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ABSTRACT

Automatically tuning software configuration for optimizing a single
performance attribute (e.g., minimizing latency) is not trivial, due
to the nature of the configuration systems (e.g., complex landscape
and expensive measurement). To deal with the problem, existing
work has been focusing on developing various effective optimizers.
However, a prominent issue that all these optimizers need to take
care of is how to avoid the search being trapped in local optima — a
hard nut to crack for software configuration tuning due to its rugged
and sparse landscape, and neighboring configurations tending to
behave very differently. Overcoming such in an expensive mea-
surement setting is even more challenging. In this paper, we take a
different perspective to tackle this issue. Instead of focusing on im-
proving the optimizer, we work on the level of optimization model.
We do this by proposing a meta multi-objectivization model (MMO)
that considers an auxiliary performance objective (e.g., throughput
in addition to latency). What makes this model unique is that we
do not optimize the auxiliary performance objective, but rather use
it to make similarly-performing while different configurations less
comparable (i.e. Pareto nondominated to each other), thus prevent-
ing the search from being trapped in local optima.

Experiments on eight real-world software systems/environments
with diverse performance attributes reveal that our MMO model
is statistically more effective than state-of-the-art single-objective
counterparts in overcoming local optima (up to 42% gain), while
using as low as 24% of their measurements to achieve the same (or
better) performance result.

CCS CONCEPTS

• Software and its engineering→ Software performance; Soft-
ware configuration management and version control systems.
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Configuration tuning, performance optimization, search-based soft-
ware engineering, multi-objectivization
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1 INTRODUCTION

“All I want is to optimize the latency of my software;
any other performance attributes are out of interest.”

(An anonymous industry partner)

The above quotation comes from one of our industry partners who
is working in the finance sector, commenting on the need of tuning
the configuration of a software system that manages all financial
trading in his company. In this case, only a single performance
attribute matter (i.e., latency) — in the finance sector, a millisecond
decrease in the trade delay may boost a high-speed firm’s earnings
by about 100 million USD per year [60].

Indeed, given the flexibility of highly-configurable software sys-
tems, automatically tuning their critical configuration options will
affect a set of performance attributes, such as latency, throughput,
and energy consumption [15–18, 48, 54]. However, there are also
many other cases, such as the above one, wherein only the opti-
mization of a single performance attribute is of interest, whose
minimization (or maximization) serves as the sole performance
objective in consideration. In another scenario, machine learning
systems deployed by large organizations (e.g., GPT-3 [10]), or those
in the health care domain [1], often concern mainly on the accu-
racy, while caring little about the overhead/resources incurred for
training. This has been well-echoed from the literature on software
configuration tuning, in majority of which only a single perfor-
mance attribute is considered at a time [4, 5, 39, 40, 42, 49, 64, 66].

Despite only a single performance attribute is of concern, such
an optimization scenario is not easy to deal with. This is because
(1) the configurable systems involve a daunting number of config-
uration options with complex interactions, rendering a black-box
to the software engineers [12, 13, 65]; (2) the number of possible
configurations to examine can be high [14] and the measurement
of each configuration through running the software system is often
expensive [34]; and (3) there is generally a high degree of sparsity
in the configurable software systems [48], i.e., the close config-
urations can also have radically different performance. The last
characteristic poses a particular challenge to any automatic tuning
process in finding the optimal configuration (performance), because
firstly different configurations may achieve locally good, but glob-
ally undesired performance (e.g., local optima); and secondly, the
landscape of a (local) optimum’s neighborhood can be steep and
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Figure 1: A projected landscape of the performance objective

Latency with respect to configuration options Splitters and
Counters for Storm under theWordCount benchmark. is

the global optimum and is one of the locally optimal la-

tency that an optimizer needs to escape from.

rugged — if the tuning is trapped in a local optimum, it may be hard
to escape from it as their neighboring configurations often perform
worse than it. As an example, Figure 1 shows the projected con-
figuration landscape for Apache Storm (2 out of 6 configuration
options), where it can be clearly seen that even with this simplified
version, the landscape is rather rugged and contains steep “local
optimum traps”, resulting in significant difficulty in the tuning.

To address the above challenges, a number of optimizers from
the Search-Based Software Engineering (SBSE) paradigm have been
presented, such as random search [5, 49, 66], hill climbing [42, 64],
genetic algorithm [4, 54], and simulated annealing [23, 26]. To seek
the global optimum (best performance of the concerned perfor-
mance attribute) while avoiding being trapped in local optima,
these methods focus on the “internal” components of the optimizer.
They work on designing novel search operators (i.e., the way to
change the configuration structure, for example, increasing the
neighbourhood size of randomly mutated configurations [49]), or
developing various search strategies (i.e., the way to balance explo-
ration and exploitation, for example, restarting the search in hill
climbing [64]). However, a major limitation of such single-objective
optimizers is that the goal to find the global optimum is “less ori-
ented” as there is no clear “incentive” to encourage them to traverse
the wide search space and locating many local optima as possible,
thus finding the best one in a resource-efficient manner.

In this paper, we look to tackle this software configuration tun-
ing problem (with a single performance concern) from a differ-
ent perspective. In contrast to the effort made by the existing
works on the development of the optimizer, we work on the opti-
mization model. We present a multi-objective optimization model
for this single-objective problem, to help the search avoid being
trapped in local optima and progressively explore the entire ob-
jective space — an approach that belongs to the concept called
multi-objectivization [36].

Multi-objectivization, which transforms a single-objective op-
timization problem into a multi-objective one, is not particularly
unusual in SBSE. In several SE scenarios, researchers carefully

design an auxiliary objective as a helper, along with the target ob-
jective (i.e., the original objective), for a multi-objective optimizer
to deal with [22, 47, 57, 67]. For example, in the crash reproduc-
tion problem [22], a new auxiliary objective was created to check
how widely a test case covers the code, which is in strong conflict
with the target objective that measures how far a test is from the
particular line(s)-of-code that reproduces the crash.

However, a pitfall of this approach is that the auxiliary objective
needs a delicate design (e.g., to make it rather conflicting with the
target objective [22, 47]) in order to help the search on the target
objective jumps out of local optima. The design often requires
some similar domain properties between scenarios, such as the
test cases in the example above, which could share some common
structures for different software systems at the code level. Yet, this
assumption does not hold in software configuration tuning, which
lies in the configuration level, as their configuration options and
characteristics can be intrinsically different [65], while it is difficult
to identify the commonality (if any) due to the black-box nature.

Another drawback of this approach is concerned with its opti-
mizationmodel. Since the approach treats the two objectives equally
during the search, solutions that perform well on the auxiliary ob-
jective but poorly on the target objective will still be regarded as
“optimal” (in the sense of Pareto optimality; see Section 3), thus
being preserved, exploited, and explored repetitively during the
search process. However, such solutions are meaningless to the con-
sidered optimization problem; keeping exploiting them can cause
waste of resources (search budget), which eventually lowers the
chances of finding a better target objective.

In this work, we propose a different multi-objectivization model,
which contains two meta-objectives to optimize (hence called
meta multi-objectivization model, or MMO; in contrast, the pre-
ceding model which directly optimizes the target and auxiliary
objectives is called plain multi-objectivization, or PMO). Each of
the two meta-objectives has two components. The first component
of both meta-objectives is the target performance objective (e.g.,
latency), thereby only those configurations that perform well on
the target being in favor. The second component, which is related
to the other given auxiliary performance objective (e.g., throughput,
based on whatever that is available), is a completely conflicting
term for the two meta-objectives. The reason for this design is that
we hope to keep the target performance objective as a primary term
in the model to preserve the tendency towards its optimality, and at
the same time, we want the configurations with different values on
the auxiliary performance objective to be incomparable. We are not
interested in minimizing/maximizing the auxiliary performance
objective since we do not knowwhich value of it can lead to the best
result on the target performance objective, but we wish to keep a
good amount of configurations with various values of the auxiliary
performance objective in the search, thus not being trapped in local
optima (we will elaborate this in Section 3).

It is worth mentioning that software configuration tuning pro-
vides a well-fitting avenue for multi-objectivization: similar kind
of configurable software systems would inherently come with at
least two prevalent performance attributes, e.g., the latency and
throughput for stream processing systems [48]; the accuracy and
training/inference time for machine learning systems [53]. Since we
run the software system in the tuning anyway, one would merely
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need to measure how the configurations affect at least one other per-
formance attribute, using penalty of readily available tools/API [9].
Such an attribute can then contribute to the auxiliary objective in
multi-objectivization without the need for a specific design.

Overall, the contributions of this work are:

• Unlike existing work for the software configuration tuning
which puts efforts on the “internal part” of the optimization
(i.e., improving the search operators of various optimizers),
we work on the “external part” — multi-objectivizing this
single-objective optimization scenario.

• We present a meta multi-objectivization model, MMO, as op-
posed to the existing multi-objectivization model considered
in other SBSE scenarios which directly optimizes the target
and auxiliary objectives simultaneously (i.e., PMO).We show,
analytically and experimentally, why MMO is more suitable
than PMO for software configuration tuning.

• We conduct extensive experiments on eight commonly used
real-world software systems/environments that are of di-
verse domains, scales, settings, search space, and perfor-
mance attributes. Equipped with a classic multi-objective
optimizer, NSGA-II [21], we compare our model with four
state-of-the-art single-objective optimizers that underpin
many prior works on software configuration tuning, i.e.,
random search with high neighbourhood radius [5, 49, 66],
stochastic hill climbing with restart [42, 64], single-objective
genetic algorithm [4, 54], and simulated annealing [23, 26].

• We investigate three different instances of MMO and their
sensitivity to a critical internal parameter in the model.

The experiment results are encouraging. We show that the pro-
posed MMO model, compared with the best state-of-the-art single-
objective optimizer, achieves better result (up to 42% gain, with
statistical significance and non-trivial effect sizes) on the target
performance objective for the majority of the cases, while generally
consuming less resources (number of measurements that reflects
the time and computation needed) as low as 24%. This contrasts
with the PMO model which in general performs worse than the
best single-objective optimizer. We can conclude that our model:

• is generally safe and effective to use, while exhibiting mar-
ginal differences between different model instances;

• is overall resource-efficient, meaning that it is suitable for
expensive problems like software configuration tuning;

• may be sensitive to its parameter setting, however, there
exist some good “rule-of-the-thumb” values across the cases.

All source code and data can be accessed at our GitHub reposi-
tory: https://github.com/taochen/mmo-fse-2021.

The rest of this paper is organized as follows. Section 2 introduces
some background information. Section 3 elaborates the design of
our meta multi-objectivization model. Section 4 presents our exper-
iment methodology, followed by a detailed discussion of the results
in Section 5. The usefulness of the proposed model and threats to
validity are discussed in Section 6. Sections 7 and 8 analyze the
related work and conclude the paper, respectively.

2 PRELIMINARIES

In this section, we describe the necessary background.

2.1 Software Configuration Tuning Problem

A configurable software system often comes with a set of critical
configuration options such that the 𝑖th option is denoted as 𝑥𝑖 ,
which can be either a binary or integer variable, where 𝑛 is the total
number of options. The search space,𝒳 , is the Cartesian product
of the possible values for all the 𝑥𝑖 . Formally, when only a single
performance concern is of interest (such as latency, throughput, or
accuracy), the goal of software configuration tuning is to achieve1:

argmin 𝑓 (𝒙), 𝒙 ∈ 𝒳 (1)

where 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑛). This is a classic single-objective optimiza-
tion model and the measurement of 𝑓 is entirely case-dependent
according to the target software and the corresponding performance
attribute; thus we make no assumption about its characteristics.

2.2 Multi-Objectivization

Multi-objectivization is the process of transforming a single-objective
optimization problem into a multi-objective one, in order to make
the search easier to find the global optimum. It can be realized
by adding a new objective (or several objectives) to the original
objective or replacing the original objective with a set of objectives.
The motivation is that since in complex problem landscape, the
search may get trapped in local optima when considering the origi-
nal objective (due to the total order relation between solutions on
the objective), considering multiple objectives may make similarly-
performed solutions incomparable (i.e., Pareto nondominated to
each other), thus helping the search jump out of local optima [36].

Two solutions being Pareto nondominated means that one is
better than the other on some objective and worse on some other
objective. Formally, for two solutions 𝒙 and 𝒚, we call 𝒙 and 𝒚 non-
dominated to each other if 𝒙 ⊀ y∧𝒚 ⊀ 𝒙 , where ⊀ is the negation of
“to Pareto dominate” (≺), the superiority relation between solutions
for multi-objective optimization. That is, considering a minimiza-
tion problem with 𝑚 objectives, 𝒙 is said to (Pareto) dominate 𝒚
(denoted as 𝒙 ≺ 𝒚) if 𝑓𝑖 (𝒙) ≤ 𝑓𝑖 (𝒚) for 1 ≤ 𝑖 ≤ 𝑚 and there exists
at least one objective 𝑗 on which 𝑓𝑗 (𝒙) < 𝑓𝑗 (𝒚). Pareto dominance
is a partial order relation, and thus there typically exist multiple
optimal solutions in multi-objective optimization. For a solution
set 𝑿 , a solution 𝒙 ∈ 𝑿 is called Pareto optimal to 𝑿 if there is
no solution ∈ 𝑿 that dominates 𝒙 . When 𝑿 is the collection of
all feasible solutions for a multi-objective problem, 𝒙 becomes an
optimal solution to the problem, and the set of all Pareto optimal
solutions of the problem is called its Pareto optimal set.

Multi-objectivization is not uncommon in the modern optimiza-
tion realm, particularly to the evolutionary computation commu-
nity [11, 33, 36, 58, 59]. To tackle various challenging single-objective
optimization problems, researchers put much effort in introduc-
ing/designing additional objectives, e.g., creating sub-problems (sub-
objectives) of the original objective [36], converting the constraints
into an additional objective [11], constructing similar adjustable
objectives [33], considering one of the decision variables [58], or
even adding a man-made less relevant objective function [59].

1Without loss of generality, we assume minimizing the performance objective.

https://github.com/taochen/mmo-fse-2021
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3 MULTI-OBJECTIVIZATION IN SOFTWARE

CONFIGURATION TUNING

Here we present the designs of our MOO model and how they are
derived from the key properties in software configuration tuning.

3.1 Key Properties in Configuration Tuning

We observed that, in general, software configuration tuning bears
the following properties.

Property 1: As shown in Figure 1 and what has already been
reported [34, 48], the configuration landscape for most configurable
software systems are rather rugged with numerous local optima
at varying slopes. Therefore the tuning, once the search is trapped
at a local optimum, would be difficult to progress. This is because
if only the concerned performance attribute is used to guide the
search, and all the surrounding configurations on a local optimum
are significantly inferior to it, then the search focus would have no
much drive to move away from that local optimum. As a result, a
good optimization model has additional “tricks” to avoid comparing
configurations solely based on the single performance attribute.

Property 2: A single measurement of configuration is often
expensive. For example, Valov et al. [61] reported that sampling all
values of 11 configuration options for x264 needs 1,536 hours. This
means that the resource (search budget) in software configuration
tuning is highly valuable, hence utilizing them efficiently is critical.

Property 3: The correlation between different performance at-
tributes is often uncertain, as different configurations may have
different effects on distinct attributes. As such, we observed that the
configurations may achieve extremely good or bad performance on
one while having similarly good results on the other, as illustrated
in Figure 2. The reasons for this can vary. Taking the Storm from
Figure 2 (left) as an example; suppose that in a multi-threaded and
multi-core environment with 100 successful messages, if a configu-
ration 𝑨 enables each of these messages to be processed at 30ms,
then the latency and throughput are 100×30

100 = 30ms and 100
30 = 3.33

msgs/ms, respectively. In contrast, another configuration 𝑩 may
restrict the parallelism (e.g., lower spout_num), hence there could
be 50 messages processed at 20ms each2 while the other 50 are
handled at 40ms each (including 20ms queuing time due to reduced
parallelism). Here, the latency remains at 50×20+50×40

100 = 30ms but
the throughput is changed to 100

40 = 2.5 msgs/ms, which is a 25%
drop. Therefore, we should not presume either a strict conflicting
or harmonic correlation between the performance attributes.

As such, a good optimization model for software configuration
tuning should take the above properties into account.

3.2 Plain Multi-Objectivization Model (PMO)

A straightforward idea to perform multi-objectivization is to add an
auxiliary objective to optimize, along with the target objective. This
is what has been commonly used in other SBSE scenarios (e.g., [22]).
That PMO model can be formulated as:

minimize

{
𝑓𝑡 (𝒙)
𝑓𝑎 (𝒙)

(2)

2The relief of peak CPU load could allow the process of each message faster.
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very good or bad results on one performance objective can

both correspond to similarly good value on the other.

where 𝑓𝑡 (𝒙) denotes the target performance objective (i.e., the con-
cerned one) and 𝑓𝑎 (𝒙) denotes the auxiliary performance objective3.

Putting in the context of software configuration tuning, the PMO
model may cover Property 1, because the natural Pareto relation
ensures that the target performance objective is no longer a sole
indicator to guide the search. However, it does not fit Property 2 as
PMO additionally optimizes the auxiliary performance objective. As
such, configurations that performwell on the auxiliary performance
objective but poorly on the target performance objective are still
regarded as optimal in PMO, despite being meaningless to the
original problem. This can result in a significant waste of resources.
In addition, PMO does not consider Property 3 as it often assumes
conflicting correlation between the two objectives [22, 47], which
is hard to assure in software configuration tuning.

3.3 Our Meta Multi-Objectivization Model

Unlike PMO, our meta multi-objectivization (MMO) model creates
twometa-objectives based on the performance attributes. The aim is
to drive the search towards the optimum of the target performance
objective, and at the same time, not being trapped in local optima.
Specifically, we want to achieve two goals:

— Goal 1: optimizing the target performance objective still
plays a primary role, thus no resource waste on, for example,
optimizing the auxiliary one (this fits in Property 2);

— Goal 2: but those with different values of the auxiliary per-
formance objective are more likely to be incomparable (i.e.,
Pareto nondominated), thus the search would not be trapped
in local optima (this relates to Properties 1 and 3).

Formally, the proposed model with two meta-objectives 𝑔1 (𝒙)
and 𝑔2 (𝒙) is constructed as:

minimize

{
𝑔1 (𝒙) = 𝑓𝑡 (𝒙) + 𝜑 (𝑓𝑎 (𝒙))
𝑔2 (𝒙) = 𝑓𝑡 (𝒙) − 𝜑 (𝑓𝑎 (𝒙))

(3)

whereby each of the two meta-objectives shares the same target
performance objective 𝑓𝑡 (𝒙), but differs (effectively being oppo-
site) regarding the auxiliary performance objective 𝑓𝑎 (𝒙). 𝜑 () is a
3Without loss of generality, we use the minimization form of the auxiliary performance
objective; the maximization ones can be trivially converted, e.g., by multiplying −1.
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composite function that balances the 𝑓𝑡 (𝒙) and 𝑓𝑎 (𝒙). In theory,
the MMO model is generic and hence 𝜑 () can take different forms
to implement specific instances of the model. Here we consider
its simplest instance 𝜑 (𝑓𝑎 (𝒙)) = 𝑤𝑓𝑎 (𝒙) (we will investigate other
instances in Section 4). That is,

minimize

{
𝑔1 (𝒙) = 𝑓𝑡 (𝒙) +𝑤𝑓𝑎 (𝒙)
𝑔2 (𝒙) = 𝑓𝑡 (𝒙) −𝑤𝑓𝑎 (𝒙)

(4)

where𝑤 is a weight parameter that allows fine-tuning of the bal-
ance; different systems may need different settings. Note that in
the MMO model, both the target and the auxiliary performance
objectives need to be normalized for commensurability.

To understand the proposed MMO model, Figure 3 gives an ex-
ample of Storm on how it distinguishes between different configu-
rations, in comparison with the PMO model, when using latency as
the target performance objective 𝑓𝑡 and throughput as the auxiliary
performance objective 𝑓𝑎 . Suppose that there is a set of four config-
urations𝑨, 𝑩, 𝑪 and 𝑫 . Let us say if we want to choose two of them
based on their fitness (e.g., in order to put some promising configu-
rations into the next-generation population). For the PMO model
(Figure 3a) that minimizes latency and maximizes throughput, the
configuration 𝑫 , which performs extremely poor on latency, will
certainly be chosen by any multi-objective optimizer, since it is
Pareto optimal and also less crowded than the other Pareto optimal
configuration 𝑨 and 𝑩. In contrast, for our MMO model (Figure 3b)
which minimizes the two meta objectives, the two configurations
that will be chosen are 𝑨 and 𝑪 since they are the only two Pareto
optimal ones.

It is worth noting that for the single-objective optimizationmodel
(which only considers latency), the two chosen configurations will
be 𝑨 and 𝑩. However, since 𝑪 and 𝑨 behave much more differently
than 𝑩 and 𝑨 on the throughput, it is often more likely that they
are located in distant regions in the configuration landscape; thus
preserving 𝑪 rather than 𝑩 (when𝑨 is preserved) is generally more
likely to help the search to escape from the local optimum.

By further help to grasp the characteristics of the MMO model,
we provide five remarks below. Remarks 1–3 are related to why
the target performance objective remains primary in the model
(Goal 1). Remarks 4 and 5 show how it helps to escape local optima
via creating “incomparability” between the configurations with
dissimilar values on the auxiliary performance objective (Goal 2).

Remark 1: The global optimum of the original single-objective
problem (i.e., the configuration with the best target performance
objective) is Pareto optimal in MMO (e.g., the configuration 𝑨 in
the example of Figure 3). This can be immediately obtained by
contradiction from Equation (3).

Remark 2: A similar but more general observation is that a con-
figuration will never be dominated by another that has a worse
target performance objective. This can also be derived from Equa-
tion (3) — If configuration 𝒙1 has a better target performance ob-
jective than 𝒙2 (i.e., 𝑓𝑡 (𝒙1) < 𝑓𝑡 (𝒙2)), then whatever their auxiliary
performance objective values are, 𝒙2 will not be better than 𝒙1 on
both 𝑔1 and 𝑔2; in the best case for 𝒙2, they are nondominated to
each other (e.g., the configuration 𝑩 versus 𝑪 in Figure 3).

Remark 3: The above two remarks apply to the target perfor-
mance objective, but not to the auxiliary performance objective.
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Figure 3:An illustration of comparison between (a) the PMOmodel

and (b) our MMOmodel (with the instance of Equation 4) on Storm,

where the target performance objective is latency (tominimize) and

the auxiliary performance objective is throughput (to maximize).

Both of them are normalized and the weight is 0.5 in MMO. Let us

say𝑨, 𝑩, 𝑪 and𝑫 be a set of four configurations to be selected by the

two models. The solid circle means the configuration being Pareto

optimal to the set. Since the PMOmodel directly minimizes latency

and maximizes throughput (Figure 3a), configurations 𝑨, 𝑩, and 𝑫
are Pareto optimal. However, 𝑫 performs very poorly on latency;

preserving it during the search is a waste of resources. In contrast,

in our MMO model (Figure 3b), configurations 𝑨 and 𝑪 are Pareto

optimal. Now comparing configurations 𝑪 with 𝑩, since 𝑪 and 𝑨
behave much more differently than 𝑩 and 𝑨 on the throughput, it

is often more likely that they are located on distant regions in the

configuration landscape; thus preserving 𝑪 rather than 𝑩 (in case

𝑨 is preserved) is generally more likely to avoid the search being

trapped in the local optimum.

This is a key difference from the PMO model, where both objec-
tives are subject to these remarks; thus the configuration 𝑫 in the
example of Figure 3, which is meaningless to the original problem,
is treated as being optimal in PMO but not in MMO.

Remark 4:MMO does not bias to a higher or lower value on the
auxiliary performance objective, in contrast to PMO. This makes
sense since, as explained in Property 3, we do not know for certain
that what value of the auxiliary performance objective corresponds
to the best target performance objective.

Remark 5:Configurationswith dissimilar auxiliary performance
objective values tend to be incomparable (i.e., nondominated to each
other) even if one is fairly inferior to the other on the target per-
formance objective. For example, the configuration 𝑪 in Figure 3,
which has worse latency than 𝑨, is not dominated by 𝑨 as their
throughput are rather different. In contrast, the configuration 𝑩,
which even has better latency than 𝑪 , is dominated by 𝑨, as they
are similar on throughput. This enables the model to keep explor-
ing diverse promising configurations during the search, thereby a
higher chance to find the global optimum.

4 EXPERIMENTAL SETUP

In this section, we articulate the experimental methodology for
evaluating our MMO model and its instances.

4.1 Research Questions

Our experiment investigates the following research questions (RQs):
— RQ1: How effective is the MMO model?
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Table 1: Configurable software systems studied.

Software Domain Performance Objective |𝒪 | Search Space

Trimesh Mesh O1: # Iteration; O2: Latency 13 239,260
x264 Video O1: PSNR; O2: Energy Usage 17 53,662
Storm/WC SP O1: Throughput; O2: Latency 6 2,880
Storm/RS SP O1: Throughput; O2: Latency 6 3,839
Storm/SOL SP O1: Throughput; O2: Latency 13 2,048
Keras-DNN/DSR DL O1: AUC; O2: Inference Time 13 3.32×1013
Keras-DNN/Coffee DL O1: AUC; O2: Inference Time 13 2.66×1013
Keras-LSTM DL O1: RMSE; O2: Inference Time 13 7,040

|𝒪 | denotes number of options. We run all systems un-
der their standard benchmarks. More details can be found at:
https://github.com/taochen/mmo-fse-2021.

— RQ2: How resource-efficient is the MMO model?
— RQ3:What is the sensitivity of theMMOmodel to its weight?
We ask RQ1 to verify whether our MMO model can better help

to overcome the issue of local optima, i.e., by providing better
results than the single-objective counterpart and PMO under the
same search budget. We investigate RQ2 to examine whether the
resources (the number of measurements) are consumed to reach a
certain level of performance in a reasonably efficient manner. We
use RQ3 to study whether the weight in MMO is critical.

4.2 Subject Software Systems

As shown in Table 1, we experiment on a set of commonly used real-
world software systems and environments [34, 35, 46, 48], whose
single measurement is expensive4. They come from diverse do-
mains, e.g., stream processing (SP) and deep learning (DL), while
having different performance attributes, scale, and search space.

Each software system comes with two performance objectives,
which are chosen arbitrarily from prior work [34, 35, 46, 48]. In all
experiments, we use each of their two performance attributes as
the target performance objective in turn while the other serves as
the auxiliary performance objective.

We use the same configuration options and their ranges as stud-
ied in the prior work [34, 35, 46, 48], since those have been shown
to be the key ones for the software systems under the related en-
vironment. As a result, although some subject software appears
to be the same, their actual search spaces are different, such as
Storm/WC and Storm/RS.

4.3 Tuning Settings

4.3.1 Models, MMO Instances and Optimizers. For the single-objec-
tive optimization model, we examine four state-of-the-art optimiz-
ers that are widely used in software configuration tuning, all of
which deal with local optima in different ways:

• Random Search (RS) with a high neighbourhood radius to
escape from the local optima [5, 49, 66].

• Stochastic Hill Climbing with restart (SHC-r) [42, 64], aiming
to avoid local optima by using different starting points.

• Single-Objective Genetic Algorithm (SOGA) [4, 54] that seeks
to escape local optima by using variation operators.

• Simulated Annealing (SA) [23, 26] that tackles local optima
by stochastically accepting inferior configurations.

4To ensure robustness, each measurement consists of 5 repeated samples and the
median value is used.

Recall from Equation (2), our MMO model can be instantiated in
different forms. In the experiments, we consider three alternatives:

— MMO-Linear: 𝜑 (𝑓𝑎 (𝒙)) = 𝑤𝑓𝑎 (𝒙).
— MMO-Sqrt: 𝜑 (𝑓𝑎 (𝒙)) = 𝑤

√︁
𝑓𝑎 (𝒙).

— MMO-Square: 𝜑 (𝑓𝑎 (𝒙)) = 𝑤𝑓 2𝑎 (𝒙).
We examine all the above instances of the MMO model, together

with the PMO. While our model does not tie to any specific multi-
objective optimizer, we use NSGA-II for both MMO and PMO in
this work, because (1) it has been predominately used for software
configuration tuning in prior work when multiple performance
attributes are of interest [18, 20, 37, 55, 56]; (2) it shares many
similarities with the SOGA that we compare in this work. Note that
MMOmay not be able to workwith somemulti-objective optimizers
specifically designed for SBSE problems where the objectives are
not treated equally, such as [28, 29, 50].

All those optimizers can, but do not have to, rely on a surrogate.
Since we focus on the optimization model, the ability to omit the
surrogate model is desirable, as it has been shown that such a surro-
gate can be highly inaccurate [69] and hence creates noises in our
experiments. In this work, all optimization models and optimizers
are implemented in Java, using jMetal [25] and Opt4J [44].

4.3.2 Weight Values. In our experiments, we evaluate a set of
weight values, i.e.,𝑤 ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 10}, for all MMO
instances. Those are merely pragmatic settings without any so-
phisticated reasoning. In this way, we aim to examine whether the
MMO model can be effective by choosing from some randomly
given weight values. To make the performance objectives commen-
surable in MMO, we use max-min scaling [24]. However, since the
bounds are often unknown, we update them dynamically as the
tuning proceeds; this is a widely used approach in SBSE [54].

4.3.3 Search Budget. Since the measurement is expensive, we re-
peat all experiments 30 runs with a search budget of 2 hours each,
as suggested in prior work [34]. However, directly using the time as
a termination criterion would cause the search to suffer non-trivial
interference given the number of experiments we need to run in
parallel. To avoid this, for each software system, we incrementally
(100 each step) measured distinct configurations on a dedicated
machine using random sampling until the time budget is exhausted.
In this way, we collect the number of measurements (the median
of 5 repeats), as shown in Table 2, that serve as the termination
criterion for the configuration tuning thereafter.

Since the search budget reflects the number of measurements
permitted in 2 hours, in each run, we cached the measurement of
every distinct configuration, which can be reused directly when
the same configuration appears again during the search. In other
words, only the distinct configurations would consume the budget.

4.3.4 Other Parameters. For SOGA and NSGA-II, we apply the
binary tournament formating selection, together with the boundary
mutation and uniformed crossover, as used in prior work [18, 20, 54].
The mutation and crossover rates are set to 0.1 and 0.9, respectively,
as commonly set in software configuration tuning [18].

However, what we could not decide easily is the population size
for SOGA and NSGA-II. Therefore, for each software system, we
examine different population sizes, i.e., {10, 20, ..., 100} in prelim-
inary runs. We used the largest size that enables the population

https://github.com/taochen/mmo-fse-2021
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Table 2: Population size and measurement search budget.

Software Pop. Size Budget Software Pop. Size Budget

Trimesh 20 1000 x264 50 2,500
Storm/WC 50 600 Storm/RS 50 900
Storm/SOL 50 700 Keras-DNN/DSR 60 800

Keras-DNN/Coffee 50 900 Keras-LSTM 20 400

change to be less than 10% in the last 10% of the generations over
both optimizers, performance objectives, and weights. The results
are shown in Table 2. In this way, we seek to reach a good balance
between convergence (smaller population change) and diversity
(larger population size) under a search budget.

4.4 Comparison and Statistical Test

4.4.1 Metric. Since only the target objective is of interest, we do
not need to consider the quality of the auxiliary objective [41]. We
use the average normalized percentage gain [27] of the target ob-
jective on the MMO (or PMO) model against on the single-objective
counterpart5, which is defined as:

Normalized % Gain =
1
𝑛
×

𝑛∑︁
𝑖=1

𝑦𝑖 − 𝑥𝑖

𝑦𝑖 − 𝑦𝑜
× 100 (5)

whereby 𝑥𝑖 and 𝑦𝑖 are the objective value of the single performance
concern at the 𝑖th run for a multi-objectivization model and the
best (average) single-objective counterpart, respectively. 𝑦𝑜 is an
utopian performance that none of the optimizers can achieve. In
this work, we set𝑦𝑜 = 𝑣𝑜 −𝑞 wherein 𝑣𝑜 is the optimal performance
value found from all optimizers; and 𝑞 is the distance of the closest
sample 𝑠 to 𝑣𝑜 over all cases, such that 𝑠 ≠ 𝑣𝑜

6. Clearly, when
the normalized % gain is zero or negative, it implies that the multi-
objectivization model is similar or even worse off, respectively. Note
that the objective values are sorted for a total of𝑛 runs where𝑛 = 30.
According to Hake [27], the normalized % gain is a more suitable
metric than its non-normalized version (without 𝑦𝑜 ) because:

• It has been used as a standard metric in many domains [27].
• It can more accurately capture the spread [45].
• More importantly, it rewards (or penalizes) improvement
(or degradation) more when the 𝑦𝑖 is closer to the (approxi-
mately) optimal value. For example, improving the latency
from 100s to 50s shares the same non-normalized % gain as
from 50s to 25s (i.e., 50%). However, given the severe issue of
local optima in software configuration tuning, the latter case
can be much more difficult to achieve than the former and
hence deserves a greater reward. Suppose that the utopian
performance is 20s in the above example, the normalized %
gain for the two cases would be 62.5% and 83.3%, respectively.

4.4.2 Statistical Methods. We use the following statistical methods:
— Wilcoxon signed-rank test [63]:We apply this with 𝑎 =

0.05 to investigate the statistical significance of the perfor-
mance objective comparisons over all 30 runs, as it is a non-
parametric statistical test and has been recommended in
software engineering research for its strong statistical power

5We convert all maximizing objectives by multiplying −1.
6We found that for all software systems studied in this work, there exist 𝑞 < 𝑣𝑜 .

on pair-wise comparisons [3]. If the 𝑝 < 0.05, we say the
magnitude of differences in the comparisons are significant.

— Â12 effect size [62]: We use 𝐴12 to verify the effect size
over 30 runs. When comparing a multi-objectivization model
and its single-objective counterpart in this work, 𝐴12 > 0.5
denotes that the multi-objectivization is better for more than
50% of the times. In particular, 0.56 ≤ 𝐴12 < 0.64 indicates
a small effect size while 0.64 ≤ 𝐴12 < 0.71 and 𝐴12 ≥ 0.71
mean a medium and a large effect size, respectively.

5 EVALUATION RESULTS

In this section, we present the results of our experimental evalua-
tions and address the research questions posed in Section 4.1. The
experiments were run in parallel on several machines each with six
cores CPU at 2.9GHz and 8GB RAM for two months (24 × 7). All
settings discussed in Section 4 are used unless otherwise stated.

5.1 RQ1: Effectiveness

5.1.1 Method. To answer RQ1, we examine all the eight software
systems/environments with two performance objectives each, giv-
ing us 16 cases of study. In each case, we compare the best single-
objective counterpart7 with all instances of MMO and PMO. To set
the weight for each MMO instance in a case, we firstly conduct pre-
liminary runs under 10% of the search budget and population size
(one run each value). The weight with the best target performance
objective is then used in the full-scale experiments (if more than
one weight is the best, we chose one randomly). For all pair-wise
comparisons, both Wilcoxon sign-rank test and 𝐴12 are used.
7We identified the best one among RS, SHC-r, SOGA, and SA based on the best rank
from the Scott-Knott test [52] over 30 runs for stronger statistical power. If multiple
optimizers share the best rank, we picked the one with the best average result. Note
that the best single-objective counterpart may differ case by case.
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5.1.2 Results. From Figure 4, we see that, on average, the MMO
model achieves reasonably positive gains for at least 12 cases across
the instances. This is a sign that the MMO model suffers less on the
local optima issue than its best single-objective counterpart. More-
over, it achieves improvements for more than an average of 30%
in some cases, e.g., Storm/SOL-O2, as in those cases the distance
between local optima can be large. Yet, we observe no obvious dif-
ference among the MMO instances. PMO, albeit leads to acceptable
results for some cases, often performs worse than the best single-
objective counterpart as the gains are generally similar or negative
(11 out of 16 cases). This can be attributed to the fact that it wastes a
significant amount of resources on optimizing the auxiliary perfor-
mance objective. Interestingly, for Trimesh-O1, all the models have
the same results as the best single-objective counterpart. Although
rare, this is a possible case where the landscape of the target per-
formance objective is simpler (e.g., fewer local optima); hence all
the models/optimizers can find the globally optimal configuration.

Table 3 shows the results of the statistical tests, in which we see
that similar to the gains, the MMO model wins a larger majority in
general, in whichmost of them are statistically significant (𝑝 < 0.05)
with non-trivial effect size (𝐴12 ≥ 0.56). Again, the PMO performs
the worst with no wins on 12 out of 16 cases.

To provide a detailed understanding, Figure 5 shows all the ex-
plored configurations for Trimeshwith latency as the target perfor-
mance objective. Clearly, we see that the result confirms our theory:
the single-objective counterparts do explore some good ranges of
configurations, but they remain mostly trapped in a large region
of local optima. The PMO performs the worst with fewer points in
the projected area because it over-empathizes on optimizing the
auxiliary performance objective, which negatively affects the target
performance objective. Our MMO model, in contrast, escapes from
local optima by exploring an even larger area while keeping the
tendency towards better target performance objective, which is
precisely our Goals 1 and 2 from Section 3. Therefore, we say:

Table 3:𝐴12 and 𝑝 values on comparingmulti-objectivization

(MMO and PMO model) against the best single-objective

counterpart over 30 runs.

Software System MMO-Linear MMO-Sqrt MMO-Square PMO

Trimesh-O1 .50 (<.001) .50 (<.001) .50 (<.001) .50 (<.001)
Trimesh-O2 .88 (<.001) .93 (<.001) .88 (<.001) .25 (=.002)

x264-O1 .80 (<.001) .73 (<.001) .97 (<.001) .85 (<.001)

x264-O2 .78 (<.001) .82 (<.001) .77 (<.001) .40 (=.918)
Storm/WC-O1 .67 (<.001) .68 (<.001) .65 (<.001) .53 (<.001)
Storm/WC-O2 .03 (<.001) .02 (<.001) .00 (<.001) .33 (=.636)
Storm/RS-O1 .57 (<.001) .62 (<.001) .60 (<.001) .10 (<.001)

Storm/RS-O2 .00 (<.001) .17 (<.001) .02 (<.001) .47 (<.001)
Storm/SOL-O1 .67 (<.001) .62 (<.001) .62 (<.001) .40 (=.334)
Storm/SOL-O2 .72 (<.001) .72 (<.001) .65 (<.001) .28 (=.100)
Keras-DNN/DSR-O1 .67 (=.001) .62 (=.031) .53 (=.008) .05 (<.001)

Keras-DNN/DSR-O2 .52 (<.001) .52 (<.001) .52 (<.001) .48 (<.001)
Keras-DNN/Coffee-O1 .67 (<.001) .68 (<.001) .67 (<.001) .73 (<.001)

Keras-DNN/Coffee-O2 .58 (<.001) .58 (<.001) .58 (<.001) .50 (<.001)
Keras-LSTM-O1 .68 (<.001) .70 (<.001) .72 (<.001) .53 (<.001)
Keras-LSTM-O2 .48 (=.002) .48 (=.002) .58 (<.001) .42 (=.056)

The 𝑝 values are shown in the bracket. �̂�12 > 0.5 means the MMO (or PMO) is
better (in blue ); �̂�12 < 0.5 denotes the best single-objective counterpart is better
(in pink ); �̂�12 = 0.5 means a tie. The comparisons, for which there is a 𝑝 <0.05
and �̂�12 ≤ 0.44 or �̂�12 ≥ 0.56, are highlighted in bold.
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MMO (since all instances perform similarly, here we use

MMO-Linear as an example), PMO, and the best single-

objective counterpart. Each point is a configuration mea-

sured in the run, regardless whether it is preserved or not.

RQ1: The MMO model, regardless of its instance, is effective
in overcoming local optima, providing considerably better
results than the best single-objective counterpart in general
(up to 42% mean gain). It also significantly outperforms the
PMO model. The MMO instances do not differ much though.

5.2 RQ2: Resource Efficiency

5.2.1 Method. To investigateRQ2, for each case, we use a baseline,
𝑏, taken as the smallest number of measurements that the best
single-objective counterpart consumes to achieve its best average
result over 30 runs. We then record the smallest amount of budget
consumed by the MMO and PMO to achieve the same (or better)
target performance objective on average, denoted as𝑚. The ratios,
i.e., 𝑟 = 𝑚

𝑏
×100%, are reported, implying that if the MMO instances

are resource-efficient, then we would expect 𝑟 ≤ 100%. Since in our
context the resource is the number of measurements, it reflects the
tuning time and computation required by a model. Again, as for
RQ1, only the best weight for each MMO instance identified from
the preliminary runs is examined in a case.

5.2.2 Results. As can be seen from Figure 6, despite a small number
of cases where the MMOmodel cannot reach the performance level
as achieved by the best single-objective counterpart (the divided
bars, denoted as 𝑟 ≫ 100%), most commonly it uses less number of
measurements than, or at least identical to, the baseline to find the
same or better results, e.g., it can be as significantly low as 24%. In
particular, the MMO instances have 10-13 cases of 𝑟 < 100%; 1-3
cases of 𝑟 = 100%; and 2-3 cases of 𝑟 ≫ 100%. This indicates that the
MMOmodel overcomes local optima better and more efficiently — a
key attraction to software configuration tuning due to its expensive
measurements. In contrast, the PMO exhibits the worst resource
efficiency, as it has 3 cases of 𝑟 < 100%, together with 1 and 2
cases of 𝑟 = 100% and 𝑟 > 100%, respectively, while the remaining
10 cases of 𝑟 ≫ 100%. This is a clear sign that PMO is generally
resource-hungry as discussed in Section 3.
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Figure 6: % of measurements (𝑟 ) for the MMO and PMO

models to converge to the best (average) performance objec-

tive by the best single-objective counterpart over 30 runs,

using its budget consumption as the baseline (the dashed

line). The divided bars denote no convergence when the to-

tal search budget runs out, i.e., 𝑟 ≫ 100%.

Notably, the resource saving of MMO is more significant on sys-
tems with larger search space, e.g., Keras-DNN and Trimesh. This
is because that the larger the search space, the more the resources
are required for the single-objective model to find good configu-
rations. In contrast, our model MMO, which is designed to keep a
set of diverse high-quality configurations during the tuning, needs
less effort to find better ones. As a result, we conclude that:

RQ2: The MMOmodel is resource-efficient, consuming gener-
ally fewer measurements than the best single-objective coun-
terpart to reach the same or better results (as low as 24% of
it). The PMO, in contrast, is much more resource-hungry.

5.3 RQ3: Sensitivity to Weight

5.3.1 Method. To address RQ3, we check how do the MMO in-
stances perform compared with the best single-objective counter-
part under different weight settings for the full-scale experiments.
Hence, for each instance, there are seven settings and 16 systems/en-
vironments, leading to 112 cases. In each of these cases, we conduct
a pair-wise comparison using the 𝐴12 and Wilcoxon sign-rank test.

5.3.2 Results. The results are shown in Table 4, in which we see
that the MMO model, regardless to its instance, may indeed be sen-
sitive to the weight as it could win or lose (with different𝐴12 values
and statistical results) depending on different settings. Although
the best weight can be different for specific cases, we do observe a
general pattern: according to the last row, setting the weight as an
edge value like 0.01, 0.1, 0.9, or 10 tends to be the best among others
in general. This is clearer for MMO-Linear and MMO-Sqrt, while
MMO-Square prefers 0.01 more. We also note that the best weights
identified from the preliminary runs are generally consistent with
those best ones under the full-scale experiments.

In particular, we see that all the MMO instances can be more
beneficial (more weight values, if not all, can lead to significantly

better results) in some cases of the complex systems (e.g., x264 and
Keras-DNN) than others with smaller search space and dimension
of options (e.g., Storm). This could be due to the fact that for more
challenging systems, the advantage of our model over the single-
objective counterpart is clearer, thus it is easier to have a better
result over different weight settings. In summary, we state that:

RQ3: The MMO model is sensitive to the weight, but there
exist a common pattern such that some extreme weight, e.g.,
0.01, 0.1, 0.9 or 10, is often the best value.

6 DISCUSSION

6.1 Why Software Configuration Tuning?

A natural question to ask is why our MMO model is specific for
software configuration tuning rather than as a general “search-
based” solution for all SBSE problems. The answer is three-fold.

Firstly, we took three important properties of software configu-
ration tuning into account when designing the MMO model: (1) the
high degree of sparsity in software systems exacerbates the issue
of the search being trapped in local optima (Property 1) [34, 48].
(2) The measurement is expensive; thus efficiently escaping the
local optima with less resources is desirable (Property 2). (3) The
correlations between performance attributes are uncertain, i.e., ex-
tremely well or poor auxiliary performance objective may both lead
to similarly good target performance objective (Property 3).

Secondly, the configurable software systems provide a well-
fitting avenue for multi-objectivization, as it is common that they
inherently come with at least two performance attributes, e.g.,
latency and throughput, that can be directly used in the multi-
objectivization. Some other SBSE problems, in contrast, may not
have a readily available attribute(s) that can serve as the auxiliary
objective. For example, in the code refactoring problem, the robust-
ness of the code (as an auxiliary objective) is not a straightforward
and widely known metric that can be easily quantified [47].

Finally, how the configurations can affect the performance at-
tributes is often a black-box. In contrast, in many other SBSE prob-
lems, the objective function can be specifically designed based on
some shared domain properties between scenarios. For example,
in crash reproduction problem [22], it is possible to engineer a
new auxiliary objective to check how widely a test case covers the
code based on some common code structures for a software system
(e.g., function access levels), such that it is strongly conflicting with
the target objective (i.e., distance to the particular line(s)-of-code
that reproduces the crash). However, it is difficult, if not impossi-
ble, for the configuration options in software configuration tuning
to achieve the same. Our MMO model explicitly considers such a
black-box nature of software configuration tuning, as we make no
assumption about the performance attributes and their correlations.

6.2 How to Use MMO in Practice?

Here, we elaborate on the guidelines for using MMO in practice.

6.2.1 Choosing the MMO instance. Sections 5.1 and 5.2 reveal that
the MMO instances perform similarly for software configuration
tuning — all better than the best single-objective counterpart and
PMO in general. It is, therefore, safe to choose any of them. In
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Table 4: Sensitivity analysis on different weights in the MMO model (full-scale experiments). The cells report the 𝐴12 values
andwhether 𝑝 < 0.05 on comparing aMMO instance and the best single-objective counterpart over 30 runs. The last row counts

how many times a weight value is the best in a case based on Scott-Knott rank (primary) and the average result (secondary).

Software System
MMO-Linear MMO-Sqrt MMO-Square

0.01 0.1 0.3 0.5 0.7 0.9 10 0.01 0.1 0.3 0.5 0.7 0.9 10 0.01 0.1 0.3 0.5 0.7 0.9 10

Trimesh-O1 .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50† .50†
Trimesh-O2 .75

†
.88

†
.07

†
.00

†
.00

†
.00

†
.00

† .35 .93
†

.20
†

.00
†

.05
†

.08
†

.05
†

.88
†

.00
†

.02
†

.02
†

.00
†

.05
†

.02
†

x264-O1 .83
†

.90
†

.82
†

.80
†

.87
†

.88
†

.80
†

.95
†

.93
†

.90
†

.88
†

.85
†

.82
†

.73
†

.88
†

.87
†

.80
†

.83
†

.97
†

.88
†

.72
†

x264-O2 .58
†

.60
† .38 .78

† .50 .45 .48 .47 .42 .27
† .45 .40 .58

†
.82

†
.77

† .47 .50 .53† .40 .48 .43
Storm/WC-O1 .39 .62

† .45† .43
†

.67
†

.63
† .33 .58

† .52† .52† .43
† .53† .68

† .38 .58
†

.58
†

.60
†

.65
† .53† .52† .30

Storm/WC-O2 .03
†

.00
†

.00
†

.00
†

.00
†

.00
†

.02
†

.02
†

.00
†

.02
†

.00
†

.00
†

.00
†

.00
†

.00
†

.03
†

.02
†

.00
†

.02
†

.00
†

.02
†

Storm/RS-O1 .55† .52† .42 .48† .57
†

.57
†

.10
† .55† .55† .53† .52† .53† .62

†
.18

†
.57

†
.60

†
.57

† .50† .53† .52† .22
†

Storm/RS-O2 .00
†

.00
†

.00
†

.00
†

.02
†

.00
†

.00
†

.17
†

.00
†

.00
†

.00
†

.00
†

.00
†

.00
†

.02
†

.00
†

.00
†

.00
†

.00
†

.00
†

.00
†

Storm/SOL-O1 .43
† .45† .47† .57

†
.67

†
.58

†
.18

† .45† .47† .40 .52† .62
† .55† .18

† .38 .48† .50† .43
† .45† .62

† .52†
Storm/SOL-O2 .72

† .53† .43 .53† .42 .30 .17
†

.72
† .55† .53† .38 .38 .25

†
.17

†
.65

† .55† .38 .45 .35 .28 .33
Keras-DNN/DSR-O1 .22

† .33 .45 .57
† .47 .20

†
.67

† .30 .25
†

.28
† .33 .42 .47 .62

† .28 .32 .25
†

.17
†

.28
†

.28
† .53†

Keras-DNN/DSR-O2 .52† .52† .52† .43
† .38 .37 .28 .52† .52† .47† .47† .40 .37 .45† .52† .52† .43

† .45† .40 .35 .38
Keras-DNN/Coffee-O1 .43 .53† .58

† .50† .45 .67
† .55† .47† .50† .68

† .55† .57
†

.60
†

.58
† .38 .43 .52† .55† .58

†
.67

† .52†
Keras-DNN/Coffee-O2 .58

†
.58

†
.58

†
.58

†
.57

†
.57

†
.57

†
.58

†
.57

†
.58

†
.57

†
.57

† .53† .50† .58
†

.58
† .53† .57

† .55† .58
†

.57
†

Keras-LSTM-O1 .68
†

.58
† .47† .30 .47† .47† .38 .32 .70

† .35 .48† .32 .42 .58
† .47† .35 .72

† .47† .32 .45† .28
Keras-LSTM-O2 .37 .38 .48† .45† .32 .47† .38 .42 .30 .33 .42 .28 .48† .33 .28 .58

† .37 .32 .35 .45† .35
# Best (over 16 cases) 4 2 1 2 2 2 3 3 3 2 0 1 4 3 6 2 1 1 1 3 2

† denotes a statistically significant comparison with 𝑝 < 0.05. Other formats are the same as Table 3.

T
r
im

e
sh

-O
1

T
r
im

e
sh

-O
2

x
2
6
4
-O

1
x
2
6
4
-O

2
S
t
o
r
m
/
W

C
-O

1
S
t
o
r
m
/
W

C
-O

2
S
t
o
r
m
/
R
S
-O

1
S
t
o
r
m
/
R
S
-O

2
S
t
o
r
m
/
R
C
-O

1
S
t
o
r
m
/
R
C
-O

2
D

N
N

/
D

S
R
-O

1
D

N
N

/
D

S
R
-O

2
D

N
N

/
C
o
f
f
e
e
-O

1
D

N
N

/
C
o
f
f
e
e
-O

2
L
S
T
M

-O
1

L
S
T
M

-O
2

0

1,000

2,000

3,000

M
ax

.
T

im
e

(m
s)

Figure 7: The maximum running time for a full-scale run

when using previously measured data to identify the best

weight (over all seven weight values and 30 runs). ✓ denotes

the best weight concluded using data is identical to that ob-

tained from profiling the system; ✕ means otherwise.

general, we suggest to use MMO-Linear by default as it is the
simplest form among the others.

6.2.2 Setting the weight. We recommend two alternative methods
to identify the best weights during preliminary runs: physically
profiled method and data-driven method.

To set a good weight, one can profile the actual system with a
reduced budget (e.g., 10%), as what we have done in this work. In
fact, the findings from Section 5.3 has provided useful insights to
simplify the process: albeit the difficulty of setting weight varies
depending on the case, we observed that the edge weight value,
e.g., 0.01, 0.1, 0.9 or 10, is generally a reliable setting8. Further, there
are also cases where nearly all weights we examined are highly
effective, such as x264-O1 and Keras-DNN/Coffee-O2. Therefore,
we suggest trying at least the above values in the preliminary runs.

8We have additionally examined values < 0.01 or > 10 in our experiments, but the
results make no statistically significant improvements across the cases.

When previously measured data is available, the data-driven
method for identifying the weight becomes possible. We have found
that, for all the MMO instances and cases under the full-scale ex-
periments, the best weight value concluded based on the data is
the same as that identified by measuring the system, but the for-
mer can terminate several orders of magnitude faster. As shown in
Figure 7, when examining the weight using all data collected from
the previous experiments, we see that the resulted best weights are
generally consistent with those identified by physically profiling
the systems (as in Section 5.3). For the few cases where there is an
inconsistency, all the weights in fact perform rather similar (e.g.,
x264-O1), therefore it is safe even if the actual best one has not been
chosen. More importantly, the maximum running time is negligible
when using data — it is merely 3 seconds or less.

6.3 Threats to Validity

Threats to internal validity can be related to the search budget.
To tackle this, we have used two-hour budgets as suggested in prior
work [34]. The parameter settings follow what has been used from
the literature or tuned through preliminary runs. To mitigate bias,
we repeated 30 experiment runs under each case.

The metrics and evaluation used may pose threats to construct
validity. Since there is only a single performance concern, we con-
duct the comparison based on the gains on the target performance
objectives over the best single-objective optimizer, together with
the resources (number of measurements) required to converge to
the same result. Both of these are common metrics in software con-
figuration tuning [48]. To verify statistical significance and effect
size, we use Wilcoxon sign-rank test and𝐴12 to examine the results.

Threats to external validity can be raised from the subjects
studied. We mitigated this by using eight systems/environments
that are of different scales and performance attributes. We also com-
pared the MMO model with four state-of-the-art single-objective
counterparts for software configuration tuning. Nonetheless, we
agree that using more systems and optimizers may prove fruitful.
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7 RELATEDWORK

Broadly, optimizers for software configuration tuning can be classi-
fied into two categories: measurement-based and model-based.

Measurement-basedOptimizers: Inmeasurement-basedmeth-
ods, the optimizer is directly used to measure the configuration
on the software systems. Despite the expensiveness, the measure-
ments can accurately reflect the good or bad of a configuration.
The optimizer can be based on random search [5, 49, 66], hill climb-
ing [42, 64], single-objective genetic algorithm [4, 54] and simulated
annealing [23, 26], to name a few. Under such a single-objective
model, various tricks have been applied. For example, some extend
random search to consider a wider neighboring radius of the config-
uration structure, hence it is more likely to jump out from the local
optima [49]. Others rely on restarting from a different point, such
as in restarted hill climbing, hence increasing the chance to find
the “right” path from local optima to the global optimum [64, 69].

Our MMO model differs from all the above as it lies in a higher
level of abstraction — the optimization model — as opposed to the
level of optimization method.

Model-based Optimizers: Instead of solely using the measure-
ments of software systems, the model-based methods apply a sur-
rogate model (analytical [19, 20, 38] or machine learning based [34,
48]) to evaluate configurations, which guides the search in an opti-
mizer. The intention is to speed up the exploration of configurations
as the model evaluation is rather cheap. Yet, it has been shown that
the model accuracy and the availability of initial data can become
an issue [69]. Among others, Jamshidi and Casale [34] use Bayesian
optimization to tune software configuration, wherein the search is
guided by the Gaussian process regression trained from the data
collected. Nair et al. [48] follow a similar idea but a regression tree
model is used instead.

Since MMO lies in the level of optimization model, it is comple-
mentary to themodel-basedmethods in which theMMOwould take
the surrogate values as inputs instead of the real measurements.

General Parameter Tuning: Optimizers proposed for the pa-
rameter tuning of general algorithms can also be relevant [6, 8, 30,
51], including IRace [43], ParamILS [32], SMAC [31], GGA++ [2],
as well as their multi-objective variants, such as MO-ParamILS [7]
and SPRINT-Race [68]. To examine a few examples, ParamILS [32]
relies on iterative local search — a search procedure that may jump
out of local optima using strategies similar to that of SA and SHC-r.
Further, a key contribution is the capping strategy, which helps
to reduce the need to measure an algorithm under some problem
instances, hence saving computational resources. This is one of
the goals that we seek to achieve too. Similar to Nair et al. [48],
SMAC [31] uses Bayesian optimization but relying on a Random
Forest model, which additionally considers the performance of an
algorithms over a set of instances.

However, their work differs from ours in two aspects. Firstly, gen-
eral algorithm configuration requires to work on a set of problem
instances, each coming with different features. The software config-
uration tuning, in contrast, is often concerned with tuning software
system under a given benchmark (i.e., one instance) [18, 34, 48, 69].
Therefore, most of their designs for saving resources (such as the
capping in ParamILS) were proposed to reduce the number of in-
stances measured. Of course, it is possible to generalize the problem

to consider multiple benchmarks as the same time, yet this is outside
the scope of this paper. Secondly, none of themworks on the level of
optimization model, and therefore our MMO is still complementary
to their optimizers.

Multi-Objectivization in SBSE: Multi-objectivization, which
is the notion behind our MMO model, has been applied in other
SBSE problems [22, 47, 57, 67]. For example, to reproduce a crash
based on the crash report, one can purposely design a new auxiliary
objective, which measures howwidely a test case covers the code, to
be optimized alongside with the target crash distance [22]. A multi-
objective optimizer, e.g., NSGA-II, is directly used thereafter. A
similar case can be found also for the code refactoring problem [47].
However, during the tuning process, such a model, i.e., PMO in
this paper, could waste a significant amount of the resources in
optimizing the auxiliary objective, which is of no interest. This is
a particularly unwelcome issue for software configuration tuning
where the measurement is expensive. As we have shown in Sec-
tion 5, PMO performs even worse than the classic single-objective
model in most of the cases.

8 CONCLUSION AND FUTUREWORK

This paper tackles the local optimum issue in software configura-
tion tuning from a different perspective — multi-objectivizing the
single objective optimization scenario. We do this by proposing a
meta multi-objective model (MMO), at the level of optimization
model (external part), as opposed to existing work that focuses on
developing an effective single-objective optimizer (internal part).
We compare MMO with four state-of-the-art single-objective op-
timizers and the plain multi-objectivization model over various
scenarios. The results reveal that the MMO model:

• can generally be more effective in overcoming local optima;
• and do so by consuming less resources in most cases;
• can be sensitive to the weight, but there exist some com-
monly best values.

The idea of MMO is essentially to rotate the original space of tar-
get and auxiliary objectives hence that solutions with good target
objective value and various auxiliary objective values incompa-
rable. In this geometrical transformation, the weight parameter
determines how far in terms of the auxiliary objective solutions are
incomparable, relative to the target objective. A comparison with
methods of the similar idea (e.g., select solutions with good target
objective and diverse auxiliary objective values) can be beneficial
as it can help answer an underlying question — can maintain the di-
versity of the auxiliary objective help optimization of the target one.
This is one of our subsequent studies. Another direction of future
work is to add more auxiliary objective. In this regard, how to do
the transformation in the 3D space is the key. On top of the above,
an adaptive weight adjustment approach for the MMO model, as
suggested by the findings from RQ3, is certainly more desirable,
which is worth investigating in depth.
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