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NORMAL FORM APPROACH TO THE ONE-DIMENSIONAL
PERIODIC CUBIC NONLINEAR SCHRÖDINGER EQUATION

IN ALMOST CRITICAL FOURIER–LEBESGUE SPACES

By

TADAHIRO OH AND YUZHAO WANG

Abstract. In this paper, we study the one-dimensional cubic nonlinear
Schrödinger equation (NLS) on the circle. In particular, we develop a normal
form approach to study NLS in almost critical Fourier–Lebesgue spaces. By ap-
plying an infinite iteration of normal form reductions introduced by the first author
with Z. Guo and S.Kwon (2013), we derive a normal form equation which is equiv-
alent to the renormalized cubic NLS for regular solutions. For rough functions,
the normal form equation behaves better than the renormalized cubic NLS, thus
providing a further renormalization of the cubic NLS. We then prove that this nor-
mal form equation is unconditionally globally well-posed in the Fourier–Lebesgue
spaces FLp(T), 1 ≤ p < ∞. By inverting the transformation, we conclude global
well-posedness of the renormalized cubic NLS in almost critical Fourier–Lebesgue
spaces in a suitable sense. This approach also allows us to prove unconditional
uniqueness of the (renormalized) cubic NLS in FLp(T) for 1 ≤ p ≤ 3

2 .

1 Introduction

1.1 Nonlinear Schrödinger equation. We consider the following cubic
nonlinear Schrödinger equation (NLS) on the circle T = R/Z:

(1.1)

⎧⎨
⎩i∂tu + ∂2

xu ± |u|2u = 0,

u|t=0 = u0,
(x, t) ∈ T × R.

The equation (1.1) arises from various physical settings such as nonlinear optics
and quantum physics. See [37] for the references therein. It is also known to be
one of the simplest completely integrable PDEs [38, 1, 2, 17, 27].

c©The authors 2021. This article is published with open access at link.springer.com.
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724 T. OH AND Y. WANG

The Cauchy problem (1.1) has been studied extensively both on the real line
and on the circle. See [33, 21] for the references therein. In this paper, we study
the periodic cubic NLS (1.1) in the Fourier–Lebesgue spaces FLp(T) defined via
the norm:

‖f‖FLp(T) :=
(∑

n∈Z
|f̂ (n)|p

) 1
p

with a usual modification when p = ∞. For any 2 ≤ p ≤ q ≤ ∞, we have the
following continuous embeddings:

FL1(T) ↪→ FLq′
(T) ↪→ FLp′

(T) ↪→ FL2(T)

= L2(T) ↪→ FLp(T) ↪→ FLq(T) ↪→ FL∞(T).

The spaceFL1(T) is the Wiener algebra. The spaceFL∞(T) is the space of pseudo-
measures, which contains all finite Borel measures on T but also more singular
distributions. See [25]. Our main interest is to study (1.1) in FLp(T) for p � 1.

On the one hand, the cubic NLS (1.1) is known to be globally well-posed in
FL2(T) = L2(T) [6]. On the other hand, combining the known results [19, 21, 34],
we can easily show that it is ill-posed in the Fourier–Lebesgue space FLp(T) for
p > 2 in a very strong sense. See Proposition 1.1 below. This necessitates us to
renormalize the nonlinearity and consider the following renormalized cubic NLS:

(1.2)

⎧⎨
⎩i∂tu + ∂2

xu ± (|u|2 − 2
∫
T

|u|2dx)u = 0

u|t=0 = u0.

Note that the renormalized cubic NLS (1.2) is “equivalent” to the original cubic
NLS (1.1) for smooth solutions in the following sense. For u ∈ C(R;L2(T)), we
define the following invertible gauge transformation G by

G(u)(t) := e∓2it
∫
T

|u(t)|2dxu(t)

with its inverse

(1.3) G−1(u)(t) := e±2it
∫
T

|u(t)|2dxu(t).

Then, thanks to the L2-conservation, it is easy to see that u ∈ C(R;L2(T)) is
a solution to (1.1) if and only if G(u) is a solution to the renormalized cubic
NLS (1.2). This renormalization removes a certain singular component from the
nonlinearity and, as a result, the renormalized cubic NLS (1.2) behaves better than
the cubic NLS (1.1) outside L2(T). The study of (1.2) outside L2(T) has attracted
much attention in recent years [8, 9, 19, 33, 12, 21, 34, 31, 36].
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In [19], Grünrock–Herr adapted the Fourier restriction norm method to the
Fourier–Lebesgue space setting and proved local well-posedness of the renor-
malized cubic NLS (1.2) in FLp(T) for 1 ≤ p < ∞ by a standard contraction
argument. See also the work by Christ [9]. In [36], by using the completely
integrable structure of the equation, we established the following global-in-time a
priori bound:

(1.4) sup
t∈R

‖u(t)‖FLp ≤ C(‖u0‖FLp)

for any smooth solution u to the renormalized cubic NLS (1.2) and 2 ≤ p < ∞,
which implied global well-posedness of (1.2) in FLp(T) for 1 ≤ p < ∞.1

As a corollary to the local well-posedness of the renormalized cubic NLS in
[19], one easily obtains the following non-existence result for the original cubic
NLS (1.1) outside L2(T).

Proposition 1.1. Let 2 < p < ∞ and u0 ∈ FLp(T) \ L2(T). Then, for any

T > 0, there exists no distributional solution u ∈ C([−T,T];FLp(T)) to the cubic
NLS (1.1) such that

(i) u|t=0 = u0,
(ii) there exist smooth global solutions {un}n∈N to (1.1) such that un → u in

C([−T,T];D′(T)) as n → ∞.

In [21], the first author (with Z. Guo) proved an analogous non-existence result
for (1.1) in negative Sobolev spaces. The argument was based on an a priori bound
for smooth solutions to the renormalized cubic NLS (1.2) in negative Sobolev
spaces and exploiting a fast oscillation in (1.3). The proof of the local well-
posedness in [19] yields an a priori bound for smooth solutions to the renormalized
cubic NLS (1.2) in FLp(T). Then, we can prove Proposition 1.1 by proceeding as
in [21, 35]. We omit details.

In the following, we only consider the focusing case (i.e., with the + sign in (1.1)
and (1.2)) for simplicity. Our main results equally apply to the defocusing case.

1.2 Main results. In the following, we introduce two notions of weak
solutions. Let N(u) denote the renormalized nonlinearity in (1.2):2

(1.5)
N(u) : =

(
|u|2 − 2

∫
T

|u|2dx
)

u

=
∑

n2 
=n1,n3

û(n1)û(n2)û(n3)e
i(n1−n2+n3)x − ∑

n∈Z
|û(n)|2û(n)einx.

1For 1 ≤ p < 2, one needs to use the L2-conservation and a persistence-of-regularity argument. See
Appendix A.

2Hereafter, we drop the factor of 2π when it plays no role.
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Wefirst recall the following notion ofweaksolutions in the extended sense.

Definition 1.2. Let 1 ≤ p < ∞ and T > 0.
(i) We define a sequence of Fourier cutoff operators to be a sequence of Fourier

multiplier operators {TN}N∈N on D′(T) with multipliers mN : Z → C such that
• mN has a compact support on Z for each N ∈ N,
• mN is uniformly bounded,
• mN converges pointwise to 1, i.e., limN→∞ mN(n) = 1 for any n ∈ Z.
(ii) Let u ∈ C([−T,T];FLp(T)). We say that N(u) exists and is equal to

a distribution v ∈ D′(T × (−T,T)) if for every sequence {TN}N∈N of (spatial)
Fourier cutoff operators, we have

lim
N→∞N(TNu) = v

in the sense of distributions on T × (−T,T).
(iii) (weak solutions in the extended sense) We say that u ∈ C([−T,T];FLp(T))

is a weak solution of the renormalized cubic NLS (1.2) in the extended sense if
• u|t=0 = u0,
• the nonlinearity N(u) exists in the sense of (ii) above,
• u satisfies (1.2) in the distributional sense on T× (−T,T), where the nonlin-

earity N(u) is interpreted as above.

In [8, 9], Christ introduced this notion in studying the renormalized cubic NLS
(1.2) in the low regularity setting. See also [20] for a similar notion of weak
solutions, where the nonlinearity is defined as a distributional limit of smoothed
nonlinearities.

Next, we introduce the following notion of sensible weak solutions. See
also [36, 14].

Definition 1.3 (sensible weak solutions). Let 1 ≤ p < ∞ and T > 0. Given
u0 ∈ FLp(T), we say that u ∈ C([−T,T];FLp(T)) is a sensible weak solution to the
renormalized cubic NLS (1.2) on [−T,T] if, for any sequence {u0,m}m∈N of smooth
functions tending to u0 in FLp(T), the corresponding (classical) solutions um with
um|t=0 = u0,m converge to u in C([−T,T];FLp(T)). Moreover, we impose that
there exists a distribution v such that N(um) converges to v in the space-time
distributional sense, independent of the choice of the approximating sequence.

It is worth noting that, by using the equation, the convergence of um to u in
C([−T,T];FLp(T)) implies that N(um) converges to some v in the space-time
distributional sense; see (2.9) below. Hence, the last part of Definition 1.3 is not
quite necessary. We, however, keep it for clarity.
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We point out that these notions of weak solutions in Definitions 1.2 and 1.3
are rather weak. The cubic nonlinearity N(u) for a weak solution u in the sense of
Definitions 1.2 or 1.3 does not directly make sense as a distribution in general and
we need to interpret it as a (unique) limit of smoothed nonlinearities N(TNu) or
the nonlinearities N(um) of smooth approximating solutions um. This in particular
implies that weak solutions in the sense of Definitions 1.2 or 1.3 do not have to
satisfy the equation even in the distributional sense.

On the one hand, sensible weak solutions are unique by definition. On the
other hand, weak solutions in the extended sense are not unique in general. In fact,
Christ [8] proved non-uniqueness of weak solutions in the extended sense for the
renormalized cubic NLS (1.2) in negative Sobolev spaces.

Our main goal in this paper is (i) to develop further the normal form approach
to study the (renormalized) cubic NLS, introduced in [22], and provide the solution
theory for (1.2) in almost critical Fourier–Lebesgue spaces (Theorem 1.4) in the
sense of Definitions 1.2 and 1.3 without using any auxiliary function spaces, in
particular, without using the Fourier restriction norm method as in [6, 19] and (ii)
to prove unconditional uniqueness of the (renormalized) cubic NLS in FLp(T) for
1 ≤ p < 3

2 (Theorem 1.5). In proving these results, we apply an infinite iteration
of normal form reductions and transform the (renormalized) cubic NLS into the
so-called normal form equation. We then prove unconditional well-posedness of
the normal form equation in FLp(T) for any 1 ≤ p < ∞; see Theorem 1.9 below.

We now state our main results.

Theorem 1.4. Let 1 ≤ p < ∞. Then, the renormalized cubic NLS (1.2) on T

is globally well-posed in FLp(T)

• in the sense of weak solutions in the extended sense and

• in the sense of sensible weak solutions.

When 1 ≤ p ≤ 2, the same global well-posedness result applies to the (unrenor-
malized) cubic NLS (1.1).

This theorem follows from the local well-posedness by Grünrock–Herr [19],
combined with the a priori bound (1.4) from [36]. As pointed out above, however,
our main goal is to present an argument independent of the Fourier restriction norm
method. We instead employ the normal form approach developed in [22]. Our
approach does not involve any auxiliary function spaces and consequently allows
us to prove unconditional uniqueness of the (renormalized) cubic NLS in FL

3
2 (T)

(Theorem 1.5). We point out that the local well-posedness in [19] only yields
conditional uniqueness, namely in the class (1.6) below.
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In [22], the first author (with Z. Guo and S. Kwon) proved an analogous result
in L2(T) by implementing an infinite iteration of normal form reductions,3 yielding
unconditional uniqueness of the cubic NLS (1.1) in H

1
6 (T). The proof of Theo-

rem 1.4 is also based on the same normal form approach. See the next subsection.
Note that when p is very large, Theorem 1.4 is significantly harder to prove than
the L2-result in [22] due to a much weaker FLp-topology.

Given u0 ∈ FLp(T), let u be the global solution to (1.2) with u|t=0 = u0 con-
structed in Theorem 1.4. Then, by the uniqueness of sensible solutions mentioned
above, u must coincide with the global solution constructed in [6, 19, 36]. In
particular, the solution u belongs to the class

(1.6) C([−T,T];FLp(T)) ∩ X0,b
p ([−T,T])

for some b > 1
p′ , where X0,b

p ([−T,T]) denotes the local-in-time version of the
Fourier restriction space X0,b

p adapted to the Fourier–Lebesgue setting. See (A.1)
and (A.3) below.

As mentioned above, Theorem 1.4 does not allow us to directly4 conclude that
weak solutions constructed in Theorem 1.4 are distributional solutions to (1.2).
For 1 ≤ p ≤ 3

2 , however, Hausdorff–Young’s inequality

FLp(T) ⊂ FL
3
2 (T) ⊂ L3(T),

allows us to make sense of the cubic nonlinearity in a direct manner. In this case,
we have the following uniqueness statement.

Theorem 1.5. Let 1 ≤ p ≤ 3
2 . Then, given any u0 ∈ FLp(T), the solution u to

(1.1) or (1.2) with u|t=0 = u0 constructed in Theorem 1.4 is unique in C(R;FLp(T)).

Namely, unconditional uniqueness holds for both the cubic NLS (1.1) and the
renormalized cubic NLS (1.2) in FLp(T), provided that 1 ≤ p ≤ 3

2 . In [22], the
first author (with Z. Guo and S. Kwon) proved unconditional uniqueness in H

1
6 (T)

and Theorem 1.5 extends this result to the Fourier–Lebesgue setting. We also
mention a recent work by Herr–Sohinger [24] where they proved unconditional
uniqueness of the cubic NLS (1.1) in Lp([−T,T] × T) for p > 3. The main
difference between unconditional uniqueness and uniqueness for sensible weak
solutions is that the former does not assume that a solution comes with a sequence
of smooth approximating solutions, while, by definition, sensible weak solutions
are equipped with smooth approximating solutions.

3In [22], we only proved well-posedness of the cubic NLS (1.1) in the sense of weak solutions in the
extended sense. A small modification of the argument yields well-posedness in the sense of sensible
weak solutions. See Section 2.

4That is, unless we use the uniqueness property of sensible solutions and conclude that they belong
to the class (1.6) by comparing with the solutions constructed in [6, 19, 36].
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Remark 1.6. When p = ∞, the Fourier–Lebesgue space FL∞(T) does not
admit smooth approximations and hence is not suitable for well-posedness study.
Given s ∈ R and 1 ≤ p ≤ ∞, define FLs,p(T) by the norm:

(1.7) ‖f‖FLs,p := ‖〈n〉sf̂ (n)‖�
p
n(Z).

Note that FLp(T) = FL0,p(T). For s < − 1
p , we have

FL∞(T) ⊂ FLs,p(T)

and thus we may wish to study well-posedness in FLs,p(T) for finite p with s < − 1
p

since this space admits smooth approximations. On the other hand, the scaling
critical regularity for the cubic NLS (1.1) with respect to the Fourier–Lebesgue
spaces FLs,p(T) is given by scrit = − 1

p . In particular, the cubic NLS (1.1) and
the renormalized cubic NLS (1.2) are known to be ill-posed in the (super)critical
regime.5 When s < 0, it is easy to modify the argument in [7, 10, 12] and show that
the solution map is not locally uniformly continuous in FLs,p(T). Furthermore,
when s ≤ scrit = −1

p , the cubic NLS (1.1) and the renormalized cubic NLS (1.2)
admit norm inflation; given any ε > 0, there exist a solution u to (1.1) or (1.2) and
t ∈ (0, ε) such that

‖u(0)‖FLs,p < ε and ‖u(t)‖FLs,p > ε−1.

See [28]. The norm inflation in particular implies discontinuity of the solution
map at the trivial function6 u ≡ 0. Lastly, a typical function in FL∞(T) is the
Dirac delta function and (1.1) and (1.2) on T are known to be ill-posed with the
Dirac delta function as initial data; see [14]. See also Kenig–Ponce–Vega [26] and
Banica–Vega [4, 5] for the works on the cubic NLS (1.1) on the real line with the
Dirac delta function as initial data.

Remark 1.7. Following the argument in [22], we can easily extend Theo-
rem 1.4 to FLs,p(T) for s > 0 and 1 ≤ p < ∞. Similarly, the unconditional
uniqueness result in Theorem 1.5 can be extended to FLs,p(T) for (i) s > 0 and
1 ≤ p ≤ 3

2 and (ii) p > 3
2 and s > 2p−3

3p . Note that in these ranges of (s, p), we have

FLs,p(T) ↪→ FL
3
2 (T) ↪→ L3(T).

5In fact, it is shown in [28] that the cubic NLS (1.1) and the renormalized cubic NLS (1.2) are
ill-posed even in the logarithmically subcritical regime.

6One can easily combine the argument in [28, 31] to prove norm inflation at general initial data,
concluding discontinuity of the solution map at every function FLs,p(T), provided that s ≤ scrit = − 1

p .
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1.3 Normal form equation. The main idea for proving Theorems 1.4
and 1.5 is to apply an infinite iteration of normal form reductions to (1.2)7 and
transform the equation into a normal form equation (see (1.12) below), which may
look more complicated from the algebraic viewpoint but exhibits better analytical
properties than the original equation.

Let S(t) = eit∂2
x denote the linear Schrödinger propagator. We introduce the

interaction representation:

(1.8) u(t) = S(−t)u(t) = e−it∂2
x u(t).

On the Fourier side, we have û(n, t) = ein2t û(n, t). Then, (1.2) can be written as8

∂tûn = i
∑

n=n1−n2+n3
n2 
=n1,n3

ei�(n̄)tû(n1)û(n2)û(n3) − i|û(n)|2û(n)

=: N1(u)(n) + R(u)(n).

(1.9)

Here, the phase function �(n̄) is defined by

(1.10)
�(n̄) : = �(n, n1, n2, n3) = n2 − n2

1 + n2
2 − n2

3

= 2(n2 − n1)(n2 − n3) = 2(n − n1)(n − n3),

where the last two equalities hold under

n = n1 − n2 + n3.

From (1.10), we see that N1 corresponds to the non-resonant part (i.e., �(n̄) 
= 0)
of the nonlinearity and R corresponds to the resonant part. Note that the Duhamel
formulation for (1.2),

u(t) = S(t)u0 + i
∫ t

0
S(t − t′)N(u)(t′)dt′,

is now expressed as a system of integral equations:

(1.11) û(n, t) = û0(n) +
∫ t

0
{N1(u)(n) + R(u)(n)}(t′)dt′

for n ∈ Z. In the following, the space FL
3
2 (T) plays an important role and thus we

introduce the following definition of regular solutions.

7In the following, we restrict our attention to the renormalized cubic NLS (1.2). See Subsection 2.4
for required modifications to handle the cubic NLS (1.1) in Theorem 1.5.

8Due to the presence of the time-dependent phase factor ei�(n̄)t , the non-resonant part N1(u),
viewed as a trilinear operator, is non-autonomous. For notational simplicity, however, we suppress
such t-dependence when there is no confusion. We apply this convention to all the multilinear operators
appearing in this paper.
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Definition 1.8. We say that u and u are regular solutions to (1.2) and (1.9),
respectively, if u and u are solutions to (1.2) and (1.9), respectively, such that
u ∈ C(R;FL

3
2 (T)) and u ∈ C(R;FL

3
2 (T)), respectively.

The main idea is to apply a normal form reduction to (1.9), namely integration
by parts in (1.11), to exploit the oscillatory nature of the non-resonant contribution.
As in [22, 29], we implement an infinite iteration of normal form reductions and
derive the following normal form equation:

u(t) = u(0) +
∞∑
j=2

N
(j)
0 (u)(t) −

∞∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

{ ∞∑
j=1

N
(j)
1 (u)(t′) +

∞∑
j=1

R(j)(u)(t′)
}

dt′,
(1.12)

where {N(j)
0 }∞j=2 are time-dependent (2j − 1)-linear operators while {N(j)

1 }∞j=1 and
{R(j)}∞j=1 are time-dependent (2j+1)-linear operators. As we see in Section 3, multi-
linear dispersion effects are already embedded in these multilinear terms, which al-
lows us to prove that these multilinear operators are bounded in C([−T,T];FLp(T))
for any 1 ≤ p < ∞. Moreover, we show that the normal form equation (1.12) is
equivalent to (1.9) and the renormalized cubic NLS (1.2) in C(R;FL

3
2 (T)). See

Proposition 2.1. As a consequence, we can easily prove local well-posedness of the
normal form equation (1.12) in FLp(T) by a simple contraction argument without
any auxiliary function spaces.

Theorem 1.9. Let 1 ≤ p < ∞. Then, the normal form equation (1.12) is

unconditionally globally well-posed in FLp(T).

In [22], an analogous result was shown in L2(T). When p > 2, the FLp-norm
is weaker than the L2-norm. In particular, when p � 1, this fact makes it much
harder to show convergence of the series in the normal form equation (1.12) with
respect to the FLp-topology.

Once we establish the relevantmultilinear estimates (Proposition 2.1), the proof
of unconditional local well-posedness for the normal form equation (1.12) follows
from a simple contraction argument. Moreover, we show that the local existence
time T depends only on the size of the initial data ‖u0‖FLp and consequently, we
conclude that solutions exist globally in time in view of the global-in-time bound
(1.4) from [36]. See also Appendix A.

Finally, note that Theorem 1.5 follows easily thanks to the equivalence
of (1.2) and the normal form equation (1.12) for regular solutions belonging
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to C(R;FL
3
2 (T)). The contraction argument in proving Theorem 1.9 yields the

following Lipschitz bound:

(1.13) sup
t∈[−T,T]

‖u(t) − v(t)‖FLp ≤ C(T,R)‖u(0) − v(0)‖FLp

for any T > 0, where R > 0 satisfies ‖u(0)‖FLp, ‖v(0)‖FLp ≤ R. Furthermore,
from (1.2), (1.9), and (1.12) with (1.5) and (1.8), we obtain∫ t

0
N(u)(t′)dt′

= S(t)
{ ∞∑

j=2

N
(j)
0 (S(− ·)u)(t) −

∞∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

[ ∞∑
j=1

N
(j)
1 (S(− ·)u)(t′) +

∞∑
j=1

R(j)(S(− ·)u)(t′)
]
dt′

}
.

(1.14)

Then, (1.13) and (1.14) together with the multilinearity of the summands in (1.14)
and the unitarity of the linear operator S(t) in FLp(T) allow us to conclude conver-
gence of smoothed nonlinearities N(TNu) or the nonlinearities N(um) of smooth
approximating solutions um required in Definitions 1.2 and 1.3. This is a sketch of
the proof of Theorem 1.4.

In Section 2, we present the proofs of the main results, assuming the bounds
on the multilinear operators {N(j)

0 }∞j=2, {N(j)
1 }∞j=1, and {R(j)}∞j=1 (Proposition 2.1). In

Section 3, we implement an infinite iteration of normal form reductions as in [22]
and prove Proposition 2.1.

Remark 1.10. Let p > 3
2 . Given u ∈ C([−T,T];FLp(T)), we can not, in

general, make sense of the cubic nonlinearity N(u) as a distribution since

FLp(T) 
⊂ L3(T).

In other words, we can not estimate the cubic nonlinearity without relying on
some auxiliary function space. In (1.14), we re-expressed the cubic nonlinearity
into series of the multilinear terms of increasing degrees. On the one hand, this
transformation brings algebraic complexity. On the other hand, the right-hand
side of (1.14) is convergent for u ∈ C([−T,T];FLp(T)), allowing us to make
sense of the right-hand side of (1.14) as a distribution. Namely, while the left-
hand side of (1.14) and the right-hand side of (1.14) coincide for regular solutions
u ∈ C([−T,T];FL

3
2 (T)), the right-hand side of (1.14) provides a better formulation

of the nonlinearity for rougher functions u ∈ C([−T,T];FLp(T)), 3
2 < p < ∞. In

this sense, we can view the right-hand side of (1.14) as a further renormalization
of the renormalized nonlinearity N(u) in (1.5).
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By expressing the normal form equation (1.12) in terms of the original function
u(t) = S(t)u(t), we obtain

u(t) = S(t)u(0) + S(t)
∞∑
j=2

N(j)
0 (u)(t) − S(t)

∞∑
j=2

N(j)
0 (u)(0)

+
∫ t

0
S(t − t′)

{ ∞∑
j=1

N(j)
1 (u)(t′) +

∞∑
j=1

R(j)(u)(t′)
}

dt′,
(1.15)

where

N(j)
0 (u)(t) = N

(j)
0 (S(− ·)u)(t),

N(j)
1 (u)(t) = S(t)N(j)

1 (S(− ·)u)(t),

R(j)(u)(t) = S(t)R(j)(S(− ·)u)(t).

(1.16)

As we see in Section 3, the multilinear operators S(t)N(j)
0 (t), N(j)

1 , and R(j) are
autonomous. The discussion above shows that the normal form equation (1.15)
expressed in terms of u(t) = S(t)u(t) is a better model to study than the renormalized
cubic NLS (1.2) (and the cubic NLS (1.1)) in the low regularity setting, which can
be viewed as a further renormalization to the (renormalized) cubic NLS.

Lastly, we point out that the terms on the left-hand side of (1.16) are indeed au-
tonomous (unlike the non-autonomous multilinear terms in (1.14)). See Section 3.

Remark 1.11. A precursor to this normal form approach first appeared in the
work of Babin–Ilyin–Titi [3] in the study of KdV on T, establishing unconditional
well-posedness of the KdV in L2(T). See also [30]. In [22], the first author with
Z. Guo andS.Kwon further developed this normal formapproach and introduced an
infinite iteration scheme of normal form reductions in the context of the cubic NLS
on the circle. In this series of work, the viewpoint of unconditional well-posedness
was first introduced in [30], while the viewpoint of the (Poincaré–Dulac) normal
form reductions was first introduced in [22]. This normal form approach has also
been used to prove nonlinear smoothing [13], improved energy estimates [32, 35],
and construct an infinite sequence of invariant quantities under the dynamics [11].

Remark 1.12. In a recent paper [14], the first author with Forlano studied the
cubic NLS onR. In particular, by implementing an infinite iteration of normal form
reductions, they proved analogues of Theorems 1.4, 1.5, and 1.9 in almost critical
Fourier–Lebesgue spaces FLp(R), 2 ≤ p < ∞, and almost critical modulation
spaces M2,p(R), 2 ≤ p < ∞. Relevant multilinear estimates were studied based
on the idea introduced in [29], namely, successive applications of basic trilinear
estimates (called localized modulation estimates).
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2 Proof of the main results

In this section, we present the proofs of the main results (Theorems 1.4, 1.5, and
1.9), assuming the validity of the transformation of the equation (1.11) to the
normal form equation (1.12) and the boundedness of the multilinear operators in
(1.12) (Proposition 2.1).

2.1 Series expansion of regular solutions. In Section 3, we implement
an infinite iteration of normal form reductions and transform the equation (1.9) into
the normal form equation (1.12) for regular solutions. The following proposition
summarizes the properties of the multilinear operators in (1.12). Given R > 0,
we use BR to denote the ball of radius R centered at the origin in various function
spaces.

Proposition 2.1. Let1 ≤ p < ∞ andT > 0. Then, there exist time-dependent

multilinear operators {N(j)
0 }∞j=2, {N(j)

1 }∞j=1, and {R(j)}∞j=1, depending on the parameter

K = K(R) ≥ 1 such that any regular solution u ∈ C([−T,T];FL
3
2 (T)) to (1.9) with

u(0) ∈ BR ⊂ FLp(T) satisfies the following normal form equation:

u(t) − u(0) =
∞∑
j=2

N
(j)
0 (u)(t) −

∞∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

{ ∞∑
j=1

N
(j)
1 (u)(t′) +

∞∑
j=1

R(j)(u)(t′)
}

dt′
(2.1)

in C([−T,T];FL
3
2 (T)). Moreover, {N(j)

0 }∞j=2 are (2j − 1)-linear operators, while

{N(j)
1 }∞j=1 and {R(j)}∞j=1 are (2j + 1)-linear operators (depending on t ∈ [−T,T]),

satisfying the following bounds on FLp(T):9

sup
t∈[−T,T]

‖N(j)
0 (t)(f1, f2, . . . , f2j−1)‖FLp(T) ≤ C0,j

2j−1∏
i=1

‖fi‖FLp(T),(2.2)

sup
t∈[−T,T]

‖N(j)
1 (t)(f1, f2, . . . , f2j+1)‖FLp(T) ≤ C1,j

2j+1∏
i=1

‖fi‖FLp(T),(2.3)

sup
t∈[−T,T]

‖R(j)(t)(f1, f2, . . . , f2j+1)‖FLp(T) ≤ C0,j

2j+1∏
i=1

‖fi‖FLp(T),(2.4)

9Here, we view N
(j)
0 = N

(j)
0 (t), N(j)

1 = N
(j)
1 (t), and R(j) = R(j)(t) as multilinear operators acting on

FLp(T) with a parameter t ∈ [−T,T]. The same comment applies to R
(j)
2 in (2.13).
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for any fi ∈ FLp(T), where

(2.5) C0,j(K) = Cp
K4(1−j)

j!
and C1,j(K) = Cp

K
16

p′−1 +4(1−j)

j!

for some absolute constant Cp > 0 depending only on p.

In Proposition 2.1, we imposed a strong regularity assumption:

u ∈ C([−T,T];FL
3
2 (T)).

This regularity assumption can be easily relaxed.

Corollary 2.2. Let 1 ≤ p < ∞ and T > 0. Suppose that a solution

u ∈ C([−T,T];FLp(T)) to (1.9) admits a sequence of smooth approximating so-
lutions {um}m∈N in the sense that (i) um is a smooth solution to (1.9) and (ii) um

converges to u in C([−T,T];FLp(T)). Then, u satisfies the normal form equation
(1.14) in C([−T,T];FLp(T)).

In view of the estimates (2.2), (2.3), and (2.4), we see that the right-hand
side of (2.1) is convergent for u ∈ C([−T,T];FLp(T)). See also the proof of
Theorem 1.9 below. By using the multilinearity of the operators, we only need
to estimate the difference such as N(j)

0 (u) − N
(j)
0 (um). Note that such a difference

contains O(j)-many terms since

|a2j−1 − b2j−1| �
( 2j−1∑

k=1

a2j−1−kbk−1
)

|a − b|

has O(j) many terms. This, however, does not cause any issue thanks to the fast
decay (2.5) of the coefficients C0,j and C1,j. Since the proof of Corollary 2.2 is
straightforward computation with (2.2), (2.3), and (2.4), we omit details.

We postpone the proof of Proposition 2.1 to Section 3. In the remaining part
of this section, we present the proofs of Theorems 1.4, 1.5, and 1.9, assuming
Proposition 2.1. In Subsection 2.4, we discuss the case of the (unrenormalized)
NLS (1.1).

We first present the proof of Theorem 1.9.

Proof of Theorem 1.9. Given 1 ≤ p < ∞, let u0 ∈ FLp(T). With

K = K(‖u0‖FLp) ≥ 1
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(to be chosen later), define the map �u0 by

�u0 (u)(t) := u0 +
∞∑
j=2

N
(j)
0 (u)(t) −

∞∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

( ∞∑
j=1

N
(j)
1 (u)(t′) +

∞∑
j=1

R(j)(u)(t′)
)

dt′,

where the multilinear terms on the right-hand side (depending on the choice of
K ≥ 1) are as in Proposition 2.1. Let T > 0. Then, by Proposition 2.1, we have

‖�u0(u)‖CTFLp

≤ ‖u0‖FLp +
∞∑
j=2

C0,j(K)(‖u0‖2j−1
FLp + ‖u‖2j−1

CTFLp)

+ T
∞∑
j=1

(C1,j(K) + C0,j(K))‖u‖2j+1
CTFLp ,

where CTFLp = C([−T,T];FLp(T)).
Let R = 1 + ‖u0‖FLp . Then from (2.2), (2.3), and (2.4), we have

‖�u0(u)‖CTFLp

≤ R + C
∞∑
j=2

K4(1−j)R2j−1

j!
+ C

∞∑
j=2

K4(1−j)(2R)2j−2

j!
‖u‖CTFLp

+ CT
{ ∞∑

j=1

K
16

p′−1 +4(1−j)(2R)2j

j!
+

∞∑
j=1

K4(1−j)(2R)2j

j!

}
‖u‖CTFLp

(2.6)

for any u ∈ B2R ⊂ C([−T,T];FLp(T)). The series in (2.6) are obviously convergent
for any K ≥ 1 thanks to the fast decay in j but, by choosing K = K(R, p) � 1
sufficiently large, we can guarantee that

C
∞∑
j=2

K4(1−j)R2j−1

j!
≤ 1

10
and C

∞∑
j=2

K4(1−j)(2R)2j−2

j!
≤ 1

10
.

Note that the third series in (2.6) has non-negative powers of K for 1 ≤ j < 4
p′−1 ,

while a power of K does not appear in the fourth series when j = 1. These terms
can be controlled by choosing

T = T(K,R) = T(R) > 0

sufficiently small. As a result, we obtain

‖�u0(u)‖CTFLp ≤ 11
10

R +
1
5
‖u‖CTFLp < 2R
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for any u ∈ B2R ⊂ C([−T,T];FLp(T)). A similar argument also yields the
following difference estimate:

‖�u0 (u) − �u0(v)‖CTFLp ≤ 1
5
‖u − v‖CTFLp .(2.7)

In establishing the difference estimate (2.7), we need to estimate the differences
such asN(j)

0 (u)−N
(j)
0 (v) which contains O(j)-many terms as mentioned above. This

does not cause any issue thanks to the fast decay (2.5) in j of the coefficients C0,j

and C1,j.
Therefore, by a standard contraction argument and a continuity argument,10

we conclude that the normal form equation (1.12) is unconditionally locally well-
posed in C([−T,T];FLp(T)). Global well-posedness follows from the a priori
bounds (1.4) and (A.10) on the FLp-norm of smooth solutions to (1.2) implying
the same bound for smooth solutions to (1.9) and (1.12).

Lastly, by taking the difference of two solutions u, v ∈ C([−T,T];FLp(T)) with
different initial data u0 and v0, we have

‖u − v‖CTFLp ≤ 11
10

‖u0 − v0‖FLp +
1
5
‖u − v‖CTFLp ,

which implies the Lipschitz bound (1.13) for

T = T(‖u0‖FLp, ‖v0‖FLp) > 0

sufficiently small. By iterating the Lipschitz bound (1.13) on short intervals with
the global-in-time bounds (1.4) and (A.10), we conclude that (1.13) for anyT > 0.�

2.2 Sensible weak solutions: Proof of Theorem 1.4. In the following,
we only show global well-posedness of the renormalized cubic NLS (1.2) in the
sense of sensibleweak solutions according to Definition 1.3. As forwell-posedness
in the sense of weak solutions in the extended sense according to Definition 1.2,
one can simply use Proposition 2.1 and repeat the argument in [22].

Given u0 ∈ FLp(T), let {u0,m}m∈N be a sequence of smooth functions converging
to u0 in FLp(T). Let um be the smooth solution to (1.2) with um|t=0 = um and set
um(t) = S(−t)um(t). Then, it follows from Proposition 2.1 that um is a solution to
the normal form equation (2.1). From the Lipschitz bound (1.13), we have

‖um − un‖CTFLp = ‖um − un‖CTFLp

≤ C(T)‖um(0) − un(0)‖FLp

= C(T)‖um(0) − un(0)‖FLp

(2.8)

10The contraction argument yields uniqueness only in B2R ⊂ C([−T,T];FLp(T)) and a continuity
argument is needed to extend the uniqueness to the entire C([−T,T];FLp(T)). This part of the argument
is standard and thus we omit detail. See for example [11].
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for all m, n ≥ 1 and any T > 0. This shows that {um}m∈N is a Cauchy sequence
in C(R;FLp(T)) endowed with the compact-open topology (in time) and hence
converges to some u∞ in C(R;FLp(T)).

Now, we prove uniqueness of the limit u∞, independent of smooth approximat-
ing solutions. Given u0 ∈ FLp(T), let {um}m∈N and {vn}n∈N be two sequences of
smooth solutions such that um(0), vn(0) → u0 in FLp(T) as m, n → ∞. Then, by
the argument above, there exist u∞, v∞ ∈ C(R;FLp(T)) such that um → u∞ and
vn → v∞ in C(R;FLp(T)) as m, n → ∞. Then, by the triangle inequality with
(1.13) and (2.8), we obtain

‖u∞ − v∞‖CTFLp ≤ ‖u − um‖CTFLp + ‖um − vn‖CTFLp + ‖vn − v ‖CTFLp

≤ ‖u − um‖CTFLp + C‖um(0) − vn(0)‖FLp + ‖vn − v ‖CTFLp

−→ 0,

as m, n → ∞. Therefore, we have u∞ = v∞.

Lastly, combining this convergence with (1.2), we obtain

(2.9) N(um) − N(un) = −i∂t(um − un) − ∂2
x(um − un) −→ 0

in the distributional sense as m, n → ∞. Therefore, we conclude that (1.2) is
globally well-posed in the sense of sensible weak solutions.

2.3 Unconditional well-posedness of the renormalized cubic NLS.
We briefly discuss the proof of Theorem 1.5 for the renormalized cubic NLS (1.2).
Given u0 ∈ FL

3
2 (T), let u and v be two solutions to (1.2) with

u|t=0 = v |t=0 = u0

in C([−T,T];FL
3
2 (T)) for some T > 0. By Proposition 2.1, we see that their

interaction representations

u(t) = S(−t)u(t) and v(t) = S(−t)v (t)

satisfy the normal form equation (1.12). Then, from the unconditional uniqueness
for (1.12) in C([−T,T];FL

3
2 (T)) (Theorem 1.9) and the unitarity of the linear

operator in FLp(T), we conclude that u = v in C([−T,T];FL
3
2 (T)). This proves

Theorem 1.5.
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2.4 On the cubic NLS. We conclude this section by discussing the situa-
tion for the cubic NLS (1.1). By writing

|u|2u =
(

|u|2 − 2
∫
T

|u|2dx
)

u + 2
(∫

T

|u|2dx
)

u

=
∑

n2 
=n1,n3

û(n1)û(n2)û(n3)e
i(n1−n2+n3)x − ∑

n∈Z
|û(n)|2û(n)einx

+ 2
(∫

T

|u|2dx
)∑

n

û(n)einx

=: I + II + III,

(2.10)

we see that the third term III is the only difference from the case for the renormalized
cubic NLS (1.2). By taking an interaction representation, we can write (1.1) as

(2.11) ∂tûn = N1(u)(n) + R(u)(n) + R2(u)(n),

where R2(u)(n) is given by

R2(u)(n) = 2i
(∫

T

|u|2dx
)

û(n).

As compared to (1.9), R2(u) is the only difference. Note that this extra term R2(u)
imposes the restriction p ≤ 2. As in the case of the renormalized NLS (1.2), we
prove the following proposition in Section 3.

Proposition 2.3. Let 1 ≤ p ≤ 2 and T > 0. Then, there exist time-dependent

multilinear operators {N(j)
0 }∞j=2, {N(j)

1 }∞j=1, {R(j)}∞j=1, and {R(j)
2 }∞j=1 depending on the

parameter
K = K(R) ≥ 1

such that the interaction representation u(t) = S(−t)u(t) of any regular solution

u ∈ C([−T,T];FL
3
2 (T)) to (1.1) with u(0) ∈ BR ⊂ FLp(T) satisfies the following

normal form equation:

u(t) − u(0) =
∞∑
j=2

N
(j)
0 (u)(t) −

∞∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

{ ∞∑
j=1

N
(j)
1 (u)(t′) +

∞∑
j=1

R(j)(u)(t′) +
∞∑
j=1

R
(j)
2 (u)(t′)

}
dt′

(2.12)

in C([−T,T];FL
3
2 (T)). Here, {N(j)

0 }∞j=2, {N(j)
1 }∞j=1, and {R(j)}∞j=1 are as in Proposi-

tion 2.1, satisfying the bounds (2.2), (2.3), and (2.4), while {R(j)
2 }∞j=1 are (2j + 1)-

linear operators (depending on t ∈ [−T,T]), satisfying the following bound:

(2.13) sup
t∈[−T,T]

‖R(j)
2 (t)(f1, f2, . . . , f2j+1)‖FLp(T) ≤ C0,j

2j+1∏
i=1

‖fi‖FLp(T),

for any fi ∈ FLp(T), where C0,j = C0,j(K) > 0 is as in (2.5).
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With Proposition 2.3, we can proceed as in the proof of Theorem 1.9 and prove
the following unconditional well-posedness of the normal form equation (2.12) for
the cubic NLS (1.1).

Theorem 2.4. Let 1 ≤ p ≤ 2. Then, the normal form equation (2.12) is
unconditionally globally well-posed in FLp(T).

Then, Theorem 1.4 for 1 ≤ p ≤ 2 and Theorem 1.5 for the cubic NLS (1.1)
follow from arguments analogous to those presented above. We omit details.

3 Normal form reduction: Proof of Proposition 2.1

In this section, we implement an infinite iteration of normal form reductions in
the Fourier–Lebesgue space FLp(T), 1 ≤ p < ∞, and prove Proposition 2.1. The
argument is presented in an inductive manner. More precisely, we start with the
formulation (1.9) and refer to this case as the first step (J = 1). Define

(3.1) N1(u) :=
∑
n∈Z

N1(u)(n)einx and R(u) :=
∑
n∈Z

R(u)(n)einx,

where N1(u)(n) and R(u)(n) are as in (1.9). In what follows, we view N1 and R as
trilinear operators.

For notational convenience, we set

R(1) := R and N(1) := N1.

While we keep the resonant part R(1) as it is, we divide the non-resonant part N(1)

into a “good” part N(1)
1 (nearly resonant part) and a “bad” part N(1)

2 (highly non-
resonant part), depending on the size of the phase function �(n̄). On the one
hand, the restriction on the phase function �(n̄) allows us to establish an effective
estimate on the good part N(1)

1 . On the other hand, the bad part does not allow for
any good estimate. To exploit fast time oscillation, we then apply a normal form
reduction to the bad part N(1)

2 and turn it into the terms N(2)
0 , R(2), and N(2) in the

second generation (J = 2). We can easily estimate the terms N(2)
0 and R(2). As in

the first step, we divide N(2) into a good part N(2)
1 and a bad part N(2)

2 , where the
threshold is now given by the phase function for the quintilinear term N(2). While
the good part N(2)

1 allows for an effective quintilinear estimate, we apply a normal
form reduction to the bad part N(2)

2 and turn it into three terms N(3)
0 , R(3), and N(3)

in the third generation (J = 3). We proceed in an inductive manner.
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After applying normal form reductions J −1 times, we arrive at the three terms
N

(J)
0 , R(J), and N(J). The main difficulty appears in the last term N(J). As in the

previous steps, we divide N(J) into a good partN(J)
1 (with an effective (2J+1)-linear

estimate) and a bad part N(J)
2 . We then apply a normal form reduction to the bad

partN(J)
2 and iterate this procedure indefinitely. Under some regularity assumption,

we show that the error term N
(J)
2 tends to 0 as J → ∞.

In order to carry out the strategy described above, we need to address the
following four issues:

• How do we separate N(J) into “good” and “bad” parts?

• How do we estimate these good terms in the FLp(T) when p � 1? As we
see below, N(J)

0 is (2J − 1)-linear, while R(J) and N(J) are (2J + 1)-linear.

• Under what condition does the remainder term N
(J)
2 tend to 0 as J → ∞, and

if so, in which sense?

• We need to show convergence of the series representation (2.1).

We address these issues in the remaining part of this section. In the following,
we fix 1 ≤ p < ∞. The major part of this section is devoted to studying the
renormalized cubic NLS (1.2). As for the (unrenormalized) cubic NLS (1.1), see
Subsection 3.6.

3.1 Base case: J = 1. Define the trilinear operators N(1) and R(1) by

N(1)(u1, u2, u3) = i
∑
n∈Z

einx
∑

n=n1−n2+n3
n2 
=n1,n3

ei�(n̄)tû1(n1)û2(n2)û3(n3),

R(1)(u1, u2, u3) = −i
∑
n∈Z

einxû1(n)û2(n)û3(n),
(3.2)

where �(n̄) is as in (1.10). For notational simplicity, we set

N(1)(u) = N(1)(u, u, u), etc.

when all the three arguments coincide. Note that this notation is consistent with
(1.9) and (3.1). Then, we can write (1.9) as

(3.3) ∂tu = N(1)(u) + R(1)(u).

The resonant part satisfies the following trivial estimate.

Lemma 3.1. Let 1 ≤ p ≤ ∞. Then, we have

(3.4) ‖R(1)(u1, u2, u3)‖FLp ≤
3∏

i=1

‖ui‖FLp .

Proof. This is clear from �p
n ⊂ �3p

n . �
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Remark 3.2. (i) In the following, we establish various multilinear estimates.
To simplify notations, we only state and prove estimates when all arguments agree
with the understanding that they can be easily extended to multilinear estimates.
Under this convention, (3.4) is written as

‖R(1)(u)‖FLp ≤ ‖u‖3
FLp .

We also use ûn = ûn(t) to denote û(n, t). Moreover, given a multilinear operatorM,
we simply use M(u)(n) to denote the Fourier coefficients of M(u).

(ii) The multilinear operators that appear below are non-autonomous, i.e., they
depend on a parameter t ∈ R. They, however, satisfy estimates uniformly in time
and hence we simply suppress their time dependence. See (3.10) for example.

Next, we consider the non-resonant part N(1) in (3.2). As it is, we can not
establish an effective estimate and hence we divide it into two parts. Given K ≥ 1
(to be chosen later) and 1 ≤ p < ∞, let ε = ε(p) > 0 be a small positive number
such that

(3.5) p′ − 1 − ε > 0.

In the following, we simply set

(3.6) ε =
p′ − 1

2
> 0

such that (3.5) is satisfied. Furthermore, we set

(3.7) θ =
4p′

p′ − 1 − ε
> 0.

We write N(1) in (3.2) as

(3.8) N(1) = N
(1)
1 + N

(1)
2 ,

where N
(1)
1 is the restriction of N(1) onto A1 (on the Fourier side), where

A1 =
⋃
n

A1(n)

with11

(3.9)
A1(n) := {(n, n1, n2, n3) : n = n1 − n2 + n3, n1, n3 
= n,

|�(n̄)| = |2(n − n1)(n − n3)| ≤ (3K)θ}
and N

(1)
2 := N(1) − N

(1)
1 . Then, the “good” part N(1)

1 satisfies the following trilinear
estimate.

11Clearly, the number 3θ in (3.9) does not make any difference at this point. However, we insert it to
match with (3.25). See also (3.18).
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Lemma 3.3. Let N(1)
1 be as in (3.8). Then, we have

(3.10) ‖N(1)
1 (u)‖FLp � K

2θ
p′ ‖u‖3

FLp,

where θ is as in (3.7).

As in the p = 2 case studied in [22], the following divisor estimate [23] plays
an important role in the following. Given an integer n, let d(n) denote the number
of divisors of m. Then, we have

(3.11) d(n) � ec log n
log log n (= o(nδ) for any δ > 0).

Remark 3.4. With (3.6) and (3.7), we have

K
2θ
p′ = K

16
p′−1 ,

which appears in (2.5) of Proposition 2.1.

Proof. Fix n, μ ∈ Z with |μ| ≤ (3K)θ. Then, it follows from the divisor
estimate (3.11) that there are at most (3K)0+ many choices for n1 and n3 (and hence
for n2 from n = n1 − n2 + n3) satisfying

(3.12) μ = 2(n − n1)(n − n3).

Hence, we have

sup
n

( ∑
|μ|≤(3K)θ

∑
n=n1−n2+n3

n2 
=n1,n3
μ=�(n̄)

1
)
�

∑
|μ|≤(3K)θ

(3K)0+ � (3K)2θ.

Then, by Hölder’s inequality, we have

‖N(1)
1 (u)‖FLp =

(∑
n

∣∣∣∣ ∑
|μ|≤(3K)θ

∑
n=n1−n2+n3

n2 
=n1,n3
μ=�(n̄)

ûn1 ûn2 ûn3

∣∣∣∣p
) 1

p

≤
{∑

n

( ∑
|μ|≤(3K)θ

∑
n=n1−n2+n3

n2 
=n1,n3
μ=�(n̄)

1
) p

p′ ( ∑
n1,n3∈Z

|ûn1 |p|ûn1+n3−n|p|ûn3 |p
)} 1

p

� K
2θ
p′ ‖u‖3

FLp .

This proves (3.10). �
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Now, we apply a normal form reduction to the remaining highly non-resonant
part N(1)

2 . More precisely, we differentiate N
(1)
2 by parts (i.e., the product rule on

differentiation in a reversed order) and write

(3.13)

N
(1)
2 (u)(n) =

∑
A1(n)c

∂t

(ei�(n̄)t

�(n̄)

)
ûn1 ûn2 ûn3

=
∑

A1(n)c
∂t

[ei�(n̄)t

�(n̄)
ûn1 ûn2 ûn3

]
− ∑

A1(n)c

ei�(n̄)t

�(n̄)
∂t(ûn1 ûn2 ûn3 )

= ∂t

[ ∑
A1(n)c

ei�(n̄)t

�(n̄)
ûn1 ûn2 ûn3

]
− ∑

A1(n)c

ei�(n̄)t

�(n̄)
∂t(ûn1 ûn2 ûn3 )

=: ∂tN
(2)
0 (u)(n) + Ñ(2)(u)(n).

The boundary term N
(2)
0 can be estimated in a straightforward manner. Using

the equation (1.9), we can express Ñ(2)(u)(n) as a quintilinear form:

Ñ(2)(u)(n) = − ∑
A1(n)c

ei�(n̄)t

�(n̄)

{
R(u)(n1)ûn2 ûn3

+ ûn1R(u)(n2)ûn3 + ûn1 ûn2R(u)(n3)
}

= − ∑
A1(n)c

ei�(n̄)t

�(n̄)

{
N1(u)(n1)ûn2 ûn3

+ ûn1N1(u)(n2)ûn3 + ûn1 ûn2N1(u)(n3)
}

=: R(2)(u)(n) + N(2)(u)(n).

(3.14)

In view of (3.2), we regard R(2)(u)(n) and N(2)(u)(n) on the right-hand side as
quintilinear forms. As in the first step, we will need to divide N(2) into good
and bad parts and apply another normal form reduction to the bad part. Before
proceeding further, we first recall the notion of ordered trees introduced in [22].
This allows us to express multilinear terms in a concise manner.

Remark 3.5. We formally exchanged the order of the sum and the time
differentiation in the first term at the third equality. This can be easily justified in
the distributional sense (see Lemma 5.1 in [22]) and also in the classical sense if

u ∈ C([−T,T];FL
3
2 (T)) ⊂ C([−T,T];L3(T)).

See [22].

3.2 Notations: index by trees. In this subsection, we recall the notion
of ordered trees and relevant definitions from [22].
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Definition 3.6. (i) Given a partially ordered set T with partial order ≤, we
say that b ∈ T with b ≤ a and b 
= a is a child of a ∈ T, if b ≤ c ≤ a implies either
c = a or c = b. If the latter condition holds, we also say that a is the parent of b.

(ii) A tree T is a finite partially ordered set satisfying the following properties.
• Let a1, a2, a3, a4 ∈ T. If a4 ≤ a2 ≤ a1 and a4 ≤ a3 ≤ a1, then we have

a2 ≤ a3 or a3 ≤ a2.
• A node a ∈ T is called terminal, if it has no child. A non-terminal node a ∈ T

is a node with exactly three children denoted by a1, a2, and a3.
• There exists a maximal element r ∈ T (called the root node) such that a ≤ r

for all a ∈ T. We assume that the root node is non-terminal.
• T consists of the disjoint union of T0 and T∞, where T0 and T∞ denote the

collections of non-terminal nodes and terminal nodes, respectively.
The number |T| of nodes in a tree T is 3j + 1 for some j ∈ N, where

|T0| = j and |T∞| = 2j + 1.

Let us denote the collection of trees in the jth generation by T(j):

T(j) := {T : T is a tree with |T| = 3j + 1}.
Note that T ∈ T(j) contains j parental nodes.

(iii) (ordered tree) We say that a sequence {Tj}J
j=1 is a chronicle of J generations,

if
• Tj ∈ T(j) for each j = 1, . . . , J,
• Tj+1 is obtained by changing one of the terminal nodes in Tj into a non-

terminal node (with three children), j = 1, . . . , J − 1.
Given a chronicle {Tj}J

j=1 of J generations, we refer to TJ as an ordered tree of the
Jth generation. We denote the collection of the ordered trees of the Jth generation
by T(J). Note that the cardinality of T(J) is given by

(3.15) |T(J)| = 1 · 3 · 5 · · · (2J − 1) = (2J − 1)!! =: cJ.

The notion of ordered trees comes with associated chronicles; it encodes not
only the shape of a tree but also how it “grew”. This property will be convenient
in encoding successive applications of the product rule for differentiation. In the
following, we simply refer to an ordered tree TJ of the Jth generation but it is
understood that there is an underlying chronicle {Tj}J

j=1.
Given a tree T, we associate each terminal node a ∈ T∞ with the Fourier

coefficient (or its complex conjugate) of the interaction representation u and sum
over all possible frequency assignments. In order to do this, we introduce the index
function n assigning frequencies to all the nodes in T in a consistent manner.
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Definition 3.7 (index function). Given an ordered treeT (of the Jth generation
for some J ∈ N), we define an index function n : T → Z such that,

(i) na = na1 − na2 + na3 for a ∈ T0, where a1, a2, and a3 denote the children of a,

(ii) {na, na2} ∩ {na1, na3} = ∅ for a ∈ T0,

(iii) |μ1| := |2(nr − nr1 )(nr − nr3 )| > (3K)θ,12 where r is the root node,

where we identified n : T → Z with {na}a∈T ∈ Z
T. We use

N(T) ⊂ Z
T

to denote the collection of such index functions n.

Remark 3.8. Note that n = {na}a∈T is completely determined once we specify
the values na for a ∈ T∞.

Given an ordered tree TJ of the Jth generation with the chronicle {Tj}J
j=1 and

associated index functions n ∈ N(TJ), we use superscripts to denote “generations”
of frequencies.

Fix n ∈ N(TJ). Consider T1 of the first generation. Its nodes consist of the root
node r and its children r1, r2, and r3. We define the first generation of frequencies
by

(n(1), n(1)
1 , n(1)

2 , n(1)
3 ) := (nr, nr1, nr2, nr3 ).

The ordered tree T2 of the second generation is obtained from T1 by changing one
of its terminal nodes a = rk ∈ T∞

1 for some k ∈ {1, 2, 3} into a non-terminal node.
Then, we define the second generation of frequencies by

(n(2), n(2)
1 , n(2)

2 , n(2)
3 ) := (na, na1, na2, na3 ).

Note that we have n(2) = n(1)
k = nrk for some k ∈ {1, 2, 3}. As we see later, this

corresponds to introducing a new set of frequencies after the first differentiation
by parts.

After j − 1 steps, the ordered tree Tj of the jth generation is obtained from Tj−1

by changing one of its terminal nodes a ∈ T∞
j−1 into a non-terminal node. Then,

we define the jth generation of frequencies by

(n(j), n(j)
1 , n(j)

2 , n(j)
3 ) := (na, na1, na2, na3 ).

Note that these frequencies satisfy (i) and (ii) in Definition 3.7.

12Recall that we are on A1(n)c. See (3.9).



NORMAL FORM APPROACH TO NLS 747

Lastly, we use μj to denote the corresponding phase factor introduced at the jth
generation. Namely, we have

(3.16)

μj = μj(n
(j), n(j)

1 , n(j)
2 , n(j)

3 )

:= (n(j))2 − (n(j)
1 )2 + (n(j)

2 )2 − (n(j)
3 )2

= 2(n(j)
2 − n(j)

1 )(n(j)
2 − n(j)

3 )

= 2(n(j) − n(j)
1 )(n(j) − n(j)

3 ),

where the last two equalities hold thanks to (i) in Definition 3.7.

Remark 3.9. For simplicity of notation, we may drop the minus signs, the
complex number i, and the complex conjugate sign in the following when they do
not play an important role.

3.3 Second generation: J = 2. With the ordered tree notion introduced
in the previous subsection, we now rewrite (3.14) as

(3.17)

Ñ(2)(u)(n) =
∑

T1∈T(1)

∑
b∈T∞

1

∑
n∈N(T1)nr=n

1A1(n)c
eiμ1t

μ1
R(1)(u)(nb)

∏
a∈T∞

1 \{b}
ûna

+
∑

T2∈T(2)

∑
n∈N(T2)nr=n

1A1(n)c
ei(μ1+μ2)t

μ1

∏
a∈T∞

2

ûna

=: R(2)(u)(n) + N(2)(u)(n).

In the first equality, we use (1.9) and replace ∂tûnb by R(1)(u)(nb) and N(1)(u)(nb).
Strictly speaking, the new phase factor may be μ1 − μ2 when the time derivative
falls on the complex conjugate. However, for our analysis, it makes no difference
and hence we simply write it as μ1 + μ2. We apply the same convention for
subsequent steps.

Putting (3.13) and (3.17) together, we have

N
(1)
2 (u)(n) = ∂tN

(2)
0 (u)(n) + R(2)(u)(n) + N(2)(u)(n).

The boundary term N
(2)
0 (u) and the “resonant” term R(2) can be bounded in a

straightforward manner.
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Lemma 3.10. Let 1 ≤ p < ∞. Then, we have

‖N(2)
0 (u)‖FLp � K−4‖u‖3

FLp,

‖R(2)(u)‖FLp � K−4‖u‖5
FLp .

For the proof of Lemmas 3.10, see Lemma 3.12 and 3.13 with J = 2.

With θ > 0 as in (3.7), we decompose the frequency space13 of N(2) for fixed
T2 ∈ T(2) into

(3.18) A2 := {n ∈ N(T2) : |μ1 + μ2| ≤ (5K)θ},

and its complement Ac
2. Then we decompose N(2) as

(3.19) N(2) = N
(2)
1 + N

(2)
2 ,

where

N
(2)
1 := N(2)|A2

is defined as the restriction of N(2) on A2 and

N
(2)
2 := N(2) − N

(2)
1 .

Thanks to the restriction (3.18) on the frequencies, we can estimate the first
term N

(2)
1 .

Lemma 3.11. Let 1 ≤ p < ∞. Then, we have

‖N(2)
1 (u)‖FLp � K

2θ
p′ −4‖u‖5

FLp .

For the proof of Lemma 3.11, see Lemma 3.14 with J = 2.

As we do not have a good control on the operatorN(2)
2 , we apply another normal

form reduction to N
(2)
2 . On the support of N(2)

2 , we have

(3.20) |μ1| > (3K)θ and |μ1 + μ2| > (5K)θ.

13If we fix T2 ∈ T(2), then the frequency space of N(2) for this fixed T2 in (3.17) is given by

{(na, a ∈ T∞
2 ) : n = {na}a∈T2

∈ N(T2)}.

In view of Remark 3.8, we can then identify the frequency space of N(2) for this fixed T2 with N(T2).
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By applying differentiation by parts once again, we have

(3.21)

N
(2)
2 (u)(n)

= ∂t

[ ∑
T2∈T(2)

∑
n∈N(T2)

nr=n

1⋂2
j=1 Ac

j

ei(μ1+μ2)t

μ1(μ1 + μ2)

∏
a∈T∞

2

ûna

]

+
∑

T2∈T(2)

∑
n∈N(T2)nr=n

1⋂2
j=1 Ac

j

ei(μ1+μ2)t

μ1(μ1 + μ2)
∂t

( ∏
a∈T∞

2

ûna

)

= ∂t

[ ∑
T2∈T(2)

∑
n∈N(T2)nr=n

1⋂2
j=1 Ac

j

ei(μ1+μ2)t

μ1(μ1 + μ2)

∏
a∈T∞

2

ûna

]

+
∑

T2∈T(2)

∑
b∈T∞

2

∑
n∈N(T2)nr=n

1⋂2
j=1 Ac

j

ei(μ1+μ2)t

μ1(μ1 + μ2)
R(1)(u)(nb)

∏
a∈T∞

J−1\{b}
ûna

+
∑

T3∈T(3)

∑
n∈N(T3)nr=n

1⋂2
j=1 Ac

j

ei(μ1+μ2+μ3)t

μ1(μ1 + μ2)

∏
a∈T∞

3

ûna

=: ∂tN
(3)
0 (u)(n) + R(3)(u)(n) + N(3)(u),

where the summations are restricted to (3.20). As for the last term N(3)(u), we
need to decompose it into N

(3)
1 (u) and N

(3)
2 (u), according to the further restriction

(3.22) A3 := {n ∈ N(T3) : |μ1 + μ2 + μ3| ≤ (7K)θ}.
On the one hand, the modulation restrictions (3.9), (3.18), and (3.22) allow us to
estimate operators N(3)

0 , R(3), and N
(3)
1 ; see Lemmas 3.10 and 3.11 below. On the

other hand, we apply another normal form reduction to N
(3)
2 . In this way, we iterate

normal form reductions in an indefinite manner.

3.4 General step: Jth generation. In this subsection, we consider the
general Jth step of normal form reductions. Before doing so, let us first go over
the first two steps studied in Subsections 3.1 and 3.3. Write (3.3) as

∂tu = R(1)(u) + N
(1)
1 (u) + N

(1)
2 (u).

The first two terms on the right-hand side admit good estimates; see Lemmas 3.1
and 3.3. We then applied the first step of normal form reductions to the troublesome
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term N
(1)
2 (u) and obtained

∂tu = ∂tN
(2)
0 (u) +

2∑
j=1

R(j)(u) +
2∑

j=1

N
(j)
1 (u) + N

(2)
2 (u).

See (3.13), (3.17), and (3.19). Note that only the last term N
(2)
2 (u) can not be

estimated in a direct manner. By applying a normal form reduction once again, we
obtained

(3.23) ∂tu =
3∑

j=2

∂tN
(j)
0 (u) +

3∑
j=1

R(j)(u) +
3∑

j=1

N
(j)
1 (u) + N

(3)
2 (u).

See (3.21). Once again, all the terms in (3.23), except for the last term N
(3)
2 (u),

admit good estimates; see Lemmas 3.12, 3.13, and 3.14 below. We then apply
the third step of normal form reductions to N

(3)
2 (u). We can formally iterate this

process. In particular, after applying normal form reductions J−1 times, we would
arrive at

(3.24) ∂tu =
J∑

j=2

∂tN
(j)
0 (u) +

J∑
j=1

R(j)(u) +
J∑

j=1

N
(j)
1 (u) + N

(J)
2 (u).

In the following, we define each term on the right-hand side of (3.24) properly.
With μj as in (3.16), define μ̃j by

μ̃j :=
j∑

k=1

μk.

We then set

(3.25) Aj := {|μ̃j| ≤ ((2j + 1)K)θ},

where θ > 0 is as in (3.7). Given j ∈ N, we define N
(j)
2 (u)(n) by

(3.26) N
(j)
2 (u)(n) =

∑
Tj∈T(j)

∑
n∈N(Tj)

nr=n

1⋂j
k=1 Ac

k

eiμ̃jt∏j−1
k=1 μ̃k

∏
a∈T∞

j

ûna .

Note that this definition is consistent with N
(1)
2 , N(2)

2 , and N
(3)
2 that we saw in the

previous subsections. By applying a normal form reduction to (3.26) with (3.3),
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we obtain

(3.27)

N
(j)
2 (u)(n) = ∂t

[ ∑
Tj∈T(j)

∑
n∈N(Tj)

nr=n

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

∏
a∈T∞

j

ûna

]

+
∑

Tj∈T(j)

∑
n∈N(Tj)

nr=n

∑
b∈T∞

j

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

R(1)(u)(nb)
∏

a∈T∞
j \{b}

ûna

+
∑

Tj∈T(j)

∑
n∈N(Tj)

nr=n

∑
b∈T∞

j

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

N(1)(u)(nb)
∏

a∈T∞
j \{b}

ûna

= ∂t

[ ∑
Tj∈T(j)

∑
n∈N(Tj)

nr=n

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

∏
a∈T∞

j

ûna

]

+
∑

Tj∈T(j)

∑
n∈N(Tj)

nr=n

∑
b∈T∞

j

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

R(1)(u)(nb)
∏

a∈T∞
j \{b}

ûna

+
∑

Tj+1∈T(j+1)

∑
n∈N(Tj+1)

nr=n

1⋂j
k=1 Ac

k

eiμ̃j+1t∏j
k=1 μ̃k

∏
a∈T∞

j+1

ûna

=: ∂tN
(j+1)
0 (u)(n) + R(j+1)(u)(n) + N(j+1)(u)(n).

Here, we formally exchanged the order of the sum and the time differentiation,
which can be justified. See Remark 3.5. As in Subsections 3.1 and 3.3, we
divide N(j+1) into

(3.28) N(j+1) = N
(j+1)
1 + N

(j+1)
2 ,

where N
(j+1)
1 (u) is the restriction of N(j+1)(u) onto Aj+1 and

N
(j+1)
2 (u) := N(j+1)(u) − N

(j+1)
1 (u).

This allows us to define all the terms appearing in (3.24) in an inductive manner
by applying a normal form reduction to N

(j+1)
2 .

In the remaining part of this subsection, we estimate the multilinear opera-
tors N(j)

0 , R(j), and N
(j)
1 .

Lemma 3.12. Let 1 ≤ p < ∞. Then, there exists Cp > 0 such that

(3.29) ‖N(j)
0 (u)‖FLp ≤ Cp

K4(1−j)

((2j − 1)!!)2
‖u‖2j−1

FLp

for any integer j ≥ 2 and K ≥ 1.
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Proof. From (3.27) (with j + 1 replaced by j), we have

N
(j)
0 (u)(n) =

∑
Tj−1∈T(j−1)

∑
n∈N(Tj−1)

nr=n

1⋂j−1
k=1 Ac

k

eiμ̃j−1t∏j−1
k=1 μ̃k

∏
a∈T∞

j−1

ûna .

Then, by Hölder’s inequality with (3.15), we have

(3.30)

‖N(j)
0 (u)‖FLp

≤
∥∥∥∥ ∑
Tj−1∈T(j−1)

( ∑
n∈N(Tj−1)

nr=n

1⋂j−1
k=1 Ac

k∏j−1
k=1 |μ̃k|p′

) 1
p′ ( ∑

n∈N(Tj−1)
nr=n

∏
a∈T∞

j−1

|ûna |p
) 1

p
∥∥∥∥

�
p
n

≤ sup
Tj−1∈T(j−1)

n∈Z

( ∑
n∈N(Tj−1)

nr=n

1⋂j−1
k=1 Ac

k∏j−1
k=1 |μ̃k|p′

) 1
p′

× ∑
Tj−1∈T(j−1)

∥∥∥∥
( ∑

n∈N(Tj−1)
nr=n

∏
a∈T∞

j−1

|ûna |p
) 1

p
∥∥∥∥

�
p
n

≤ (2j − 3)!! sup
Tj−1∈T(j−1)

n∈Z

( ∑
n∈N(Tj−1)

nr=n

1⋂j−1
k=1 Ac

k∏j−1
k=1 |μ̃k|p′

) 1
p′
‖u‖2j−1

FLp .

In the last step, we used

(∑
n

∑
n∈N(Tj−1)

nr=n

∏
a∈T∞

j−1

|ûna |p
) 1

p

= ‖u‖2j−1
FLp .

We claim that

(3.31) sup
Tj−1∈T(j−1)

n∈Z

( ∑
n∈N(Tj−1)

nr=n

1⋂j−1
k=1 Ac

k∏j−1
k=1 |μ̃k|p′

) 1
p′

≤ Bj−1
p K4(1−j)((2j − 1)!!)−4,

where Bp > 0 is a constant depending only on p. Then, by setting

Cp := sup
j≥2

( Bj−1
p

(2j − 1)!!

)
< ∞,

we see that (3.29) follows from (3.30) and (3.31).
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It remains to prove (3.31). First, note that given any small ε > 0, there exists
C = C(ε) > 0 such that

(3.32)

sup
Tj−1∈T(j−1)

n∈Z

{n ∈ N(Tj−1) : nr = n, |μ̃k| = αk, k = 1, . . . , j − 1}

≤ Cj−1
j−1∏
k=1

|αk|ε.

See Lemma 8.16 in [35] for an analogous statement. It follows from the divisor
estimate (3.11) that for fixed n(k) and μk, there are at most O(|μk|0+) many choices
for n(k)

1 , n(k)
2 , and n(k)

3 . Noting that |μk| ≤ |αk|+ |αk−1|, we can iterate this argument
from k = 1 to j − 1 and obtain (3.32).

From (3.25) and (3.32) with (3.7), we have

LHS of (3.31) ≤ Cj−1
j−1∏
k=1

( ∑
|μ̃k|>((2k+1)K)θ

k=1,...,j−1

1
|μ̃k|p′−ε

) 1
p′

≤ Cj−1
j−1∏
k=1

(∫ ∞

((2k+1)K)θ
t−p′+ε dt

) 1
p′

= B(j−1)
p K4(1−j)((2j − 1)!!)−4.

Recalling that ε in (3.6) depends only on p, we see that Bp and hence Cp depend
only on 1 ≤ p < ∞. This completes the proof of Lemma 3.12. �

As a consequence of Lemma 3.12 with Lemma 3.1, we obtain the following
estimate on R(j).

Lemma 3.13. Let 1 ≤ p < ∞. Then, there exists Cp > 0 such that

(3.33) ‖R(j)(u)‖FLp ≤ Cp
(2j − 1)K4(1−j)

((2j − 1)!!)2
‖u‖2j+1

FLp

for any j ∈ N and K ≥ 1.

Proof. When j = 1, this is precisely Lemma 3.1. Let j ≥ 2. Note that R(j)(u)
is nothing but N(j)

0 (u) by replacing ûnb with R(1)(u)(nb) for b ∈ T∞
j and summing

over b ∈ T∞
j . Then, (3.33) follows from Lemma 3.12 with Lemma 3.1 and noting

that given Tj ∈ T(j − 1), we have #{b : b ∈ T∞
j−1} = 2j − 1. This extra factor 2j − 1

does not cause a problem thanks to the fast decaying constant in (3.33). �
Lastly, we estimate N

(j)
1 (u), namely, the restriction of N(j) onto Aj.
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Lemma 3.14. Let 1 ≤ p < ∞. Then, there exists Cp > 0 such that

(3.34) ‖N(j)
1 (u)‖FLp ≤ Cp

K
2θ
p′ +4(1−j)

((2j − 1)!!)2
‖u‖2j+1

FLp ,

for any j ∈ N and K ≥ 1.

Proof. From (3.27) (with j + 1 replaced by j), we have

N
(j)
1 (u)(n) =

∑
Tj∈T(j)

∑
n∈N(Tj)

nr=n

1⋂j−1
k=1 Ac

k∩Aj

eiμ̃jt∏j−1
k=1 μ̃k

∏
a∈T∞

j

ûna .

Proceeding as in (3.30) with Hölder’s inequality, we have

(3.35)

‖N(j)
1 (u)‖FLp ≤ sup

Tj∈T(j)
n∈Z

( ∑
n∈N(Tj)

nr=n

1⋂j−1
k=1 Ac

k∩Aj∏j−1
k=1 |μ̃k|p′

) 1
p′

× ∑
Tj∈T(j)

∥∥∥∥
( ∑

n∈N(Tj)
nr=n

∏
a∈T∞

j

|ûna |p
) 1

p
∥∥∥∥

�
p
n

≤ (2j − 1)!! sup
Tj∈T(j)

n∈Z

( ∑
n∈N(Tj)

nr=n

1⋂j−1
k=1 Ac

k∩Aj∏j−1
k=1 |μ̃k|p′

) 1
p′
‖u‖2j−1

FLp .

We claim that there exists Bp > 0 such that

(3.36) sup
Tj∈T(j)

n∈Z

( ∑
n∈N(Tj)

nr=n

1⋂j−1
k=1 Ac

k∩Aj∏j−1
k=1 |μ̃k|p′

) 1
p′
≤Bj−1

p (2j + 1)1+ 2θ
p′ K

2θ
p′ +4(1−j)((2j − 1)!!)−4.

Then, the desired estimate (3.34) follows from (3.35) and (3.36) by setting

Cp := sup
j≥2

(Bj−1
p (2j + 1)1+ 2θ

p′

(2j − 1)!!

)
.

It remains to prove (3.36). As compared to (3.31) in the proof of Lemma 3.12,
the main difference is that the summation in (3.36) is over n ∈ N(Tj) rather than
n ∈ N(Tj−1). Note that

(3.37)
∑

n∈N(Tj)
nr=n

=
∑

n∈N(Tj−1)
nr=n

∑
b∈T∞

j−1

∑
nb=n(j)

1 −n(j)
2 +n(j)

3

.

With nb = n(j), let μj be as in (3.16). Then, thanks to the restriction Aj in (3.25), we
see that for fixed μ̃j−1 there are at most ((2j+1)K)θ many choices of μj. Moreover,
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we have |μj| ≤ |μ̃j−1| + ((2j + 1)K)θ. Then, by the divisor estimate (3.11), we
conclude that

(3.38)
∑

b∈T∞
j−1

∑
nb=n(j)

1 −n(j)
2 +n(j)

3

1Aj � (2j + 1)((2j + 1)K)θ(((2j + 1)K)θ + |μ̃j−1|)0+.

Thus (3.36) follows from (3.31) together with (3.37) and (3.38). �

3.5 On the error term N
(J)
2 and the proof of Proposition 2.1. We

first prove that the remainder term N
(J)
2 (u) in (3.24) tends to zero as J → ∞ under

some regularity assumption on u.

Lemma 3.15. Let N(J)
2 be as in (3.26) with j = J and T > 0. Then, given

u ∈ C([−T,T];FL
3
2 (T)), we have

(3.39) sup
t∈[−T,T]

‖N(J)
2 (u)‖FL∞ −→ 0,

as J → ∞.

Proof. By Young’s inequality, we have

(3.40) ‖N(1)(u)‖FL∞ + ‖R(1)(u)‖FL∞ � ‖u‖3

FL
3
2
.

From (3.28) (with j + 1 replaced by J), we have

(3.41) N
(J)
2 (u) = N(J)(u) − N

(J)
1 (u).

Then, by rewriting (3.27) (with j + 1 replaced by J), we have

N(J)(u)(n) =
∑

TJ∈T(J)

∑
n∈N(TJ )nr=n

1⋂J−1
k=1 Ac

k

eiμ̃Jt∏J−1
k=1 μ̃k

∏
a∈T∞

J

ûna

=
∑

TJ−1∈T(J−1)

∑
n∈N(TJ−1)nr=n

∑
b∈T∞

J−1

1⋂J−1
k=1 Ac

k

eiμ̃Jt∏J−1
k=1 μ̃k

× (N(1) + R(1))(u)(nb)
∏

a∈T∞
J−1\{b}

ûna .
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Proceeding as in the proof of Lemma 3.12 with (3.15), (3.31), and (3.40), we have

(3.42)

‖N(J)(u)‖FL∞ � |T∞
J−1|

∑
TJ−1∈T(J−1)

sup
b∈T∞

J−1
n∈Z

{( ∑
n∈N(TJ−1)nr=n

1⋂J−1
k=1 Ac

k∏J−1
k=1 |μ̃k|p′

) 1
p′

×
( ∑

n∈N(TJ−1)nr=n

|(N(1) + R(1))(u)(nb)|p
∏

a∈T∞
J−1\{b}

|ûna |p
) 1

p
}

≤ BJ−1
p K−4(J−1) ((2J − 1)!!)−3 ‖u‖3

FL
3
2
.

× sup
b∈T∞

J−1
n∈Z

( ∑
n∈N(TJ−1)nr=n

∏
a∈T∞

J−1\{b}
|ûna |p

) 1
p

� BJ−1
p K−4(J−1)((2J − 1)!!)−2‖u‖3

FL
3
2
‖u‖2J

FLp

for any 1 ≤ p < ∞. Therefore, (3.39) follows from (3.41) with Lemma 3.14 and
(3.42) with p = 3

2 by taking J → ∞. �
We briefly discuss the proof of Proposition 2.1.

Proof of Proposition 2.1. In view of Lemmas 3.12, 3.13, and 3.14, it
suffices to verify that any solution u ∈ C([−T,T];FL

3
2 (T)) to (1.9) satisfies the

normal form equation (2.1). By integrating (3.24) in time, we have

u(t) − u(0) =
J∑

j=2

N
(j)
0 (u)(t) −

J∑
j=2

N
(j)
0 (u)(0)

+
∫ t

0

{ J∑
j=1

N
(j)
1 (u)(t′) +

J∑
j=1

R(j)(u)(t′)
}

dt′ +
∫ t

0
N

(J)
2 (u)(t′)dt′.

By letting J → ∞, we deduce from Lemma 3.15 that the normal form equation
(2.1) holds in C([−T,T];FL∞(T)).

Given J ≥ 2, set

XJ = u(t) − u(0) −
[ J∑

j=2

N
(j)
0 (u)(t) −

J∑
j=2

N
(j)
0 (u0)

+
∫ t

0

{ J∑
j=1

N
(j)
1 (u)(t′) +

J∑
j=1

R(j)(u)(t′)
}

dt′
]
.

On the one hand, it follows from Lemmas 3.12, 3.13, and 3.14 that XJ converges
to some X∞ in C([−T,T];FL

3
2 (T)) as J → ∞. See (2.6). On the other hand, we

know that XJ converges to 0 in C([−T,T];FL∞(T)). Therefore, by the uniqueness
of the limit, we conclude that XJ tends to 0 in C([−T,T];FL

3
2 (T)) as J → ∞. This

shows that the normal form equation (2.1) holds in C([−T,T];FL
3
2 (T)). �
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3.6 On the cubic NLS. We conclude this section by briefly discussing
the case of the (unrenormalized) cubic NLS (1.1). The only difference appears
from the extra term R2 in (2.11). When j = 1, we simply set R(1)

2 (u)(n) = R2(u)(n).
When we apply a normal form reduction and substitute ∂tu by the equation (2.11),
there is an extra term due to R2. By repeating the computation in (3.27), we have

N
(j)
2 (u)(n) = ∂tN

(j+1)
0 (u)(n) + R(j+1)(u)(n) + N(j+1)(u)(n)

+
∑

Tj∈T(j)

∑
n∈N(Tj)

nr=n

∑
b∈T∞

j

1⋂j
k=1 Ac

k

eiμ̃jt∏j
k=1 μ̃k

R2(u)(nb)
∏

a∈T∞
j \{b}

ûna

=: ∂tN
(j+1)
0 (u)(n) + R(j+1)(u)(n) + N(j+1)(u)(n) + R

(j+1)
2 (u)(n).

Proposition 2.3 follows exactly as for Proposition 2.1 oncewe note the following
bound on R

(j)
2 .

Lemma 3.16. Let 1 ≤ p ≤ 2. Then, there exists Cp > 0 such that

‖R(j)
2 (u)‖FLp ≤ Cp

(2j − 1)K4(1−j)

((2j − 1)!!)2
‖u‖2j+1

FLp

for any j ∈ N and K ≥ 1.

Proof. This lemma follows from Lemma 3.12 as in the proof of Lemma 3.13
once we note that

‖R2(u)‖FLp ≤ ‖u‖3
FLp

when 1 ≤ p ≤ 2. �

Appendix A On the persistence of regularity in FLp(T),
1≤p<2

We first recall the basic definitions and properties of the Fourier restriction norm
spaces Xs,b

p (T × R) adapted to the Fourier–Lebesgue spaces. Let S(T × R) be the
vector space of C∞-functions u : R2 → C such that

u(x, t) = u(x + 1, t) and sup
(x,t)∈R2

|tα∂β
t ∂

γ
xu(x, t)| < ∞

for any α, β, γ ∈ N ∪ {0}.
Definition A.1. Let s, b ∈ R, 1 ≤ p ≤ ∞. We define the space Xs,b

p (T × R)
as the completion of S(T × R) with respect to the norm

(A.1) ‖u‖Xs,b
p (T×R) = ‖〈n〉s〈τ + n2〉bû(n, τ)‖�

p
nL

p
τ(Z×R).
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For brevity, we simply denote Xs,b
p (T × R) by Xs,b

p . Recall the following
characterization of the Xs,b

p -norm in terms of the interaction representation
u(t) = S(−t)u(t):

‖u‖Xs,b
p

= ‖u‖
FLs,p

x FLb,p
t

,

where the iterated norm is to be understood in the following sense:

‖u‖
FLs,p

x FLb,p
t

:= ‖〈n〉s〈τ〉bû(n, τ)‖�
p
nL

p
τ
= ‖‖〈n〉sû(n, t)‖

FLb,p
t

‖�
p
n
.

Here, FLs,p
x (T) is as in (1.7) and FLb,p

t (R) is defined by the norm:

‖f‖FLb,p(R) := ‖〈τ〉bf̂ (τ)‖Lp
τ(R).

Note that these spaces are separable when p < ∞.
For any 1 ≤ p < ∞ and s ∈ R, we have

(A.2) Xs,b
p ↪→ C(R;FLs,p(T)), if b >

1
p′ = 1 − 1

p
.

This is a consequence of the dominated convergence theorem along with the
following embedding relation: FLb,p

t ↪→ FL1
t ↪→ Ct, where the second embedding

is the Riemann–Lebesgue lemma.
Given an interval I ⊂ R, we also define the local-in-time version Xs,b

p (I) of the
Xs,b

p -space as the collection of functions u such that

(A.3) ‖u‖Xs,b
p (I) := inf{‖v ‖Xs,b

p
: v |I = u}

is finite.
Lastly, we recall the following linear estimates. See [15] for the proof.

Lemma A.2. (i) (Homogeneous linear estimate). Given 1 ≤ p ≤ ∞ and
s, b ∈ R, we have

‖S(t)f‖Xs,b
p ([0,T]) � ‖f‖FLs,p

for any 0 < T ≤ 1.
(ii) (Nonhomogeneous linear estimate). Let s ∈ R, 1 ≤ p < ∞, and

−1
p

< b′ ≤ 0 ≤ b ≤ 1 + b′.

Then, we have

(A.4)

∥∥∥∥
∫ t

0
S(t − t′)F(t′)dt′

∥∥∥∥
Xs,b

p ([0,T])
� T1+b′−b‖F‖Xs,b′

p ([0,T])

for any 0 < T ≤ 1.
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The nonhomogeneous linear estimate (A.4) is based on (2.21) in [18]. While
p > 1 is assumed in [18], the estimate also holds true when p = 1.

The following trilinear estimate is the key ingredient for establishing the per-
sistence of regularity in FLp(T), 1 ≤ p < 2.

Lemma A.3. Let 1≤p≤2. Then, there exists small ε>0 (independent of p)

such that

(A.5) ‖|u|2u‖
X

0,− 1
2 +2ε

p ([0,T])
� ‖u‖2

X
0, 1

2 +ε

2 ([0,T])
‖u‖

X
0, 1

2 +ε
p ([0,T])

for any 0 < T ≤ 1.

Proof. By a standard argument, it suffices to prove (A.5) without a time
restriction:

(A.6) ‖|u|2u‖
X

0,− 1
2 +2ε

p

� ‖u‖2

X
0, 1

2 +ε

2

‖u‖
X

0, 1
2 +ε

p

.

We first estimate the non-resonant contribution from I in (2.10). We follow the
argument in [19]. Let σ0 = τ + n2 and σj = τj + n2

j , j = 1, 2, 3. Then, (A.6) follows
once we prove∥∥∥∥ 1

〈σ0〉 1
2 −2ε

∑
n=n1−n2+n3

n
=n1,n3

∫
τ=τ1−τ2+τ3

3∏
j=1

fj(nj, τj)

〈σj〉 1
2 +ε

dτ1dτ2

∥∥∥∥
�

p
nL

p
τ

�
( 2∏

j=1

‖fj‖�2
nL2

τ

)
‖f3‖�

p
nL

p
τ
.

By Cauchy–Schwarz and Young’s inequalities, it suffices to prove

(A.7)
∥∥∥∥ 1
〈σ0〉1−4ε

∑
n=n1−n2+n3

n
=n1,n3

∫
τ=τ1−τ2+τ3

3∏
j=1

1
〈σj〉1+2ε

dτ1dτ2

∥∥∥∥
�∞

n L∞
τ

< ∞.

From (1.10), we have
4∏

j=0

1
〈σj〉ε � 1

〈(n − n1)(n − n3)〉ε .

Then, by estimating the convolutions in τj (see Lemma 4.2 in [16]) and applying
(1.10), we have

LHS of (A.7)

�
∥∥∥∥ 1
〈σ0〉1−3ε

∑
n=n1−n2+n3

n
=n1,n3

1
〈n−n1〉ε〈n−n3〉ε

1
〈τ+n2−2(n−n1)(n−n3)〉1+ε

∥∥∥∥
�∞

n L∞
τ

�
∥∥∥∥ ∑

k∈Z\{0}

1
〈k〉ε

1
〈τ + n2 − 2k〉1+ε

d(k)

∥∥∥∥
�∞

n L∞
τ

< ∞,

where we used the divisor estimate (3.11) in the last step.
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Next, we estimate the contribution from the resonant parts II and III in (2.10).
By Young’s inequality followed by Cauchy–Schwarz inequality, we have

‖II‖
X

0,− 1
2 +2ε

p

�
∥∥∥∥

∫
τ=τ1−τ2+τ3

û(n, τ1)û(n, τ2)û(n, τ3)dτ1dτ2

∥∥∥∥
�

p
nL

p
τ

� ‖û‖2
�∞

n L1
τ
‖û‖�

p
nL

p
τ

� ‖u‖2

X
0, 1

2 +ε

2

‖u‖
X

0, 1
2 +ε

p

.

With (A.2), we have

‖III‖
X

0,− 1
2 +2ε

p

� ‖u‖2
L∞

t L2
x
‖û(n, τ)‖�

p
nL

p
τ

� ‖u‖2

X
0, 1

2 +ε

2

‖u‖
X

0, 1
2 +ε

p

.

This completes the proof of Lemma A.3. �
When p = 2, Lemmas A.2 and A.3 allow us to prove local well-posedness of

(1.1) in L2(T), where the local existence time is given by

(A.8) T = T(‖u0‖L2 ) ∼ (1 + ‖u0‖L2 )−θ > 0

for some θ > 0. For 1 ≤ p < 2, by applying Lemmas A.2 and A.3, we can easily
prove local well-posedness of (1.1) in FLp(T), where the local existence time T is
given as in (A.8), namely, it depends only on the L2-norm of initial data u0. In this
case, a contraction argument yields

(A.9) sup
t∈[0,T]

‖u(t)‖FLp ≤ C‖u0‖FLp

for some absolute constant C > 0. Then, by iterating the local argument with (A.8)
and the L2-conservation, we conclude from (A.8) and (A.9) that

(A.10) sup
t∈[0,τ]

‖u(t)‖FLp ≤ C(1+‖u0‖L2 )θτ‖u0‖FLp

for any τ > 0. This proves global well-posedness of (1.1) in FLp(T), 1 ≤ p < 2,
with the growth bound (A.10) on the FLp-norm of solutions. A similar argument
yields global well-posedness of the renormalized cubic NLS (1.2) in FLp(T),
1 ≤ p < 2.
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