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An Ennola duality for subgroups of groups of Lie type

David A. Craven, University of Birmingham,
d.a.craven@bham.ac.uk

28th October, 2021

Abstract

We develop a theory of Ennola duality for subgroups of finite groups of Lie type, relating subgroups
of twisted and untwisted groups of the same type. Roughly speaking, one finds that subgroups H of
GUd(q) correspond to subgroups of GLd(−q), where −q is interpreted modulo |H|. Analogous results
for types other than A are established, including for exceptional types where the maximal subgroups are
known, although the result for type D is still conjectural. Let M denote the Gram matrix of a non-zero
orthogonal form for a real, irreducible representation of a finite group, and consider α =

√
det(M). If

the representation has twice odd dimension, we conjecture that α lies in some cyclotomic field. This does
not hold for representations of dimension a multiple of 4, with a specific example of the Janko group
J1 in dimension 56 given. (This tallies with Ennola duality for representations, where type D2n has no
Ennola duality with 2D2n.)

1 Introduction

In [4], Ennola described a conjectural way to extract the character table of GUn(q) from that of GLn(q),
broadly by replacing ‘q’ by ‘−q’ and making some other alterations. (This was proved in [6].) Ennola duality
later became the principle that representation-theoretic information about twisted groups of Lie type can be
inferred from the untwisted groups via the same method (although this is not the case for type Dn for even
n). For example, the set of unipotent degrees of a group of Lie type satisfy this duality, with Ennola duality
inducing a self-bijection if there is no corresponding twisted group.

The purpose of this note is to record a phenomenon that appears not to have been noticed before in the
literature, that Ennola duality extends to subgroups. What we mean by this is that one can extract from
the list of maximal subgroups of SLn(q) (most of) the maximal subgroups of SUn(q), again by replacing ‘q’
by ‘−q’.

The precise statement of Ennola duality for type A is given in Theorem 3.1 below, but this gives a flavour
for the statement.

Theorem 1.1. Let H be a finite group and let χ be an irreducible character for H of degree d. Suppose that
q and q′ are prime powers such that q′ ≡ −q mod |H|, and q and |H| are coprime. If H embeds in GLd(q)
with (Brauer) character χ then H embeds in GUd(q′) with (Brauer) character χ.

Theorem 3.1 is precise about the integers that can be used instead of |H| for the congruences, and can
be used with tables such as those in [1] to immediately read off subgroups of GUd(q). (If χ is real-valued
and H embeds in GLd(q), then it embeds in GLd(q′), GUd(q) and GUd(q′) with the same character, so the
content is for χ not real-valued.)
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A similar statement, Proposition 3.2, holds for types B and C, but here H always embeds in G(q′)
whenever it embeds in G(q), with the same hypotheses. For now, type D remains somewhat more difficult
to work with, and a form of Ennola duality holds, at least for integral representations (Theorem 3.7). For
type D28 we give an example to show that there is no number m for which the embedding of the Janko
group J1 into GO+

56(q) depends only on the congruence of q modulo m. However, for Dn with n odd, we
have found no similar examples, and if Conjecture 3.9 is true there are no such example. For Dn and n odd,
if Conjecture 3.9 holds (and it does for all integral representations) we simply replace q by −q modulo some
integer to switch between GO+ and GO−, as with other types.

Notice that this example of J1 in dimension 56 also throws up another point. It is known that the
p-modular reduction can interact badly with algebraic conjugacy when p divides the order of a finite group.
This example shows similar behaviour even when p is prime to the order, and in particular means that the
type of symmetric bilinear form over Fq cannot, in a strict sense, be deduced from the character table of a
finite group.

There is also no complete proof for exceptional groups. All known subgroups of exceptional groups satisfy
the same Ennola-like behaviour, but the maximal subgroups of E8(q) are not yet known, and for E7(q) the
conjectured list in [3] (see Table 4.4 below) is not known to be complete. We describe the version of Ennola
duality that exists for these groups in Section 4. Again, this boils down to replacing q in the tables in Section
4 with −q to obtain the table of the twisted version if there is one, or the same table again if there is not.

Although it does not appear that the ideas in this work have appeared in this generality before, the work
on classifying low-dimensional subgroups of classical groups, particularly orthogonal groups, in [1, 9, 10],
is distinctly reminiscent of it (if independent, as the author only learned of their ideas after writing this).
For example [1, Lemma 4.9.39], which was mentioned (possibly for the first time in the literature) in [11],
is given a more general treatment in Proposition 3.4. A posteriori, one might see this article as offering a
general framework for the results in those papers.

In the next section we collect some preliminary definitions and results, and discuss fields of values for
characters and embedding into linear groups over finite fields. The section after considers classical groups,
and Section 4 deals with exceptional groups.

We have written this paper to minimize the use of class field theory, although for groups of type D
it seems difficult to prove anything meaningful without at least basic results from it. This means a few
preliminary lemmas are included that are standard in class field theory, but we feel that making the paper
as self-contained as possible is worth it.

The author would like to thank Gunter Malle for reading through a preliminary version of the manuscript,
and particularly Elie Studnia for providing a proof of Proposition 3.6(i).

This work was partially supported by a Royal Society University Research Fellowship.

2 Preliminaries, Brauer characters and fields of values

In this article, H denotes a finite group and χ is an irreducible ordinary character of H. Write d = χ(1).
Without loss of generality in this article, we may assume that χ is faithful. If p - |H| is a prime, then
the reduction modulo p of χ is always an irreducible Brauer character, and we will often conflate χ with
this Brauer character, and say that a representation in characteristic p has character χ, when we mean has
character the reduction modulo p of χ. (We would never do this for p | |H|.) Whenever p is a prime, let
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k denote an algebraically closed field of characteristic p. Note that, in this article, for simplicity we will
not consider representations over fields of characteristic dividing |H|, but the results hold whenever the
reduction remains irreducible, at least for p odd. (Orthogonal groups in characteristic 2 would need to be
treated separately.) For q a power of p, let Fq denote the field automorphism of k given by x 7→ xq. Given p,
let H̄ denote a copy of H in GLd(k) with Brauer character χ, and note that H̄ is necessarily an absolutely
irreducible subgroup of GLd(q) whenever H̄ is a subgroup of it.

The meanings of the terms Spd(q), GO+
d (q), and so on, are the full symmetry group of the appropriate

form in GLd(q). The exponent of a finite group is the lowest common multiple of all orders of all elements
of it. Let ζn = e2πi/n be a primitive nth root of unity in C.

The first lemma is well known, and gives the minimal field of definition for a finite group embedding in
characteristic p 6= 0. (The case for characteristic 0 has no easy answer.) See, for example, [5, Section 5].

Lemma 2.1. Let p - |H| be a prime. The subgroup H̄ of GLd(k) is conjugate to a subgroup of GLd(q) if and
only if the traces (evaluated in k) of all elements of H̄ lie in Fq. Thus H embeds in GLd(q) with character
χ if and only if, under a map sending a primitive |H|th root of unity over C to one over k, the Brauer
character values of χ lie in Fq.

In particular, H̄ is conjugate to a subgroup of GLd(q) for q such that the exponent of H divides q − 1.

The second statement follows from the first since the trace of a matrix is the sum of its eigenvalues, and
the eigenvalues are roots of unity of order dividing the exponent of H.

There is a subtlety with this lemma, that is not often explicitly mentioned. Let p = 5 and suppose
that A is a 7-dimensional matrix with eigenvalues ω six times, and ω2 once, where ω3 = 1. The trace, −1,
certainly lies in F5, but there is no matrix in GL7(5) with those eigenvalues. So the claim is certainly only
true for irreducible Brauer characters, and tells us something about the eigenvalues of semisimple elements
in irreducible subgroups of GLd(k), where k has characteristic p.

Lemma 2.2. Let A be a matrix in GLd(k). The multiset of eigenvalues of A is invariant under the Frobenius
endomorphism Fq if and only if A is conjugate to an element of GLd(q).

For a proof, a semisimple conjugacy class of GLd(k) is determined by its multiset of eigenvalues. The
Frobenius endomorphism permutes the classes, and this action is determined by its action on the eigenvalues.
Thus a conjugacy class is stabilized by the Frobenius endomorphism if and only if the multiset of eigenvalues
is. Now apply, for example, [7, Theorem 26.7] to obtain a semisimple element of GLd(k) fixed by the
Frobenius endomorphism whenever the class is stabilized by it.

So Lemma 2.1 tells us that, for a simple kH-moduleM , M is realizable over Fq if and only if the multiset
of eigenvalues of each element of H on M is invariant under Fq. The same will therefore be true of their lifts
to C when performing the Brauer character construction, that they are invariant under ζn 7→ ζqn, where ζn
is an appropriate root of unity and the map is on the field Q(ζn).

We now give a fundamental definition for this article.

Definition 2.3. For a given H and χ, a positive integer n is a defining modulus if, whenever q is a prime
power congruent to 1 modulo n (and prime to |H|), the corresponding subgroup H̄ is conjugate to a subgroup
of GLd(q).

This is closely related to the concept of a defining modulus in class field theory: the defining modulus of
a character is the defining modulus of the smallest subfield of C containing its character values.
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It is not obvious from this definition, but defining moduli appear in all tables of maximal subgroups of
classical groups. The next lemma teases out the first relevance for the problem.

Lemma 2.4. An integer n is a defining modulus for H and χ if and only if the values of χ lie in the nth
cyclotomic field Q(ζn)

Proof. Let k be an algebraically closed field of characteristic p | q, and let n′ = lcm(|H|, n). Abbreviate ζn
by ζ and ζn′ by ξ.

Suppose first that the character values of χ lie in Q(ζ). Let q (prime to |H|) be a prime power congruent
to 1 modulo n. In order to show that H̄ is conjugate to a subgroup of GLd(q), it suffices (by the discussion
after Lemma 2.2) to show that the Brauer character values of χ are fixed under map ξ 7→ ξq = ξ. This is
obviously true, and so the result follows.

For the converse, suppose that n is a defining modulus. Since χ(x) lies in Q(ξ) for all x ∈ H, it suffices
to show that χ(x) is centralized by all elements of Gal(Q(ξ)/Q(ζ)). Viewed as maps in Gal(Q(ξ)/Q), these
are given by ξ 7→ ξa for a ≡ 1 mod n. Let q (prime to |H|) be a prime power congruent to a modulo n′,
and note that q ≡ 1 mod n. Thus by assumption H̄ is conjugate to a subgroup of GLd(q), so the lifts of the
eigenvalues of elements of H̄ to Q(ξ) are invariant under the map ξ 7→ ξq = ξa. But this is what is required,
and the other direction holds.

This alternative interpretation of defining moduli has the following easy consequence.

Corollary 2.5. All defining moduli are multiples of the smallest defining modulus, called the conductor.
Furthermore, a positive integer m is a defining modulus if and only if gcd(m, |H|) is.

This is proved simply by invoking Lemma 2.4 and taking the intersections of the appropriate cyclotomic
fields. Like defining moduli, the name ‘conductor’ comes from class field theory.

We now introduce defining residues, which explains the choice of this definition. Given H and χ, and a
defining modulus n, let In denote the set of all i between 1 and n − 1, and prime to n, such that the field
isomorphism on Q(ζn) induced by ζn 7→ ζin fixes each value of χ. The set In is called the set of defining
residues. Notice that the set of defining residues is a subgroup of the unit group Z×n . We often abuse
terminology and say that an integer a lies in In if a mod n lies in In. Particularly, we do this with negative
numbers, so −i lies in In for 1 6 i 6 n− 1 to mean n− i ∈ In.

Theorem 2.6. For a fixed H and χ, let n be a defining modulus dividing |H|. For all prime powers q (prime
to |H|), H̄ is conjugate to a subgroup of GLd(q) if and only if the congruence of q modulo n appears in In. In
particular, if q′ (prime to |H|) is another prime power and q ≡ q′ mod n, then one may embed H in GLd(q)
with character χ if and only if one can do the same with GLd(q′).

Proof. This proof has the same ideas as that of Lemma 2.4, so we are a little briefer this time. The subgroup
H̄ is conjugate to a subgroup of GLd(q) if and only if the eigenvalues of elements of H̄, lifted to Q(ζn), are
invariant under the map ζn 7→ ζqn. This statement is equivalent to the statement that q mod n lies in In

by definition of In, and thus q mod n lies in In if and only if H̄ is conjugate to a subgroup of GLd(q), as
claimed.

Finally, we need a well-known result on when H̄, which is already conjugated to lie in GLd(q), also lies
in another classical group. Basically, the answer is ‘whenever they stabilize the appropriate form’, so there
is no need to worry that we might need to increase q to find H̄ inside the classical group. Note that, since
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groups of odd order have no non-trivial real-valued characters, we may assume that 2 | |H| when talking
about real-valued characters, so q is always odd.

Lemma 2.7. Suppose that χ is real-valued and d > 1, and hence q is odd.

(i) If d is odd then H̄ is conjugate to a subgroup of GOd(q) if and only if it is conjugate to a subgroup of
GLd(q).

(ii) If d is even and χ has indicator −1, then H̄ is conjugate to a subgroup of Spd(q) if and only if it is
conjugate to a subgroup of GLd(q).

(iii) If d is even and χ has indicator +1, H̄ is conjugate to a subgroup of exactly one of GO+
d (q) and GO−d (q)

via χ if and only if it is conjugate to a subgroup of GLd(q).

Proof. Since the exterior or symmetric square of a simple module has a unique trivial submodule over any
field, any module with character H stabilizes a unique bilinear form (quadratic form for p = 2). This is
enough to prove existence of H in symplectic and orthogonal groups.

In the third case, the uniqueness of the form means that H cannot lie in both plus and minus type
orthogonal groups.

There is a nice way to see whether a character is real-valued from the set In.

Lemma 2.8. Let n be a defining modulus and In the defining residues. The following are equivalent:

(i) χ is real-valued;

(ii) −1 lies in In;

(iii) In is closed under taking negatives, i.e., −i ∈ In whenever i ∈ In.

Proof. The equivalence of the second and third statements follows immediately from the fact that In a
group under multiplication. Also, −1 lies in In if and only if the map ζn 7→ ζ−1

n (i.e., complex conjugation)
stabilizes χ. But this is true if and only if χ is real-valued.

3 Ennola duality for classical groups

Our first goal is to state and prove Ennola duality for subgroups of GL and GU. It is not quite as simple
as replacing q by −q, but it is close. If χ is real-valued then H embeds in a symplectic or orthogonal group,
hence embeds in both GLd(q) and GUd(q) whenever it embeds in one of them. Thus we are most interested
in the case where χ is not real-valued, or equivalently that there exists i ∈ In such that −i 6∈ In by Lemma
2.8.

Theorem 3.1. Let H be a finite group and let χ be a faithful irreducible character of H. Let n be a defining
modulus and In the set of defining residues. For a power q of a prime p not dividing |H|, the group H embeds
in GUd(q) via χ if and only if −q mod n lies in In.

Proof. By the remark preceding the theorem, we may assume that χ is no real-valued, i.e., −1 6∈ In. By
assumption the eigenvalues of x ∈ H̄ are permuted by the map ζn 7→ ζin, but not by the map ζn 7→ ζ−in , the
composition of the former map and ζn 7→ ζ−1

n . Hence ζn 7→ ζ−in maps χ to χ̄, the complex conjugate, of χ,
and χ̄ 6= χ. Since the graph automorphism acts as inverse transpose, for q ≡ −i mod n, the composition σ
of Fq with the graph automorphism stabilizes χ.
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This is enough to prove that H̄ is conjugate to a subgroup of GUd(q). To see this, note first that, since H̄
is unique up to conjugacy subject to having character χ, σ stabilizes the GLd(k)-conjugacy class containing
H̄, so normalizes some member of it by [7, Theorem 21.11]. Then we apply [1, Lemma 1.8.6], which states
that σ must therefore act as some element of GLd(k) that normalizes (a conjugate of) H̄. Then we apply [7,
Corollary 21.8], which implies that σ then centralizes some conjugate of H̄, and thus some conjugate of H̄
lies inside the fixed points of σ, namely GUd(q).

To see the converse, if both Fq and the product with the graph automorphism centralize (a conjugate
of) H then the graph automorphism acts as an element of the normalizer in GLd of H. Such an element
stabilizes χ, but the graph automorphism maps χ to its complex conjugate. Thus χ is real-valued and so
−1 ∈ In, a contradiction.

We now move on to the other classical groups. Types B and C are easy, since there is no twisted type to
be concerned about.

Proposition 3.2. Given H and χ, suppose that χ is real-valued. Furthermore, suppose that χ has indicator
−1, or χ(1) is odd. If n is a defining modulus and In the defining residues, then i ∈ In if and only if −i ∈ In.

Consequently, if q ≡ −q′ mod n, and q and q′ are prime powers, H embeds in Spd(q) if and only if H
embeds in Spd(q′) (via χ), and similarly for GOd(q) and GOd(q′).

The proof is immediate, from Lemma 2.8.

3.1 Groups of type D

Suppose that χ has Frobenius–Schur indicator +1, so that χ is the character of a real representation. Let n
be a defining modulus and q mod n ∈ In. Then H̄ is conjugate to a subgroup of GOε

d(q) for some ε = ±1
by Lemma 2.7, but deciding which is a significant issue. It comes down to knowing the determinant of the
matrix of scalar products for the bilinear form stabilized by H̄.

Definition 3.3. Given H, and χ with indicator +1, a defining modulus m is a discriminating modulus if
the set Im can be partitioned into two disjoint subsets I+

m ∪ I−m, such that H̄ is conjugate to a subgroup of
GO+

d (q) if and only if q mod m lies in I+
m. The sets I+

m and I−m are the positive and negative discriminating
residues.

If χ is afforded by a real representation then not all defining moduli are discriminating moduli. This can
be seen most obviously with representations over Z, where 1 is a defining modulus (assuming q is odd), but
certainly there are subgroups of GO−d (q) that come from Z-representations, such as the alternating group
A7, which lies in GO−6 (q) for q ≡ 3, 5, 6 mod 7. As with defining moduli, the set of discriminating moduli is
of the form mN for some minimal modulus. However, it is not clear that discriminating moduli always exist.
To examine this problem we need a bit more background.

First, changing basis for the bilinear form multiplies the determinant by a square, so we can only determine
the determinant up to a square. For example, if the determinant lies in Z, then it can be given by a square-
free integer m. A representative of the determinant in F/F 2 (where the matrix is defined over F ) is called
the discriminant of the form. For fields Fq, the set |Fq/F2

q| has order 2, so the determinant is either a square
or a non-square.

Over Q, the minimal square-free integer m must be odd: the reduction modulo 2 of the matrix M of the
form must be the matrix of a symmetric, hence skew-symmetric bilinear form, and so modulo the radical it
has even dimension. Thus an even number of eigenvalues must be even, and 4 - m. Also, m is positive: by
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extending the field to R, we may change basis so that the matrix of the form is diagonal with entries ±1.
The subspace spanned by basis elements with norm 1 yields an invariant subspace, as does that with norm
−1. Thus one of these subspaces is zero as the subgroup H̄ of GLd(k) is irreducible. But the dimension d is
even, so the determinant is always positive. The statement that all eigenvalues of M must be positive (or
all must be negative) holds for any H and χ, not just Z-representations.

One can also see that if m is divisible by a prime r then either all eigenvalues of the matrix are divisible
by r, in which case we can multiply by a scalar to remove them, or the reduction modulo r of the form
has a non-zero radical. Thus, in particular, the reduction modulo r of χ cannot be an irreducible Brauer
character. This first proves that m | |H|, and second it even excludes certain primes that divide |H|.

We now need the discriminant of the form for the two orthogonal groups GOε
d(q). If d is divisible by

4, or d ≡ 2 mod 4 and q ≡ 1 mod 4 then the discriminant for GO+
d (q) is a square, and if d ≡ 2 mod 4 and

q ≡ 3 mod 4 then the determinant is a non-square. The discriminant for GO+
d (q) is a square in Fq if and only

if the discriminant for GO−d (q) is a non-square. Thus if H̄ is a subgroup of GLd(q) and we can determine
the discriminant for the invariant bilinear form then we know which of the two orthogonal groups H̄ embeds
into.

Ennola duality for type Dn with n odd goes through as before, at least if the discriminant over Q is an
odd positive integer. (This therefore includes the case where the representation is over Z.) Although this
proposition is later subsumed into a more general result, representations over Z are common enough for it
to be useful to have the formulae derived in the proof.

Proposition 3.4. Let H and χ be given, and suppose that χ has indicator +1, arising from a representation
over Z. Suppose that d ≡ 2 mod 4, and that the discriminant of the form is an odd positive integer m. Let
n be a multiple of 4m such that n is a defining modulus for χ.

(i) The number n is a discriminating modulus for H and χ.

(ii) The set I+
n is a subgroup of index 2 in In and I−n = {−i : i ∈ I+

n }.

Proof. Let q be a power of a prime p - |H|. In order to determine the discriminant of the form for H̄, which
is the reduction modulo p of m, it suffices to check whether m has a square root in Fq. If q is an even power
of p, this is always the case. If q is an odd power of p, then this is equivalent to whether m has a square
root in Fp, which is given by the Legendre symbol (m/p). Note we will also need to take into account the
discriminant for the standard form for GOε

d(q), so we need the congruence modulo 4 as well, which is the
Legendre symbol (−1/p). Thus H̄ is conjugate to a subgroup of GO+

d (q) if and only if q mod m lies in Im,
and either q is a square or (−m/p) = 1.

We consider the second condition. Writing m = m1 . . .mr with each mi prime, by quadratic reciprocity,(
−m
p

)
= (−1)(p−1)/2

∏
i∈I

(
mi

p

)
= (−1)(p−1)/2(−1)(m−1)(p−1)/4

∏
i∈I

(
p

mi

)
= (−1)(m+1)(p−1)/4

∏
i∈I

(
p

mi

)
.

(3.1)
If m ≡ 3 mod 4 then this reduces to

∏
(p/mi), and whether this is 1 depends only on the congruence of p

modulo
∏
mi = m. Furthermore, this set of congruences is a subgroup of index 2 in Z/mZ×, and contains

all squares in Z/mZ× (so q mod m lies in it whenever q is a square). Also, p mod m lies in this set if and
only if pi lies in it for any odd i. Since n is a multiple of m, the same holds modulo n as well. Thus I+

n is
well defined, and has index 2 in In.

Finally, if p ≡ −1 mod n then each (1/mi) is 1 if mi ≡ 1 mod 4, and −1 if mi ≡ 3 mod 4. Thus −1 does
not lie in I+

n since m ≡ 3 mod 4, and the result holds.
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Thus we assume that m ≡ 1 mod 4, so the formula above reduces to (−1)(p−1)/2∏
i(p/mi). Now whether

this is 1 depends only on the congruence of p modulo 4m. Again, this set is a subgroup of index 2 in Z/mZ×,
contains all squares, and p mod 4m lies in the set if and only if pi mod m lies in it for any odd i. Again, if
p ≡ −1 mod 4m then p ≡ 3 mod 4, so the sign at the front is −1, and the product evaluates to −1. Thus
−1 6∈ I+

n . This completes the proof.

If 4 | d then the same proof works, but we do not obtain that −1 lies in I−n , and so I+
n has index at most

2 in In. (An example where I+
n = In is Ω+

8 (2), which lies in Ω+
8 (p) for all primes, and not in Ω−8 (p).) The

formula for whether i ∈ In lies in I+
n now becomes(

m

p

)
=
∏
i∈I

(
mi

p

)
= (−1)(m−1)(p−1)/4

∏
i∈I

(
p

mi

)
. (3.2)

We see in the proof of Proposition 3.4 that the important thing was that the square root of the discriminant
lies in Fq if and only if q lies in some set modulo some integer. This motivates the following definition.

Definition 3.5. Given H and ρ, let α denote the determinant of a scalar product matrix of the form
stabilized by ρ. We say that ρ is root cyclotomic if the square root of α lies in some cyclotomic field, i.e.,
Q(
√
α)/Q is an abelian extension.

If ρ is root cyclotomic then we can prove a version of Ennola duality for H even when ρ is not over the
integers. The proof uses class field theory, which appears not to be avoidable at this point.

First, we need to extend results from class field theory about splitting of polynomials from fields Fp to
fields Fq, which of course is of interest to us here. This does not appear to be a standard part of class field
theory, so we have to do it ourselves here.

Proposition 3.6. Let α be an element of a cyclotomic field. Let f be its minimal polynomial over Z, and
m be minimal such that α lies in the mth cyclotomic field. Suppose that the leading coefficient of f is only
divisible by primes dividing m. Suppose that p and p′ are primes not dividing m, and let q and q′ be powers
of p and p′ respectively.

(i) If q ≡ q′ mod m, then the polynomial f splits over Fq if and only if it splits over Fq′ .

(ii) The polynomial f splits over Fq if and only if its has a root in Fq.

Proof. Let m′ = lcm(q − 1,m), and L be the m′th cyclotomic field. Let K = Q(α). Let p be some prime
ideal of L above p, let Op be the local ring and k the residue field. Write

f(x) = a

n∏
i=1

(x− xi),

where xi ∈ Op ∩K and a lies in Z×(p).
The polynomial f splits over Fq if and only if the image of each of the xi in k lies in Fq, and this is true if

and only if, for each i, the images of xi and xqi in k are the same. Letting q = pr, let σ denote the Frobenius
at p, so that f splits over Fq if and only if the images of xi and σr(xi) are the same in k.

Note that σr(xi) is some root of f , hence σr(xi) = xj for some j. Since f is separable modulo p by
assumption on p (as the only ramified primes divide m), the images of the xi in k are all distinct. Thus f
splits in Fq if and only if σr fixes all of the xi, so it lies in Gal(L/K).
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But σr lies in Gal(L/Q), and is dependent only on its action on ζm′ = e2πi/m′ , and of course σr(ζm′) = ζqm′ ,
which is in turn only dependent on the congruence of q modulo m′. By the Chinese remainder theorem, this
depends only on q modulo m, i.e., whether f splits in Fq depends only on the congruence of q modulo m.

This completes the proof of (i).

For the proof of (ii), note that, since K/Q is an abelian extension, the Galois group Gal(K/Q) acts
regularly on the roots. In particular, all elements of Gal(K/Q) act fixed-point freely on the roots of f . Since
reduction modulo p yields an embedding of the Galois group over Fp into the Galois group over Q, this shows
that the Galois group over Fp acts semi-regularly. In particular, if f has a root over a particular finite field
it splits over it.

With this, we are able to prove Ennola duality for type Dn with n odd, and that something more
complicated happens for n even (as is the case for representations).

Theorem 3.7. Given H and χ, assume that χ has indicator +1. Let ρ be a representation affording χ, and
suppose that ρ is root cyclotomic.

(i) There exist discriminating moduli for H and χ.

(ii) If m is a discriminating modulus then I+
m is a subgroup of index at most 2 in Im.

(iii) If 4 | d then −1 ∈ I+
m, and so I+

m is closed under taking negatives. If d ≡ 2 mod 4 then −1 ∈ I−m, and
thus I−m = {−i : i ∈ I+

m}.

Proof. By [8] (proved independently by Guralnick–Navarro), ρ can be chosen with image in Q(ζn) ∩ R for
some integer n. Let α be the determinant for the matrix of scalar products for a bilinear form associated to
ρ. Since we are assuming that ρ is root cyclotomic,

√
α lies in some cyclotomic field, which we can assume

is Q(ζn) by increasing n if necessary. We see that n is a defining modulus for H and χ.
Let f be the minimal polynomial for

√
α, and apply Proposition 3.6. This means that, for q a power

of p - |H|, whether f splits over Fq depends only on q mod n. Thus α being a square in Fq depends only
on q mod n. If n is not already a multiple of 4, and d ≡ 2 mod 4, multiply n by 4 so as to account for the
change in discriminant of the form of GO+

d (q) according to q mod 4. Since n is already a defining modulus
for H and χ, it must now be a discriminating modulus as well.

Let J1 denote the subset of In that consists of all elements i such that ζn 7→ ζin fixes all values of χ and
fixes ±

√
α. Thus J1 is a subgroup of index 2 in In, and J1 contains −1. To see this, notice that α is real

(since the matrix is symmetric), and it is positive, as we noted at the start of this section. Thus ±
√
α is

a pair of real numbers, which are left invariant under complex conjugation, i.e., the field automorphism on
Q(ζn) such that ζn 7→ ζ−1

n .
If 4 | d then J1 = I+

n and the theorem is proved. Thus we assume that d ≡ 2 mod 4, and so we need to
work further. Let J2 consist of those elements of In congruent to 1 modulo 4, another subgroup of index 2,
and not containing −1, so J1 6= J2. Since the determinant of the form for GO+

d (q) is a square for q ≡ 1 mod 4
and a non-square for q ≡ 3 mod 4, I+

n consists of the union of J1∩J2 and In \ (J1∪J2). Since J1 and J2 both
have index 2, I+

n is also a subgroup of index 2 (it is the other overgroup of J1 ∩J2) and does not contain −1.
We have therefore proved the second part of the theorem.

Unfortunately, not all H and χ are root cyclotomic, but counterexamples appear rare in low dimension.
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Example 3.8. Let H be the Janko sporadic group J1 and χ be one of the two irreducible characters of
degree 56. Then Q(χ) = Q(

√
5) = K. Choosing a representation with image in GL56(K), we find that the

determinant α is difficult to write down except with a computer, but certainly the extension Q(
√
α)/Q is

not Galois. To see this, note that if χ′ is the other character of degree 56, and letting α′ correspond to χ′, if
α = a+ b

√
5 then α′ = a− b

√
5. If Q(

√
α)/Q were Galois then α would have a square root in Fp if and only

if α′ does, by Proposition 3.6. However, if p = 101, then one of the 56-dimensional representations of H is
conjugate to a subgroup of GO+

56(101) and the other is conjugate to a subgroup of GO−56(101). The Galois
group of Q(

√
α,
√
α′)/Q is dihedral of order 8, so not abelian either.

For some primes there are two classes of subgroups J1 in GO+
56(p), in some there are two in GO−56(p),

and for some there is one class in each.

Thus there is in general no congruence for embedding simple groups for type Dn with n even, in contrast
to the tables for small dimensions in [1, 9, 10]. Indeed, dimension 56 appears to be the smallest dimension
for which there is a representation that is not root cyclotomic, so there is no modulus by which we can
distinguish the discriminant of the bilinear form.

However, for Dn for n odd, all representations for PSL2(r) for r 6 31, and other simple groups of
dimension d up to 250 with d ≡ 2 mod 4, are root cyclotomic. This leads to the following conjecture.

Conjecture 3.9. If d ≡ 2 mod 4 and χ has indicator +1, if ρ affords χ then ρ is root cyclotomic.

This conjecture holds if and only if Ennola duality holds for twice-odd dimensional orthogonal groups,
which is expected.

For all type D groups, even over Z so they are root cyclotomic, the modulus involved cannot obviously
be read off from the character table, so it becomes another invariant of real representations that needs to be
calculated. For example, for HS and McL in dimension 22, the discriminants are 5 and 15 respectively.1

4 Ennola duality for exceptional groups

Before we start this section, we underscore here that we will only be considering subgroups H that occur in
algebraic groups in characteristic p, where p - |H|.

For exceptional groups, it is first not clear that there is such an analogue of the defining modulus. We
will have to use the case-by-case lists of maximal subgroups of the finite exceptional groups to proceed. We
also must consider what the analogue of an irreducible representation is, which we used when deciding which
subgroups to embed into GLd.

We will only consider ‘Lie primitive’ subgroups. Recall that a subgroup of a reductive algebraic group is
irreducible if it does not lie in a proper parabolic subgroup, and is Lie primitive if it does not lie in a proper,
positive-dimensional subgroup. Understanding Lie primitive subgroups, plus induction on the dimension
of the reductive group, generally allows us to understand all irreducible subgroups. For our purposes of
understanding maximal subgroups of finite groups, we restrict our attention to Lie primitive subgroups.

If the ambient algebraic group G is of type G2 or F4 then everything works, defining moduli exist, and
the set In is closed under taking negatives, just as with types B and C. See Table 4.1 for Lie primitive
subgroups of G2(q), taken from [1, Table 8.41], and Table 4.2 for Lie primitive subgroups of F4(q), taken
from [2].

1One might be tempted to look at higher Frobenius–Schur indicators: for HS and McL they are the same for r = 3, 5, 11,
and are 0, 1 and 4 respectively. The two groups differ for r = 7, with values 3 and 4.
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Subgroup q

23 · PSL3(2) All q
PSL2(13) q ≡ ±1,±3,±4 mod 13
PSL2(8) q ≡ ±1 mod 9

PSU3(3).2 All q

Table 4.1: Lie primitive subgroups H of G2(q), gcd(q, |H|) = 1.

Subgroup q

33 · SL3(3) All q
PSL2(8) q ≡ ±1 mod 7

PGL2(13) q ≡ ±1 mod 7
PSL2(17) q ≡ ±1,±2,±4,±8 mod 17

PSL2(25).2 All q
PSL2(27) q ≡ ±1 mod 7

Table 4.2: Lie primitive subgroups H of F4(q), gcd(q, |H|) = 1.

For E6(q) and 2E6(q), if one takes the simple group, or the triple cover, then there is no longer a defining
modulus for the subgroup PSL2(8).3. This is a subgroup of the algebraic group, but whether it lies in the
simple group depends not only on the congruence modulo 7 (PSL2(8) embeds in E6(q) if q ≡ 1, 2, 4 mod 7),
but on the presence of a cube root of

√
−7 + 1 in Fq. Formally (see [2, Theorem 6.8], the group PSL2(8).3

embeds in the finite simple group E6(q) if and only if q ≡ 2 mod 3, or q is a cube, or
√
−7+1 has a cube root

in Fq. This latter condition cannot be expressed as a simple congruence modulo some number (to see this
notice that the root does not lie in a cyclotomic field), so for simply connected groups, and almost simple
subgroups, one has no defining modulus in general.

If, however, one uses adjoint versions of E6(q), so E6(q) with any diagonal automorphisms added on,
then there are defining moduli, and the Lie primitive subgroups for E6(q) and 2E6(q) can be given in one
table. The Lie primitive subgroups of εE6(q) are in Table 4.3: notice that we can switch between the two
groups simply by replacing q by −q.

We also include a table of the known Lie primitive subgroups of E7(q), a list from [3] that is expected

Subgroup q

33+3 · SL3(3) 3 | (q − ε1)
PSL2(8).3 εq ≡ 1, 2, 4 mod 7
PSL2(11) q ≡ ±1 mod 5, εq ≡ 1, 3, 4, 5, 9 mod 11
PSL2(13) εq ≡ 3, 5, 6 mod 7, q ≡ ±2,±5,±6 mod 13
PSL2(19) q ≡ ±1 mod 5, εq ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19

PGL2(13) (nov) εq ≡ 1, 2, 4 mod 7, q ≡ ±1,±3,±4 mod 13

Table 4.3: Lie primitive subgroups H of the adjoint group of type εE6(q) for ε = ±, gcd(q, |H|) = 1. The
novelty Lie primitive subgroup occurs for an almost simple group inducing a graph automorphism on εE6(q)
(its derived subgroup is contained in G2).
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Subgroup q

PSU3(3) q ≡ ±1 mod 8
PSU3(8).6 All q
PSL2(37) q ≡ ±1,±3,±4,±7,±9,±10,±11,±12,±16 mod 37
PSL2(29) q ≡ ±1 mod 5, q ≡ ±1,±4,±5,±6,±7,±9,±13 mod 29
PSL2(27) q ≡ ±1 mod 13
PSL2(19) q ≡ ±1 mod 5, q19 ≡ q3 mod 2
PGL2(19) q ≡ ±1 mod 5

Table 4.4: Known Lie primitive subgroups H of the adjoint group of type E7(q), gcd(q, |H|) = 1. Here, q19

is the order of q modulo 19 and q3 is the order of q modulo 3.

to be complete. It displays the same behaviour, that replacing q by −q leaves the table invariant. We have
again used the adjoint version: PSU3(8).6 and PGL2(19) lie in the simple group (if they are in the adjoint
group) if and only if q ≡ ±1 mod 8. Note that all self-dual representations for PSU3(3) are definable over
Z, so the defining modulus is 1. However, for embedding in E7(q), we need q ≡ ±1 mod 8.
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