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Abstract
In this paper, we study a new generalization of the Lorentz cone Ln+, called the
monotone extended second-order cone (MESOC). We investigate basic properties
of MESOC including computation of its Lyapunov rank and proving its reducibility.
Moreover, we show that in an ambient space, a cylinder is an isotonic projection set
with respect to MESOC. We also examine a nonlinear complementarity problem on
a cylinder, which is equivalent to a suitable mixed complementarity problem, and
provide a computational example illustrating applicability of MESOC.

Keywords Monotone extended second-order cone · Lyapunov rank ·
Complementarity problems

Mathematics Subject Classification 26B35 · 90C33 · 49K45

1 Introduction

In recent years, the second-order cone Ln+ := {(x0, xn−1) ∈ R × R
n−1 : x0 ≥

‖xn−1‖}, also known as the Lorentz cone, attracted much attention of the researchers
in optimization, particularly in conic optimization.Manyoptimization problems can be
reformulated as the conic ones. There are computationally stable numerical algorithms
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for solving various such problems, including complementarity problems. The literature
on the subject is vast and commonly accessible, see, e.g., Alizadeh and Goldfarb [1],
and a recent work [6], by Hao et al., which is related to the mixed complementarity
problem over the second-order cone.

The Lorentz cone has a particularly regular structure: it is a self-dual cone, whose
base is isometric to the Euclidean unit ball in R

n−1 and is irreducible. In the context
of Euclidean Jordan algebras, Ln+ is a symmetric cone (of squares) in the spin algebra
Ln it generates. We will not pursue this direction here.

There are several known important versions of the extendedLorentz cone, including
Bishop–Phelps cone [5] and the extended second-order cone
(ESOC), which was recently developed by S. Z. Németh and his co-authors, see
[10–14]. The Lyapunov rank of a cone K , denoted by β(K ) (see its definition in the
next section) is an invariant which shows that the Lorentz cone and ESOC are gen-
erally not linearly isomorphic. It was introduced and studied by F. Alizadeh et al. in
[16] under the name of bilinearity rank. The Lyapunov rank of Ln+ was computed in

[16] and [4], and equals n2−n
2 . Orlitzky, in [15], showed that the latter quantity is the

maximum value the Lyapunov rank can attain for a proper cone in R
n . Sznajder, in

[18], showed that the ESOC is irreducible and computed its Lyapunov rank, which is
generally lower than n2−n

2 .
In this article, we study another extension of the Lorentz cone, called the monotone

extended second-order cone (MESOC) [3]. There are three main results related to
MESOC here:

• computing its Lyapunov rank, which turns out, in general, is much lower than the
minimal upper bound indicated in [15],

• proving that MESOC (in contrast to ESOC) is a reducible cone,
• showing that a closed convex set is an isotonic projection set with respect to
MESOC if and only if it is a cylinder (in an ambient space).

In [3], an application of MESOC to portfolio optimization has been presented and
possible other applications have been suggested.

The paper is organized as follows: In Sect. 2, we collect the necessary definitions
and provide examples of monotone cones. The main concept related to a cone K , on
which the paper relies upon, is the complementarity set of K . In Sect. 3, for MESOC,
we identify its dual space and investigate the structure of its complementarity set.
We also formulate here and prove the results listed above. In Sect. 4, based on the
work done in [13] and [14], we study the properties of the mixed complementarity
problem (MiCP). By exploring the relationship of mixed complementarity problem
and nonlinear complementarity problem derived in [13], and by using the isotonicity
of MESOC obtained in Sect. 3, we generate a fixed point iteration sequence (called
Picard iteration by some authors), which is convergent to a solution of the MiCP on
a general closed and convex cone. The convergence of this iteration is order-based,
rather than based on a usual contraction mapping principle, although the preprint
[9] and the example in the final section suggest that in certain situations it may be
implicitly related to such a principle. This example is about a real MiCP example. We
show the existence of a solution, in exact numbers, by using the above iteration.
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2 Preliminaries

Denote the canonical unit vectors of R
n by e1, . . . , en and let e = e1 + · · · + en . Any

vector z ∈ R
n is considered to be a column vector and can be uniquely written as

z = (z1, . . . , zn)� := z1e1 + · · · + znen . In particular, e = (1, . . . , 1)�.
The canonical inner product of any two vectors x, y ∈ R

n is defined as

〈x, y〉 := x�y = x1y1 + · · · + xn yn .

We identify R
p × R

q with R
p+q through (x, y) = (x�, y�)�.

We call the set

H(u, α) := {x ∈ R
n : 〈x, u〉 = α}

an affine hyperplane with the normal u ∈ R
n \ {0} and the corresponding sets

H−(u, α) := {x ∈ R
n : 〈x, u〉 ≤ α},

H+(u, α) := {x ∈ R
n : 〈x, u〉 ≥ α},

closed half-spaces. An affine hyperplane through the origin will be simply called
hyperplane.

A nonempty set K ⊆ R
n is a cone if for any x ∈ K and ∀α > 0, it holds αx ∈ K .

A set K is a convex cone (i.e., cone K is a convex set) if and only if for any x, y ∈ K
and ∀α, β > 0, it holds αx + β y ∈ K .

A cone K is called a closed cone (pointed) when it is a closed set (K ∩ −K = {0}).
The dual cone of a cone K is given by

K ∗ := {y ∈ R
n : 〈x, y〉 ≥ 0,∀x ∈ K }.

We define the following set, which is vital for our further considerations

C(K ) := {(x, y) : x ∈ K , y ∈ K ∗, x ⊥ y},

called the complementarity set of K , where x ⊥ y means 〈x, y〉 = 0.
A cone K ⊆ R

n is called simplicial if there is a basis {ui : 1 ≤ i ≤ n} of R
n such

that

K =
{
α1u1 + · · · + αnun : αi ≥ 0, 1 ≤ i ≤ n

}
.

The vectors ui , 1 ≤ i ≤ n are called the generators of K . It is known that the dual of
a simplicial cone is also simplicial.

We present two examples of complementarity sets, the second will be used later.

Example 1 Define the monotone cone R
n≥ as

R
n≥ := {x ∈ R

n : x1 ≥ x2 ≥ · · · ≥ xn}.
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It is easy to check that its dual cone (Rn≥)∗ is given by

(Rn≥)∗ =
⎧⎨
⎩y ∈ R

n :
j∑

i=1

y j ≥ 0, j = 1, 2, . . . , n − 1,
n∑

i=1

yi = 0

⎫⎬
⎭.

It is an important object, also known as the Schur cone (see [17], Example 7.4), since
it induces the so-called Schur ordering, which plays an important role in the theory of
majorization, see [7].

The complementarity set C(Rn≥) of the cone R
n≥ is described as

C(Rn≥) =
{
(x, y) : x ∈ R≥, y ∈ (Rn≥)∗, (xi − xi+1)

i∑
j=1

y j = 0,

∀i = 1, 2, . . . , n − 1
}
.

Example 2 We define the monotone nonnegative cone R
n≥+ as:

R
n≥+ := {x ∈ R

n : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

Its dual cone is given by:

(Rn≥+)∗ =
⎧⎨
⎩y ∈ R

n :
j∑

i=1

yi ≥ 0, j = 1, 2, . . . , n

⎫⎬
⎭,

and the complementarity set of R
n≥+ is equal to

C(Rn≥+) =
⎧
⎨
⎩x ∈ R

n≥+, y ∈ (Rn≥+)∗ :
(

x j = x j+1 or
j∑

i=1

y j = 0 ,

∀ j = 1, 2, . . . , n − 1
)
, and

(
xn = 0 or

n∑
i=1

yi = 0
)}

.

Both R
n≥+ and (Rn≥+)∗ are simplicial cones.

Recall [13] that the extended second-order cone (ESOC) is defined by

ESOC = {(x, u) ∈ R
p × R

q : x ≥ ‖u‖e}

and its dual cone is given as

(ESOC)∗ = {(x, u) ∈ R
p × R

q : 〈x, e〉 ≥ ‖u‖, x ≥ 0},
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where p and q are nonnegative integers.
A matrix A ∈ R

n×n is called Lyapunov-like on K , if

〈Ax, y〉 = 0, ∀(x, y) ∈ C(K ). (1)

Define a vector space LL(K ) as the set of all Lyapunov-like matrices on K and denote
its dimension as β(K ), which we call the Lyapunov rank (or bilinearity rank) of K .
For an arbitrary closed convex set C ⊆ R

m , we define mapping PC -metric projection
onto C :

R
m � x �→ PC x := argmin{‖y − x‖ : y ∈ C}.

Necessarily, PC is a point–to–point mapping, which is well defined from R
m onto C .

We also indicate that the projection PC is nonexpansive, i.e., for any x, y ∈ R
m ,

‖PC (x) − PC (y)‖ ≤ ‖x − y‖. (2)

For any pointed closed convex cone K ⊂ R
m , a mapping F : R

m → R
m is called

K -isotone if for any x, y ∈ K , x ≤K y implies F(x) ≤K F(y); here x ≤K y means
y − x ∈ K . If the projection PC is K -isotone, then the closed convex set C ⊆ R

m is
called a K -isotone projection set.

Finally, for a proper closed convex cone K ⊂ R
m and amapping F : R

m → R
m we

define a complementarity problem CP(K , F) as to find an x∗ ∈ K such that F(x∗) ∈
K ∗ and x∗ ⊥ F(x∗). In other words, we seek an x∗ such that (x∗, F(x∗)) ∈ C(K ).

3 Main Results

The first topic we are interested in is the complementarity problem based on the
monotone extended second-order cone, which we introduce below. Let p and q be two
nonnegative integers.The monotone extended second-order cone (informallyMESOC)
is defined as follows:

L := {(x, u) ∈ R
p × R

q : x1 ≥ x2 ≥ · · · ≥ x p ≥ ‖u‖}. (3)

In order to find solutions of a complementarity problem, first we need to find the dual
cone and the complementarity set of this cone. Although a considerable part of the
characterization has been already presented in [3], for the sake of completeness, we
decide to include it here.

Proposition 3.1 Let p and q be two nonnegative integers. Then, the dual cone of a
monotone extended second-order cone L in (3) is

M :=
⎧
⎨
⎩(x, u) ∈ R

p × R
q :

j∑
i=1

xi ≥ 0,∀ j ∈ {1, . . . , p − 1},
p∑

i=1

xi ≥ ‖u‖
⎫
⎬
⎭, (4)

123



Journal of Optimization Theory and Applications

that is, M = L∗.

Proof First, we show that M ⊆ L∗. Let (x, u) ∈ L and (y, v) ∈ M . Using Abel’s
summation formula, we have

〈(x, u), (y, v)〉 = xT y + uT v =
p−1∑
i=1

(xi − xi+1)

i∑
j=1

y j + x p

p∑
i=1

yi + uT v

≥ ‖u‖‖v‖ + uT v ≥ 0.

So, we have M ⊆ L∗. Now, we show that L∗ ⊆ M . For, let (y, v) ∈ L∗ and
e = (1, 1, . . . , 1) ∈ R

p. It is obvious that (‖v‖e,−v) ∈ L . Suppose v �= 0, then

〈(‖v‖e,−v), (y, v)〉 ≥ 0 ⇔ ‖v‖
p∑

i=1

yi − ‖v‖2 ≥ 0.

Hence,
∑p

i=1
yi ≥ ‖v‖. When v = 0, then (e, 0) ∈ L and (y, 0) ∈ L∗ imply that∑p

i=1
yi ≥ 0 = ‖v‖.

We also have
(
(1, 1, . . . , 1, 0︸ ︷︷ ︸

i<p

, 0, . . . , 0︸ ︷︷ ︸
p−i

), (0, 0, . . . , 0︸ ︷︷ ︸
q

)
)

∈ L , and (y, v) ∈ L∗, which

implies that

i∑
j=1

yi ≥ 0, ∀i ∈ {1, 2, . . . , p − 1}.

Thus, (y, v) ∈ M , so L∗ ⊆ M . Altogether, we have L∗ = M . ��

After finding the dual of the monotone extended second-order cone, we will describe
the complementarity set of this cone. In order to do so, we need to use the inequality,
introduced in Lemma 3.1.

Lemma 3.1 For every (x, u) ∈ L and (y, v) ∈ M, we have

〈x, y〉 ≥ ‖u‖
p∑

i=1

yi ≥ ‖u‖‖v‖ .

Proof First, we prove that 〈x, y〉 ≥ ‖u‖∑p
i=1 yi . Since (x, u) ∈ L, (y, v) ∈ M , it

follows that x1 ≥ x2 ≥ · · · ≥ x p ≥ ‖u‖, ∑ j
i=1 y j ≥ 0 for all j ∈ {1, . . . , p − 1} and
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∑p
i=1 yi ≥ ‖v‖ ≥ 0. Thus, by using the backward induction,

p∑
i=1

yi = y1 + y2 + · · · + yp ≥ 0

�⇒ (x p − ‖u‖)
p−1∑
i=1

yi + (x p − ‖u‖)yp ≥ 0

�⇒ (x p−1 − ‖u‖)
p−2∑
i=1

yi + (x p−1 − ‖u‖)yp−1 + (x p − ‖u‖)yp ≥ 0

�⇒ (x p−2 − ‖u‖)
p−3∑
i=1

yi + (x p−2 − ‖u‖)yp−2

+ (x p−1 − ‖u‖)yp−1 + (x p − ‖u‖)yp ≥ 0

· · ·
�⇒ (x1 − ‖u‖)y1 + (x2 − ‖u‖)y2 + · · · + (x p − ‖u‖)yp ≥ 0

⇐⇒ 〈x, y〉 ≥ ‖u‖
p∑

i=1

yi .

Finally, since 〈x, y〉 ≥ ‖u‖∑p
i=1 yi and

∑p
i=1 yi ≥ ‖v‖, we have

〈x, y〉 ≥ ‖u‖
p∑

i=1

yi ≥ ‖u‖‖v‖ .

��
By using Lemma 3.1, we find the complementarity set of the monotone extended
second-order cone.

Proposition 3.2 Let (x, y, u, v) ∈ C(L).1 If u �= 0, v �= 0, then

C(L) =
{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈ M,

〈x, y〉 = ‖u‖
p∑

i=1

yi ,

p∑
i=1

yi = ‖v‖, and ∃λ > 0 such that v = −λu

}

=
{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈ M, (xi − xi+1)

i∑
j=1

y j = 0,

∀i = 1, . . . , p − 1, x p = ‖u‖,
p∑

i=1

yi = ‖v‖, and ∃λ > 0 such that v = −λu

}
.

1 By a slight abuse of the notation, we write (x, u, y, v) instead of ((x, u), (y, v)).
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Proof Let

S :=
{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈ M,

〈x, y〉 = ‖u‖
p∑

i=1

yi ,

p∑
i=1

yi = ‖v‖, and ∃λ > 0 such that v = −λu

}
.

Now, our task is to show that C(L) = S. First, we need to prove that C(L) ⊆ S. For
arbitrary (x, u, y, v) ∈ C(L), by using Lemma 3.1, we have

0 = 〈(x, u), (y, v)〉 = 〈x, y〉 + 〈u, v〉

≥ ‖u‖
p∑

i=1

yi + 〈u, v〉

≥ ‖u‖‖v‖ + 〈u, v〉 ≥ 0 .

Hence, all the inequalities above must be equalities, that is,

0 = 〈x, y〉 + 〈u, v〉 = ‖u‖
p∑

i=1

yi + 〈u, v〉

= ‖u‖‖v‖ + 〈u, v〉 = 0 .

Thus,

〈x, y〉 = ‖u‖
p∑

i=1

yi = ‖u‖‖v‖. (5)

Therefore,

‖u‖
p∑

i=1

yi = ‖u‖‖v‖

and

‖u‖‖v‖ + 〈u, v〉 = 0. (6)

From (5) we get 〈x, y〉 = ‖u‖∑p
i=1 yi and, subsequently,

∑p
i=1 yi = ‖v‖. From

the equality case in the Cauchy–Schwarz inequality, equation (6) implies that ∃λ >

0, v = −λu. Thus, C(L) ⊆ S.
Now, for the converse inclusion S ⊆ C(L). We have: ∀(x, u, y, v) ∈ S, ∃λ > 0 such
that v = −λu, (x, u) ∈ L, (y, v) ∈ M, xT y = ‖u‖∑p

i=1 yi ,∀i = 1, . . . , p, and∑p
i=1 yi = ‖v‖. Thus,

〈(x, u), (y, v)〉 = 〈x, y〉 + 〈u, v〉 = ‖u‖‖v‖ + 〈u, v〉 = 0.

123



Journal of Optimization Theory and Applications

Therefore, (x, u, y, v) ∈ C(L). Hence, S ⊆ C(L).
Finally, we have

C(L) = S =
{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈ M,

〈x, y〉 = ‖u‖
p∑

i=1

yi ,

p∑
i=1

yi = ‖v‖, and ∃λ > 0 such that v = −λu

}
. (7)

Moreover,

‖u‖
p∑

i=1

yi = 〈x, y〉

= y1(x1 − x2) + (y1 + y2)(x2 − x3) + · · ·
+ (y1 + y2 + · · · + yp−1)(x p−1 − x p) + (y1 + y2 + · · · + yp)x p

if and only if

(‖u‖ − x p)

p∑
i=1

yi = y1(x1 − x2) + (y1 + y2)(x2 − x3)

+ · · · + (y1 + y2 + · · · + yp−1)(x p−1 − x p).

In the equation above, it is obvious that the LHS (left-hand side) is nonpositive
and the RHS (right-hand side) is nonnegative, thus both must be equal to 0. Since the
components of the sum in the RHS are all nonnegative, each component must be equal
to 0. Hence, from equation (7) it follows that

C(L) =
{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈ M, (xi − xi+1)

i∑
j=1

y j = 0,

∀i = 1, . . . , p − 1, x p = ‖u‖,
p∑

i=1

yi = ‖v‖, and ∃λ > 0 such that v = −λu

}
.

Now the proof is complete. ��
Lemma 3.2 Let A ∈ R

p×p. Then, A ∈ LL(R
p
≥+) if and only if it is of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a − ∑p
i=2 ai a2 a3 · · · · · · ap

a − ∑p
i=3 ai a3 · · · · · · ap

a − ∑p
i=4 ai · · · · · · ap

. . .
...

...

0 a − ap ap

a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8)
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where a, a2, a3 . . . , ap ∈ R are arbitrary.

Proof Let ei ∈ R
p, 1 ≤ i ≤ p be the canonical unit vectors in R

p and ep+1 be the
zero vector in R

p. Denote ui := ∑i
k=1 ek ∈ R

n≥+ and vi := ei − ei+1 ∈ (Rn≥+)∗, for
1 ≤ i ≤ p (see Example 2). Then, 〈ui , v j 〉 = δi j , where δi j is the Kronecker symbol,
that is, δi i = 1 and δi j = 0, for i �= j . If follows that (ui , v j ) ∈ C(Rn≥+), whenever
i �= j (as it can be seen from Example 2, too). Hence, if A ∈ LL(Rn≥+) and i �= j ,
then

〈Aui , v j 〉 =
i∑

k=1

(a jk − a j+1,k) = 0, (9)

where we set ap+1,k := 0. By using equation (9), we get

p∑
�= j

〈Aui , v�〉 =
i∑

k=1

a jk = 0, if j > i . (10)

By equation (10), we get

a ji =
i∑

k=1

a jk −
i−1∑
k=1

a jk = 0, if j > i . (11)

By using again equation (9), we get

a ji − a j+1,i =
i∑

k=1

(a jk − a j+1,k) −
i−1∑
k=1

(a jk − a j+1,k) = 0, if j + 1 < i .

(12)

Equations (9), (11) and (12) imply that A is of the form (8). Now, suppose that A is
of the form (8). From Example 2, any element (x, y) ∈ C(Rn≥+) can be written in the
form

(x, y) =
⎛
⎝∑

i∈I

αi u
i ,
∑
j∈J

β jv
j

⎞
⎠ ; αi , β j ≥ 0, (13)

for some I , J ⊆ {1, 2, . . . , n} with I ∪ J = {1, 2, . . . , n} and I ∩ J = ∅, because
{ui : 1 ≤ i ≤ j} ⊆ R

n≥+ and {vi : 1 ≤ i ≤ j} ⊆ (Rn≥+)∗ are generators of the
simplicial cones R

n≥+ and (Rn≥+)∗, respectively, and x ⊥ y. As 〈Aui , v j 〉 = 0, by
considering the derivation of equations (9), (10), (11) and (12) in the reverse order,
equation (13) implies that 〈Ax, y〉 = 0. Hence, A ∈ LL(Rn≥+). ��
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Theorem 3.1 For the monotone extended second-order cone (3), any Lyapunov-like
transformation T is of the form

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a − ∑p
j=2 a j a2 a3 · · · · · · ap c1 · · · cq

a − ∑p
j=3 a j a3 · · · · · · ap c1 · · · cq

a − ∑p
j=4 a j · · · · · · ap c1 · · · cq

. . .
.
.
.

.

.

.
.
.
.

.

.

.

0 a − ap ap c1 · · · cq
a c1 · · · cq
c1 a ∗

0
.
.
.

. . .

cq −∗ a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where a, a2, a3, . . . , ap, c1, ..., cq ∈ R are arbitrary. Hence, its Lyapunov rank is
given by

β(L) = p + q(q + 1)

2
.

Proof Recall that the complementarity set for the monotone extended second-order
cone L is

C(L) = {((x, u), (y, v)) ∈ L × M : (x, u) ⊥ (y, v)}.

We partition the above set in the following way:

C(L) := C1(L) ∪ C2(L) ∪ C3(L) ∪ C4(L),

where

C1(L) := {(x, 0, y, 0) ∈ C(L)},
C2(L) := {(x, 0, y, v) ∈ C(L) : v �= 0},
C3(L) := {(x, u, y, v) ∈ C(L) : u �= 0 �= v},
C4(L) := {(x, u, y, 0) ∈ C(L) : u �= 0}.

Since x = 0 ⇒ u = 0 and y = 0 ⇒ v = 0, for any Lyapunov-like transformation on
L we only need to consider the case of x �= 0 �= y. Let T be any element of LL(L),
so it has the following block form:

[
A B
C D

]
: R

p × R
q → R

p × R
q ,

where A ∈ R
p×p, B ∈ R

p×q , C ∈ R
q×p, and D ∈ R

q×q . Take any (x, u, y, v) ∈
C(L). Then, (1) implies

〈Ax, y〉 + 〈Bu, y〉 + 〈Cx, v〉 + 〈Du, v〉 = 0,

〈Ax, y〉 − 〈Bu, y〉 − 〈Cx, v〉 + 〈Du, v〉 = 0,

123



Journal of Optimization Theory and Applications

where the latter equation comes from the former one by substituting −u for u and −v

for v. By adding and subtracting the above equations, we get

〈Ax, y〉 + 〈Du, v〉 = 0,

〈Bu, y〉 + 〈Cx, v〉 = 0.
(15)

By using an element (x, 0, y, 0) ∈ L × M in C1(L), with x ∈ R
p
≥+ and y ∈ (R

p
≥+)∗,

we get 〈Ax, y〉 = 0, which implies that A ∈ LL(R
p
≥+).

Now, we will determine the structures of matrices B and C . By using elements in
C2(L), from the second equation in (15), we get

〈Cx, v〉 = 〈B0, y〉 + 〈Cx, v〉 = 0.

Suppose that Cai �= 0 for some i < p and let v := Cai

‖Cai ‖ , and y := e j , ( j > i),

thus, 〈y, e j 〉 = 1 = ‖v‖. Hence, (ai , 0, e j , v) ∈ C2(L). Then, 0 = 〈Cx, v〉 =
〈Cai , v〉 = ‖Cai‖, which leads to a contradiction. Hence, Cai = 0. Then, for certain
c1, . . . , cq ∈ R we have

C =
⎡
⎢⎣0

c1
...

cq

⎤
⎥⎦

q×p

.

If C = 0, the second equation in (15) demonstrates that 〈Bu, y〉 = 0 for all
(x, u, y, v) ∈ C3(L). It is easy to verify that (e,−v, ei , v) ∈ C3(L), where v is
an arbitrary unit vector in R

q . Hence, 〈B(−v), ei 〉 = 0, for all 1 ≤ i ≤ p, thus
Bv = 0. In consequence, B = 0.

If C �= 0, first we need to find the structure of matrix B. We have 〈Bu, y〉 = 0 for
any (x, u, y, 0) ∈ C4(L).

Let ui denote the standard (canonical) unit vector in R
q and for any n > m, let

ym,n := em − en ∈ R
p. Since

(
e, ui , ym,n, 0

) ∈ C4(L),

〈Bui , ym,n〉 = 0.

Therefore,

B =
⎡
⎢⎣

b1 b2 · · · bq
...

...
...

b1 b2 · · · bq

⎤
⎥⎦

p×q

.

For i = 1, . . . , q and j = 1, . . . , p, we have (e, ui , e j ,−ui ) ∈ C3(L) and subse-
quently,

〈Bui , e j 〉 + 〈Ce,−ui 〉 = 0.
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It readily implies bi = ci . Hence,

B =
⎡
⎢⎣

c1 c2 · · · cq
...

...
...

c1 c2 · · · cq

⎤
⎥⎦

p×q

.

As (e, u, 1
p e,−u) ∈ C3(L) for all u with ‖u‖ = 1, by using (15), we have

〈
Ae,

1

p
e

〉
+ 〈Du,−u〉 = 0. (16)

Let a := 〈Ae, e〉
p

. Then, (16) implies

〈(
D + DT

2
− aI

)
u, u

〉
= 0,

and hence

D + DT = 2aI . (17)

Obviously, (e,−u1, e1, u1) ∈ C(L) and using the first equation in (15) gives

〈Ae, e1〉 − 〈Du1, u1〉 = 0,

which implies that d11 = ∑
j a1 j . Thus, (17) implies that d11 = a and hence,∑p

j=1 a1 j = a.

By changing e1 to e2 (yes, we can), we have
∑p

j=2 a2 j = d22 = a. By following this

process, we obtain that dii = ∑p
j=1 ai j = a, for all 1 ≤ i ≤ p.

Therefore, by equation (17), A ∈ LL(Rn≥+) (shown above) and Lemma 3.2, any
Lyapunov-like transformation on L has the form (14).

Now, we want to show that any transformation T , which can be represented in the
form (14), is Lyapunov-like on L , so let T be given as above. Then, we have

〈T (x, u), (y, v)〉 = 〈Ax, y〉 + 〈Du, v〉 + 〈Bu, y〉 + 〈Cx, v〉. (18)

We wish to show that for any (x, u, y, v) ∈ C(L), the RHS in the above equation is
zero. We will perform a case-by-case analysis.
Case 1. For any (x, u, y, v) := (x, 0, y, 0) ∈ C1(L), the RHS of (18) is equal to
zero, as (x, y) ∈ C (Rn≥+

)
and we have already shown that A ∈ LL(Rn≥+), hence it is

enough to use again Lemma 3.2.
Case 2. For any (x, u, y, v) := (x, 0, y, v) ∈ C2(L), the RHS of (18) is (c1v1 +· · ·+
cqvq)x p. Suppose that x p �= 0. Then, since (x, y) ∈ C

(
R

n≥+
)
, from Example 2 we
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get y1 + · · · + yp = 0. Hence, (y, v) ∈ M and (4) implies v = 0, which contradicts
(x, 0, y, v) ∈ C2(L). Thus, x p = 0 and therefore the RHS of (18) is zero.
Case 3. Take an arbitrary (x, u, y, v) ∈ C3(L). Proposition 3.2 indicates that for some
λ > 0 one has v = −λu, thus

〈Ax, y〉 + 〈Du, v〉 = 〈Ax, y〉 +
〈

D + DT

2
u, v

〉
= 〈Ax, y〉 + a〈u, v〉

= 〈z, y〉 + a〈u, v〉

=
p−1∑
i=1

⎡
⎣(zi − zi+1)

i∑
j=1

y j

⎤
⎦ + z p

p∑
i=1

yi + a〈u, v〉,
(19)

where zi := ∑i
j=1 a j xi +∑p

k=i+1 ak xk , for any 1 ≤ i ≤ p−1 and z p = ∑p
k=1 ak x p.

Then, for any 1 ≤ i ≤ p − 1, it is easy check that zi − zi+1 = ∑i
j=1 a j (xi − xi+1).

By inserting these equalities and the formula for z p into equation (19), and by using
Proposition 3.2, we obtain 〈Ax, y〉 + 〈Du, v〉 = 0. We will show that

〈Bu, y〉 + 〈Cx, v〉 = 0.

By using the full power of Proposition 3.2, including v = −λu for some λ > 0, we
have

〈Bu, y〉 =
q∑

i=1

(ci ui ) ·
p∑

i=1

yi = ‖v‖
q∑

i=1

(ci ui )

and

〈Cx, v〉 = x p

q∑
i=1

(civi ) = ‖u‖
q∑

i=1

(civi ).

Then,

〈Bu, y〉 + 〈Cx, v〉 = ‖v‖
q∑

i=1

(ci ui ) + ‖u‖
q∑

i=1

(civi )

= λ‖u‖
q∑

i=1

(ci ui ) − λ‖u‖
q∑

i=1

(ci ui ) = 0.

Case 4. For any (x, y, u, v) := (x, u, 0, v) ∈ C4(L), the RHS of (18) is (c1u1 +· · ·+
cquq)(y1 +· · ·+ yq). Suppose that y1 +· · ·+ yp �= 0. Then, since (x, y) ∈ C(Rn≥+),
from Example 2 we get x p = 0. Hence, (x, u) ∈ M and (4) implies u = 0, which
contradicts (x, u, y, 0) ∈ C4(L). Thus, y1 + · · · + yp = 0 and therefore the RHS of
(18) is zero.
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In conclusion, the RHS of (18) is zero for any (x, u, y, v) ∈ C1(L) ∪ C2(L) ∪
C3(L) ∪ C4(L) = C(L) Therefore, T ∈ LL(L). Following the definition of the
Lyapunov rank, its value for the cone L equals to the number of independent parameters
in (14), which is p + q(q+1)

2 . ��
After calculating the Lyapunov rank of MESOC, we prove our second main result,
namely that this cone is reducible. Recall that a cone K in R

m is reducible if it
can be expressed as a sum K = K1 + K2, where K1, K2 �= {0} are cones with
span(K1) ∩ span(K2) = {0}. Otherwise, it is called irreducible.

Theorem 3.2 For the monotone extended second-order cone L defined in (3), one has
L = L1 + L2, where

L1 := cone
{
(1, . . . , 1︸ ︷︷ ︸

p

, m1, . . . , mq) : m2
1 + · · · + m2

q ≤ 1
}

and

L2 := cone
{
(1, 0, . . . , 0︸ ︷︷ ︸

p

, 0, . . . , 0︸ ︷︷ ︸
q

), (1, 1, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

),

. . . , (1, 1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

)
}
.

As a by-product, we show that L is a reducible cone.

Proof First, we show the inclusion L ⊆ L1 + L2.
An arbitrary element (x1, . . . , x p, u1, . . . , uq) ∈ L , by the definition of L , can be
represented as (

∑p
i=1 ai , . . . , a1+a2, a1, u1, . . . , uq), where ai ≥ 0 for i = 2, . . . , p

and a1 ≥ ‖(u1, . . . , uq)‖. Hence,

(x1, . . . , x p, u1, . . . , uq)

=
⎛
⎝

p∑
i=1

ai ,

p−1∑
i=1

ai , . . . , a1, u1, . . . , uq

⎞
⎠

= (a1, . . . , a1, u1, . . . , uq) + (a2, . . . , a2, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·

+ (ap, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

)

= (a1, . . . , a1, u1, . . . , uq) + a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·

+ ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

).
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Obviously, a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · · + ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) ∈ L2.

Now, we show that (a1, . . . , a1, u1, . . . , uq) ∈ L1. It is trivial when a1 = 0, so we
assume that a1 > 0. Thus, we have

(a1, . . . , a1, u1, . . . , uq) = a1

(
1, . . . , 1,

u1

a1
, . . . ,

uq

a1

)
.

As a1 ≥ ‖(u1, . . . , uq)‖, we get

a1 ≥
√

u2
1 + · · · + u2

p ≡ 1 ≥
√(

u1

a1

)2

+ · · · +
(

uq

a1

)2

,

which, by the definition of L1, gives that (a1, . . . , a1, u1, . . . , uq) ∈ L1.
Hence, we showed that an arbitrary element (x1, . . . , x p, u1, . . . , uq) ∈ L can be
represented as the sum of two elements, which are

(a1, . . . , a1, u1, . . . , uq) ∈ L1

and

a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · · + ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) ∈ L2.

Now, for the inclusion L1 + L2 ⊆ L . Observe that L1 ⊆ L and L2 ⊆ L . From the
convexity of the cone L , it follows that L1 + l2 ⊆ L + L = L .

It concludes the proof of the equality L = L1+ L2. Obviously, the cones L1, L2 �=
{0} and span(L1) ∩ span(L2) = {0}. ��

For the sake of completeness, we quote the following three results that will help
us proving Theorem 3.4, where a characterization of K ⊆ R

p × R
q as an L-isotone

projection set is given.

Theorem 3.3 (see [8]) The closed convex set C ⊂ R
m with nonempty interior is a

K -isotone projection set if and only if it is of the form

C =
⋂
i∈N

H−(ui , αi ),

where each affine hyperplaneH(ui , αi ) is tangent to C and it is a K -isotone projection
set.

The following two lemmas are from [13].
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Lemma 3.3 Let K ⊂ R
m be a closed convex cone and H ⊂ R

m be a hyperplane with
a unit normal vector a ∈ R

m. Then, H is a K -isotone projection set if and only if

〈x, y〉 ≥ 〈a, x〉〈a, y〉,

for any x ∈ K and y ∈ K ∗.

Lemma 3.4 Let z ∈ R
m, K ⊂ R

m be a closed convex cone and C ⊂ R
m be a

nonempty closed convex set. Then, C is a K -isotone projection set if and only if C + z
is a K -isotone projection set.

Finally, by using the above three results, we derive an isotonicity property of
MESOC, which we will use to solve complementarity problems on the MESOC.

Theorem 3.4 Let L be the MESOC corresponding to the dimensions p and q, with
q > 1. The closed convex set with nonempty interior K ⊆ R

p × R
q is an L-isotone

projection set if and only if K = R
p × C, for some closed convex set with nonempty

interior C ⊆ R
q .

Proof First, suppose that K = R
p × C , where C ⊆ R

q is a nonempty closed convex
set with nonempty interior. Let (x, u), (y, v) ∈ R

p ×R
q be such that (x, u) ≤L (y, v),

thus (y − x, v − u) ∈ L , i.e.,

y1 − x1 ≥ y2 − x2 ≥ · · · ≥ yp − x p ≥ ‖v − u‖. (20)

Since C is a closed and convex set in R
q , by the nonexpansivity (2) of PC , we have

‖v − u‖ ≥ ‖PCv − PC u‖,

which together with (20) yields

y1 − x1 ≥ y2 − x2 ≥ · · · ≥ yp − x p ≥ ‖PCv − PC u‖.

Thus,

(y, PCv) − (x, PC u) ∈ L

and therefore we have

PK (x, u) = (x, PC u) ≤L (y, PCv) = PK (y, v).

In conclusion, K is an L-isotone project set.
Conversely, suppose that the closed convex set K ⊆ R

p × R
q with nonempty

interior is an L-isotone project set. If p = 1, then in [8] it has been proved that
K = R

p × C , where C is a nonempty, closed and convex subset with nonempty
interior of R

q . Therefore, assume that p > 1. By Theorem 3.3 and Lemma 3.4, we
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need to show that for any tangent hyperplane H of K with unit normal γ = (a, u),
we have a = 0. From Lemma 3.3, we have

〈ζ, ξ 〉 ≥ 〈γ, ζ 〉〈γ, ξ 〉, (21)

for any ζ := (x, v) ∈ L and ξ := (y, w) ∈ L∗. By Lemma 3.3, condition (21) holds.
Let x ∈ R

p
+ and v ∈ R

q . Then, by equation (3), and Proposition 3.1, it is easy to
check that ζ := (‖v‖e, v) ∈ L , ξ := (‖v‖x,−〈e, x〉v) ∈ L∗ and 〈ζ, ξ 〉 = 0. Hence,
condition (21) implies

0 ≥ (〈a, e〉‖v‖ + 〈u, v〉)(〈a, x〉‖v‖ − 〈e, x〉〈u, v〉). (22)

If in (22) x = e and we choose v �= 0 such that 〈u, v〉 = 0, then 0 ≥ 〈a, e〉2‖v‖2, and
hence 〈a, e〉 = 0. Thus, (22) becomes

0 ≥ 〈u, v〉(〈a, x〉‖v‖ − 〈e, x〉〈u, v〉). (23)

First, suppose that u �= 0. Let vn ∈ R
q be a sequence of points such that ‖vn‖ = 1,

〈u, vn〉 > 0 and limn→+∞〈u, vn〉 = 0. Let n be an arbitrary positive integer. If in
(23) we choose λ > 0 sufficiently large such that x := a + λe ≥ 0 and v = vn ,
we get 0 ≥ 〈u, vn〉(‖a‖2 − λp〈u, vn〉), or equivalently ‖a‖2 ≤ λp〈u, vn〉. By letting
n → +∞ in the last inequality, we obtain ‖a‖2 ≤ 0, or equivalently a = 0.

Next, suppose that u = 0. Since (a, u) is a unit vector, it follows that a �= 0. Let
(x, y) ∈ C(R

p
≥+) and w ∈ R

q such that 〈y, e〉 ≥ ‖w‖. Then, by (3) and Proposition
3.1, it is easy to check that ζ := (x, 0) ∈ L , ξ := (y, w) ∈ L∗ and 〈ζ, ξ 〉 = 0. Hence,
inequality (21) implies

0 ≥ 〈a, x〉〈a, y〉,

for any (x, y) ∈ C(R
p
≥+) with 〈x, y〉 = 0. From Example 2, we can choose x =

e1 + · · · + er and y = es − es+1, where r , s ∈ {1, . . . , p}, and we set ep+1 := 0.
Hence, (a1 + · · ·+ ar )(as − as+1) ≤ 0, where we set ap+1 := 0. Take now r = 1 and
for s = 1, . . . , p, add the inequalities a1(a1 − a2) ≤ 0, . . . , a1(ap − ap+1) ≤ 0, to
obtain (by the telescoping effect) a1 ·a1 ≤ 0, which gives a1 = 0. Similarly, for r = 2
and s = 2, . . . , p, add the inequalities (0+a2)(a2−a3) ≤ 0, . . . , a2(ap −ap+1) ≤ 0,
to get a2 = 0. Acting similarly (with r = 3, and so on), we get a3 = 0, up to ap = 0.
Thus, a = 0. But this contradicts a �= 0, so the case u = 0 cannot hold. ��
It is a well known that for the nonlinear complementarity problem NCP(F, K ), x∗ is
its solution if and only if x∗ is a fixed point of the mapping K � x �→ PK (x − F(x)).
For an arbitrary sequence {xn} generated by the fixed point iteration process

xn+1 = PK (xn − F(xn)), (24)

if the mapping F is continuous and the sequence {xn} is convergent to x∗ ∈ K , then
x∗ is a fixed point of the mapping K � x �→ PK (x − F(x)), hence x∗ is a solution of
the nonlinear complementarity problem NCP(F, K ).
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4 Mixed Complementarity Problem

Facchinei and Pang defined the mixed complementarity problem (MiCP) on the non-
negative orthant (see Sect. 9.4.2 in [2]). It is not only equivalent to a linearly constrained
variational inequality problem (this relationship is also known as the Karush–Kuhn–
Tucker (KKT) system of the variational inequality), but it can also be viewed as an
NCP for a particular nonpointed cone. Németh and Zhang [13] considered the MiCP
defined on an arbitrary closed and convex cone. In Theorem 3.4, we have already
shown that the projection mapping onto a cylinder is an isotonic projection set with
respect to MESOC. It is interesting to consider using isotonicity on MESOC as a tool
to solve the MiCP.
For the sake of completeness below, we quote Lemma 4 in [14].

Lemma 4.1 Let K = R
p × C, where C is an arbitrary nonempty closed and convex

cone in R
q . Denote mapping G : R

p × R
q �→ R

p, mapping H : R
p × R

q �→ R
q

and mapping F = (G; H) : R
p × R

q �→ R
p × R

q . Then, the nonlinear comple-
mentarity problem NCP(F, K ) is equivalent to the mixed complementarity problem
MiCP(G, H , C, p, q) defined as

G(x, u) = 0, C � u ⊥ H(x, u) ∈ C∗.

Proof It is standard and follows from the definition of the nonlinear complementarity
problem NCP(F, K ), by noting that K ∗ = {0} × C∗. ��
By using the notations of Lemma 4.1, the fixed point iteration (24) can be rewritten
as:

xn+1 = xn − G(xn, un),

un+1 = PC (un − H(xn, un)). (25)

For the sake of self-containment below, we quote Proposition 2 in [14].

Proposition 4.1 Let L ⊆ R
m be a pointed closed convex cone, K ⊆ R

m be a closed
convex cone and F : R

m → R
m be a continuous mapping. Consider the sequence

{xn}n∈N defined by (24). Suppose that the mappings PK and I − F are L − isotone
and x0 = 0 ≤L x1. Let

Ω := K ∩ L ∩ F−1(L) = {x ∈ K ∩ L : F(x) ∈ L}

and

Γ := {x ∈ K ∩ L : PK (x − F(x)) ≤L x}.

Then, ∅ �= Ω ⊂ Γ and the sequence {xn} is convergent to x∗, which is a solution of
NCP(F, K ). Moreover, x∗ is a lower L-bound of Ω and the L-least element of Γ .

The following theoremprovides sufficient conditions for the solvability of themixed
complementarity problem MiCP(G, H , C, p, q).
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Theorem 4.1 Let L be the monotone extended second-order cone corresponding to
p and q. For an arbitrary cone K = R

p × C, where C be a closed convex cone,
denote its dual cone by K ∗. Let F = (G; H) : R

p × R
q �→ R

p × R
q , such that

I − F is L-isotone, where I denotes the identical mapping, G : R
p × R

q �→ R
p and

H : R
p ×R

q �→ R
q are two continuous mappings. Consider a sequence {(xn, un}n∈N

defined by (25), where x0 = 0 ∈ R
p and u0 = 0 ∈ R

q . Let x, y ∈ R
p and u, v ∈ R

q .
Suppose that the system of inequalities

yi − xi ≥ yi+1 − xi+1 ≥ ‖v − u‖; 1 ≤ i ≤ p − 1 (26)

implies the system of inequalities

yi − xi − (G(y, v)i − G(x, u)i ) ≥ yi+1 − xi+1 − (G(y, v)i+1 − G(x, u)i+1)

≥ ‖v − u − (H(y, v) − H(x, u))‖;
(27)

1 ≤ i ≤ p − 1, and that x1i ≥ x1i+1 ≥ ‖u1‖; 1 ≤ i ≤ p − 1 (in particular, this holds
when −G(0, 0)i ≥ −G(0, 0)i+1 ≥ ‖H(0, 0)‖; 1 ≤ i ≤ p − 1). Let

Ω := {(x, u) ∈ R
p × C : x1 ≥ · · · ≥ x p ≥ ‖u‖, G(x, u)1 ≥ · · · ≥ G(x, u)p ≥ ‖H(x, u)‖}

and

Γ := {(x, u) ∈ R
p × C : x1 ≥ · · · ≥ x p ≥ ‖u‖, G(x, u)1 ≥ · · · ≥ G(x, u)p

≥ ‖u − PC (u − H(x, u))‖}.

Then, ∅ �= Ω ⊆ Γ , the sequence {(xn, un)} is convergent, and its limit (x∗, u∗) is
a solution of MiCP(G, H , C, p, q). Moreover, (x∗, y∗) is a lower L-bound of Ω and
the L-least element of Γ .

Proof Following the definition of the monotone extended second-order cone, we have

Ω = K ∩ L ∩ F−1(L) = {z ∈ K ∩ L : F(z) ∈ L}

and

Γ = {z ∈ K ∩ L : PK (z − F(z)) ≤L z},

where z = (x, u). Theorem 3.4 implies that PK is L-isotone. Since (26) �⇒ (27),
I − F is L-isotone. Meanwhile, x11 ≥ x12 ≥ · · · ≥ x1p ≥ ‖u1‖ implies that
(x0, y0) = (0, 0) ≤L (x1, y1). Then, by using Proposition 4.1, we have that
∅ �= Ω ⊂ Γ , the sequence {(xn, un)} is convergent, and its limit (x∗, u∗) is a solution
of MiCP(G, H , C, p, q). Moreover, (x∗, y∗) is a lower L-bound ofΩ and the L-least
element of Γ . ��
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5 Numerical Example

Let L be the monotone extended second-order cone, then suppose that K = R
2 × C

where C = {(u1, u2) ∈ R
2 : u1 ≥ u2 ≥ 0}. Let f1(x, u) = 1

10 x1 − 1
20 x2 + 1

20‖u‖+ 1
and f2(x, u) = 1

5 x1 − 3
20 x2 + 1

20‖u‖ − 3
5 . Obviously, f1(x, u) and f2(x, u) are L-

monotone. Define ω1 := (2, 1, 1
3 ,

1
6 ) and ω2 := (2, 1, 1

6 ,
1
3 ); it is easy to find out

that ω1, ω2 ∈ L . Then, for two arbitrary vectors (x, u), (y, v) ∈ R
2 × R

2 such that
(x, u) ≤L (y, v), by using the definition of the MESOC, we have that y1 − x1 ≥
y2 − x2 ≥ ‖v − u‖ ≥ ‖u‖ − ‖v‖. Hence,

f1(y, v) − f1(x, u) = 1

10
(y1 − x1) − 1

20
(y2 − x2) − 1

20
(‖u‖ − ‖v‖) ≥ 0,

f2(y, v) − f2(x, u) = 1

5
(y1 − x1) − 3

20
(x2 − y2) − 1

20
(‖u‖ − ‖v‖) ≥ 0.

Since ω1, ω2, (y, v) − (x, u) ∈ L , by using the convexity of L , if we have (x, u) ≤L

(y, v), then

( f1(y, v) − f1(x, u))ω1 + ( f2(y, v) − f2(x, u))ω2 ∈ L,

which is equivalent to the following inequality:

f1(x, u)ω1 + f2(x, u)ω2 ≤L f1(y, v)ω1 + f2(y, v)ω2.

Thus, the mapping f1ω1 + f2ω2 is L-isotone. Now, we define functions G and H as
follows:

G(x, u) :=
(
2

5
x1 + 2

5
x2 − 1

5
‖u‖ − 4

5
, − 3

10
x1 + 6

5
x2 − 1

10
‖u‖ − 2

5

)
,

H(x, u) :=
(

u1 − 1

15
x1 + 1

24
x2 − 1

40
‖u‖ − 7

30
, u2 − 1

12
x1 + 7

120
x2 − 1

40
‖u‖ + 1

30

)
.

Hence, we get

(x − G, u − H) = f1ω
1 + f2ω

2 =
(
2 f1 + 2 f2, f1 + f2,

1

3
f1 + 1

6
f2,

1

6
f1 + 1

3
f2

)

is L-isotone. Then, we check that all the conditions in Theorem 4.1 are satisfied. Let
us start at the initial condition. We have,

−G(0, 0, 0, 0) =
(
4

5
,
2

5

)
and ‖H(0, 0, 0, 0)‖ =

√(
− 7

30

)2

+
(

1

30

)2

=
√
2

6
.
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Evidently, −G(0, 0, 0, 0)1 ≥ −G(0, 0, 0, 0)2 ≥ ‖H(0, 0, 0, 0)‖. Now, consider a
vector (x̂, û) := (30, 12, 4, 3) ∈ K , which yields

G(x̂, û) =
(
15,

9

2

)
and H(x̂, û) =

(
257

120
,
133

120

)
.

Moreover, we have that G(x̂, û)1 ≥ G(x̂, û)2 ≥ ‖H(x̂, û)‖, which implies that
(x̂, û) ∈ Ω . Hence, Ω �= ∅. Next, we solve the mixed complementarity prob-
lem MiCP(G, H , C, p, q). For an arbitrary element (x, y), if it is a solution of
MiCP(G, H , C, p, q), then

x − G(x, u) = (2 f1 + 2 f2, f1 + f2) where fi = fi (x, u), i = 1, 2,

and G(x, u) = 0. Thus, we have x1 = 2 f1 + 2 f2 and x2 = f1 + f2. Moreover,

x1 = 1

3
‖u‖ + 4

3
and x2 = 1

6
‖u‖ + 2

3
. (28)

Meanwhile, we have u ⊥ H(x, u), which implies

〈u, H(x, u)〉 = u1

(
u1 − 1

3
f1 − 1

6
f2

)
+ u2

(
u2 − 1

6
f1 − 1

3
f2

)
= 0.

Then,

‖u‖2 = u2
1 + u2

2 =
(
1

3
u1 + 1

6
u2

)
f1 +

(
1

6
u1 + 1

3
u2

)
f2. (29)

We will figure out all the nonzero solutions on the boundary of C . For the first case,
without loss of generality, suppose that u1 = u2 > 0, so we have ‖u‖ = √

2u1 =√
2u2 and, by using (29),

u1 = u2 = 1

4
( f1 + f2).

By using the definitions of f1 and f2 as well as (28), we get

u1 = u2 = 48 + 2
√
2

287
.

Thus, the solution of MiCP(G, H , C, p, q) is

(x, u) =
(
384 + 16

√
2

287
,
192 + 8

√
2

287
,
48 + 2

√
2

287
,
48 + 2

√
2

287

)
.
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For the second case, we consider u2 = 0, which implies that ‖u‖ = u1. Hence,
equation (29) is equivalent to

u2
1 −

(
1

3
f1 + 1

6
f2

)
u1 = 0.

Since u1 �= 0, we have

u1 = 1

3
f1 + 1

6
f2.

By using the definitions of f1 and f2, and (28) again, we have u1 = 212
691 , which implies

that u = ( 212
691 , 0

)
. Thus,

(x, u) =
(
992

691
,
496

691
,
212

691
, 0

)
.

Consider (0, 0, 0, 0) as a starting point in the fixed point iteration process (25). We
have

xn+1 = xn − G(xn, un)

= (2 f1(xn, un) + 2 f2(xn, un), f1(xn, un) + f2(xn, un)),

un+1 = PC (un − H(xn, un))

= PC

(
1

3
f1(xn, un) + 1

6
f2(xn, un),

1

6
f1(xn, un) + 1

3
f2(xn, un)

)
.

(30)

From the above equations, we get xn+1
1 ≥ xn+1

2 . Moreover, since as the starting point
we set (0, 0, 0, 0), then for any arbitrary i ∈ N, we have that xi

1 ≥ xi
2 ≥ 0. Define the

set S as follows:

S :=
{
(x, u) ∈ R

2 × R
2 : 0 ≤ x1 <

992

691
, 0 ≤ x2 <

496

691
, 0 ≤ u1 <

212

691
, u2 = 0

}
.

We want to show that for any n ∈ N we have (xn, un) ∈ S. We will prove it by
induction. First, we have (x0, u0) ∈ S. Suppose next 0 ≤ xn

1 < 992
691 , 0 ≤ xn

2 < 496
691 ,

0 ≤ un
1 < 212

691 and u2 = 0, which is equivalent to ‖un‖ = un
1. Since xn

1 ≥ xn
2 , we

have

0 < xn+1
1 = 2 f1(xn, un) + 2 f2(xn, un)

= 3

5
xn
1 − 2

5
xn
2 + 1

5
un
1 + 4

5

<
3

5
· 992
691

− 2

5
· 496
691

+ 1

5
· 212
691

+ 4

5
= 992

691
.
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Similarly,

0 < xn+1
2 = f1(xn, un) + f2(xn, un)

= 3

10
xn
1 − 1

5
xn
2 + 1

10
un
1 + 2

5

<
3

10
· 992
691

− 1

5
· 496
691

+ 1

10
· 212
691

+ 2

5
= 496

691
.

Meanwhile, we also have

un − H(xn, un) =
(
1

3
f1(xn, un) + 1

6
f2(xn, un),

1

6
f1(xn, un) + 1

3
f2(xn, un)

)
.

Obviously, (un − H(xn, un))1 > 0, then

(un − H(xn, un))1 <
1

3

(
1

10
· 992
691

− 1

20
· 496
691

+ 1

20
· 212
691

+ 1

)

+1

6

(
1

5
· 992
691

− 3

20
· 496
691

+ 1

20
· 212
691

− 3

5

)
= 212

691

and 0 < (un − H(xn, un))2. It is easy to check that the projection of it ontoC such that
0 ≤ un+1

1 < 691
212 and un+1

2 = 0, must be given on the ray {(u1, u2) : u1 ≥ 0, u2 = 0}.
It is equivalent to

un+1 = (un+1
1 , un+1

2 ) = PC
(
un − H(xn, un)

) =
(
1

3
f1(xn, un) + 1

6
f2(xn, un), 0

)
.

Thus, the system of equations (30) is equivalent to

xn+1
1 = 3

5
xn
1 − 2

5
xn
2 + 1

5
un
1 + 4

5
,

xn+1
2 = 3

10
xn
1 − 1

5
xn
2 + 1

10
un
1 + 2

5
,

un+1
1 = 1

15
xn
1 − 1

24
xn
2 + 1

40
un
1 + 7

30
. (31)

Moreover, we have xn
1 = 2xn

2 , so (31) is equivalent to

xn+1
1 = 2xn+1

2 ,

xn+1
2 = 2

5
xn
2 + 1

10
un
1 + 2

5
,

un+1
1 = 11

120
xn
2 + 1

40
un
1 + 7

30
. (32)
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The last two lines in (32) can be aggregated as follows
⎡
⎣

xn+1
2

un+1
1

⎤
⎦ =

⎡
⎣

2
5

1
10

11
120

1
40

⎤
⎦
⎡
⎣

xn
2

un
1

⎤
⎦ +

⎡
⎣

2
5

7
30

⎤
⎦ .

One easily verifies that the above 2 × 2 matrix has both (real) eigenvalues whose
absolute values are less than 1, so it is a convergent matrix. Hence, the above process
is convergent to the unique fixed point

[
x∗
2 u∗

1

]′ of the above equation, regardless of a
starting point

[
x02 u0

1

]′ ∈ R
2. Explicitly,

⎡
⎣

x∗
2

u∗
1

⎤
⎦ =

⎡
⎣

3
5 − 1

10

− 11
120

39
40

⎤
⎦

−1

·
⎡
⎣

2
5

7
30

⎤
⎦ =

⎡
⎣

496
691

212
691

⎤
⎦ .

Bearing in mind that xn+1
1 = 2xn+1

2 and un
2 = 0, we have the convergence:

(xn, un) = (xn
1 , xn

2 , un
1, un

2) → (x∗
1 , x∗

2 , u∗
1, 0) =

(
992

691
,
496

691
,
212

691
, 0

)
,

which is the same as one solution we have obtained on the boundary.

Remark 5.1 We remark that f1ω1 + f2ω2 is not ESOC-isotone. Indeed, if we assume
that f1ω1 + f2ω2 is L-isotone, then for any (x, u) ≤L (y, v) and ω1, ω2 ∈ L , we
have

f1(x, u)ω1 + f2(x, u)ω2 ≤L f1(y, v)ω1 + f2(y, v)ω2 (33)

and it is equivalent to

( f1(y, v) − f1(x, u))ω1 + ( f2(y, v) − f2(x, u))ω2 ∈ L.

For arbitrary (x∗, u∗), (y∗, v∗) ∈ R
p × R

q , such that y∗
1 − x∗

1 = ‖u∗ − v∗‖ =
‖u∗‖ − ‖v∗‖ > 0, y∗

2 − x∗
2 = 2‖u∗ − v∗‖ = 2(‖u∗‖ − ‖v∗‖) > 0, it is obvious

that (x∗, u∗) ≤ESOC (y∗, v∗). Since f1(x, u) = 1
10 x1 − 1

20 x2 + 1
20‖u‖ + 1 and

f2(x, u) = 1
5 x1 − 3

20 x2 + 1
20‖u‖ − 3

5 ,

f1(y∗, v∗) − f1(x∗, u∗) = 1

10
(y∗

1 − x∗
1 ) − 1

20
(y∗

2 − x∗
2 ) − 1

20
(‖u∗‖ − ‖v∗‖)

= 1

10
(‖u∗‖ − ‖v∗‖) − 2

20
(‖u∗‖ − ‖v∗‖) − 1

20
(‖u∗‖ − ‖v∗‖)

= − 1

20
(‖u∗‖ − ‖v∗‖) < 0,

f2(y∗, v∗) − f2(x∗, u∗) = 1

5
(y∗

1 − x∗
1 ) − 3

20
(x∗

2 − y∗
2 ) − 1

20
(‖u∗‖ − ‖v∗‖) ≥ 0

= 1

5
(‖u∗‖ − ‖v∗‖) − 6

20
(‖u∗‖ − ‖v∗‖) − 1

20
(‖u∗‖ − ‖v∗‖)

= − 3

20
(‖u∗‖ − ‖v∗‖) < 0,
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contradicting (33), so f1ω1+ f2ω2 is not ESOC-isotone. Let us recall that both f1 and
f2 are MESOC-monotone (which has been proved in the numerical example) and not
ESOC-monotone, which implies that f1(y, v)− f1(x, u) and f2(y, v)− f2(x, u) will
not be nonnegative for all (x, u) ≤ESOC (y, v). Since both f1(y∗, v∗) − f1(x∗, u∗)
and f2(y∗, v∗) − f2(x∗, u∗) are negative, then by using convexity of ESOC, since
ω1, ω2 ∈ MESOC ⊆ ESOC, we have

−( f1(y∗, v∗) − f1(x∗, u∗))ω1 − ( f2(y∗, v∗) − f2(x∗, u∗))ω2 ∈ ESOC.

Meanwhile, if f1ω1 + f2ω2 were ESOC-isotone, then

( f1(y∗, v∗) − f1(x∗, u∗))w1 + ( f2(y∗, v∗) − f2(x∗, u∗))w2 ∈ ESOC.

Since ω1, ω2 are linearly independent, it contradicts pointedness of ESOC. Thus,
f1ω1 + f2ω2 is not ESOC-isotone.

Concluding Remarks

In this paper, we study the monotone extended second-order cone (MESOC) as a
new generalization of the Lorentz cone Ln+. This cone is different both from Ln+ and
the previously introduced extended second-order cone (ESOC) [10–14,18] in many
aspects, but bears similarities too. Both MESOC and ESOC are cones in R

p × R
q .

MESOC is sub-dual as is ESOC, but for p > 1 it is not self-dual like Ln+. Both ESOC
and MESOC become Lq+1

+ when p = 1. Contrary to Ln+, for q = 1 both ESOC and
MESOC are polyhedral. MESOC and ESOC are symmetric cones for p = 1 only,
that is, if and only if they are Lorentz cones. Contrary to Ln+ and ESOC, MESOC is
reducible. For both ESOC and MESOC the cylinders R

p × C , where C is an arbitrary
closed convex set with nonempty interior in R

q , are isotone projection sets. In fact,
these cylinders are isotone projection sets with respect to any intersection of ESOC
withU ×R

q , whereU is an arbitrary closed convex cone in R
p (the proof is similar to

the first part of the proof of Theorem 3.4). Contrary to ESOC, any isotone projection
set with respect to MESOC is such a cylinder.

We determined the bilinearity rank of MESOC and used the MESOC-isotonicity
of the projection onto the cylinder to solve general mixed complementarity problems.
We illustrated the corresponding iterative method by using a numerical example with
exact numbers. Although the iteration principle for the MESOC is similar to the cor-
responding one for ESOC, we remark that there are mixed complementarity problems
which can be solved iteratively by MESOC, but the same iterative scheme cannot be
used via ESOC, because it does not satisfy the corresponding ESOC-isotonicity con-
dition (merely the MESOC-isotonicity). This is due to the fact that although MESOC
is a subset of ESOC, MESOC-isotonicity of mappings does not imply their ESOC-
isotonicity. This idea is underlined in the preceding section.
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