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A New Maximal Subgroup of E8 in Characteristic 3

David A. Craven, David I. Stewart and Adam R. Thomas

March 22, 2021

Abstract
We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type

E8 in characteristic 3. This has type F4, and was missing from previous lists of maximal subgroups
produced by Seitz and Liebeck–Seitz. We also prove a result about the finite group H = 3D4(2), that
if H embeds in E8 (in any characteristic p) and has two composition factors on the adjoint module
then p = 3 and H lies in this new maximal F4 subgroup.

1 Introduction
The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is
a cornerstone of group theory. In the course of understanding subgroups of the finite groups E8(q) in
[3], the first author ran into a configuration that should not occur according to the tables in [13].

We elicit a previously undiscovered maximal subgroup of type F4 of the algebraic group E8 over an
algebraically closed field of characteristic 3. This discovery corrects the tables in [13], and the original
source [17] on which it depends.

Theorem 1.1. Let G be a simple algebraic group of type E8 over an algebraically closed field of char-
acteristic 3. Then G contains a unique conjugacy class of simple maximal subgroups of type F4.

If X is in this class, then the restriction of the adjoint module L(E8) to X is isomorphic to LX(1000)⊕
LX(0010), where the first factor is the adjoint module for X of dimension 52 and the second is a simple
module of dimension 196 for X.

The classification from [13] states that the maximal subgroups are maximal-rank or parabolic subgroups,
or one of a short list of reductive subgroups that exist for all but a few small primes, together with G2
inside F4 for p = 7. This last case arises from a generic embedding of G2 in E6, which falls into F4
on reduction modulo the prime p = 7 only. This new E8 subgroup is therefore the only example of a
maximal subgroup that exists for a single prime, whose embedding cannot be explained using generic
phenomena.

The structure of this note is as follows. The existence and uniqueness up to conjugacy of a maximal
Lie subalgebra f4 ⊂ e8 is first established. From this we are able to write down the root elements of f4;
exponentiation gives expressions for the root groups of X in terms of the root groups of E8, providing
an explicit construction of X.

In the final section we determine various results providing extra details on this new class of maximal
subgroups. For each unipotent class in X we determine the corresponding unipotent class in E8 that
contains it, and we do the same for nilpotent orbits of the corresponding Lie algebras. We also consider
the maximal connected subgroups of X. The maximal parabolic subgroups of X will be contained in
parabolic subgroups of E8 by the Borel–Tits Theorem. There are four classes of reductive maximal
connected subgroups of X when p = 3 with types B4, A1C3, A1G2, A2A2. We show that all of these
classes are contained in other maximal connected subgroups of E8 and we specify such an overgroup.
Moreover, we determine that the first three classes are E8-irreducible but the last class is not. (A
subgroup is G-irreducible if it is not contained in any proper parabolic subgroup of G.)
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In establishing the existence of X, we prove the following extra result, of use in the project to classify
maximal subgroups of the finite exceptional groups of Lie type.

Proposition 1.2. Let H be the group 3D4(2), let p be a prime, and suppose that H embeds in the
algebraic group E8 in characteristic p. If the composition factors of the action of H on the adjoint
module L(E8) have dimensions 52 and 196, then p = 3 and H is contained in a maximal subgroup X of
type F4; furthermore, H and X stabilize the same subspaces of L(E8).

2 From the Thompson group to F4

One path to a construction of the F4 subgroup of E8 starts with the Thompson group, which contains a
copy of H ∼= 3D4(2), acting on L(E8) with composition factors of dimensions 52 and 196. In fact, every
H-invariant alternating bilinear form on the 248-dimensional module is invariant under a suitable copy
of F4 ≤ GL248(k).

We cannot quite show this without a computer. Splitting L(E8) up as the sum of 52 and 196 fragments
the space of alternating forms into six components. For five of these six we can show that the H-invariant
maps are F4-invariant, but for the sixth we cannot do so without a computer. With a computer we can
check that this sixth component is at least F4(9)-invariant, and thus every subgroup H of E8 is contained
in a copy of F4(9). But F4(9) contains elements of order 6562, and thus there is an F4 subgroup of E8
containing it, via [12, Proposition 2].

We then show that this F4 subgroup is unique up to E8-conjugacy, obtaining as a by-product that H is
unique up to E8-conjugacy.

We start with a copy J of the Thompson sporadic simple group. This has a 248-dimensional simple
module M over C, and it remains simple upon reduction modulo all primes. From [1, p.176], we see
that there are elements of order 9 with Brauer character value 5 on M . The only integers that are the
traces of semisimple elements of order 9 in E8 (on the adjoint module) are −1, 2, 8 and 29. Thus these
elements cannot be semisimple, and in particular, p | 9. Thus we see that if J embeds in the algebraic
group E8 in any characteristic p, then p = 3. It is a famous result that J does indeed embed in E8(3),
and is unique up to conjugacy.

It is well known that J contains a subgroup H isomorphic to 3D4(2). From [1, p.90] and [6, pp.251–253],
we see that in characteristic not 2, the restriction ofM to H is the direct sum of a 52-dimensional simple
module M1 and a 196-dimensional simple module M2. However, all elements of order 9 in H act on
M1 ⊕M2 with trace 2, so we cannot use the previous method to show that H cannot embed in E8 in
characteristic p 6= 2, 3 acting on L(E8) as M1 ⊕M2.

Lemma 2.1. Let p be an odd prime, let H denote the group 3D4(2), and suppose that H embeds in
the algebraic group E8 in characteristic p, acting on the adjoint module with composition factors of
dimensions 52 and 196. Then the submodule 52 carries the structure of a Lie algebra of type f4, and in
particular p = 3. Furthermore, such an f4 subalgebra of e8 does exist for p = 3.

Proof. Let M1 denote the 52-dimensional kH-submodule of the adjoint and M2 the 196-dimensional
submodule. Note that |H| = 212 · 34 · 72 · 13, so either p - |H| and we are essentially in characteristic 0,
or p = 7, 13, or p = 3.

From [4], there is a unique conjugacy class of subgroups H in F4 for any odd characteristic p, acting
irreducibly on the minimal and adjoint modules. In particular, we see from [4] that HomkH(Λ2(M1),M1)
is 1-dimensional for all odd primes p. From an ordinary character calculation, we see that

Λ2(χ52) = χ52 + χ1274,

where χi is the irreducible character of degree i. For both 7 and 13, the reduction modulo p of χ1274
is irreducible, hence the reduction modulo p is irreducible modulo p for all p > 3 (see [6, pp.252–253]).
If p = 3 then χ1274 has Brauer character constituents of degrees 52 and 1222 from [6, p.251]. Since
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HomkH(Λ2(M1),M1) = k, we see that the exterior square is uniserial, with layers of dimensions 52, 1222
and 52. Moreover,

HomkH(Λ2(M1),M2) = 0.
ThusM1 forms an H-invariant subalgebra, which must be non-zero, since e8 contains no abelian subspace
of dimension 52 by [5, Proposition 2.3]. Furthermore, asM1 is irreducible for H, the restriction of the Lie
bracket toM1 furnishes it with the structure of a semisimple Lie algebra. Since HomkH(Λ2(M1),M1) = k,
there is at most one isomorphism class of such, but as the algebraic k-group F4 does contain a subgroup
isomorphic to H, acting as χ52 on its adjoint module, it follows that M1 ∼= f4. In particular, this means
that the f4 Lie algebra must have a simple module of dimension 196, as it acts H-equivariantly on L(E8).

Such a simple module must be restricted: if not the p-closure Lp of the image L of f4 in e8 will contain a
centre [19, 2.5.8(2)]; but L has no 1-dimensional submodules on M . By Curtis’s theorem, M2 arises by
differentiation of a restricted representation for the algebraic group F4, whence p = 3, from the tables in
[14].

The embedding and subalgebra do exist for p = 3 via the Thompson group, as seen above.

We will prove that the f4-subalgebra is the Lie algebra of an F4 algebraic subgroup of E8. To do so,
we will actually prove that every H-invariant alternating product on the kH-module M = M1 ⊕M2 for
p = 3 is also F4-invariant, for the unique F4 ≤ GL52(k) containing H. To do so, we need to understand
the space

HomkH(Λ2(M),M)
of alternating products on M . Using M = M1 ⊕M2, and the formula

Λ2(A⊕B) ∼= Λ2(A)⊕ Λ2(B)⊕A⊗B

we split the space of products up into six components. The next result gives the dimensions of these
components.

Proposition 2.2. We have

HomkH(Λ2(M1),M1) = k, HomkH(Λ2(M1),M2) = 0,

HomkH(Λ2(M2),M1) = k, HomkH(Λ2(M2),M2) = k,

HomkH(M1 ⊗M2,M1) = 0, HomkH(M1 ⊗M2,M2) = k.

Proof. One may use a computer to check these with ease. Some may be checked easily by hand as well,
using the ordinary character table and the 3-decomposition matrix for H. For example, using those two
tables, M1 ⊗M2 does not possess a composition factor M1, and thus

HomkH(M1 ⊗M2,M1) = HomkH(Λ2(M1),M2) = 0.

The statement that HomkH(Λ2(M1),M1) = k appears in [4, Section 4.3.4] (where it is proved by com-
puter).

At least the existence of two of the three remaining maps is clear from the fact that H embeds in E8(3)
with representation M1 ⊕ M2. If HomkH(M1 ⊗ M2,M2) = 0 then M1 would be an ideal of the Lie
algebra, which is not possible. A character calculation shows that S2(M2) does not have a composition
factor M1, so

HomkH(Λ2(M2),M1) = HomkH(M1 ⊗M2,M2).

It is only HomkH(Λ2(M2),M2) that cannot easily be seen. Indeed, this space will cause us a problem
later on.

We now prove that five of the six Hom-spaces extend to the algebraic group X = F4, with only
HomkH(Λ2(M2),M2) missing. If one is happy to use a computer for all of this, one simply checks
that all H-invariant maps are F4(3)- and even F4(9)-invariant, and thus one does not need to prove the
next proposition.
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Proposition 2.3. Let X be an algebraic k-group of type F4. We have

HomX(Λ2(L(1000)), L(1000)) = k,

HomX(Λ2(L(1000)), L(0010)) = HomX(L(1000)⊗ L(0010), L(1000)) = 0, and
HomX(Λ2(L(0010)), L(1000)) = HomX(L(1000)⊗ L(0010), L(0010)) = k.

Proof. Note that each of these spaces must have dimension at most the dimension of the corresponding
space for H. This yields the two 0-dimensional spaces, and that the other spaces have dimension at most
1. The first statement holds because X is a non-abelian Lie algebra, and therefore the space is non-zero.

For the last statement, since S2(M2) has no composition factor isomorphic to M1, certainly S2(L(0010))
has no composition factor isomorphic to L(1000). Thus the two Hom-spaces are isomorphic, so it remains
to find a non-zero map in the latter space.

The composition factors of the kH-module M1 ⊗M2 are of dimensions

25, 196, 196, 441, 1963, 2457, 2457, 2457.

The highest-weight module L(1010), which must appear as a composition factor in L(1000) ⊗ L(0010),
has dimension 7371, and must restrict to kH to be the sum of the three (non-isomorphic) modules of
dimension 2457. The rest of the composition factors, in total, have dimension 2821, so there must be
a composition factor of dimension between 1963 and 2821. Consulting [14, Appendix A.50], we find
exactly one such module: L(0011) of dimension 2404 = 1963 + 441. The remaining kH-modules, 25, 196
and 196, must be the other composition factors for F4, because F4 has no simple modules of dimension
25 + 196, 196 + 196, or 25 + 196 + 196.

Thus the composition factors of L(1000)⊗ L(0010) have dimensions 25, 196, 196, 2404 and 7371. Since
L(0010) is the unique module to appear more than once, and the tensor product is self-dual, L(0010)
must be a submodule, and the maps in HomkH(M1 ⊗M2,M2) extend to X.

The last remaining Hom-space to check is HomX(Λ2(L(0010)), L(0010)). This seems difficult to do by
hand, and we resort to a computer. There are two ways to proceed. The first is to prove that that there
is an F4(3)-invariant map in the space (this takes a couple of minutes), and thus the H is contained
in a copy of F4(3) in E8. We then apply [3, Proposition 6.8], which states that F4(3) is contained in
a positive-dimensional subgroup stabilizing the same subspaces of L(E8), which are M1 and M2. This
must be a copy of F4 (as it stabilizes an f4-Lie subalgebra), and we are done. Alternatively, we prove
the same statement for F4(9) (which contains elements of order 94 + 1 = 6562, this takes about half an
hour on one of the first author’s computers) and then apply [12, Proposition 2], which yields the same
positive-dimensional subgroup.

In either case, we obtain the following.

Proposition 2.4. Let p = 3 and let H be a subgroup 3D4(2) of E8, acting on L(E8) with composition
factors of dimensions 52 and 196. Then H is contained in a positive-dimensional subgroup of type F4,
stabilizing exactly the same subspaces of L(E8) that are stabilized by H.

It suffices to ascertain the uniqueness up to conjugacy of the hypothesized subgroup of type F4, and as
a by-product we also obtain uniqueness of H up to conjugacy.

Let t be an involution in X = F4 with centralizer B4. The trace of t on L(E8) is −8, and so the
centralizer of t in E8 is D8, which acts with composition factors L(λ2) and L(λ7), of dimensions 120 and
128 respectively. The restriction of the kX-module L(1000) to B4 is L(0001)⊕L(0100), with dimensions
16 and 36 respectively. The restriction of L(0010) to B4 is L(0010)⊕L(1001), of dimensions 84 and 112
respectively. (This can be checked using weights or quickly on a computer for F4(3).) From [20, Table
60] we see that this B4 is subgroup E8(#45) and is unique up to conjugacy. But clearly there is a unique
way to assemble the numbers 16, 36, 84 and 112 to make 52 and 196. Thus given any subgroup of type
B4 there exists at most one F4 containing it, which must stabilize the submodule L(0001) ⊕ L(0100).
Thus we obtain the result that X is unique up to conjugacy.

This completes the proof of uniqueness of X, and thus Theorem 1.1 is proved.
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3 Presentation of F4

For their application to future explicit computations, we give expressions for the root elements x±βi(t)
for βi a root of the maximal subgroup F4 as products of root elements of E8; see [2, §4.4] for notation.
We also provide the elements hβi

(t) written in terms of those of E8. Note that since the coefficients tj
we exhibit are elements of GF(3), it follows that the subgroup Y we produce is defined over GF(3). As
the factors of xβi

(t) =
∏
j xαj

(cjt) commute we get easily that x−βi
(t) =

∏
j x−αj

(cjt). For this reason
we only list the root group elements for positive roots. Note also that the element eβi of a Chevalley
basis for h is recovered from such an expression as

∑
cjeαj .

x1000(t) = x00010000(t)x00000100(t)

x0100(t) = x00100000(−t)x00000010(t)

x0010(t) = x10000000(−t)x00000001(t)x00011000(−t)x00001100(−t)

x0001(t) = x11110000(t)x01121000(−t)x01111100(−t)x01011110(t)

x1100(t) = x00110000(−t)x00000110(−t)

x0110(t) = x10100000(t)x00000011(−t)x00111000(−t)x00001110(−t)

x0011(t) = x11121000(t)x11111100(t)x01011111(t)x01122100(−t)

x1110(t) = x10110000(t)x00000111(t)x00111100(−t)x00011110(t)

x0120(t) = x10111000(−t)x00001111(−t)

x0111(t) = x11221000(t)x11111110(t)x01111111(t)x01122110(−t)

x1120(t) = x10111100(−t)x00011111(t)

x1111(t) = x11221100(t)x11121110(−t)x01121111(−t)x01122210(t)

x0121(t) = x11111111(−t)x11222100(−t)x11122110(t)x01122111(t)

x1220(t) = x10111110(t)x00111111(−t)

x1121(t) = x11121111(t)x11232100(t)x11122210(−t)x01122211(−t)

x0122(t) = x12232111(−t)x12233210(t)

x1221(t) = x11221111(−t)x11232110(−t)x11222210(t)x01122221(−t)

x1122(t) = x12232211(t)x12243210(−t)

x1231(t) = x11232111(t)x11222211(−t)x11122221(−t)x11233210(t)

x1222(t) = x12232221(t)x12343210(t)

x1232(t) = x22343210(t)x12343211(t)x12243221(t)x12233321(−t)

x1242(t) = x22343211(t)x12244321(t)

x1342(t) = x22343221(−t)x12344321(t)

x2342(t) = x22343321(t)x12354321(−t)

h1000(t) = h00010000(t)h00000100(t)

h0100(t) = h00100000(t)h00000010(t)

h0010(t) = h10000000(t)h00010000(t)h00001000(t2)h00000100(t)h00000001(t)

h0001(t) = h1000000(t)h01000000(t4)h00100000(t3)h00010000(t5)h00001000(t3)h00000100(t2)h00000010(t)

Remark 3.1. We note that the 24-dimensional unipotent subgroup generated by the positive root elements
of F4 is contained in the 120-dimensional unipotent subgroup generated by the positive roots of E8. The
given presentation has the slightly unfortunate property that the structure constants are not the same
as those used in Magma, a standard choice. However, one can if one wishes rectify this by choosing a

5



different base: let x̃α1(t) = x−0100(t), x̃α2(t) = x−1242(t), x̃α3(t) = x1232(t), x̃α4(t) = x−0001(t). Then
we generate the same maximal subgroup F4 but this time the structure constants do agree with those in
Magma.

3.1 How did we find this presentation?
We start with the 248-dimensional module M for H ∼= 3D4(2). We use the Ryba space, as used in [4]
(see also the description as the ‘Lie product method’ in [5]), to construct an explicit Lie product on M
that turns M into a copy of e8. This gives us explicit structure constants. The module M splits as the
sum of 52- and 196-dimensional H-stable submodules. As explained above, the first of these subspaces
is forced to be a subalgebra h of e8 isomorphic to f4 and so Magma could write down a basis for it in
terms of a Chevalley basis of e8. However, this process left us with basis elements for h with around 120
non-zero coefficients in terms of a basis of e8.

We found that four of the basis vectors for h were toral and commuted with each other, thus spanning
a maximal toral subalgebra t. We then searched for a G-conjugate of h such that the corresponding
conjugate of t was contained in the standard toral subalgebra of g. To do this we used the inbuilt
InnerAutomorphism function to construct the automorphisms of g corresponding to xγ(±1) for all roots
γ in the root system of E8.

Our strategy was to implement a naive hill climb for the first basis element t1 of t. Indeed, we searched
through all 480 possible conjugating elements and selected the one that yielded the largest number of
zero coefficients when expressing tg1 in terms of the basis of g. We remembered the elements we used at
each step. This meant that when we could no longer increase the number of zero coefficients we could
trace our steps back and take the next best conjugating element and continue the process. This lead to
a significant increase in the number of zero coefficients but nowhere near the 240 we needed.

We then slightly upgraded our hill climb algorithm to include using a random conjugating element at
fixed intervals. Every 100 steps we chose a random conjugating element and used this, regardless of
what it did to the number of zero coefficients. This method was not optimized; it could be that a better
choice would have been every 5 steps, or 500 steps. But this hill climb was enough for us; it quickly
led us to a conjugating element g0 which took t1 into the standard toral subalgebra of g. At this point,
the remaining three basis elements t2, t3 and t4 were not sent by g0 to something in the standard toral
subalgebra of g, but they had significantly fewer non-zero coefficients. We then repeated the algorithm
looking to increase the total number of zero coefficients in tg1, . . . , t

g
4 and this quickly converged, yielding

a conjugating element g1 which sent t1, . . . , t4 to the four toral elements corresponding to the generators
of the maximal torus given in the presentation. From the toral subalgebra of hg1 it was then routine to
take a Cartan decomposition and find the corresponding root elements.

It turned out that the root elements of h were expressed as a sum of commuting root elements of e8; in
fact long root elements of h were of type 2A1 in e8, whereas short root elements were of type 4A1. For
pairwise commuting root elements eα1 , . . . , eαk

of e8, the operators ad eαi pairwise commute and so one
has

exp(t1 ad eα1 + · · ·+ tj ad eαk
) = exp(t1eα1) . . . exp(tkeαk

).

Thus if eβi =
∑
tjeαj ∈ h is of this form, then evidently the left-hand side of the displayed equation nor-

malizes h in the group GL248(k), and the right-hand side belongs to E8(k), hence for t ∈ k, the elements
xβi

(t) generate a connected smooth subgroup Y of E8 for which h ⊆ Lie(Y). But now maximality of h
forces Lie(Y) = h. The only connected smooth affine k-group whose Lie algebra is a simple Lie algebra
of type F4 is a group of type F4 itself and using the maximality of f4 we conclude that Y must be a
maximal connected subgroup.

4 Consequences
We extend the results of [10] to this new maximal subgroup, determining which unipotent classes of E8
meet the F4 non-trivially.
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Class in F4 Class in E8
A1 2A1
Ã1 4A1

A1 + Ã1 A2 + 2A1
A2 2A2
Ã2 2A2

A2 + Ã1 2A2 +A1
Ã2 +A1 2A2 + 2A1
B2 2A3

C3(a1) A4 + 2A1
F4(a3) A4 +A2
B3 A6
C3 D6(a1)

F4(a2) D5 +A2
F4(a1) E8(b6)
F4 E8(b4)

Table 4.1: Fusion of unipotent classes of maximal F4 into E8. (Horizontal lines separate elements of
different orders.)

Proposition 4.1. If u is a unipotent element of the maximal F4 subgroup of E8, then the class of u in
F4 and E8 is given in Table 4.1.

Proof. The proof is a fast computer check. Randomly generate elements u of orders 3, 9 and 27 in F4(3)
until we hit each class. (The class to which u belongs can be deduced from [8, Tables 3 and 4].) The
Jordan blocks of the action of u on the sum of L(1000) and L(0010) are trivial to compute then. From
[8] we obtain the class in E8 to which u belongs.

However, note that there is an error in [8], due to an error in [16], which leads to a single class having the
wrong Jordan blocks in characteristic 3. This is corrected in [9], and it concerns exactly the class E8(b6)
in the table. It has Jordan blocks 926, 7, 32, 1 on L(E8), not 925, 82, 22, 13 as stated in [8]. With this
correction, the Jordan block structure of u on L(E8) determines the unipotent class to which u belongs,
and thus we are done.

For completeness we do the same thing for nilpotent orbits of f4.

Proposition 4.2. If x is a nilpotent element of the maximal f4 subalgebra of e8, then the class of x in
f4 and e8 is given in Table 4.2.

Proof. Using the root elements constructed for f4 we find a set of orbit representatives for f4 ⊂ e8 using
[18, Appendix]. For each representative x we use Magma to calculate the Jordan block structure for the
adjoint action of x and the normalizer of each term of the derived series of Ce8(x). Using [7, Proposition
1.5], we then find the e8 class of x.

Proposition 4.3. If M is a maximal connected reductive subgroup of the maximal F4 subgroup X of the
algebraic group G of type E8, then M is conjugate to one of the following four subgroups.

(i) M1 = B4 < D8 embedded via the spin module LB4(0001). There are two such conjugacy classes
which, when p is odd, are distinguished by whether or not they are contained in a maximal subgroup
of type A8. This is the subgroup which is not contained in such an A8. It is G-irreducible and
denoted E8(#45) in [20].

(ii) M2 = A1C3 < D8 embedded via LA1(2) ⊕ LC3(010). This subgroup is G-irreducible and denoted
by E8(#774) in [20].

(iii) M3 = A1G2 < A1E7 embedded as follows: E7 has a maximal subgroup of type A1G2 (when p 6= 2).
Therefore A1E7 has a maximal subgroup A1A1G2 and M3 is embedded diagonally in this subgroup.
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Class in f4 Class in e8
A1 2A1
Ã1 4A1

A1 + Ã1 A2 + 2A1
A2 2A2
Ã2 A2 + 3A1

A2 + Ã1 2A2 +A1
B2 2A3

Ã2 +A1 2A2 +A1
C3(a1) A4 + 2A1
F4(a3) A4 +A2
B3 A6
C3 D5 +A1

F4(a2) E7(a4)
F4(a1) E6(a1)
F4 E6

Table 4.2: Fusion of nilpotent classes of maximal f4 into e8.

One has to twist the embedding in the first A1 factor by the Frobenius morphism. This subgroup is
again G-irreducible and denoted by E8(#967{1,0}) in [20].

(iv) M4 = A2A2 < Ā2E6 embedded as follows: E6 has a maximal subgroup A2G2, and G2 has a
maximal subgroup Ã2 generated by short root subgroups of the G2 when p = 3. Thus Ā2E6 has a
subgroup H = Ā2A2Ã2 (denoted E8(#1012) in [20]). The first A2 factor of M4 is the the second
A2 factor of H and the second A2 factor of M4 is diagonally embedded in the first and third factors
of H (with no twisting by field or graph automorphisms). Note that M4 is not G-irreducible.

Proof. By [13, Corollary 2], F4 has four conjugacy classes of maximal connected subgroups in charac-
teristic 3, which are indeed of types B4, A1C3, A1G2 and A2A2. The first two maximal subgroups are
centralizers of involutions. It follows from the action of F4 on the Lie algebra of E8 that the centralizer
in E8 of both of these involutions is D8. Thus B4 and A1C3 are contained in a maximal subgroup of type
D8. By [11, Table 8.1], there are only three E8-conjugacy classes of B4 subgroups in D8. Calculating the
composition factors of the action of B4 < F4 on the Lie algebra of E8 yields that it is indeed conjugate to
M1, which is G-irreducible by [20, Theorem 1]. Calculating the composition factors of A1C3 < F4 on the
Lie algebra of E8, we find that it has no trivial composition factors. Therefore it must be G-irreducible
(by [20, Corollary 3.8]) and we may use the classification of irreducible subgroups determined in [20]. In
particular, the composition factors on the Lie algebra of E8 are enough to determine conjugacy and it
follows that A1C3 is conjugate to M2, as required.

Another calculation shows that A1G2 < F4 has no trivial composition factors on the Lie algebra of E8.
We can therefore use the same method as the previous case to deduce that it is conjugate to M3.

For AB = A2A2 < F4 we start by considering the first A2 factor A, which we define to be the A2 subgroup
generated by long root subgroups of F4. This is the derived subgroup of a long A2-Levi subgroup, and is
thus a subgroup of B4. Since B4 is conjugate to M1, we find that A is contained in a maximal subgroup
of type A8 and acts as LA2(10) ⊕ LA2(01) ⊕ LA2(00)⊕3 on the natural 9-dimensional module of A8.
Therefore, A is a diagonal subgroup (without field or graph twists) of the derived subgroup of an A2A2-
Levi subgroup of E8. We now claim that the connected centralizer of A in E8 is Ā2G2. Indeed, we use
[20, Theorem 1] to see that C = AĀ2G2 is E8-irreducible (denoted by E8(#978)) and the only reductive
connected overgroups of C are the maximal subgroups Ā2E6 and G2F4. Therefore Ā2G2 ≤ CE8(A)◦
and it must be an equality since ACG(A)◦ is E8-irreducible since C is.

Therefore, AB is contained in Ā2E6 with B contained in Ā2G2. It is straightforward to list all A2
subgroups of Ā2G2, noting that G2 has precisely two classes of A2 subgroups when the characteristic is
3. Computing the composition factors of B on the Lie algebra of E8 shows that B is conjugate to the
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subgroup claimed and hence AB is conjugate to M4. The fact that M4 is G-reducible follows from [20,
Theorem 1].

References
[1] John Conway, Robert Curtis, Simon Norton, Richard Parker, and Robert Wilson, Atlas of finite

groups, Oxford University Press, Eynsham, 1985.

[2] Roger W. Carter, Simple groups of Lie type, John Wiley & Sons Inc., 1989.

[3] David A. Craven, On medium-rank Lie primitive and maximal subgroups of exceptional groups of
Lie type, Mem. Amer. Math. Soc., to appear.

[4] , The maximal subgroups of the exceptional groups F4(q), E6(q) and 2E6(q) and related almost
simple groups, preprint, 2020.

[5] , The maximal subgroups of the exceptional groups E7(q) and related almost simple groups,
preprint, 2021.

[6] Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters,
Oxford University Press, New York, 1995.

[7] Mikko Korhonen, David Stewart and Adam Thomas, Representatives for unipotent classes and
nilpotent orbits, preprint.

[8] Ross Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm.
Algebra 23 (1995), 4125–4156.

[9] , Correction to: “Jordan block sizes of unipotent elements in exceptional algebraic groups",
Comm. Algebra 26 (1998), 2709.

[10] , Unipotent classes in maximal subgroups of exceptional algebraic groups, J. Algebra 322
(2009), 270–293.

[11] Martin Liebeck and Gary Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer.
Math. Soc. 580 (1996), no. 580, vi+111.

[12] , On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350
(1998), 3409–3482.

[13] , The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer.
Math. Soc. 169 (2004).

[14] Frank Lübeck, Small degree representations of finite Chevalley groups in defining characteristic,
LMS J. Comput. Math. 4 (2001), 135–169.

[15] Anatoly Mal’cev, Commutative subalgebras of semi-simple Lie algebras, Bull. Acad. Soc. URSS Ser.
Math. 9 (1945), 291–300.

[16] Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E7 and E8,
Tokyo J. Math. 3 (1980), 391–461.

[17] Gary Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991),
no. 441, iv+197.

[18] David Stewart, On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers,
LMS J. Comput. Math. 19 (2016), 235–258.

[19] Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs
and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker Inc., New York, 1988.

[20] Adam Thomas, The irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc.
268 (2021), no. 1307, vi+191.

9


	Introduction
	From the Thompson group to F4
	Presentation of F4
	How did we find this presentation?

	Consequences

