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Abstract
It is unknown whether smooth cubic threefolds have an (integral Chow-theoretic)
decomposition of the diagonal, or whether they are stably rational or not in general.
As a first step towards making progress on these questions, we compute the (saturated
numerical) prelog Chow group of the self-product of a certain degeneration of cubic
threefolds.

Keywords Prelog Chow rings · Prelog Chow groups · Cubic threefolds · Stable
rationality · Semistable degenerations

Mathematics Subject Classification 14E08 · 14D06 · 14C15 · 14C17 · 14Q15

1 Introduction

A large area within the study of the birational geometry of rationally connected vari-
eties is concernedwith varieties that are close to projective space. This can for example
be made precise as follows.
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Definition 1.1 Let V be a variety over C. V is said to be

• rational if it is birational to a projective space P
n ,

• stably rational if V×P
m is rational for some m � 0,

• unirational if there is a dominant rational morphism P
n V for some n � 0.

Note that (rational)⇒ (stably rational)⇒ (unirational). The only known method
to separate rational varieties from strictly stably rational ones is the one given in [1].
There is however a powerful method principally developed by Voisin [19] and Colliot-
Thélène/Pirutka [6] that can be employed to show that a rationally connected variety V
is not stably rational (i.e. is stably irrational). This makes use of the following notion.

Definition 1.2 Let V be a smooth n-dimensional rationally connected projective vari-
ety over C. We say that V admits a Chow-theoretic decomposition of the diagonal if
one can write

[�V ] = [V×pt] + [Z ] in the Chow group CHn(V ×V ), (1)

where �V is the diagonal, pt is a point of V and Z is a cycle supported on D×V for
some divisor D in V . Less restrictively, V is said to admit a cohomological decompo-
sition of the diagonal if (1) holds in cohomology with Z-coefficients.

It follows right away that projective n-space P
n (or more generally any rational

homogeneous variety) has a (Chow-theoretic) decomposition of the diagonal since the
diagonal is rationally equivalent to a sum of products of Schubert varieties with their
dual Schubert varieties; moreover, the existence of a decomposition of the diagonal is
a stable birational invariant of smooth projective varieties. Note that while powerful,
this is also a rather subtle invariant. Indeed, if V is a unirational varietywith unirational
parametrisation P

n V of degree N , then there is a decomposition

N [�V ] = N [V×pt] + [Z ] in CHn(V ×V ),

with Z supported on D×V for D a divisor in V . In fact, if one allows the passage to
rational coefficients, any rationally connected variety admits such a rational decom-
position of the diagonal.

Voisin’s method to prove stable irrationality of V now proceeds by showing that
a resolution of singularities of a suitable degeneration of V with some mild class
of singularities does not admit a decomposition of the diagonal (the original version
required the degeneration to be integral and nodal, but this has subsequently been
relaxed in several ways). In fact, the circumstance that in Voisin’s method one has to
restrict the singularities of the degeneration in some way is the primary obstacle to
broadening its range of applications.

Voisin’s original method has been generalised in various ways subsequently, in
each case mainly with the goal in mind to allow wider (more singular) classes of
degenerations; here we just mention the articles [6,12–15,17] and references therein.
However, these methods are so far not capable of shedding any light on the following
problem.
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Problem 1.3 Is a very general cubic hypersurface V of dimension n � 3 stably irra-
tional? Is a very general such cubic of dimension n � 4 non-rational? Are there any
smooth cubic hypersurfaces of odd dimension � 5 that are rational?

The answers to all of these questions are completely unknown; the most common
viewpoint is probably that the answers to the first two questions should be yes, and
the answer to the last question no. It is known that all smooth cubic hypersurfaces of
dimensions � 2 are unirational and that in even dimensions there are some rational
examples (e.g. those containing two disjoint linear subspaces of half their dimension,
whence one can use the third intersection point map to get a rational parametrisation).
Moreover, Clemens–Griffiths in [5] prove that any smooth cubic threefold is non-
rational. Denote by J (V ) the intermediate Jacobian of V and let θ ∈ H2(J (V ), Z)

be the class of the theta divisor of J (V ). (J (V ), θ) is a principally polarised abelian
variety. Then, more precisely, Clemens–Griffiths show that (J (V ), θ) is not a product
of Jacobians of curves fromwhich irrationality of V follows in a relatively straightfor-
ward way using weak factorisation of birational maps into blowups in smooth centres
and the inverses of such maps.

To make progress on the problem whether (all, or very general) smooth cubic
threefolds V are stably irrational, Voisin in [18,20] investigated the existence of a
decomposition of the diagonal on them. In particular, she showed that some of them
do admit a decomposition of the diagonal. Also, in [20, Theorem 1.1] Voisin proves
that V admits a Chow-theoretic decomposition of the diagonal if and only if it admits
a cohomological decomposition of the diagonal. However, the cubic threefolds that
are known to admit a decomposition of the diagonal form a proper closed subset of
the moduli space (by which we mean the quotient of the parameter space of smooth
cubic threefolds by the action of projectivities). More precisely:

Theorem 1.4 ([Voisin, [20, Theorems 1.7 and 4.5])A smooth cubic threefold V admits
a decomposition of the diagonal if and only if the class θ4/4! on J (V ) is algebraic.
On the moduli space of smooth cubic threefolds, this algebraicity is satisfied (at least)
on a countable union of proper closed subvarieties of codimension � 3.

Notice that this result leaves open the possibility that a very general cubic threefold
V does not admit a decomposition of the diagonal since these are proper subvarieties.

In [4] we started to develop a conceptual framework for an extension of Voisin’s
method that seeks to allowmore singular, even reducible degenerations. The basic idea
is that if π : V → B is a degeneration over a base B with distinguished point 0 ∈ B,
whichwe assume to be strictly semistable, then the existence of a decomposition of the
diagonal on a very general fibre of V will imply the existence of a log decomposition
of the diagonal on the central fibre V0 of the family. The existence of such a log
decomposition is amore stringent condition than the existence of amere decomposition
of the diagonal, hence it gives a more potent obstruction. The underlying intuition is
that the notion of a log decomposition of the diagonal forV0 should include that certain
obstructions for the decomposition to deform in the family are already absent—thus
a log decomposition of the diagonal should be something that “carries within itself
the potentiality to deform in the family to a decomposition on smooth fibres outside
0". To make this idea precise takes some work and requires to assemble quite a bit of
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vocabulary—we refer the reader to [4] and the recollection in Sect. 2 for that. Also we
feel that eventually the right theoretical setting should be the language of log structures
in the sense of Fontaine–Illusie, Deligne–Faltings, K. Kato et al., but we have not yet
succeeded in casting our ideas in this framework: this is the reason why we prefer to
talk about prelog Chow rings, prelog Chow groups etc., the added “pre" suggesting
that this theory could be a first approximation to a better more powerful point of view.

In any event, the upshot is that a prelog decomposition of the diagonal gives, in
particular, a relation between cycle classes in a group which we called the saturated
prelog Chow group associated to a degeneration in [4]; there is a numerical version
of this, which contains a homomorphic image of this saturated prelog Chow group,
and which is better suited for concrete computations. There is also a prelog Chow ring
(and a numerical version of it) associated to a given degeneration. What is necessary
for the purposes of the present paper is recalled in Sect. 2.

In this article, we now consider a degeneration of a very general cubic threefold
into the union of a hyperplane and a quadric in P

4. The resulting family is not strictly
semistable but can be made so after blowing up some non-Cartier divisors in the total
space (that are components of the central fibre) and after potentially shrinking the
base of the family. Taking the self-product of this family and birationally modifying
it to make it again strictly semistable, we end up with a family Y → B to which our
theory applies, the very general fibre of which is the self-product of a very general
smooth cubic threefold, and whose central fibre is simple normal crossing with four
components described more precisely in Sect. 6; in particular, all of those components
are rational, and their numerical Chow groups are straightforward if somewhat tedious
to compute. This allows us to eventually compute the saturated numerical prelog Chow
group Num3

prelog,sat(Y ) in the relevant degree 3 of the central fibre of this family. Our
main result is then

Theorem 6.19Num3
prelog,sat(Y ) � Z

6 and is generated by the classes in Theorem 6.15
and a half of their sum.

This is clearly just a very first step towards deciding the existence or non-existence
of prelog decompositions of the diagonal on the central fibre of the degeneration
under consideration. We like to see the main accomplishment of this article in the fact
that one can actually do computations in a highly nontrivial case with the theoretical
framework and notions introduced in [4], and secondly, that the numerical prelog
Chow ring and saturated numerical prelog Chow group of the central fibre, however
naive their definition may seem, do carry a great deal of information about and are a
rather accurate reflection of the Chow group of the very general fibre of the family,
compare Remark 6.17, Theorems 6.15, 6.19 and Proposition 6.18.

We write down explicit generators for both Num3
prelog(Y )/(torsion) as well as

Num3
prelog,sat(Y ) in Theorems 6.15 and 6.19. Checking these are indeed generators

relies on computations [3] that we perform using the algebraic geometry software
systemMacaulay2 (M2). Additional calculations using M2 involve finding an explicit
description for a certain numerical Chow ring in Proposition 6.6, solving linear equa-
tions in Lemma 6.13 and computing the rank of a certain matrix in Theorem 6.14. We
describe how these computations work in the course of the proofs of the correspond-
ing results. Our code [3] contains extensive comments describing the computations.
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Instructions on how to install and use M2 are found on www.macaulay2.com. There
is a web interface www.unimelb-macaulay2.cloud.edu.au where it can be tried out. In
addition to https://faculty.math.illinois.edu/Macaulay2/GettingStarted, an extensive
introduction to M2 is provided in the textbook [8, Part 1].

2 Recollection of prelog Chow rings and saturated prelog Chow
groups

We work over the complex numbers C throughout. In this section we give a summary
of those concepts developed in [4] that are used in this paper.

Let X be a simple normal crossing variety with irreducible components Xi , i ∈ I ,
and normalisation ν : Xν → X . For a subset A ⊂ I we put

XA
..=

⋂

i∈A

Xi .

To simplify notation, we write

Xi1i2...ik
..= X{i1,i2,...,ik }.

In particular, the Xi j = Xi ∩ X j are smooth since X is simple normal crossing. We
define the following ring:

R(X) ..= Rnum(X)

..=
{
(αi ) ∈

⊕

i

Num∗(Xi )

∣∣∣∀ i, j : αi |Xi j = α j |Xi j in Num∗(Xi j )
}
.

Here we simply write a restriction symbol to denote pull-backs to Xi j . We call the
condition αi |Xi j = α j |Xi j the prelog condition, and the above ring the ring of compat-
ible classes. We will use the simpler notation R(X) instead of Rnum(X) below since
numerical equivalence is all we will consider here.

The following condition holds for an snc variety X that is smoothable with smooth
total space.

Definition 2.1 Let X be an snc variety with at worst triple intersections. We say that
X satisfies the Friedman condition if for every intersection Xi j we have

NXi j /Xi ⊗NXi j /X j ⊗O(T ) = OXi j .

Here T is the union of all triple intersections Xi jk that are contained in Xi j .

We will use this later on as a sanity for some of our computations.
We denote by ιA>B : XA → XB for B ⊂ A ⊂ I the inclusion map. When enu-

merating the elements of the sets A, B below we omit separating commas to simplify
notation when there is no risk of confusion. Thus for example we write ι{i j},{ j} when
A = {i, j}, B = { j}.
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Definition 2.2 Let X be an snc variety that has at worst triple intersections and satisfies
the Friedman condition. Then we define Num*

prelog(X) via the following diagram:

0 0

R(X) Num*
prelog(X) 0

⊕
Num∗(Xi j )

ρ′

δ ⊕
Num∗(Xi )

ρ

coker(δ) 0

⊕
Num∗(Xi jk)

δ′ ⊕
Num∗(Xi j )

Here the maps ρ, ρ′, δ, δ′ are defined as follows, using the convention a < b < c,
i < j < k:

(
δ(zi j )

)
a =

⎧
⎪⎨

⎪⎩

ι{i j}>{i}∗(zi j ) if a = i,

− ι{i j}>{ j}∗(zi j ) if a = j,

0 otherwise,

(
ρ(zi )

)
ab =

⎧
⎪⎨

⎪⎩

ι∗{ab}>{i}(zi ) if i = a,

− ι∗{ab}>{i}(zi ) if i = b,

0 otherwise,

(
ρ′(zi j )

)
abc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ι∗{abc}>{i j}(zi j ) if (i, j) = (a, b),

− ι∗{abc}>{i j}(zi j ) if (i, j) = (a, c),

ι∗{abc}>{i j}(zi j ) if (i, j) = (b, c),

0 otherwise,

(
δ′(zi jk)

)
ab =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ι{i jk}>{ab}∗(zi jk) if (a, b) = (i, j),

ι{i jk}>{ab}∗(zi jk) if (a, b) = (i, k),

− ι{i jk}>{ab}∗(zi jk) if (a, b) = ( j, k),

0 otherwise.

Notice that being in the kernel of ρ amounts to the prelog condition. The fact that the
lower left-hand square commutes is proven in [4, Proposition 2.9]. This is the only
place where the Friedman condition is used, and that part of the diagram is used only
as a sanity check later.

We define the saturated numerical prelog Chow group Numprelog,sat
∗(X) as the

saturation of Num*
prelog(X) in the lattice coker(δ)/(torsion).

Note that
⊕

Num∗(Xi ) is naturally an R(X)-module (R(X) is a subring), and also⊕
Num∗(Xi j ) is an R(X)-module: if α = (αi ) ∈ R(X), and zi j ∈ Num∗(Xi j ) we
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define α · zi j ..= ι∗{i, j}>{i}(αi ).zi j = ι∗{i, j}>{ j}(α j ).zi j (the latter equality holds because
of the prelog condition and shows that it does not matter of we restrict αi or α j to form
the product). Thus every Num∗(Xi j ) is an R(X)-module, and thus so is the direct sum.

Proposition 2.3 The map δ in the above diagram is an R(X)-module homomorphism,
hence Num*

prelog(X) is naturally a quotient ring of R(X).

Proof It suffices to show that the map

δ|Num∗(Xi j ) : Num∗(Xi j ) →
⊕

Num∗(Xi )

is an R(X)-module homomorphism. Then for a class z = (zi ) ∈ ⊕
Num∗(Xi ) and

y ∈ Num∗(Xi j ) we have

zi .
(
ι{i, j}>{i},∗(y)

) = ι{i, j}>{i},∗
(
ι∗{i, j}>{i}(zi ).y

)

and similarly

z j .
(
ι{i, j}>{ j},∗(y)

) = ι{i, j}>{ j},∗
(
ι∗{i, j}>{ j}(z j ).y

)
.

From the way the R(X)-module structures on Num∗(Xi j ) and Num∗(Xi ) are defined,
these relations mean precisely that Num∗(Xi j ) → ⊕

Num∗(Xi ) is an R(X)-module
homomorphism. Note also that if z = (zi ) ∈ R(X), then

ι∗{i, j}>{i}(zi ).y = ι∗{i, j}>{ j}(z j ).y = z · y.

Thus we obtain in conclusion that

δ :
⊕

Num(Xi j ) →
⊕

Num(Xi )

is an R(X)-module homomorphism, as desired. �
Given a strictly semistable degeneration π : X → C (strictly semistable = total

space smooth + central fibre reduced simple normal crossing) over some curve with
marked point t0 and X � Xt0 , the specialisation homomorphism induces a natural
homomorphism

σX : CH∗(XK ) → Num*
prelog(X)

(where XK is the generic fibre). This follows from [4, Proposition 2.11].
If we consider a cover C ′ → C of smooth curves branched at t0, the specialisation

homomorphism σX′ of the pull-back family X′ = X×C C ′ → C ′ (where we fix a dis-
tinguished point t ′0 inC ′ mapping to t0) gives a homomorphism into Numprelog,sat

∗(X)

by [4, Propositions 4.2 and 4.4].
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3 Recollection of some formulas for Chow groups

We now recall a few formulas for Chow rings of projective bundles and blowups
needed in the sequel. For X a smooth projective variety and E a vector bundle of rank
r + 1 on X , we will denote by π : P(E) → X the projective bundle of lines in the
fibres of E.

Proposition 3.1 ([9, Theorem 9.6])With the previous notation let ζ be the first Chern
class of the line bundle OP(E)(1) in CH1(P(E)). Then as rings

CH∗(P(E)) � CH∗(X)[ζ ]/(ζ r+1+ c1(E)ζ r + · · · + cr+1(E))

where ci (E) are the Chern classes of E and CH∗(X) is considered as a subring of
CH∗(P(E)) via the injective map π∗ : CH∗(X) → CH∗(P(E)).

Proposition 3.2 ([9, Proposition 13.12, Theorem 13.14] and [10, Proposition 6.7]) Let
X be a smooth projective variety, Z ⊂ X a smooth subvariety. Let π : BlZ X → X
be the blowup, N = NZ/X the normal bundle of Z in X, E = P(NZ/X ) ⊂ BlZ X the
exceptional divisor, and i, j the natural inclusions as in the following diagram:

E
j

πE

BlZ X

π

Z
i

X .

Let ζ be the first Chern class of the line bundle OP(NZ/X )(1) in CH1(E). Then
CH∗(BlZ X) is generated by π∗ CH∗(X) and j∗ CH∗(E) as an abelian group. More
precisely, there is an exact sequence of abelian groups

0 CH∗(Z)
ϕ

CH∗(E)⊕CH∗(X)
ψ

CH∗(BlZ X) 0

where

ϕ(z) = (
cm−1(Q)π∗

E (z), − i∗(z)
)
,

ψ(γ, α) = j∗(γ ) + π∗(α)

and m is the codimension of Z in X, Q is the universal quotient bundle on E �
P(NZ/X ). Moreover,

cm−1(Q) = ζm−1+ c1(N)ζm−2 + · · · + cm−1(N).

There are the following rules for multiplication:

π∗(α) ·π∗(β) = π∗(αβ) for α, β ∈ CH∗(X),

π∗(α) · j∗(γ ) = j∗(π∗
Ei

∗α ·γ ) for α ∈ CH∗(X), γ ∈ CH∗(E),
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j∗γ · j∗δ = − j∗(γ ·δ · ζ ) for γ, δ ∈ CH∗(E).

Sometimes one can find a more economical set of generators for the Chow ring of
a blowup:

Proposition 3.3 In the situation of Proposition 3.2 the ring CH∗(BlZ X) is generated
by π∗ CH∗(X) and j∗π∗

E CH∗(Z) as a ring.
The same statement holds with CH replaced by Num everywhere.

Proof j∗ CH∗(E) is generated as abelian group by elements of the form j∗(ζ cπ∗
E z).

If c � 1 we have, by the last line of Proposition 3.2, the following relation:

( j∗E)c · j∗(π∗
E z) = (−1)c j∗(ζ cπ∗

E z).

We can therefore express all generators with c � 1 by such with c = 0.
The assertion for Num follows from the one for CH by passing to numerical equiv-

alence. �
Proposition 3.4 In the situation of Proposition 3.2 consider CH∗(Z) as a CH∗(X)-
module via the ring homomorphism i∗ : CH∗(X) → CH∗(Z). Let

Z ⊂ CH∗(Z)

be a set of CH∗(X)-module generators of CH∗(Z). Then CH∗(BlZ X) is generated as
a ring by π∗ CH∗(X) and elements j∗π∗

E z, z ∈ Z.
The same statement holds with CH replaced by Num everywhere.

Proof By Proposition 3.3, we only need to show that elements of the form j∗π∗
E (y)

with y in CH∗(Z) are in the subring generated by π∗ CH∗(X) and elements j∗π∗
E z,

z ∈ Z.
Every such element y is a sum of elements of the form i∗(x) · z with z ∈ Z and

x ∈ CH∗(X) because Z is a set of CH∗(X)-module generators for CH∗(Z). But

j∗
(
π∗
E (i∗(x) · z)) = j∗

(
π∗
E (i∗(x)) ·π∗

E (z)
) = π∗(x) · j∗π∗

E (z).

The same proof goes through with CH replaced by Num everywhere. �
We also need a few facts about Chow groups and rings of products. The first result

says when a Künneth formula can be expected to hold.
In the following, by a linear variety we mean a variety in the class of varieties

constructed by an inductive procedure starting with an affine space of any dimension,
in such a way that the complement of a linear variety imbedded in affine space in
any way is a linear variety, and a variety stratified into a finite disjoint union of linear
varieties is a linear variety. This is what is called a linear scheme in [16].

Proposition 3.5 ([16, Proposition 1]) Let X be a linear variety.Then for any variety Y

CH∗(X ×Y ) � CH∗(X)⊗Z CH∗(Y ).
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The next concerns Chow groups, modulo numerical equivalence, for self-products
of very general curves of genus � 1. We will use this proposition in the proof of
Lemma 6.1 below.

Proposition 3.6 Let C be a very general smooth projective curve of genus g. Then
Num1(C×C) is generated by the class of the diagonal [�C ] and by [C×{p}] and
[{p}×C] where p ∈ C is a point.

Proof Recall [2, Section 11.5] that a correspondence between smooth algebraic curves
C1, C2 is a line bundle L on C1×C2, and two correspondences L, L ′ are said to be
equivalent if L ′ = L⊗pr∗1L1⊗pr∗2L2 for some line bundles L1, L2 on C1,C2 and
pri : C1×C2 → Ci the projections. Then [2, Theorem 11.5.1] shows that, denoting
by Corr(C1,C2) theZ-module of equivalence classes of correspondences betweenC1
and C2, there is a canonical isomorphism of abelian groups

Corr(C1,C2) → Hom(Jac(C1), Jac(C2)),

where Jac(Ci ) is the Jacobian of Ci , and it follows from the definition of this isomor-
phism in loc. cit. that for C = C1 = C2 it maps the line bundle O(�C ) to the identity
in End(Jac(C)).

Thus to conclude the proof of the proposition, it suffices to remark that for C a
very general curve of genus g, we have End(Jac(C)) � Z, where Z is generated by
the image of the identity: this is stated in [2, Section 11.12.13] and proved in [11].
Note that in [2] it says that the result holds for “a general curve" whereas in [11] the
author refers to a “generic point of the moduli space": both wordings are somewhat
imprecise from the viewpoint of modern terminology; what is actually true and proved
is that the result is valid outside a countable union of proper closed subvarieties of
the moduli space, or for a “very general curve". Already the case of elliptic curves
shows that the restriction to very general curves is necessary: there are infinitely many
non-isomorphic elliptic curves with complex multiplication (for example, the class
numbers associated with imaginary quadratic number fields are not bounded). �

4 Numerical Chow rings via dual socle generators

From now on we work with Chow rings modulo numerical equivalence, and denote
these by Num∗(X) for a smooth projective variety X . We would like to be able to write
these numerical Chow rings, which are Artin rings, in more compact and computa-
tionally convenient form. For this we briefly recall some facts about zero-dimensional
Gorenstein rings from [7, Section 21.2], partly to set up notation.

Let k be a field (later we will work with a subring, too, for us k = Q and the subring
will be Z), and let

R = k[x1, . . . , xr ], R∗ = k[x−1
1 , . . . , x−1

r ]

be the polynomial rings in variables xi and their inverses, respectively, both considered
as subrings of K = k(x1, . . . , xr ). We make R∗ into an R-module by decreeing
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that for monomials m ∈ R and n ∈ R∗, m ·n is to be the product mn ∈ K if this
lies in the subring R∗, and zero otherwise. Now [7, Theorem 21.6] says that the
ideals I ⊂ (x1, . . . , xr ) such that R/I is a local zero-dimensional Gorenstein ring are
precisely the ideals of the form I = AnnR( f ) for some nonzero element f ∈ R∗.
Here f is called the dual socle generator of R/I .

Notation 4.1 Let X be a smooth projective variety of dimension d and let Num∗(X)

and Num∗(X)Q
..= Num∗(X)⊗ZQ be its Chow ring of cycles modulo numerical

equivalence with Z and Q coefficients, respectively. Note that Num∗(X) is graded by
the codimension of the cycles involved. Let x1, . . . , xr be variables corresponding to
homogeneous generators α1, . . . , αr of Num∗(X) with weight wt(xi ) = codim αi .

We use multi-index notation and write:

a = (a1, . . . , ar ) ∈ N
r ,

|a| =
r∑

i=1

wt(xi )ai ,

αa = α
a1
1 · · · · ·αar

r ∈ Num∗(X),

x−a = x−a1
1 · · · · · x−ar

r ∈ Z[x−1
1 , . . . , x−1

r ].

Notice that the degree map

deg : Numd(X) → Z

sending the class of a point to 1 is an isomorphism.
There is a natural surjection of graded rings

ξ : Z[x1, . . . , xr ] → Num∗(X)

sending xi to αi , and similarly with Q-coefficients.

Lemma 4.2 With the previous notation, let

fX =
∑

|a|=d

deg(αa) · x−a ∈ Z[x−1
1 , . . . , x−1

r ].

Then

Num∗(X) = Z[x1, . . . , xr ]/Ann( fX ), Num∗(X)Q = Q[x1, . . . , xr ]/Ann( fX ).

In particular, Num∗(X)Q is a Gorenstein local ring with dual socle generator fX .

Proof First notice that if p ∈ Z[x1, . . . , xr ] is homogeneous of weight d, then p · fX =
deg(ξ(p)) by definition of the pairing and of fX .

We need to show that ker(ξ) = Ann( fX ).
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Let p ∈ ker(ξ). We can assume without loss of generality that p is homogeneous
of weight δ since ξ is graded. Then ξ(p) ∈ Numδ(X) is zero, hence for every q ∈
Z[x1, . . . , xr ] homogeneous of weight d − δ we have

pq fX = deg(ξ(p ·q)) = deg(ξ(p)ξ(q)) = 0.

In other words, every such q annihilates p fX . Since the pairing Rd−δ× R∗
−(d−δ) → Z

is perfect (or, becomes perfect over Q), we have p fX = 0. Hence p ∈ Ann( fX ).
Conversely, if p is in Ann( fX ) and homogeneous of weight δ, let η ∈ Numd−δ(X)

be arbitrary and write it as ξ(q) = η with q homogeneous of weight d − δ. Then we
have

deg(η.ξ(p)) = deg(ξ(q).ξ(p)) = deg(ξ(qp)) = qp fX = 0.

Hence ξ(p) is zero in Num∗(X) by definition of numerical equivalence.
The same proof works with Q-coefficients. �

Lemma 4.3 Let X be a smooth projective variety of dimension d. Let

ξ : Z[x1, . . . , xr ] → Num∗(X)

be a surjection of graded rings as above. Let I be an ideal contained in ker ξ such
that the induced homomorphism

ξ : Z[x1, . . . , xr ]/I → Num∗(X)

is an isomorphism between elements of weight d:

ξ : (Z[x1, . . . , xr ]/I )d → Num∗(X)d � Z.

Then

fX =
∑

|a|=d

ξ(xa) · x−a ∈ Z[x−1
1 , . . . , x−1

r ]

and we can write

Num∗(X) = Z[x1, . . . , xr ]/Ann( fX ).

In other words, I is enough to compute the entire kernel of ξ .

Proof Since ξ induces an isomorphism between elements of weight d by assumption,
we get

ξ(xa) = deg(αa)

for |a| = d. The claim then follows from Lemma 4.2. �
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5 The case of cubic threefolds

Consider a degeneration πV : V → B of smooth cubic threefolds, over a Zariski open
subset B ⊂ A

1 containing 0 ∈ A
1, into the union of a smooth quadric and a hyperplane

in P
4, given by an equation

{lq − t f = 0} ⊂ P
4× B

where l, q, f ∈ C[X0, . . . , X4] are homogeneous of degree 1, 2, 3, respectively, and

(a) q defines a nonsingular quadric Q;
(b) f is general, in particular f = 0 defines a smooth cubic threefold V ;
(c) the hyperplane L defined by l in P

4 intersects Q transversely in a smooth quadric
surface S � P

1×P
1;

(d) S ∩ V is a smooth divisor C of bidegree (3, 3) in S, which is a genus 4 canonical
curve in L � P

3. It is well-known that any nonhyperelliptic genus 4 curve arises
as a complete intersection of a quadric and a cubic in P

3, hence if we choose f
(very) general and l, q such that l = q = 0 is a smooth quadric (all of these are
projectively equivalent), the curve C will be a (very) general canonical curve of
genus 4.

Notice that the total space V is singular in C . After shrinking B, we can assume
there are no singularities outside the fibre over 0.

Weblowup the non-Cartier divisor L in the total spaceV and get a strictly semistable
degeneration πX : X → B with central fibre

X = LC ∪ Q.

Here, by slight abuse of notation, we denote by Q the irreducible component of X
mapping isomorphically to Q in V under the natural morphism X → V. LC is the
blowup of L in C with exceptional divisor EC . LC and Q intersect in a surface which
is naturally isomorphic to S: in Q we have the previous copy of S, and in LC the strict
transform of S. Hence we denote this new surface by S as well.

Lemma 5.1 Let H ∈ Num1(LC ) be the pullback of a hyperplane class in L = P
3,

E = P(NC/P3) the class of the exceptional divisor in LC and F ..= π∗
E (P) with P a

point on C (the class of a fiber of E). Then

Num∗(LC ) = Z[H , E, F]/Ann( fLC )

with

fLC = H−3 − 6H−1E−2 − 30E−3 − E−1F−1.

Proof The Chow ring of P
3 blown up in a smooth curve C (for rational equivalence)

is calculated in [9, Proposition 13.13]. From this it follows that H , E, F are ring
generators of Num∗(LC ) and the intersection numbers in the dual socle generator as
defined in Lemma 4.2 are the ones given above. �
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Lemma 5.2 Let S ∈ Num1(Q) be the class of a hyperplane section of Q and let L be
the class of a line in Q. Then

Num∗(Q) = Z[S, L]/Ann( fQ)

with

fQ = 2S−3 + S−1L−1.

Proof Apply [10, Example 1.9.1]: here we use the Bruhat stratification of the rational
homogeneous variety Q, a paving in affine spaces; thus the closures of the strata are

Q ⊃ TpQ ∩ Q ⊃ l ⊃ p

where TpQ ∩ Q is a quadric cone over a smooth conic (rationally equivalent to S), l
a line in that cone, p ∈ l a point. �

Lemma 5.3 Let S = P
1×P

1 as above. Let R1, R2 be the classes of the two rulings.
Then

Num∗(S) = Z[R1, R2]/Ann( fS)

with

fS = R−1
1 R−1

2 .

Proof This is obvious. �

Lemma 5.4 Let ιS,LC : S → LC and ιS,Q : S → Q be the natural inclusions. Then

ι∗S,LC
(H , E, F) = (

R1 + R2, 3(R1 + R2), R1R2
)
,

ι∗S,Q(S, L) = (
R1 + R2, R1R2

)

and

(ιS,LC )∗(1, R1, R2, R1R2) = (
2H − E, H2 − 3F, H2 − 3F, H3),

(ιS,Q)∗(1, R1, R2, R1R2) = (
S, L, L, SL

)
.

Proof Only the third formula is not obvious. For the third formula, remark that the
class of the strict transform of S in LC is given by 2H − E , and that the lines of the
rulings on S are trisecants to the bidegree (3, 3) curve C , hence give classes H2 − 3F
as claimed. �
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Fig. 1 Intersection complex of the degeneration of the self-product

6 The product family

Consider the product family X×BX → B. The total space is singular in a variety
isomorphic to S× S contained in the central fibre as the locuswhere all four irreducible
components LC×LC , LC ×Q, Q×LC , Q×Q intersect. We now blow up LC ×Q
in the total space and obtain a strictly semistable degeneration πY : Y → B with
components of the central fibre Y given by

Y1 = LC× LC ,

Y2 = BlS×S(LC×Q),

Y3 = BlS×S(Q×LC ),

Y4 = Q×Q.

In Fig. 1 we have indicated these four components and their mutual intersections.
The fact thatπY : Y → B is strictly semistable after this one blowup can be checked

by a local calculation: X×BX is singular in the points where all four irreducible
components of the central fibre intersect and locally around such a point X×BX is
given by equations xy − t = 0, ab − t = 0 and the blowup centre is given by
x = a = t = 0. Eliminating t we need to blow up xy − ab = 0, which, up to taking
a product with an affine space, is the cone over a smooth quadric surface in P

3. We
then blow up the locus x = a = 0, which is a smooth surface through the vertex of
the cone that maps to a line on the quadric. We obtain a small resolution of the vertex
of the cone in this way.

The mutual intersections Yi j = Yi ∩ Y j of these components are:

Y12 = LC× S,

Y13 = S× LC ,
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Y14 = ∅,

Y23 = P
(
N(S×S)/(LC×Q)

) � P
(
N(S×S)/(Q×LC )

)
,

Y24 = S×Q,

Y34 = Q× S.

The inclusions

ι{1,2},{1} : Y12 → Y1,

ι{1,3},{1} : Y13 → Y1,

ι{2,4},{4} : Y24 → Y4,

ι{3,4},{4} : Y34 → Y4

are products of the natural inclusions ιS,LC : S → LC and ιS,Q : S → Q with identity
maps. The inclusions ofY23 intoY2 andY3 are the inclusions of the exceptional divisors
of the respective blowups. The inclusion of Y13 into Y3 is obtained as follows: one has
the inclusions

S× S ⊂ S× LC ⊂ Q× LC .

Thus we see that, blowing up the S× S in Q×LC , the strict transform of S× LC is
isomorphic to S× LC . This isomorphism composed with the inclusion into Y3 gives
ι{1,3},{3}. Similarly for the remaining cases.

The triple intersections are

Y123 = Y234 = S× S.

The inclusions ι{1,2,3},{i, j} are clear unless {i, j} = {2, 3} in which case we deal
with it in Proposition 6.11.

We seek to compute the saturated prelog Chow group of the central fibre Y of
Y → B.

6.1 The numerical Chow ring of Y1

For this we begin with Num∗(Y1). Notice that Y1 = LC× LC is the blowup of LC×P
3

in LC×C , and that furthermore LC×C is the blowup of P
3×C in C×C . This gives
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the following combined blowup diagram:

ELC×C

π ′
E

j ′
LC×LC

π ′

EC×C

πE

j
LC×C

π

i ′
LC×P

3

C×C
i

P
3×C

Lemma 6.1 We have

Num∗(C×C) = Z[p, P,�C ]/Ann( fC×C )

where p is the pullback of the class of a point on C via the first projection, P the same
via the second projection, and �C the class of the diagonal and

fC×C = p−1P−1 + p−1�−1
C + �−1

C P−1 − 6�−2
C .

Proof We use Proposition 3.6 and the fact that the normal bundle of the diagonal in
C×C is the tangent bundle TC of C : therefore,

�2
C = deg TC = 2 − 2g = − 6. �

Proposition 6.2 Num∗(LC ×C) is generated as a ring by the elements

{h, e, f , P,�C },

where h, e, f are the classes coming from LC and P the point class coming from the
second factor of LC×C. Furthermore �C = j∗π∗

E (�C ) is the P
1 bundle over �C in

EC×C .

Proof By Lemma 6.1, Num∗(C×C) is generated as an abelian group by

{1, p, P,�C , P�C }.

Let P̃ ∈ Num∗(P3×C) be the pullback of the class of a point on C via the second
projection P

3×C → C . Since P = i∗(P̃), Num∗(C×C) is generated by

{1, p,�C }

as a Num∗(P3×C)-module. Noticing that

j∗π∗
E (1) = e,
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j∗π∗
E (p) = f ,

j∗π∗
E (�C ) = �C

and that Num∗(P3×C) is generated by {h, P̃} as a ring and π∗(P̃) = P , we see that
Proposition 3.4 then gives the claim. �

Proposition 6.3 We have that

Num∗(LC× LC )

is generated as a ring by

{h, e, f , H , E, F, D},

where h, e, f , H , E, F are the classes as in Lemma 5.1 coming from the two factors,
and D ..= j ′∗(π ′

E )∗�C is the class of the P
1×P

1-bundle over the diagonal in C×C.

Proof Since e, f , h are in the image of (i ′)∗ we have that Num∗(LC×C) is generated
by

{1, P,�C , P �C }

as a Num∗(LC ×P
3)-module. Furthermore

P�C = P j∗π∗
E (�C ) = j∗π∗

E (P�C ) = j∗π∗
E (Pp) = P j∗π∗

E (p) = P f

so that Num∗(LC ×C) is already generated by

{1, P,�C }

as a Num∗(LC×P
3)-module. Noticing that

j ′∗(π ′
E )∗(1) = E,

j ′∗(π ′
E )∗(P) = F,

j ′∗(π ′
E )∗(�C ) = j ′∗(π ′

E )∗ j∗π∗
E (�C ) = D

and that Num∗(LC×P
3) is generated by {h, e, f , H} as a ring, we see that the claim

follows from Proposition 3.4. �

Proposition 6.4 With the notation of the previous proposition we have

Num∗(Y1) = Num∗(LC× LC ) = Z[h, e, f , H , E, F, D]/Ann( fLC × LC ),
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where

fLC×LC = fLC · f ′
LC

+ D
(
30e−2E−1 + 30e−1E−2 + 6e−1E−1h−1 + 6e−1E−1H−1 + E−1 f −1 + e−1F−1)

− 6D−2.

Proof We have to calculate the intersection numbers of all monomials of degree 6
in the generators. Here {H , E, h, e} have degree 1, {F, f } have degree 2 and D has
degree 3.We can write every such polynomial asmMDc wherem is a monomial in the
generators of Num∗(LC ) of the first factor (lower case letters) and M is a monomial
in the generators of Num∗(LC ) of the second factor (upper case letters). We then have
the following cases:

c = 0: Here the monomial is mM and the intersection number of the product is the
product of the intersection numbers on the first and second LC respectively. These
intersection numbers are calculated by the dual socle generators of the factors and we
obtain the summand

fLC · f ′
LC

of fLC×LC .

c = 1:We can calculate these intersection numbers on D. We recall that D is a P
1×P

1

bundle on C , where we identify C with the diagonal of C×C . The intersection ring
Num∗(D) is generated by the pullback of a point P on D, and the relative hyperplane
class γ and� of the first and second factor.We have γ 2 = −30γ P and�2 = −30�P .
Let i be the inclusion of D in LC× LC . The pullbacks of the generators to D are:

i∗(h) = 6P, i∗(H) = 6P,

i∗(e) = − γ, i∗(E) = − �,

i∗( f ) = − γ P, i∗(F) = − �P.

The class of a point in D is γ�P so the non-zero intersection numbers are collected
in the summand

D
(
30e−2E−1 + 30e−1E−2 + 6e−1E−1h−1 + 6e−1E−1H−1 + E−1 f −1 + e−1F−1).

c = 2: We compute

D2 = (
j ′∗(π ′

E )∗ j∗π∗
E�C

)2

= − j ′∗
(
�

(
(π ′

E )∗ j∗π∗
E�C

)2)

= − j ′∗
(
�(π ′

E )∗
(
j∗π∗

E�C
)2)

= j ′∗
(
�(π ′

E )∗ j∗
(
γ (π∗

E�C )2
))

= j ′∗
(
�(π ′

E )∗ j∗
(
γπ∗

E (�2
C )

))
.

Since �2
C = −6, this proves that also D2 = −6. �
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6.2 The numerical Chow ring of Y2

Next we turn to Y2, the blowup of LC×Q in S× S, as in the blowup diagram:

N
j

πN

Y2

π

S× S
i

LC×Q.

Lemma 6.5 We have

Num∗(N ) = Num∗(S× S)[ξ ]/((ξ − r1 − r2)(ξ + R1 + R2)
)
.

Here ξ is the relative hyperplane class of the projectivisation ofN(S×S)/(LC×Q), which
is naturally isomorphic to N.

Proof We have

N(S×S)/(LC×Q) � O(P1×P1)×(P1×P1)(−1,−1, 0, 0) ⊕ O(P1×P1)×(P1×P1)(0, 0, 1, 1).

The assertion then follows from Proposition 3.1. �
Proposition 6.6 Let X be a basis, consisting of homogeneous elements, of the free
Z-module Num∗(N ). Consider the homomorphism of graded rings

� : Z[h, e, f , S, L, Nx ]x∈X → Num∗(Y2)

where the variables are mapped to the corresponding classes inNum∗(Y2), where the
class corresponding to Nx is j∗(x). For an arbitrary

x =
∑

i

ni xi ∈ Num∗(N ), xi ∈ X, ni ∈ Z

we set

Nx
..=

∑

i

ni Nxi ∈ Z[h, e, f , S, L, Nx ].

Let Y = {h, e, f , S, L}. Let Z be the basis of the Z-module Num∗(S× S) consisting
of all nonzero monomials in r1, r2, R1, R2. For z ∈ Z we choose an element z ∈
Z[h, e, f , S, L, Nx ] such that �(z) = π∗i∗(z) using Lemma 5.4.

Let I be the ideal in Z[h, e, f , S, L, Nx ] generated by the elements

α ·Nγ − N( j∗�(α)).γ for α ∈ Y, γ ∈ X,

Nγ ·Nδ + Nγ ·δ·ξ for γ, δ ∈ X,

Nc1(Q)π∗
N (z) − z for z ∈ Z
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where

c1(Q) = ξ + ( − r1 − r2 + R1 + R2).

In other words, I is the ideal of relations from Proposition 3.2 with ζ = ξ .
Then we have

Num∗(Y2) = Z[h, e, f , S, L, Nx ]/I .

Proof We want to apply Lemma 4.3. It follows from Proposition 3.2 that I ⊂ ker�.
A Macaulay2 computation done in [3, Proposition 6.6 in prelogYparts.m2] shows
that (Z[h, e, f , S, L, Nx ]/I )6 is a free Z-module of rank 1 generated by an element
that maps to a class of a point under �. Lemma 4.3 then gives us a formula for fY2
such that ker� = Ann( fY2). A Macaulay2 computation done in [3, Proposition 6.6
in prelogYparts.m2] then shows that Ann( fY2) = I . �

6.3 The numerical Chow ring of Y3

Next we turn to Y3, the blowup of Q×LC in S× S, as in the blowup diagram:

M
j

πM

Y3

π

S× S
i

Q× LC .

Lemma 6.7 Let η be the relative hyperplane class of the projectivisation of
N(S×S)/(Q×LC ), which is naturally isomorphic to M. Then there is a unique isomor-
phism of rings

μ∗ : Num∗ M → Num∗ N ,

mapping η to ξ − r1 − r2 + R1 + R2 and making the following diagram commutative:

Num∗ M μ∗
Num∗ N

Num∗(S× S)

π∗
M π∗

N

Proof We have

EN
..= N(S×S)/(LC×Q)

� O(P1×P1)×(P1×P1)(−1,−1, 0, 0)⊕O(P1×P1)×(P1×P1)(0, 0, 1, 1)
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and

EM
..= N(S×S)/(Q×LC )

� O(P1×P1)×(P1×P1)(1, 1, 0, 0) ⊕ O(P1×P1)×(P1×P1)(0, 0,−1,−1).

Hence

EN ⊗L � EM (∗)

with L = O(P1×P1)×(P1×P1)(1, 1,−1,−1). Observe that by definition M = P(EM ),
N = P(EN ). Let

μ : N → M

be the isomorphism induced by (∗).
Then

(πM )∗(OM (η)) = E∨
M

= E∨
N ⊗L∨

= (πN )∗(ON (ξ))⊗L∨

= (πM ◦μ)∗(ON (ξ))⊗L∨

= (πM )∗
(
μ∗(ON (ξ))⊗π∗

M (L∨)
)
.

On the other hand, we know from the structure of the Picard group of a projective
bundle that

OM (η) � μ∗(ON (ξ))⊗π∗
M ((L′)∨)

for some line bundle L′ on S× S since OM (η) and μ∗(ON (ξ)) restrict to O(1) on
every fibre of πM . Therefore both L and L′ are line bundles on S× S with

EN ⊗L � EM , EN ⊗L′ � EM

and passing to the determinants on both sides we get L⊗2 = (L′)⊗2 which shows
L � L′ since Pic(S× S) is torsionfree. Hence

η = μ∗(ξ) − r1 − r2 + R1 + R2.

Now using μ∗ = (μ−1)∗ gives the result. �
Proposition 6.8 We have

Num∗(Y3) = Z[s, l, H , E, F, Mx ]/J
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where x runs over a generating set of Num∗(N ) as aZ-module, Mx
..= j∗ ◦μ∗(x), and

J is the ideal of relations derived from Proposition 3.2with ζ = ξ −r1−r2+ R1+ R2
in the same way as in Proposition 6.6.

Proof After usingLemma6.7 the same proof as that for Proposition 6.6 appliesmutatis
mutandis. �

6.4 The numerical Chow ring of Y4

Since Y4 = Q×Q, this can be computed by the Künneth formula. Num∗(Y4) is
generated by s, l, S, L .

6.5 The numerical Chow rings of Yij, Yijk

The numerical Chow rings of double and triple intersections can be computed by the
Künneth formula except for Num∗(Y23) which is Num∗(N ).

6.6 Computing pushforwards and pullbacks via �{i,j,k},{a,b} : Yijk → Yab

These pushforwards and pullbacks are all easy to obtain using the Künneth formula
except for ι{1,2,3},{2,3} and ι{2,3,4},{2,3}.

Lemma 6.9 Let E be a vector bundle on a smooth projective variety X. Consider the
diagram

P(E)

π

X

σ

where σ is a section and � = σ(X). Then

σ∗(x) = π∗(x) ·�

for x ∈ Num∗(X). For y ∈ Num∗(P(E)) we have

σ ∗(y) = π∗(y ·�).

If E is rank 2 and y = ζ ·c+d with c, d ∈ π∗ Num∗(X) and ζ the relative hyperplane
class, then

π∗(y) = c.

Proof All assertions follow directly from the fact that π |� : � → X and σ : X → �

are inverse isomorphisms. �
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Lemma 6.10 Let L1 and L2 be line bundles over a projective variety X and let

π : P = P(L1⊕L2) → X

be the projective bundle of lines in the fibres ofL1⊕L2. Denote by�1, �2 the sections
of this bundle corresponding to P(L1) and P(L2), the lines contained in the fibres of
L1 and L2, respectively. Then

OP(�i ) = OP(1)⊗π∗L j

for {i, j} = {1, 2}.
Proof The relative Euler sequence for the relative tangent bundle TP

0 → OP → π∗(L1⊕L2)⊗OP(1) → TP → 0

restricted to �i gives

0 → O�i → (L1⊕L2)⊗L∨
i → N�i /P → 0

where N�i /P is the normal bundle of �i in P; here we used OP(1)|�i � L∨
i , which

is correct since we are considering projective bundles of lines in the fibres of vector
bundles throughout. Thus

N�1/P � L2⊗L∨
1 , N�2/P � L1⊗L∨

2 .

On the other hand,

OP(�i ) = OP(1)⊗π∗Mi

for some line bundles Mi on the base X . Restricting both sides to �i we find

N�i /P = L∨
i ⊗Mi � L j ⊗L∨

i

for {i, j} = {1, 2}. It follows

OP(�i ) = OP(1)⊗π∗L j

as desired. �
Proposition 6.11 We have

[ι{1,2,3},{2,3}(S× S)] = ξ + R1 + R2,

[ι{2,3,4},{2,3}(S× S)] = ξ − r1 − r2

as classes in Num∗(N ).
Together with Lemma 6.9, this gives a complete description of pushforwards and

pullbacks via ι{1,2,3},{2,3} and ι{2,3,4},{2,3}.
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Proof The subvarieties ι{1,2,3},{2,3}(S× S) resp. ι{2,3,4},{2,3}(S× S) of Y23 = N consist
of all those normal directions to S× S in LC×Q that are contained in Y12 = LC× S
resp. Y24 = S×Q. Recall that N is the projectivisation of

N(S×S)/(LC×Q) � O(P1×P1)×(P1×P1)(−1,−1, 0, 0) ⊕ O(P1×P1)×(P1×P1)(0, 0, 1, 1)

and the (projectivisation of the) first summand here corresponds to normal directions
contained in Y12 = LC× S and the second to those contained in Y24 = S×Q. The
assertion follows from an application of Lemma 6.10 because these are just the two
natural sections (1 : 0) and (0 : 1) in this projective bundle. �

6.7 Computing pushforwards and pullbacks via �{i,j},{a} : Yij → Ya

The inclusions ι{2,3},{2} : Y23 → Y2 and ι{2,3},{3} : Y23 → Y3 are just the inclusions of
the exceptional divisor into the blowup.

Lemma 6.12 Consider smooth varieties Z ⊂ Y ⊂ X with Z a divisor in Y and Y a
divisor in X. Blowing up Z in X gives the following diagram:

E

πE

j1
Y ∪ E

j2

πY∪E

BlZ (X)

π

Z
i1

Y
i2

X .

We denote by πY
..= πY∪E |Y the restriction of π to the strict transform Y of Y . It is

an isomorphism since Z is a divisor in Y and Y is smooth. Let jY ..= j2|Y ◦π−1
Y

.
Also we set j ..= j2 ◦ j1.
Consider the map

( jY )∗ : CH∗(Y ) → CH∗(BlZ (X)).

According to the above definitions we have ( jY )∗ ..= ( j2|Y )∗ ◦π∗
Y
. Then for y ∈

CH∗(Y ) we have

( jY )∗(y) = π∗(i2)∗(y) − j∗π∗
E (i1)

∗(y).

Proof By the Moving Lemma [9, Appendix A, Lemma A.1 (a)], a class y ∈ CH∗(Y )

can be represented by a cycle Zy that intersects the codimension one subvariety Z of Y
generically transversely. By additivity it suffices to prove the assertion of the Lemma
for one irreducible reduced component of the support of Zy . We call this �. Then the
scheme-theoretic pullback π−1(�) decomposes as

π−1(�) = �Y ∪ �E
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where �Y is the preimage of � on Y under the isomorphism Y → Y , and �E are the
remaining components, all of which have support on E . Now

[π−1(�)] = π∗(i2)∗([�])

by [9, Theorem 1.23 (a)] (the hypotheses of this theorem are satisfied since � is gener-
ically transverse to Z because we applied the Moving Lemma). We have

[�Y ] = ( jY )∗([�])

and

[�E ] = j∗π∗
E (i1)

∗([�])

because byour choice�∩Z has anunderlying cycle representing [�].Z = (i1)∗([�]).�
With this lemma we can compute pushforwards and pullbacks for:

(a) ι{1,2},{2} : Y12 → Y2.
(b) ι{1,3},{3} : Y13 → Y3.
(c) ι{2,4},{2} : Y24 → Y2.
(d) ι{3,4},{3} : Y34 → Y3.

The inclusions ι{2,4},{4} : Y24 → Y4 and ι{3,4},{4} : Y34 → Y4 can be handled using
the Künneth formula.

Lastly, we have to consider ι{1,2},{1} : Y12 → Y1 and ι{1,3},{1} : Y13 → Y1. Here
everything follows using the Künneth formula except the pullback of D:

Lemma 6.13 We have

ι∗{1,2},{1}(D) = eR1R2 + 3 f (R1 + R2),

ι∗{1,3},{1}(D) = r1r2E + 3(r1 + r2)F .

Proof We only need to prove one of these formulas because the other follows by
symmetry. We have the two inclusions

j ..= ι{1,2,3},{1,2} : S× S → LC× S, i ..= ι{1,2},{1} : LC× S → LC×LC .

Now the pullback (i ◦ j)∗(D) is the diagonal �C ⊂ C×C ⊂ S× S. Hence, intersect-
ing with a basis of the divisors in S× S, we find

(i ◦ j)∗(D) = 3(r1 + r2)R1R2 + 3r1r2(R1 + R2).

Therefore, i∗(D) must be of the form

αhR1R2 + βeR1R2 + γ h2(R1 + R2) + δ f (R1 + R2)
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with α, β, γ, δ integers. Now we have the equation

D · i∗(LC× S) = i∗(i∗(D)).

Using Proposition 6.4 and the fact that we can compute i∗ using the Künneth formula,
we calculate the images under i∗ of hR1R2, eR1R2, h2(R1 + R2) and f (R1 + R2)

and find that the images are linearly independent. We obtain linear equations for the
unknowns α, β, γ, δ. The only solution is the one in the statement. This is checked in
[3, pullbackOfD.m2]. �
Theorem 6.14 We have

Num3
prelog(Y ) = Z

6

modulo torsion.

Proof For this computation we use Definition 2.2:

0 0

R(Y ) Num3
prelog(Y ) 0

⊕
Num2(Yi j )

ρ′

δ ⊕
Num3(Yi )

ρ

coker δ 0

⊕
Num2(Yi jk)

δ′ ⊕
Num3(Yi j )

with explicitly given maps ρ, ρ′ in terms of the push forwards ι∗ and δ, δ′ in terms of
the pullbacks ι∗ calculated above.

For the convenience of the reader we give a slow walk through the necessary
computations. AMacaulay2 script doing the same work is available at [3, prelogY.m2
using prelogYparts.m2].

Using Propositions 6.4, 6.6, 6.8 and Sects. 6.4, 6.5 we can calculate the intersection
rings of Yi ,Yi j and Yi jk in degree 3:
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0 0

R(Y ) Num3
prelog(Y ) 0

⊕
Z
32

ρ′

δ ⊕
Z
39

ρ

coker δ 0

⊕
Z
12 δ′ ⊕

Z
32

A good check that we got everything right is that indeed δρ = ρ′δ′ (this is the
Friedman condition).

Now one can check that δ has rank 22 in every characteristic except 2 where it has
rank 21. The same is true for ρ.

This reduces the diagram to:

0 0

Z
17

σ

Num3
prelog(Y ) 0

⊕
Z
32

ρ′

δ ⊕
Z
39 γ

ρ

Z
17⊕Z/2 0

⊕
Z
12 δ′ ⊕

Z
32

The degree 3 part of the numerical prelog ring Num3
prelog(Y ), modulo torsion, is

therefore the image of an explicitly given 17×17 matrix M . We calculate that this
matrix M has rank 6. Therefore

Num3
prelog(Y ) = Z

6

modulo torsion. �
We now identify explicit effective generators of Num3

prelog(Y ) modulo torsion.

Theorem 6.15 The following vectors in
⊕4

i=1 Num
3(Yi ) satisfy the prelog condition

and are mapped to a Z-basis of Num3
prelog(Y ), modulo torsion:

Z03 = (h3, h3, 0, 0),

Z30 = (H3, 0, H3, 0),
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Z12 = (
(h2 − 2 f )H , (h2 − 2 f )S, 0, 0

)
,

Z21 = (
h(H2 − 2F), 0, s(H2 − 2F), 0

)
,

Z� = (
h3 + h2H + hH2 + H3 − D,

Nr1r2 + NR1r2 + Nr1R2 + NR1R2 ,

Mr1r2 + MR1r2 + Mr1R2 + MR1R2 ,

sl + sL + Sl + SL
)
,

ZD = (D − eF − f E, 0, 0, 0).

Proof In [3, prelogY.m2 using prelogYparts.m2] we check that the elements in the
statement satisfy the prelog condition and are aZ-basis:we do this by showing that they
are linearly independent and writing the images under γ ◦σ of all standard generators
of R(Y ) � Z

17 as Z-linear combinations of the elements above (modulo torsion). �
Proposition 6.16 The intersection form in Num3

prelog(Y ) with respect to this basis is

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0
1 0 0 0 1 0
0 0 0 1 1 0
0 0 1 0 1 0
1 1 1 1 −6 −8
0 0 0 0 −8 −8

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Proof By the definition of the ring structure on Num∗
prelog(Y ) given in [4], the intersec-

tion of two prelog cycles can be computed componentwise. We have Num6
prelog(Y ) �

Z since Y is connected. The intersection matrix is then calculated in [3, prelogY.m2
using prelogYparts.m2]. �
Remark 6.17 Notice that for a very general cubic threefold V it is known that the
Chow group of V ×V modulo numerical equivalence is generated by (point)×V ,
V × (point), (line)× (hyperplane section), (hyperplane section)× (line), and the diag-
onal. We would like to thank Claire Voisin for pointing this out. Our specialisation
homomorphism to the prelog Chow group is therefore injective, but not surjective, in
this case; this is made more precise in the next proposition, Proposition 6.18.

Proposition 6.18 The images of Z03, Z30, Z12, Z21, and Z� in Num3
prelog(Y ) are

the specialisations of (point)×V , V ×(point), (line)×(hyperplanesection), (hyper-
planesection)×(line), and the diagonal, respectively.

Proof The specialisation map is given as follows: the cycles in the statement of the
Proposition give relative cycles in the family with central fibre removed; to get the
specialisation for each of those cycles, we take its closure and intersect it with the
central fibre.

Consider the cycle (point)×V . Specialising the point to a point in L � P
3 away

from S, gives the image of Z03; for the numbering of the components it is helpful to
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look back at Fig. 1. For Z30, Z12, Z21 the argument is then similar. That Z� is the
specialisation of the diagonal can be seen as follows. The class

sl + sL + Sl + SL

is the class of the diagonal on Y4 = Q×Q whereas

h3 + h2H + hH2 + H3 − D

is the class of the diagonal on LC × LC : indeed, h3 +h2H +hH2 + H3 is the class of
�P3 on P

3×P
3, and LC × LC is obtained from P

3×P
3 by first blowing upC×P

3 and
then LC×C . The diagonal intersects C×P

3 in �C ⊂ C×C , and hence as schemes

σ−1(�P3) = �LC ∪ D

where σ : LC× LC → P
3×P

3 is the composition of the two blowups. Since D is
three-dimensional, we have σ ∗([�P3]) = [�LC ] + D as cycle classes. To justify
the components of Z� on Y2 and Y3, note that the diagonal in the product family
X× BX → B intersects S× S ⊂ X × X in �S . Note also that S× S is precisely the
locus in which the total space X× BX is singular. The class of �S in S× S is

r1r2 + R1r2 + r1R2 + R1R2

and pulling this back to Y23 and pushing forward to Y2 and Y3 we obtain the middle
two entries in Z�. �
We now calculate the saturated numerical prelog Chow group in degree 3.

Theorem 6.19 Num3
prelog,sat(Y ) � Z

6 and is generated by the classes in Theorem 6.15
and a half of their sum.

Proof The group Num3
prelog,sat(Y ) is the saturation of Num3

prelog(Y ) in the lattice

coker δ/(torsion) � Z
17. The calculation is done in [3, prelogY.m2 using prelo-

gYparts.m2]: writing the generators given in Theorem 6.15 in the standard basis of
Z
17 gives a 17×6 matrix N . The gcd of its maximal minors is equal to 2. Therefore,

N has full rank in every characteristic except 2. Moreover, in characteristic 2, N has
rank 5. The kernel of N in characteristic 2 is generated by the sum of the six generators
of Theorem 6.15. �
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