally measurable
strategy {(ϕ∗n, ψ∗n, F ∗,n)}∞n=0 coming from Lemma 5.1, and an associated universally measurable strat-
egy πNew = {(ϕn, ψn, Fn)}∞n=0 defined by ϕ0(θ, x) := ϕ∗0(x)+t2−t1, ψ0(θ, x) = ψ∗0(x), F 0(θ, x)s = ρ̃s if
s ≤ t2−t1 and F 0(θ, x)s = F ∗,0(θ, x)s−(t2−t1) if s > t2−t1; and for n ≥ 1, ϕn((θ, x), â, (t, y)) = ϕ∗n−1(y),
ψn((θ, x), â, (t, y)) = ψ∗n−1(y), and Fn((θ, x), â, (t, y))s = F ∗,n−1(y)s for all s ≥ 0. Under the univer-
sally measurable strategy πNew, only the gradual control action ρ̃ is used up to either t2 − t1 or the
natural jump moment, whichever takes place first, after when, the ε-optimal universally measurable
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strategy is in use, and so

V ∗(x) ≤ V (x, πNew) ≤
∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds∫

X
(V ∗(y) + ε)q̃(dy|x, ρ̃τ )dτ + e−

∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds(V ∗(x) + ε)

=

∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̃τ )dτ

+e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x)

+ε

(∫ t2−t1

0
e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))dsqx(ρ̃τ ))dτ + e−

∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

)
,

where the first inequality holds because of the last assertion of Lemma 5.1. Since the expression
in the last bracket is nonnegative and finite, and ε > 0 was arbitrarily fixed, we see that V ∗(x) ≤∫ t2−t1

0 e−
∫ τ
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
X V

∗(y)q̃(dy|x, ρ̃τ )dτ + e−
∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV ∗(x), as desired. 2

Lemma 5.3 Relations (13) and (14) hold. (Recall from Lemma 5.1 that V ∗ is universally measur-
able.)

Proof. Let x ∈ X be fixed. Inequality (14) immediately follows from Lemma 5.1, if on the right hand
side of (15) with V ∗ replacing V , one takes the infimum over actions â ∈ Â with c = 0. (Recall
the notation in use: â = (c, b, ρ) ∈ Â.) Let us verify (13) as follows. Suppose V ∗(x) < ∞. Let
a ∈ AG be arbitrarily fixed. If

∫
X V

∗(y)q̃(dy|x, a) = ∞, then trivially,
∫
X V

∗(y)q̃(dy|x, a) − (qx(a) −
cG(x, a))V ∗(x) ≥ 0. Consider the case when

∫
X V

∗(y)q̃(dy|x, a) < ∞. Let t > 0 be arbitrarily fixed.

Then
∫ t

0 e
−τ(qx(a)−cG(x,a))

∫
X V

∗(y)q̃(dy|x, a)dτ + e−t(qx(a)−cG(x,a))V ∗(x) is finite. Upon differentiating
it with respect to t and applying the fundamental theorem of calculus, we see

e−(qx(a)−cG(x,a))t

∫
X
V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))e−t(qx(a)−cG(x,a))V ∗(x) ≥ 0,

where the inequality follows from Lemma 5.2. Thus,
∫
X V

∗(y)q̃(dy|x, a)− (qx(a)−cG(x, a))V ∗(x) ≥ 0.

Since a ∈ AG was arbitrarily fixed, we see that (13) holds. 2

Lemma 5.4 For each x ∈ X, the inequality in either (13) or (14) holds with equality.

Proof. Let x ∈ X be fixed. If the equality in (14) holds at this point, then there is nothing to prove.
Suppose the strict inequality holds in (14). Then necessarily V ∗(x) < ∞. The objective is to show
that, in this case, (13) holds with equality. For the infimum in (15) with V ∗ replacing V , it suffices to
consider c > 0, because (14) holds with strict inequality at the fixed point x ∈ X here. Let ε > 0 be
fixed, and (c∗, b∗, ρ∗) ∈ Â be such that

V ∗(x) + ε ≥
∫ c∗

0

∫
X
V ∗(y)q̃(dy|x, ρ∗t )e−

∫ t
0 (qx(ρ∗s)−cG(x,ρ∗s))dsdt

+I{c∗ =∞}e−
∫∞
0 qx(ρ∗s)dse

∫∞
0 cG(x,ρ∗s)ds

+I{c∗ <∞}e−
∫ c∗
0 (qx(ρ∗s)−cG(x,ρ∗s))ds

∫
X
V ∗(y)ec

I(x,b∗,y)Q(dy|x, b∗).

There are two cases to be considered: (a) 0 < c∗ <∞; (b) c∗ =∞.
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Consider case (a). Then

ε+ V ∗(x) ≥
∫ c∗

0

∫
X
V ∗(y)q̃(dy|x, ρ∗t )e−

∫ t
0 (qx(ρ∗s)−cG(x,ρ∗s))dsdt

+e−
∫ c∗
0 (qx(ρ∗s)−cG(x,ρ∗s))ds

∫
X
V ∗(y)ec

I(x,b∗,y)Q(dy|x, b∗)

≥ inf
ρ∈R

{∫ c∗

0
e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρt)dt

+e−
∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

}
≥ V ∗(x),

where the second inequality holds because of (14), and the last inequality holds because of Lemma
5.2. Thus, as ε > 0 was arbitrarily fixed,

V ∗(x) = inf
ρ∈R

{∫ c∗

0
e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρt)dt

+e−
∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

}
. (17)

Let δ > 0 be fixed. There is some ρ ∈ R such that∫ c∗

0
(qx(ρs)− cG(x, ρs))ds <∞,

∫ c∗

0
e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρt)dt <∞

and

δ ≥
∫ c∗

0
e−
∫ s
0 (qx(ρv)−cG(x,ρv))dv

∫
X
V ∗(y)q̃(dy|x, ρs)ds

+e−
∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)− V ∗(x)

=

∫ c∗

0
e−
∫ s
0 (qx(ρv)−cG(x,ρv))dv

∫
X
V ∗(y)q̃(dy|x, ρs)ds

−
∫ c∗

0
(qx(ρτ )− cG(x, ρτ ))e−

∫ τ
0 (qx(ρs)−cG(x,ρs))dsdτV ∗(x)

=

∫ c∗

0
e−
∫ s
0 (qx(ρv)−cG(x,ρv))dv

{∫
X
V ∗(y)q̃(dy|x, ρs)

−(qx(ρs)− cG(x, ρs))V
∗(x)

}
ds ≥

∫ c∗

0
e−
∫ s
0 (qx(ρv)−cG(x,ρv))dvds

× inf
a∈AG

{∫
X
V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥

∫ c∗

0
e−qxsds inf

a∈AG

{∫
X
V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
≥ 0,

where the last inequality holds because of (13). Since
∫ c∗

0 e−qxsds > 0 and δ > 0 was arbitrarily fixed,
we see that (13) holds with equality.

Now consider case (b). Then

ε+ V ∗(x) ≥ inf
ρ∈R

{∫ ∞
0

e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρt)dt

+e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

}
.
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One can show that for each t ∈ [0,∞),

V ∗(x) = inf
ρ∈R

{∫ t

0
e−
∫ t
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρt)dt

+e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsV ∗(x)

}
. (18)

The details are as follows. We only need consider when t > 0; the case of t = 0 is trivial. Let δ > 0
be arbitrarily fixed. Then there is some ρ̂ ∈ R such that

ε+ V ∗(x) + δ ≥
∫ ∞

0
e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̂τ )dτ

+e−
∫∞
0 qx(ρ̂s)dse

∫∞
0 cG(x,ρ̂s)ds.

Define ρ̃ ∈ R by ρ̃s = ρ̂t+s for each s ≥ 0. Then, for each t ≥ 0,

ε+ V ∗(x) + δ ≥
∫ t

0
e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̂τ )dτ

+

∫ ∞
t

e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̂τ )dτ

+e−
∫ t
0 (qx(ρ̂s)−cG(x,ρ̂s))dse−

∫∞
t qx(ρ̂s)dse

∫∞
t cG(x,ρ̂s)ds

=

∫ t

0
e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−

∫ t
0 (qx(ρ̂v)−cG(x,ρ̂v))dv

×
{∫ ∞

0
e−
∫ s
0 (qx(ρ̃v))−cG(x,ρ̃v))dv

∫
X
V ∗(y)q̃(dy|x, ρ̃s)ds

+e−
∫∞
0 qx(ρ̃s)dse

∫∞
0 cG(x,ρ̃s)ds

}
≥

∫ t

0
e−
∫ τ
0 (qx(ρ̂s)−cG(x,ρ̂s))ds

∫
X
V ∗(y)q̃(dy|x, ρ̂τ )dτ + e−

∫ t
0 (qx(ρ̂v)−cG(x,ρ̂v))dvV ∗(x)

≥ inf
ρ∈R

{∫ t

0
e−
∫ τ
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)q̃(dy|x, ρτ )dτ

+e−
∫ t
0 (qx(ρv)−cG(x,ρv))dvV ∗(x)

}
≥ V ∗(x),

where the second inequality is by Lemma 5.1(a), which in particular, asserts that V ∗ satisfies (15),
and the last inequality is by Lemma 5.2. Since ε > 0 and δ > 0 were arbitrarily fixed, the above
implies (18). Comparing (18) with (17), we see that case (b) is reduced to case (a). 2

Lemma 5.5 Let w be a measurable [1,∞)-valued function satisfying the inequality in Condition 3.1,
whose existence is guaranteed as mentioned in the paragraph below Condition 3.1. Consider the transi-
tion probability p̃(dy|x, a) on B(X) given (x, a) ∈ X×AG defined by p̃(Γ|x, a) := q(Γ|x,a)

w(x) +δx(dy), ∀ Γ ∈
B(X), (x, a) ∈ X×AG. Then an [1,∞]-valued lower semianalytic function V ∗ (here the notation V ∗

does not necessarily mean the value function) satisfies (13) and (14), and for each x ∈ X, either (13)
or (14) holds with equality, if and only if it satisfies (14), for each x ∈ X

V ∗(x) ≤ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
X
V ∗(y)p̃(dy|x, a)

}
, (19)

and either (14) or (19) holds with equality, i.e.,

V ∗(x) = min

{
inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
X
V ∗(y)p̃(dy|x, a)

}
,

inf
b∈AI

{∫
X
V ∗(y)ec

I(x,b,y)Q(dy|x, b)
}}

. (20)
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(Note that (19) automatically holds with equality at x ∈ X \X∗(V ∗) := {x ∈ X : V ∗(x) =∞}. Also
note that the function w in the previous lemma does not need be continuous.)
Proof of Lemma 5.5. “Only if” part. Consider an [1,∞]-valued lower semianalytic function V ∗ that
satisfies (13) and (14), and for each x ∈ X, either (13) or (14) holds with equality. For x ∈ X∗(V ∗) =
{x ∈ X : V ∗(x) < ∞}, (13) implies for each a ∈ AG that 0 ≤ cG(x, a)V ∗(x) +

∫
X V

∗(y)q(dy|x, a) =
(cG(x, a)− w(x))V ∗(x) + w(x)

∫
X V

∗(y)p̃(dy|x, a), and so

V ∗(x) ≤ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
X
V ∗(y)p̃(dy|x, a)

}
,

i.e., (19) holds. Let x ∈ X∗(V ∗) be a point, where (13) holds with equality. Let us verify at this
point x ∈ X∗(V ∗), (19) also holds with equality. For each ε > 0, there is some aε ∈ AG such that
ε ≥ cG(x, aε)V

∗(x) +
∫
X V

∗(y)q(dy|x, aε) so that

V ∗(x) + ε ≥ V ∗(x) +
ε

w(x)− cG(x, aε)
≥ V ∗(x)

+
cG(x, aε)V

∗(x) +
∫
X V

∗(y)q(dy|x, aε)
w(x)− cG(x, aε)

=
w(x)

w(x)− cG(x, aε)

∫
X
p̃(dy|x, aε)V ∗(y)

≥ inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
X
V ∗(y)p̃(dy|x, a)

}
,

and thus V ∗(x) ≥ infa∈AG

{
w(x)

w(x)−cG(x,a)

∫
X V

∗(y)p̃(dy|x, a)
}
. The opposite direction of this inequality

was seen earlier, and so (19) holds with equality at this point. This completes the “Only if” part. The
argument for the “If” part is the same, and omitted. 2

Remark 5.1 Consider the function V ∗ in the previous statement. By inspecting the above proof we
see the following fact: a pair of measurable mappings ψ∗ and f∗ from X to AI and AG satisfy

w(x)

w(x)− cG(x, f∗(x))

∫
X
V ∗(y)p̃(dy|x, f∗(x))

= inf
a∈AG

{
w(x)

w(x)− cG(x, a)

∫
X
V ∗(y)p̃(dy|x, a)

}
for each x ∈ X, at which (19) holds with equality, and∫

X
ec
I(x,ψ∗(x),y)V ∗(y)Q(dy|x, ψ∗(x)) = inf

b∈AI

{∫
X
ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
∀ x ∈ X,

if and only if

inf
a∈AG

{∫
X
V ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))V ∗(x)

}
=

∫
X
V ∗(y)q̃(dy|x, f∗(x))− (qx(f∗(x))− cG(x, f∗(x)))V ∗(x)

for each x ∈ X, at which the left hand side equals zero, and∫
X
ec
I(x,ψ∗(x),y)V ∗(y)Q(dy|x, ψ∗(x)) = inf

b∈AI

{∫
X
ec
I(x,b,y)V ∗(y)Q(dy|x, b)

}
∀ x ∈ X.

Lemma 5.6 Suppose Conditions 3.1 and 3.2 are satisfied. Then W ∗(x) = V ∗(x) for each x ∈ X.
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Proof. According to Proposition A.1(a,b), the value function W ∗ for the tilde model is the minimal
[1,∞]-valued lower semianalytic function satisfying (7) as well as the inequality obtained by replacing
the equality in (7) by “≥”. Let us verify that W ∗ = V ∗ as follows. According to Lemmas 5.3, 5.4
and 5.5, the value function V ∗ is a [1,∞]-valued lower semianalytic function satisfying (7), c.f. (20).
Therefore, W ∗ ≤ V ∗ pointwise.

For the opposite direction of this inequality, let x ∈ X be fixed. It suffices to show that W ∗ satisfies
(16) at the point x. Then, since the point x ∈ X was arbitrarily fixed, one could apply Lemma 5.1 to
obtain V ∗ ≤W ∗ pointwise.

Recall that, as observed in the beginning of this proof, W ∗ satisfies (20). By Lemma 5.5, it satisfies
(13) and (14), one of which holds with equality at this point x. If (14) holds with equality for W ∗ at
x, then

W ∗(x) = inf
b∈AI

{∫
X
W ∗(y)ec

I(x,b,y)Q(dy|x, b)
}

≥ inf
â∈Â

{∫ c

0

∫
X
W ∗(y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
W ∗(y)ec

I(x,b,y)Q(dy|x, b)
}
,

and thus (16) is satisfied by W ∗ at x, as required. Now suppose (13) holds with equality for W ∗ at x.
It suffices to consider W ∗(x) <∞, for otherwise, (16) automatically holds for W ∗ at x. According to
Remark 5.1 after Lemma 5.5 and because the tilde model is semicontinuous, there is some a∗ ∈ AG

satisfying ∫
X
W ∗(y)q̃(dy|x, a∗)− (qx(a∗)− cG(x, a∗))W ∗(x)

= inf
a∈AG

{∫
X
W ∗(y)q̃(dy|x, a)− (qx(a)− cG(x, a))W ∗(x)

}
= 0,

and hence
∫
XW

∗(y)q̃(dy|x, a∗) = (qx(a∗) − cG(x, a∗))W ∗(x). This implies qx(a∗) ≥ cG(x, a∗) as the
left hand side of the previous equality is nonnegative and W ∗(x) ≥ 1, and for the same reason, if
cG(x, a∗) = qx(a∗), then cG(x, a∗) = qx(a∗) = 0, in which case,

W ∗(x) ≥ 1 =

∫ ∞
0

∫
X
W ∗(y)q̃(dy|x, a∗)e−

∫ t
0 (qx(a∗)−cG(x,a∗))dsdt

+e−
∫∞
0 qx(a∗)dse

∫∞
0 cG(x,a∗)ds ≥ inf

â∈Â

{∫ c

0

∫
X
W ∗(y)q̃(dy|x, ρt)

e−
∫ t
0 (qx(ρs)−cG(x,ρs))dsdt+ I{c =∞}e−

∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
W ∗(y)ec

I(x,b,y)Q(dy|x, b)
}
.
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That is, (16) is satisfied by W ∗ at x, as desired. Finally, if cG(x, a∗) < qx(a∗), then

inf
â∈Â

{∫ c

0

∫
X
W ∗(y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
W ∗(y)ec

I(x,b,y)Q(dy|x, b)
}

≤
∫ ∞

0

∫
X
W ∗(y)q̃(dy|x, a∗)e−

∫ t
0 (qx(a∗)−cG(x,a∗))dsdt+ e−

∫∞
0 qx(a∗)dse

∫∞
0 cG(x,a∗)ds

=

∫
XW

∗(y)q̃(dy|x, a∗)
qx(a∗)− cG(x, a∗)

+ 0 = W ∗(x),

as requested. Thus, W ∗ satisfies (16). Consequently, W ∗ = V ∗ on X, as required. 2

Proof of Theorem 3.1. Part (b) was seen in the proof of Lemma 5.4.
Consider the pair of measurable mappings (ψ∗, f∗) from Proposition 3.1. Recall that W ∗ = V ∗ on

X by Lemma 5.6. Keeping in mind Remark 5.1, an inspection of the proof of Lemma 5.6 reveals that
the deterministic stationary strategy (ϕ(x), ψ∗(x), t → δf∗(x)(da)) ∈ Â in the hat DTMDP model,
where ϕ is defined in part (c) of this theorem, attains the infimum in

V ∗(x) = inf
â∈Â

{∫ c

0

∫
X
V ∗(y)q̃(dy|x, ρt)e−

∫ t
0 (qx(ρs)−cG(x,ρs))dsdt

+I{c =∞}e−
∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c <∞}e−
∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X
V ∗(y)ec

I(x,b,y)Q(dy|x, b)
}

for each x ∈ X. By Theorem 5.1, this deterministic stationary strategy (ϕ(x), ψ∗(x), t→ δf∗(x)(da)) ∈
Â is optimal for problem (12) for the hat DTMDP model. This and Remark 4.1 imply that V ∗ = V∗
on X and part (c). By Lemma 5.6, we see now V∗ = W ∗ on X, and thus part (a) holds. 2

Proof of Corollary 3.1. This corollary follows at once from Theorem 3.1, Lemma 5.5 and Remark 5.1.
2

6 Conclusion

In this paper we investigated the gradual-impulse control problem of CTMDPs with a rigorous and
general construction, which allows the consideration of quite a large class of control policies, and is
not restricted to the form of performance measures under consideration. Possible future research thus
includes the investigation of gradual-impulse control problem of CTMDPs with other performance
measures (such as the long run average cost in the risk-neutral as well as risk-sensitive setups.)

A Relevant results about DTMDPs

In this appendix, we present the relevant facts about DTMDPs. The proofs of the presented statements
can be found in [15] or [25]. Standard description of a DTMDP can be found in e.g., [13, 20]. The
notations used in this section are independent of the previous sections.

A DTMDP has the following primitives {X,A, p,l}, where X is a nonempty Borel state space, A
is a nonempty Borel action space, p(dy|x, a) is a stochastic kernel on B(X) given (x, a) ∈ X×A, and
l a [0,∞]-valued measurable cost function on X×A×X.
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Condition A.1 (a) The function l(x, a, y) is lower semicontinuous in (x, a, y) ∈ X×A×X.
(b) For each bounded continuous function f on X,

∫
X f(y)p(dy|x, a) is continuous in (x, a) ∈ X×A.

(c) The space A is a compact Borel space.

The DTMDP model {X,A, p,l} is called semicontinuous if it satisfies Condition A.1.
Let us denote for each n = 1, 2, . . . ,∞, Hn := X × (A × X)n and H0 := X. A strategy σ =

(σn)∞n=0 in the DTMDP is given by a sequence of stochastic kernels σn(da|hn) on B(A) from hn ∈ Hn

for n = 0, 1, 2, . . . . A strategy σ = (σn) is called deterministic Markov if for each n = 0, 1, 2, . . . ,
σn(da|hn) = δ{ϕn(xn)}(da), where ϕn is an A-valued measurable mapping on X. We identify such a
deterministic Markov strategy with (ϕn). A deterministic Markov strategy (ϕn) is called deterministic
stationary if ϕn does not depend on n, and it is identified with the underlying measurable mapping
ϕ from X to A. Let Σ be the space of strategies, and ΣDM be the space of all deterministic Markov
strategies for the DTMDP.

Let the controlled and controlling process be denoted by {Yn}∞n=0 and {An}∞n=0. Here, for each
n = 0, 1, . . . , Yn is the projection of H∞ to the 2n+1st coordinate, and An to the 2n+2nd coordinate.
Under a strategy σ = (σn) and a given initial probability distribution ν on (X,B(X)), by the Ionescu-
Tulcea theorem, c.f., [13, 20], one can construct a probability measure Pσν on (H∞,B(H∞)) such
that

Pσν (Y0 ∈ dx) = ν(dx),

Pσν (An ∈ da|Y0, A0, . . . , Yn) = σn(da|Y0, A0, . . . , Yn), n = 0, 1, . . . ,

Pσν (Yn+1 ∈ dx|Y0, A0, . . . , Yn, An) = p(dx|Yn, An), n = 0, 1, . . . .

As usual, equalities involving conditional expectations and probabilities are understood in the almost
sure sense.

The probability measure Pσν is called a strategic measure (of the strategy σ) in the DTMDP model
{X,A, p,l} (with the initial distribution ν). The expectation taken with respect to Pσν is denoted by
Eσν . When ν is concentrated on the singleton {x}, Pσν and Eσν are written as Pσx and Eσx.

Consider the optimal control problem

Minimize over σ : Eσx
[
e
∑∞
n=0 l(Yn,An,Yn+1)

]
=: V(x, σ), x ∈ X. (21)

We denote the value function of problem (21) by V∗. Then a strategy σ∗ is called optimal for problem
(21) if V(x, σ∗) = V∗(x) for each x ∈ X. For a constant ε > 0, a strategy is called ε-optimal for
problem (21) if V(x, σ∗) ≤ V∗(x) + ε for each x ∈ X.

Occasionally we will also consider the so called universally measurable strategies, in which case,
the stochastic kernels σn(da|hn) are universally measurable, i.e., for each measurable subset Γ of A,
σ(Γ|hn) is universally measurable in hn ∈ Hn. The meaning of universally measurable deterministic
Markov or deterministic stationary strategy is understood similarly, i.e., when the underlying mappings
are universally measurable in their arguments. See Chapter 7.7 of [2] for the definition of universal
measurability and other related measurability concepts, such as the definition of a lower semianalytic
function.

We collect the relevant statements in Section 3 of [25] in the next proposition.

Proposition A.1 (a) The value function V∗ is the minimal [1,∞]-valued lower semianalytic solution
to

V(x) = inf
a∈A

{∫
X
el(x,a,y)V(y)p(dy|x, a)

}
, x ∈ X. (22)
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(b) Let U be a [1,∞]-valued lower semianalytic function on X. If

U(x) ≥ inf
a∈A

{∫
X
el(x,a,y)U(y)p(dy|x, a)

}
, ∀ x ∈ X,

then U(x) ≥ V∗(x) for each x ∈ X.
(c) Let ϕ be a deterministic stationary strategy for the DTMDP model {X,A, p, l}. If

V∗(x) =

∫
X
el(x,ϕ(x),y)V∗(y)p(dy|x, ϕ(x)), ∀ x ∈ X, (23)

then V∗(x) = V(x, ϕ) for each x ∈ X.
(d) V∗(x) = infσ∈ΣU V(x, σ), where ΣU is the set of universally measurable strategies. Moreover,
for each ε > 0, there is some universally measurable deterministic stationary ε-optimal strategy for
problem (21).
(e) Suppose Condition A.1 is satisfied. Then the value function V∗ is the minimal [1,∞]-valued lower
semicontinuous solution to (22). Moreover, there exists a deterministic stationary strategy ϕ satisfying
(23), and so in particular, there exists a deterministic stationary optimal strategy for problem (21).

Part (d) of the above statement follows from the proof of Proposition 3.2 of [25], whereas all the other
parts are according to Propositions 3.1, 3.4 and 3.7 therein.
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