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Abstract: We study the two-dimensional stochastic nonlinear heat equation (SNLH)
and stochastic damped nonlinear wave equation (SdNLW) with an exponential nonlin-
earity λβeβu , forced by an additive space-time white noise. (i) We first study SNLH
for general λ ∈ R. By establishing higher moment bounds of the relevant Gaussian
multiplicative chaos and exploiting the positivity of the Gaussian multiplicative chaos,
we prove local well-posedness of SNLH for the range 0 < β2 < 8π

3+2
√
2
� 1.37π . Our

argument yields stability under the noise perturbation, thus improving Garban’s local
well-posedness result (2020). (ii) In the defocusing case λ > 0, we exploit a certain sign-
definite structure in the equation and the positivity of the Gaussian multiplicative chaos.
This allows us to prove global well-posedness of SNLH for the range: 0 < β2 < 4π . (iii)
As for SdNLW in the defocusing case λ > 0, we go beyond the Da Prato-Debussche
argument and introduce a decomposition of the nonlinear component, allowing us to
recover a sign-definite structure for a rough part of the unknown, while the other part
enjoys a stronger smoothing property. As a result, we reduce SdNLW into a system of
equations (as in the paracontrolled approach for the dynamical �4

3-model) and prove lo-

cal well-posedness of SdNLW for the range: 0 < β2 < 32−16√3
5 π � 0.86π . This result

(translated to the context of random data well-posedness for the deterministic nonlinear
wave equation with an exponential nonlinearity) solves an open question posed by Sun
and Tzvetkov (2020). (iv) When λ > 0, these models formally preserve the associated
Gibbs measures with the exponential nonlinearity. Under the same assumption on β

as in (ii) and (iii) above, we prove almost sure global well-posedness (in particular for
SdNLW) and invariance of the Gibbs measures in both the parabolic and hyperbolic
settings. (v) In Appendix, we present an argument for proving local well-posedness of
SNLH for general λ ∈ R without using the positivity of the Gaussian multiplicative
chaos. This proves local well-posedness of SNLH for the range 0 < β2 < 4

3π � 1.33π ,
slightly smaller than that in (i), but provides Lipschitz continuity of the solution map in
initial data as well as the noise.
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1. Introduction

1.1. Parabolic and hyperbolic Liouville equations. We study the two-dimensional
stochastic heat and wave equations with exponential nonlinearities, driven by an addi-
tive space-timewhite noise forcing.More precisely, we consider the following stochastic
nonlinear heat equations (SNLH) on the two-dimensional torus T

2 = (R/2πZ)2:{
∂t u + 1

2 (1−�)u + 1
2λβe

βu = ξ

u|t=0 = u0,
(t, x) ∈ R+ × T

2 (1.1)

and stochastic damped nonlinear wave equations (SdNLW) on T
2:{

∂2t u + ∂t u + (1−�)u + λβeβu = √2ξ
(u, ∂t u)|t=0 = (u0, u1),

(t, x) ∈ R+ × T
2, (1.2)

where β, λ ∈ R \ {0} and ξ denotes a space-time white noise on R+ × T
2. Our main

goal is to establish local and global well-posedness of these equations for certain ranges
of the parameter β2 > 0 and also prove invariance of the associated Gibbs measures in
the defocusing case λ > 0. As we see below, due to the exponential nonlinearity, the
difficulty of these equations depends sensitively on the value of β2 > 0 as well as the
sign of λ.

Our study is motivated by a number of perspectives. From the viewpoint of analysis
on singular stochastic PDEs, the equations (1.1) and (1.2) on T

2 are very interesting
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models. The main sources of the difficulty of these equations come from the roughness
of the space-time white noise forcing and the non-polynomial nature of the nonlinearity.
The first difficulty can already be seen at the level of the associated linear equations
whose solutions (namely, stochastic convolutions) are known to be merely distributions
for the spatial dimension d ≥ 2. This requires us to introduce a proper renormalization,
adapted to the exponential nonlinearity, to give a precise meaning to the equations. In
recent years, we have seen a tremendous development in the study of singular stochastic
PDEs, in particular in the parabolic setting [17,19,20,30,34,38,39,42,49,55]. Over the
last few years, we have also witnessed a rapid progress in the theoretical understanding
of nonlinear wave equations with singular stochastic forcing and/or rough random initial
data [15,23,24,35–37,58–65,69,77]. On the two-dimensional torus T

2, the stochastic
heat and wave equations with a monomial nonlinearity uk (see (1.3) and (1.4) below)
have been studied in [20,35,37]. In particular, in the seminal work [20], Da Prato and
Debussche introduced the so-called Da Prato-Debussche trick1 (see Sect. 1.3) which
set a new standard in the study of singular stochastic PDEs. We point out that many
of the known results focus on polynomial nonlinearities and thus it is of great interest
to extend the existing solution theory to the case of non-polynomial nonlinearities. We
will come back and elaborate further this viewpoint later. Furthermore, in this paper,
we study both SNLH (1.1) and SdNLW (1.2), which allows us to point out similarity
and difference between the analysis of the stochastic heat and wave equations. See also
[57] for a comparison of the stochastic heat and wave equations on T

2 with a quadratic
nonlinearity driven by fractional derivatives of a space-time white noise.

Another important point of view comes from mathematical physics. It is well known
that many of singular stochastic PDEs studied in the references mentioned above corre-
spond to parabolic and hyperbolic2 stochastic quantization equations for various models
arising in Euclidean quantum field theory; namely, the resulting dynamics preserves
a certain Gibbs measure on an infinite-dimensional state space of distributions. See
[70,74]. For example, the well-posedness results in [20,35,37] show that, for an odd
integer k ≥ 3, the �k+1

2 -measure3 is invariant under the dynamics of the parabolic
�k+1

2 -model on T
2:

∂t u + 1
2 (1−�)u + uk = ξ (1.3)

and the hyperbolic �k+1
2 -model on T

2:

∂2t u + ∂t u + (1−�)u + uk = √2ξ, (1.4)

respectively. From this point of view, when λ > 0, the equations (1.1) and (1.2) corre-
spond to the parabolic and hyperbolic stochastic quantization equations for the exp(�)2-
measure constructed in [2] (see (1.15) and (1.23) below); namely, they formally preserve
the associated Gibbs measures with the exponential nonlinear potential. This provides
another motivation to study well-posedness of the equations (1.1) and (1.2). We also
point out that the exp(�)2-measure and the resulting Gaussian multiplicative chaos play
an important role in Liouville quantum gravity [21,22,25,26,46,66]; see also a recent
paper [30] for a nice exposition and further references therein. We also mention the
works [1,4] on the elliptic exp(�)2-model.

1 See also the work by McKean [54] and Bourgain [10].
2 This is the so-called “canonical” stochastic quantization equation. See [74].
3 In the hyperbolic case, it is coupled with the white noise measure μ0 on the ∂t u-component. See (1.23).
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Let us now come back to the viewpoint of analysis on singular stochastic PDEs and
discuss the known results for the stochastic heat andwave equationswith non-polynomial
nonlinearities. In the one-dimensional case, the stochastic convolution (for the heat or
wave equation) has positive regularity and thus there is no need for renormalization. In
this case, the well-posedness theory for (1.1) and (1.2) on the one-dimensional torus T

and invariance of the associated Gibbs measures (when λ > 0) follow in a straightfor-
ward manner [3,77]. In the two-dimensional case, the stochastic convolution is only a
distribution, making the problem much more delicate. To illustrate this, we first discuss
the case of the sine-Gordon models on T

2 studied in [19,42,63,64]. In the parabolic
setting, Hairer-Shen [42] and Chandra-Hairer-Shen [19] studied the following parabolic
sine-Gordon model on T

2:

∂t u + 1
2 (1−�)u + sin(βu) = ξ. (1.5)

In this series of work, they observed that the difficulty of the problem depends sensitively
on the value of β2 > 0. By comparing the regularities of the relevant singular stochastic
terms,4 we can compare this sine-Gordon model (1.5) with the �3

d - and �4
d -models, at

least at a heuristic level; for example, the �3
d -model (and the �4

d -model, respectively)

formally corresponds to (1.5) with d = 2 + β2

2π (and d = 2 + β2

4π , respectively). In terms
of the actual well-posedness theory, the Da Prato-Debussche trick [20] along with a
standard Wick renormalization yields local well-posedness of (1.5) for 0 < β2 < 4π .
For the sine-Gordon model (1.5) on T

2, there is an infinite number of thresholds: β2 =
j

j+18π , j ∈ N, where one encounters new divergent stochastic objects, requiring further
renormalizations. By using the theory of regularity structures [39], Chandra, Hairer, and
Shen proved localwell-posedness of (1.5) for the entire subcritical regime 0 < β2 < 8π .
More recently, the authors with P.Sosoe studied the hyperbolic counterpart of the sine-
Gordon problem [63,64]. Due to a weaker smoothing property of the wave propagator,
however, the resulting solution theory is much less satisfactory than that in the parabolic
case; in the damped wave case, local well-posedness was established only for 0 <

β2 < 2π . See also Remark 1.19 (ii) below. It is this lack of strong smoothing in the
wave case which makes the problems in the hyperbolic setting much more analytically
challenging than those in the parabolic setting,5 and one of our main goals in this paper
is to make a progress in the solution theory of the more challenging SdNLW (1.2) with
the exponential nonlinearity. See also Remark 1.10.

In terms of regularity analysis, SNLH (1.1) and SdNLW (1.2) with the exponential
nonlinearity can also be formally compared to the �3

d - and �4
d -models by the heuris-

tic argument mentioned above, which yields the same correspondence as in the sine-
Gordon case.While the sine-Gordonmodel enjoys a certain charge cancellation property
[42,63], there is no such cancellation property in the exponential model under consider-
ation, which provides an additional difficulty in studying the regularity property of the
relevant stochastic term (see Proposition 1.12 below). See also [30] for a discussion on
intermittency of the problem with an exponential nonlinearity.

4 Namely, compare the regularities of the imaginary Gaussian multiplicative chaos with the stochastic
convolution for the �3

d -model and with the renormalized square power of the stochastic convolution for the

�4
d -model.
5 We mention the recent works [15,36,59,60] on the paracontrolled approach to study the stochastic wave

equations on the three-dimensional torus T
3, which are substantially more involved than the paracontrolled

approach in the parabolic setting [17,55]. Note that a standard application of the Da Prato-Debussche trick
suffices to handle the quadratic nonlinearity on T

3 in the parabolic setting [27], while it is not the case in the
hyperbolic setting considered in [36].



On the Parabolic and Hyperbolic Liouville Equations 1285

In a recent paper [30], motivated from the viewpoint of Liouville quantum gravity,
Garban studied the stochastic nonlinear heat equation (1.1) on T

2 with an exponential
nonlinearity eβu :

∂t u − 1
2�u + 1

(2π)
3
2
eβu = ξ. (1.6)

See also (1.59) below. By studying the regularity property of the Gaussian multiplicative
chaos (see (1.39) below) and applying Picard’s iteration argument, he proved local well-
posedness of (1.6) for 0 < β2 < 8π

7+4
√
3
� 0.57π .6 Furthermore, by exploiting the

positivity of the Gaussian multiplicative chaos, he also proved local well-posedness for
the range: 8π

7+4
√
3
≤ β2 < 8π

(1+
√
2)2
� 1.37π . This latter result is without stability under

the perturbation of the noise and, in particular, the solution u was not shown to be a limit
of the solutions with regularized noises.

Before we state our first main result on SNLH (1.1), let us introduce some nota-
tions. Given N ∈ N, we denote by PN a smooth frequency projector onto the (spatial)
frequencies {n ∈ Z

2 : |n| ≤ N }, associated with a Fourier multiplier

χN (n) = χ
(
N−1n

)
(1.7)

for some fixed non-negative even function χ ∈ C∞c (R2) with suppχ ⊂ {ξ ∈ R
2 :

|ξ | ≤ 1} and χ ≡ 1 on {ξ ∈ R
2 : |ξ | ≤ 1

2 }. Let {gn}n∈Z2 and {hn}n∈Z2 be sequences
of mutually independent standard complex-valued7 Gaussian random variables on a
probability space (
0, P) conditioned so that g−n = gn and h−n = hn , n ∈ Z

2.
Moreover, we assume that {gn}n∈Z2 and {hn}n∈Z2 are independent from the space-time
white noise ξ in the equations (1.1) and (1.2). Then, we define random functions w0 and
w1 by setting

wω
0 =

∑
n∈Z2

gn(ω)

〈n〉 en and wω
1 =

∑
n∈Z2

hn(ω)en, (1.8)

where 〈n〉 = √
1 + |n|2 and en(x) = 1

2π e
in·x as in (2.1). Lastly, given s ∈ R, let μs

denote the Gaussian measure on D′(T2) with the density:

dμs = Z−1s e−
1
2 ‖u‖2Hs du. (1.9)

OnT
2, it is well known thatμs is aGaussian probabilitymeasure supported onWs−1−ε,p

(T2) for any ε > 0 and 1 ≤ p ≤ ∞. Note that the laws of w0 and w1 in (1.8) are given
by the massive Gaussian free field μ1 and the white noise measure μ0, respectively.

We study the following truncated SNLH:{
∂t uN + 1

2 (1−�)uN + 1
2λβCNeβuN = PN ξ

uN |t=0 = u0,N
(1.10)

for a suitable renormalization constant CN > 0, with initial data u0,N of the form:

u0,N = v0 + PNw0, (1.11)

where v0 is a given deterministic function and w0 is as in (1.8). We now state our first
local well-posedness result for SNLH (1.1).

6 Here, the numerology is converted to our scaling convention. See Remark 1.16 below.
7 This means that g0, h0 ∼ NR(0, 1) and Regn , Imgn ,Rehn , Imhn ∼ NR(0, 1

2 ) for n �= 0.
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Theorem 1.1. (local well-posedness in the general case) Let λ �= 0 and 0 < β2 <

β2
heat := 8π

3+2
√
2
� 1.37π . Then, there exists a sequence of positive constants {CN }N∈N,

tending to 0, (see (1.40) below) such that the stochastic nonlinear heat equation (1.1)
is locally well-posed in the following sense; given v0 ∈ L∞(T2), there exist an almost
surely positive stopping time τ = τ

(‖v0‖L∞ , β, λ
)
and a non-trivial8 stochastic process

u ∈ C([0, τ ]; H−ε(T2)) for any ε > 0 such that, given any small T > 0, on the event
{τ ≥ T }, the solution uN to the truncated SNLH (1.10)with initial data u0,N of the form
(1.11) converges in probability to u in C([0, T ]; H−ε(T2)).

Formally speaking, the limit u in Theorem 1.1 is a solution to the following “equa-
tion”: {

∂t u + 1
2 (1−�)u + 1

2∞−1 · λβeβu = ξ

u|t=0 = v0 + w0.
(1.12)

We will describe a precise meaning of this limiting equation in Sect. 1.3.
Note that the model (1.6) studied in [30] corresponds to (a massless version of) our

model (1.1) with λ = 2β−1

(2π)
3
2
. In view of the symmetry (in law) for (1.1): (u, ξ, β, λ) �→

(−u,−ξ,−β, λ), Garban’s result covers both9 λ > 0 and λ < 0 as in Theorem 1.1.
After rescaling, the upper bound 8π

3+2
√
2
� 1.37π on β2 in Theorem 1.1 agrees with the

“critical” value γpos = 2
√
2− 2 in [30]. See Remark 1.16 below. Namely, the ranges of

the parameter β2 in Theorem 1.1 and [30, Theorems 1.7 and 1.11] agree. The difference
between the result in [30] and Theorem 1.1 for the range 8π

7+4
√
3
� 0.57π ≤ β2 <

8π
3+2

√
2
� 1.37π appears in the approximation property of the solution. In [30], Garban

proved local well-posedness of the limiting equation (1.12) in the Da Prato-Debussche
formulation but without continuity in the noise. In Sect. 4, we will prove convergence of
the solution uN of the truncated SNLH (1.10) to the limit u, thus establishing continuity
in the noise.

In proving Theorem 1.1, we apply the Da Prato-Debussche trick as in [30]. By
exploiting the positivity of the Gaussian multiplicative chaos, we construct a solution
by a standard Picard’s iteration argument. For this purpose, we study higher moment
bounds of the Gaussianmultiplicative chaos. This is done with two different approaches:
the first one using the Brascamp-Lieb inequality [13]10 (see Lemma 2.11 below), and
the other one relying on Kahane’s classical approach.

This local well-posedness result by a contraction argument does not directly pro-
vide continuity in the noise since in studying the difference of Gaussian multiplicative
chaoses, we can no longer exploit any positivity. In order to prove convergence of the
solutions uN to the truncated SNLH (1.10), we employ a more robust energy method

8 Here, non-triviality means that the limiting process u is not zero or a linear solution. As we see below,
the limiting process u admits a decomposition u = v + z + �, where z = P(t)v0 denotes the (deterministic)
linear solution defined in (1.44), � denotes the stochastic convolution defined in (1.35), and the residual
term v satisfies the nonlinear equation (1.46). See, for example, [41,58,63], where in contrast some triviality
phenomena appear. A similar comment applies in the following statements.

9 What is important is the sign of λ, not its magnitude. Furthermore, as for the local well-posedness theory,
there is no essential difference between the massive and massless case.
10 This is not to be confused with the Brascamp-Lieb concentration inequality [14, Theorem 5.1] in prob-

ability theory, which was used in the study of the Gibbs measure for the defocusing nonlinear Schrödinger
equations on the real line [11].
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(namely, an a priori bound and a compactness argument) and combine it with the unique-
ness of a solution to the limiting equation (1.12) in the Da Prato-Debussche formulation.
This is turn yields the continuity in the noise property. See also Remark 1.3 (ii) below.

In the defocusing case λ > 0, we can improve the local well-posedness result of
Theorem 1.1 on two aspects. The first one is that the defocusing nonlinearity allows us
to prove a global-in-time result in place of a local one. The second and less obvious one
is that we can improve on the range of β2 > 0. Namely, the defocusing nature of the
nonlinearity also improves the local Cauchy theory.

Theorem 1.2. (global well-posedness in the defocusing case) Let λ > 0 and 0 < β2 <

(β∗heat)2 := 4π . Let {CN }N∈N be as in Theorem 1.1. Then, the stochastic nonlinear heat
equation (1.1) is globally well-posed in the following sense; given v0 ∈ L∞(T2), there
exists a non-trivial stochastic process u ∈ C(R+; H−ε(T2)) for any ε > 0 such that,
given any T > 0, the solution uN to the truncated SNLH (1.10) with initial data u0,N
of the form (1.11) converges in probability to u in C([0, T ]; H−ε(T2)).

When λ > 0, Eq. (1.10) indeed has a sign-definite structure; see (1.47) for example.
We exploit such a sign-definite structure at the level of the Da Prato-Debussche formu-
lation to prove Theorem 1.2. For β2 ≥ 8π

3+2
√
2
, we need to employ an energy method

even to prove existence of solutions. Both the sign-definite structure and the positivity
of the Gaussian multiplicative chaos play an important role. We then prove uniqueness
by establishing an energy estimate for the difference of two solutions. Continuity in the
noise is shown by an analogous argument to that in the proof of Theorem 1.1. Theo-
rem 1.2 thus shows that there is a significant improvement from [30] on the range of β2

from 0 < β2 < 8π
7+4

√
3
� 0.57π in [30] to 0 < β2 < 4π when λ > 0. This answers

Question 7.1 in [30], showing that the value γpos in [30] does not correspond to a critical
threshold, at least in the λ > 0 case. In view of the heuristic comparison to the�4

d -model
mentioned above, the range: 0 < β2 < 4π in Theorem 1.2 corresponds to the sub-�4

3
case. Note that in this range, the Da Prato-Debussche trick and a contraction argument
suffice for the parabolic sine-Gordon model [42,64].

Remark 1.3. (i) For the sake of the argument, Theorems 1.1 and 1.2 are stated for the
initial data u0,N of the form (1.11). By a slight modification of the argument, however,
we can also treat general deterministic initial data u0,N = v0 ∈ L∞(T2). See Remark
1.19 below. A similar comment applies to Theorem 1.8 for SdNLW (1.2).
(ii) In Appendix A, we present a local well-posedness argument in the sense of The-
orem 1.1, in particular for any λ ∈ R \ {0}, for the slightly smaller range 0 < β2 <
4
3π � 1.33π than that in Theorem 1.1, but without using the positivity of the Gaussian
multiplicative chaos or any sign-definite structure of the equation. This argument also
provides stronger Lipschitz dependence on initial data and noise. See also Remark 4.3.
(iii) The well-posedness results in Theorem 1.1 and Theorem A.1 for general λ �= 0 are
directly applicable to the following parabolic sinh-Gordon equation on T

2:

∂t u + 1
2 (1−�)u + 1

2β sinh(βu) = ξ, (1.13)

providing local well-posedness of (1.13) for the same range of β2, in particular, with
continuity in the noise. The model (1.13) corresponds to the so-called cosh-interaction
in quantum field theory. See Remark 1.18 below.
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We now investigate an issue of invariant measures for (1.1) when λ > 0. Define the
energy Eheat by

Eheat(u) = 1

2

∫
T2
|〈∇〉u|2dx + λ

∫
T2

eβudx, (1.14)

where 〈∇〉 = √1−�. The condition λ > 0 guarantees that the problem is defocusing.
Note that the equation (1.1) formally preserves the Gibbs measure ρheat associated with
the energy Eheat, whose density is formally given by

“dρheat = Z−1e−Eheat(u)du = Z−1 exp
(
− λ

∫
T2

eβudx

)
dμ1”, (1.15)

whereμ1 is the massive Gaussian free field defined in (1.9). In view of the low regularity
of the support of μ1, we need to apply a renormalization to the density in (1.15) so that
ρheat can be realized as a weighted Gaussian measure on D′(T2).

In order to preserve the sign-definite structure of the equation for λ > 0, we can not
use an arbitrary approximation to the identity for regularization but we need to use those
with non-negative convolution kernels. Let ρ be a smooth, non-negative, even function
compactly supported in T

2 � [−π, π)2 and such that
∫
R2 ρ(x)dx = 1. Then, given

N ∈ N, we define a smoothing operator QN by setting

QN f = ρN ∗ f =
∑
n∈Z2

(
2πρ̂N (n)

)
f̂ (n)en, (1.16)

where the mollifier ρN is defined by

ρN (x) = N 2ρ(Nx). (1.17)

We then define the truncated Gibbs measure ρheat,N by

dρheat,N = Z−1N exp

(
− λCN

∫
T2

eβ QN udx

)
dμ1, (1.18)

whereCN is the renormalization constant from Theorem 1.1 but withQN instead of PN .
As a corollary to the analysis on the Gaussian multiplicative chaos (see Proposition 1.12
below), we have the following convergence result.

Proposition 1.4. Let λ > 0 and 0 < β2 < (β∗heat)2 = 4π . The sequence {ρheat,N}N∈N of
the renormalized truncated Gibbs measures converges in total variation to some limiting
probability measure. With a slight abuse of notation, we denote the limit by ρheat. Then,
the limiting renormalized Gibbs measure ρheat and the massive Gaussian free field μ1
are mutually absolutely continuous.

Remark 1.5. We only discuss the construction and invariance of the Gibbs measure in
the defocusing case λ > 0. Indeed, in the focusing case λ < 0, the Gibbs measure (1.18)
is not normalizable. More precisely, in [66, Appendix A], N. Tzvetkov and the authors
showed that the partition function satisfies

ZN =
∫

exp

(
− λCN

∫
T2

eβQN udx

)
dμ1 −→∞,

as N → ∞ in the case λ < 0. See Proposition A.1 in [66]. See also [12,16,51,59,60,
67,68,73] on non-normalizability results for focusing Gibbs measures.
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The truncatedGibbsmeasureρheat,N is invariant under the following truncatedSNLH:{
∂t uN + 1

2 (1−�)uN + 1
2λβCNQNeβ QN uN = ξ

uN |t=0 = uGibbs0,N ∼ ρheat,N.
(1.19)

See Lemma5.2 below.By taking N →∞, we then have the following almost sure global
well-posedness and invariance of the renormalized Gibbs measure ρheat for SNLH (1.1).

Theorem 1.6. Let λ > 0 and 0 < β2 < (β∗heat)2 = 4π . Then, the stochastic nonlinear
heat equation (1.1) is almost surely globally well-posedwith respect to the random initial
data distributed by the renormalized Gibbs measure ρheat. Furthermore, the renormal-
ized Gibbs measure ρheat is invariant under the resulting dynamics.

More precisely, there exists a non-trivial stochastic process u ∈ C(R+; H−ε(T2))

for any ε > 0 such that, given any T > 0, the solution uN to the truncated SNLH (1.19)
with the random initial data uGibbs0,N distributed by the truncated Gibbs measure ρheat,N

in (1.18) converges in probability to u in C([0, T ]; H−ε(T2)). Furthermore, the law of
u(t) for any t ∈ R+ is given by the renormalized Gibbs measure ρheat.

A variant of Theorem 1.2 implies global well-posedness of (1.19). Then, in view of
the mutual absolute continuity of the renormalized Gibbs measure ρheat and the massive
Gaussian free field μ1 and the convergence in total variation of the truncated Gibbs
measure ρheat,N in (1.18) to the limiting renormalized Gibbs measure ρheat (Proposition
1.4), the proof of Theorem 1.6 follows from a standard argument. See Sect. 5.2.

Remark 1.7. Note that the positivity of the operatorQN is needed only for proving local
well-posedness of the truncated SNLH (1.19) and that Proposition 1.4 holds with PN
(or any approximation to the identity) in place of QN . Then, noting that the proof of
Theorem 1.1 does not exploit any sign-definite structure of the equation, we conclude
that even if we replace QN with PN in (1.19), the conclusion of Theorem 1.6 holds
true for the range 0 < β2 < 8π

3+2
√
2
� 1.37π . Since Theorem 1.1 only provides lo-

cal well-posedness, we need to use Bourgain’s invariant measure argument [9,10] to
construct almost sure global-in-time dynamics. We refer to [37,40,59,60,65] for the
implementation of Bourgain’s invariant measure argument in the context of singular
SPDEs.

Next, we turn our attention to the stochastic damped nonlinear wave equation (1.2).
Due to a weaker smoothing property of the associated linear operator, the problem in
this hyperbolic setting is harder than that in the parabolic setting discussed above. In the
following, we restrict our attention to the defocusing case (λ > 0), where we can hope
to exploit a (hidden) sign-definite structure of the equation. Given N ∈ N, we study the
following truncated SdNLW:{

∂2t uN + ∂t uN + (1−�)uN + λβCNeβuN = √2PN ξ

(uN , ∂t uN )|t=0 = (u0,N , u1,N )
(1.20)

with the renormalization constant CN from Theorem 1.1 and initial data (u0,N , u1,N ) of
the form:

(u0,N , u1,N ) = (v0, v1) + (PNw0,PNw1), (1.21)

where (v0, v1) is a pair of given deterministic functions and (w0, w1) is as in (1.8).
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Theorem 1.8. Let λ > 0, 0 < β2 < β2
wave := 32−16√3

5 π � 0.86π , and s > 1.
Then, the stochastic damped nonlinear wave equation (1.2) is locally well-posed in
the following sense; given (v0, v1) ∈ Hs(T2) = Hs(T2) × Hs−1(T2), there exist
an almost surely positive stopping time τ = τ

(‖(v0, v1)‖Hs , β, λ
)
and a non-trivial

stochastic process (u, ∂t u) ∈ C([0, τ ];H−ε(T2)) for any ε > 0 such that, given any
small T > 0, on the event {τ ≥ T }, the solution (uN , ∂t uN ) to the truncated SdNLW
(1.20)with initial data (u0,N , u1,N ) of the form (1.21) converges in probability to (u, ∂t u)

in C([0, T ];H−ε(T2)).

Due to a weaker smoothing property of the linear wave operator, the range of β2

in Theorem 1.8 is much smaller than that in Theorem 1.2 and we can only prove local
well-posedness for SdNLW (1.2). Furthermore, we do not know how to prove local well-
posedness of SdNLW (1.2) in the focusing case (λ < 0). Namely, there is no analogue
of Theorem 1.1 in this hyperbolic setting at this point.

As in the proof of Theorem 1.2, we proceedwith the Da Prato-Debussche trick but the
proof of Theorem 1.8 in the hyperbolic setting is more involved than that of Theorem 1.2
in the parabolic setting. Due to the oscillatory nature of the Duhamel integral operator
(see (1.32) below) associated with the damped Klein-Gordon operator ∂2t + ∂t + (1−�),
we can not exploit any sign-definite structure as it is.We point out, however, that near the
singularity, the kernel for the Duhamel integral operator is essentially non-negative. This
observation motivates us to decompose the residual term v in the Da Prato-Debussche
argument as v = X + Y , where the low regularity part X enjoys a sign-definite structure
and the other part Y enjoys a stronger smoothing property. As a result, we reduce the
equation (1.20) to a system of equations; see (1.54) below. This decomposition of the
unknown into a less regular but structured part X and a smoother part Y is reminiscent
of the paracontrolled approach to the dynamical�4

3-model in [17,55]. See also [36]. We
will describe an outline of the proof of Theorem 1.8 in Sect. 1.3.

Lastly, we study the Gibbs measure ρwave for SdNLW (1.2) associated with the
energy:

Ewave(u, ∂t u) = Eheat(u) +
1

2

∫
T2

(∂t u)2dx,

where Eheat is as in (1.14). As in the parabolic case, we need to introduce a renormal-
ization. Define the truncated Gibbs measure ρwave,N by

dρwave,N(u, ∂t u) = Z−1N d(ρheat,N ⊗ μ0)(u, ∂t u), (1.22)

where μ0 is the white noise measure defined in (1.9). Then, it follows from Proposi-
tion 1.4 that when 0 < β2 < 4π , the truncated Gibbs measure ρwave,N converges in total
variation to the renormalized Gibbs measure ρwave given by

dρwave(u, ∂t u) = Z−1d(ρheat ⊗ μ0)(u, ∂t u). (1.23)

Now, consider the following truncated SdNLW:

{
∂2t uN + ∂t uN + (1−�)uN + λβCNQNeβ QN uN = √2ξ
(uN , ∂t uN )|t=0 = (uGibbs0,N , uGibbs1,N ),

(1.24)
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where QN is the mollifier with a non-negative kernel defined in (1.16) and CN is the
renormalization constant from Theorem 1.1 but with QN instead of PN . Decomposing
the truncated SdNLW (1.24) into the deterministic nonlinear wave dynamics:

∂2t uN + (1−�)uN + λβCNQNe
β QN uN = 0

and the Ornstein-Uhlenbeck process (for ∂t uN ):

∂2t uN + ∂t uN + (1−�)uN =
√
2ξ,

we see that the truncated Gibbs measure ρwave,N is invariant under the truncated
SdNLW (1.24). See Section 4 in [37]. As a result, we obtain the following almost sure
global well-posedness of (1.2) and invariance of the renormalized Gibbs measure ρwave.

Theorem 1.9. Let λ > 0 and 0 < β2 < β2
wave = 32−16√3

5 π � 0.86π . Then, the
stochastic damped nonlinear wave equation (1.2) is almost surely globally well-posed
with respect to the renormalized Gibbs measure ρwave. Furthermore, the renormalized
Gibbs measure ρwave is invariant under the resulting dynamics.

More precisely, there exists a non-trivial stochastic process (u, ∂t u) ∈ C(R+;
H−ε(T2)) for any ε > 0 such that, given any T > 0, the solution (uN , ∂t uN ) to
the truncated SdNLW (1.24) with the random initial data (uGibbs0,N , uGibbs1,N ) distributed by
the truncated Gibbs measure ρwave,N in (1.22) converges in probability to (u, ∂t u) in
C([0, T ];H−ε(T2)). Furthermore, the law of (u(t), ∂t u(t)) for any t ∈ R+ is given by
the renormalized Gibbs measure ρwave.

Unlike Theorem 1.2 in the parabolic setting, Theorem 1.8 does not yield global
well-posedness of SdNLW (1.2). Therefore, in order to prove Theorem 1.9, we need to
employ Bourgain’s invariant measure argument [9,10] to first prove almost sure global
well-posedness by exploiting invariance of the truncated Gibbs measure ρheat,N for the
truncated dynamics (1.24). Since such an argument is by now standard, we omit details.
See, for example, [15,59,60,65,77] in the context of the (stochastic) nonlinear wave
equations.

Remark 1.10. In [77], Sun andTzvetkov studied the following (deterministic) dispersion-
generalized nonlinear wave equation (NLW) on T

d with the exponential nonlinearity:

∂2t u + (1−�)αu + eu = 0 (1.25)

and the associated Gibbs measure ρα . When α > d
2 , they proved almost sure global

well-posedness of (1.25) with respect to the Gibbs measure ρα and invariance of ρα . We
point out that, when α > d

2 , a solution u is a function and no normalization is required.
As such, the analysis in [77] also applies to11

∂2t u + (1−�)αu + eβu = 0 (1.26)

for any β ∈ R \ {0} and a precise value of β is irrelevant in this non-singular setting.
When d = 2, their result barely misses the α = 1 case, corresponding to the wave

equation, and the authors in [77] posed the α = 1 case on T
2 as an interesting and

challenging open problem. By adapting the proofs of Theorems 1.8 and 1.9 to the deter-
ministic NLW setting, our argument yields almost sure global well-posedness of (1.26)
for α = 1 and 0 < β2 < β2

wave with respect to the (renormalized) Gibbs measure ρ1
(= ρwave in (1.23)) and invariance of ρwave, thus answering the open question in an
affirmative manner in this regime of β2.

11 In the massless case: ∂2t u + (−�)αu + eβu = 0, by scaling analysis, we can reduce the problem to the
β = 1 case (on a dilated torus, where the analysis in [77] still applies).
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1.2. On the Gaussian multiplicative chaos. In this subsection, we go over a renormal-
ization procedure for our problems. In the following, we present a discussion in terms of
the frequency truncation operator PN but exactly the same results hold for the smoothing
operatorQN defined in (1.16). We begin by studying the following linear stochastic heat
equation with a regularized noise:{

∂t�
heat
N + 1

2 (1−�)�heat
N = PN ξ

�heat
N |t=0 = PNw0,

wherew0 is the random distribution defined in (1.8), distributed according to themassive
Gaussian free field μ1. Then, the truncated stochastic convolution �heat

N is given by

�heat
N (t) = P(t)PNw0 +

∫ t

0
P(t − t ′)PNdW (t ′), (1.27)

where P(t) = e
t
2 (�−1) denotes the linear heat operator defined by

P(t) f = e
t
2 (�−1) f =

∑
n∈Z2

e−
t
2 (1+|n|2) f̂ (n)en (1.28)

and W denotes the cylindrical Wiener process on L2(T2) defined by

W (t) =
∑
n∈Z2

Bn(t)en . (1.29)

Here, {Bn}n∈Z2 is a family of mutually independent complex-valued Brownian motions
conditioned so that B−n = Bn , n ∈ Z

2. By convention, we normalize Bn such that
Var(Bn(t)) = t and assume that {Bn}n∈Z2 is independent from w0 and w1 in (1.8).

Given N ∈ N, we have �heat
N ∈ C(R+ × T

2). For each fixed t ≥ 0 and x ∈ T
2, it is

easy to see that �heat
N (t, x) is a mean-zero real-valued Gaussian random variable with

variance (independent of (t, x) ∈ R+ × T
2):

σ heat
N = E

[
�heat

N (t, x)2
] = 1

4π2

∑
n∈Z2

χ2
N (n)

(
e−t〈n〉2

〈n〉2 +
∫ t

0

[
e−

1
2 (t−t ′)〈n〉2

]2
dt ′

)

= 1

4π2

∑
n∈Z2

χ2
N (n)

1

〈n〉2 ∼ log N −→∞, (1.30)

as N → ∞. This essentially shows that {�N (t)}N∈N is almost surely unbounded in
W 0,p(T2) for any 1 ≤ p ≤ ∞.

In the case of the wave equation, we consider the following linear stochastic damped
wave equation with a regularized noise:{

∂2t �wave
N + ∂t�

wave
N + (1−�)�wave

N = √2PN ξ,

(�wave
N , ∂t�

wave
N )|t=0 = (PNw0,PNw1),

where w0 and w1 are as in (1.8). Then, the stochastic convolution �wave
N in this case is

given by

�wave
N (t) = ∂tD(t)PNw0 +D(t)PN

(
w0 + w1) +

√
2
∫ t

0
D(t − t ′)PNdW (t ′), (1.31)
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where the linear damped wave operator D(t) is given by

D(t) = e−
t
2

sin
(
t
√

3
4 −�

)
√

3
4 −�

, (1.32)

viewed as a Fourier multiplier operator:

D(t) f = e−
t
2
∑
n∈Z2

sin
(
t
√

3
4 + |n|2

)
√

3
4 + |n|2

f̂ (n)en . (1.33)

One can easily derive the propagator D(t) in (1.32) by writing the linear damped wave
equation ∂2t u + ∂t u + (1−�)u = 0 on the Fourier side:

∂2t û(t, n) + ∂t û(t, n) + 〈n〉2û(t, n) = 0

and solving it directly for each spatial frequency n ∈ Z
2. Then, a standard variation-of-

parameter argument yields the expression (1.31). By a direct computation using (1.31)
and (1.33), we obtain, for any (t, x) ∈ R+ × T

2,

σwave
N = E

[
�wave

N (t, x)2
] = 1

4π2

∑
n∈Z2

χ2
N (n)

1

〈n〉2 ∼ log N −→∞, (1.34)

as N →∞.
In the following, we set

�N = �heat
N or �wave

N and σN = σ heat
N = σwave

N .

Since we do not study the stochastic heat and wave equations at the same time, their
meaning will be clear from the context.

By a standard argument, we then have the following regularity and convergence result
for the (truncated) stochastic convolution. See, for example, [35, Proposition 2.1] in the
context of the wave equation.

Lemma 1.11. Given any T, ε > 0 and finite p ≥ 1, {�N }N∈N is a Cauchy sequence in
L p(
;C([0, T ];W−ε,∞(T2))), converging to some limit� in L p(
;C([0, T ];W−ε,∞
(T2))). Moreover, �N converges almost surely to the same limit � ∈ C([0, T ];W−ε,∞
(T2)).

Clearly, the limiting stochastic convolution is given by formally taking N → ∞ in
(1.27) or (1.31). Namely, in the heat case, we have

�(t) = �heat(t) = P(t)w0 +
∫ t

0
P(t − t ′)dW (t ′), (1.35)

while in the wave case, it is given by

�(t) = �wave(t) = ∂tD(t)w0 +D(t)
(
w0 + w1) +

√
2
∫ t

0
D(t − t ′)dW (t ′). (1.36)
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Next, we study the Gaussian multiplicative chaos formally given by

eβ�N =
∞∑
k=0

βk

k! �
k
N (t).

Since�k
N , k ≥ 2, does not have any nice limiting behavior as N →∞, we now introduce

the Wick renormalization:

:�k
N (t, x) : def= Hk

(
�N (t, x); σN

)
, (1.37)

where Hk denotes the kth Hermite polynomial, defined through the generating function:

etx−
σ2
2 t =

∞∑
k=0

tk

k!Hk(x; σ). (1.38)

From (1.37) and (1.38), the (renormalized) Gaussian multiplicative chaos is then given
by

�N (t, x) = :eβ�N (t,x) : def=
∞∑
k=0

βk

k! :�
k
N (t, x) :

= e−
β2

2 σN eβ�N (t,x).

(1.39)

We also set CN = CN (β) by

CN = e−
β2

2 σN −→ 0, (1.40)

as N →∞.
The following proposition provides the regularity and convergence properties of the

Gaussian multiplicative chaos �N .

Proposition 1.12. (i) Given 0 < β2 < 8π , let 1 ≤ p < 8π
β2 and define α = α(p) by

(p − 1)β2

4π
< α(p) < 2. (1.41)

Then, given any T > 0, the sequence of stochastic processes �N is uniformly bounded
in

L p(
; L p([0, T ];W−α,p(T2))).

(ii) Given 0 < β2 < 4π , let 1 < p < 8π
β2 and α(p) as in (1.41). Then, given any

T > 0, {�N }N∈N is a Cauchy sequence in L p(
; L p([0, T ];W−α,p(T2))) and hence
converges to some limit � in the same class. In particular, �N converges in probability
to � in L p([0, T ];W−α,p(T2)).



On the Parabolic and Hyperbolic Liouville Equations 1295

In the following, we write the limit � as

� = :eβ� : = lim
N→∞�N = lim

N→∞CNe
β�N . (1.42)

We point out that by applying Fubini’s theorem, a proof of Proposition 1.12 reduces
to analysis for fixed (t, x) ∈ R+ × T

2. Therefore, the proof is identical for �N =
�heat

N and �wave
N .

In [30], Garban established an analogous result on the Gaussian multiplicative chaos
but in the context of the space-time Hölder regularity; see [30, Theorem 3.10]. See also
[1, Theorem 6] for an analogous approach in the elliptic setting, working in the L p-based
Besov spaces but only for 1 < p ≤ 2.

In the case of a polynomial nonlinearity [35,36], the pth moment bound follows
directly from the second moment estimate combined with the Wiener chaos estimate
(see, for example, Lemma 2.5 in [36]), since the stochastic objects in [35,36] all belong
to Wiener chaoses of finite order. However, the Gaussian multiplicative chaos �N in
(1.39) does not belong to anyWiener chaos of finite order. Therefore, we need to estimate
all the higher moments by hand. The approach in [30] is based on Kahane’s convexity
inequality [46]; see Lemma 3.4. In Sect. 3, we first compute higher even moments,
using the Brascamp-Lieb inequality [8,13,52]. See Lemma 2.11 and Corollary 2.12.
We believe that our approach based on the Brascamp-Lieb inequality is of independent
interest. In order to compare this approach with Kahane’s, we also provide a proof of
Proposition 1.12 based on Kahane’s inequality. See Propositions 3.2 and 3.6 as well as
Appendix B.

We conclude this subsection by briefly discussing a proof of Proposition 1.4.

Proof of Proposition 1.4. As mentioned above, the proof of Proposition 1.12 is based
on reducing the problem for fixed (t, x) ∈ R+ × T

2. In particular, it follows from the
proof of Proposition 1.12 presented in Sect. 3 that �N (0) at time t = 0 converges to
�(0) in L p(
;W−α,p(T2)). Then, by restricting to the (spatial) zeroth Fourier mode,
we obtain convergence in probability (with respect to the Gaussian free fieldμ1 in (1.9))
of the density

RN = exp

(
− λCN

∫
T2

eβ QN udx

)
= exp

(− 2πλ�̂N (0, 0)
)

(1.43)

to

R = exp

(
− λ

∫
T2
: eβu : dx

)
= exp

(− 2πλ�̂(0, 0)
)
.

Moreover, by the positivity of �N and λ, the density RN in (1.43) is uniformly bounded
by 1. Putting together, we conclude the L p(μ1)-convergence of the density RN to R by
a standard argument (see [79, Remark 3.8]). More precisely, the L p-convergence of RN
follows from the uniform L p-bound on RN and the softer convergence in probability. ��

1.3. Outline of the proof. In the following, we briefly describe an outline of the proofs
of Theorems 1.1, 1.2, 1.6, 1.8, and 1.9.
• Parabolic case: Given v0 ∈ L∞(T2), we consider the truncated SNLH (1.10). We
proceed with the Da Prato-Debussche trick and write a solution uN to (1.10) as

uN = vN + z + �N ,



1296 T. Oh et al.

where �N = �heat
N is the truncated stochastic convolution in (1.27) and z denotes the

linear solution given by

z = P(t)v0. (1.44)

Then, the residual term vN satisfies the following equation:{
∂tvN + 1

2 (1−�)vN + 1
2λβe

βzeβvN �N = 0
vN |t=0 = 0,

(1.45)

where �N = :eβ�heat
N : denotes the Gaussian multiplicative noise defined in (1.39).

When 0 < β2 < 8π
3+2

√
2
� 1.37π , we prove local well-posedness of (1.45) by a stan-

dard contraction argument. The key ingredients are Proposition 1.12 on the regularity of
the Gaussian multiplicative chaos�N and the positivity of the nonlinearity, in particular
the positivity of �N (see Lemma 2.14). In studying continuity in the noise, we can no
longer exploit any positivity. For this part of the argument, we use a more robust energy
method and combine it with the uniqueness of a solution to the limiting equation (see
(1.46) below).

Theorem 1.1 follows once we prove the following local well-posedness result for
(1.45).

Theorem 1.13. Let λ �= 0 and 0 < β2 < β2
heat = 8π

3+2
√
2
� 1.37π . Given any v0 ∈

L∞(T2), the Cauchy problem (1.45) is uniformly locally well-posed in the following
sense; there exists T0 = T0

(‖v0‖L∞ , β, λ
)

> 0 such that given 0 < T ≤ T0 and N ∈ N,
there exists a set 
N (T ) ⊂ 
 such that
(i) for any ω ∈ 
N (T ), there exists a unique solution vN to (1.45) in the class:

C([0, T ];Ws,p(T2)) ⊂ C([0, T ]; L∞(T2))

for some appropriate 0 < s < 1 and p ≥ 2, satisfying sp > 2. (ii) there exists a uniform
estimate on the probability of the complement of 
N (T ):

P(
N (T )c) −→ 0,

uniformly in N ∈ N, as T → 0,
Furthermore, there exist an almost surely positive stopping time τ = τ

(‖v0‖L∞ , β
)

and a stochastic process v ∈ C([0, T ];Ws,p(T2)) such that, given any small T >

0, on the event {τ ≥ T }, the sequence {vN }N∈N converges in probability to v in
C([0, T ];Ws,p(T2)).

The limit v satisfies the following equation:{
∂tv + 1

2 (1−�)v + 1
2λβe

βzeβv� = 0
v|t=0 = 0,

(1.46)

where� is the limit of�N constructed in Proposition 1.12. Then, u = v+z+� formally
satisfies the equation (1.12).

Next, we discuss theλ > 0 case. In this case, the equation (1.45) enjoys a sign-definite
structure. By writing (1.45) in the Duhamel formulation, we have

vN (t) = −1

2
λβ

∫ t

0
P(t − t ′)

(
eβzeβvN �N

)
(t ′)dt ′.
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Since the kernel for P(t) = e
t
2 (�−1) and the integrand eβzeβvN �N are both positive,

we see that

βvN ≤ 0. (1.47)

This observation shows that the nonlinearity eβvN is in fact bounded, allowing us to
rewrite (1.45) as {

∂tvN + 1
2 (1−�)vN + 1

2λβe
βz F(βvN )�N = 0

vN |t=0 = 0,
(1.48)

where F is a smooth bounded function such that

F(x) = ex (1.49)

for x ≤ 0 and F |R+ ∈ C∞c (R+;R+). In particular, F is Lipschitz. By making use of
this particular structure and the positivity of the Gaussian multiplicative chaos �N , we
prove a stronger well-posedness result, from which Theorem 1.2 follows.

Theorem 1.14. Let λ > 0 and 0 < β2 < (β∗heat)2 = 4π . Given any v0 ∈ L∞(T2), any
T > 0, and any N ∈ N, there exists a unique solution vN to (1.45) in the energy space:

ZT = C([0, T ]; L2(T2)) ∩ L2([0, T ]; H1(T2)) (1.50)

almost surely such that vN converges in probability to some limit v in the class ZT .
Furthermore, v is the unique solution to the equation (1.46) in the class ZT .

For Theorem 1.14, a contraction argument does not suffice even for constructing
solutions and thus we proceed with an energy method. Namely, we first establish a
uniform (in N ) a priori bound for a solution to (1.48). Then, by applying a compactness
lemma (Lemma 2.16) and extracting a convergent subsequence, we prove existence of
a solution. Uniqueness follows from an energy consideration for the difference of two
solutions in the energy spaceZT . As for continuity in the noise, in particular convergence
of vN to v, we lose the positivity of the stochastic term (i.e. �N −� is not positive). We
thus first establish convergence in some weak norm and then combine this with strong
convergence (up to a subsequence) via the compactness argument mentioned above and
the uniqueness of the limit v as a solution to (1.46) in the energy space ZT .
• Hyperbolic case: Next, we discuss the stochastic damped nonlinear wave equation
when λ > 0. Let N ∈ N ∪ {∞}. Given (v0, v1) ∈ Hs(T2), let uN be the solution to
(1.20). Proceeding with the Da Prato-Debussche trick uN = vN + z +�wave

N , the residual
term vN satisfies the following equation:{

∂2t vN + ∂tvN + (1−�)vN + λβeβzeβvN �N = 0
(vN , ∂tvN )|t=0 = (0, 0),

(1.51)

where �N = : eβ�wave
N : for N ∈ N, �∞ = � = limN→∞�N constructed in Proposi-

tion 1.12, and z denotes the linear solution given by

z(t) = ∂tD(t)v0 +D(t)
(
v0 + v1), (1.52)
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satisfying the following linear equation:{
∂2t z + ∂t z + (1−�)z = 0
(z, ∂t z)|t=0 = (v0, v1).

Since the smoothing property of the wave operator is weaker than that of the heat
equation, there is no uniform (in N ) L∞-control for vN (which is crucial in bounding
the nonlinearity eβvN ) and thus we need to exploit a sign-definite structure as in SNLH
(1.1) for λ > 0 discussed above. The main issue is the oscillatory nature of the kernel
for D(t) defined in (1.32). In particular, unlike the case of the heat equation, there is no
explicit sign-definite structure for (1.51).

In the following, we drop the subscript N for simplicity of notations. Write (1.51) in
the Duhamel formulation:

v(t) = −λβ

∫ t

0
D(t − t ′)

(
eβzeβv�

)
dt ′,

where D(t) is as in (1.32). The main point is that while the kernel for D(t) is not sign-
definite, it is essentially non-negative near the singularity. This motivates us to introduce
a further decomposition of the unknown:

v = X + Y, (1.53)

where (X,Y ) solves the following system of equations:

X (t) = −λβ

∫ t

0
e−

(t−t ′)
2 S(t − t ′)

(
eβzeβXeβY�

)
(t ′)dt ′,

Y (t) = −λβ

∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)(
eβzeβXeβY�

)
(t ′)dt ′.

(1.54)

Here, S(t) denotes the forward propagator for the standardwave equation: ∂2t u−�u = 0
with initial data (u, ∂t u)|t=0 = (0, u1) given by

S(t) = sin(t |∇|)
|∇| . (1.55)

The key point in that, in view of the positivity of the kernel for S(t) (see Lemma 2.5
below), there is a sign-definite structure for the X -equation when λ > 0 and we have

βX ≤ 0.

With F as in (1.49), we can then write (1.54) as

X (t) = −λβ

∫ t

0
e−

(t−t ′)
2 S(t − t ′)

(
eβz F(βX)eβY�

)
(t ′)dt ′,

Y (t) = −λβ

∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)(
eβz F(βX)eβY�

)
(t ′)dt ′.

(1.56)

Thus, the nonlinear contribution F(βX) from X is bounded thanks to the sign-definite
structure. This is crucial since, as we see below, X does not have sufficient regularity
to be in L∞(T2). While X and Y both enjoy the Strichartz estimates, the difference
of the propagators in the Y -equation provides an extra smoothing, gaining two deriva-
tives (see Lemma 2.6 below). This smoothing of two degrees allows us to place Y in
C([0, T ]; Hs(T2)) for some s > 1 and to make sense of eβY . In Sect. 6, we prove the
following theorem.
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Theorem 1.15. Let λ > 0, 0 < β2 < β2
wave = 32−16√3

5 π � 0.86π , and s > 1.
Suppose that a deterministic positive distribution � satisfies the regularity property
stated in Proposition 1.12. Namely, � ∈ L p([0, 1];W−α,p(T2)) for 1 ≤ p < 8π

β2 ,

where α = α(p) is as in (1.41). Then, given (v0, v1) ∈ Hs(T2), there exist T =
T
(‖(v0, v1)‖Hs , ‖�‖L p

T W
−α,p
x

)
> 0 and a unique solution (X,Y ) to (1.56) in the class:

X s1
T × Ys2

T ⊂ C([0, T ]; Hs1(T2))× C([0, T ]; Hs2(T2))

for some 0 < s1 < 1 < s2 and some (α, p) satisfying (1.41). Moreover, the solution
(X,Y ) depends continuously on

(v0, v1,�) ∈ Hs(T2)× L p([0, T ];W−α+ε,p(T2))

for sufficiently small ε > 0 (such that the pair (α + ε, p) satisfies the condition (1.41)).

Here, the spaces X s1
T and Ys2

T are defined by

X s1
T = C([0, T ]; Hs1(T2)) ∩ C1([0, T ]; Hs1−1(T2)) ∩ Lq([0, T ]; Lr (T2)), (1.57)

Ys2
T = C([0, T ]; Hs2(T2)) ∩ C1([0, T ]; Hs2−1(T2)), (1.58)

for some suitable s1-admissible pair (q, r). See Sect. 2.4. Note that Theorem 1.8 directly
follows from Theorem 1.15. As for Theorem 1.9, a small modification of the proof of
Theorem 1.15 yields the result. See Sect. 6 for details.

We point out that this reduction of (1.51) to the system (1.56), involving the decom-
position of the unknown (in the Da Prato-Debussche argument) into a less regular but
structured part and a smoother part, has some similarity to the paracontrolled approach
to the dynamical �4

3-model.12 Once we arrive at the system (1.56), we can apply the
Strichartz estimates for the X -equation (Lemma 2.8) and the extra smoothing for the
Y -equation (Lemma 2.6) along with the positivity of � (Lemma 2.14) to construct a
solution (X,Y ) by a standard contraction argument.

We conclude this introduction by stating some remarks and comments.

Remark 1.16. In [30], Garban studied the closely related massless stochastic nonlinear
heat equation with an exponential nonlinearity on (R/Z)2:

∂t X − 1

4π
�X + eγ X = ξ̃ , (1.59)

where ξ̃ is a space-time white noise on R+ × (R/Z)2. By setting

u(t, x) = 1√
2π

X
( t

2π
,
x

2π

)
and ξ(t, x) = 1

(2π)
3
2

ξ̃
( t

2π
,
x

2π

)
,

we see that ξ is a space-time white noise on R+ × T
2 and that u satisfies the massless

equation (1.6) with coupling constant

β = √2πγ.

This provides the conversion of the parameters γ in [30] and β in this paper.

12 This is not to be confused with the Da Prato-Debussche trick or its higher order variants, where we
decompose an unknown into a sum of a less regular but explicitly known (random) distribution and a smoother
remainder. The point of the decomposition (1.53) is that both X and Y are unknown.
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Remark 1.17. Asmentioned before, themassive equation (1.1) (with λ > 0) arises as the
stochastic quantization of the so-called Høegh-Krohn model [2,43] in Euclidean quan-
tum field theory, while the massless model (1.59) treated in [30] comes from the stochas-
tic quantization of Liouville Conformal Field Theory (LCFT). In [66], with N. Tzvetkov,
we extended the results of this paper on the stochastic nonlinear heat equation (1.6) on
the torusT

2 to the case of a massless stochastic nonlinear heat equation with “punctures"
on any closed Riemannian surface, thus addressing properly the stochastic quantization
of LCFT. See Theorem 1.4 in [66]. We point out that the corresponding problem in the
hyperbolic case, i.e. the massless analogue of Theorem 1.15 for the “canonical" stochas-
tic quantization of LCFT, was not treated in [66] and remains open. See also Remark
4.4 in [66].

Remark 1.18. (stochastic quantization of the cosh(�)2-model) The parabolic sinh-
Gordon equation (1.13) formally preserves (a renormalized version of) the Gibbs mea-
sure of the form:

“dρsinh = Z−1e−Esinh(u)(u)du”,

associated with the energy:

Esinh(u) = 1

2

∫
T2
|〈∇〉u|2dx +

∫
T2

cosh(βu)dx .

In view of Proposition 1.12, we can proceed as in the proof of Proposition 1.4 and
construct the renormalizedGibbsmeasureρsinh as a limit of the truncatedGibbsmeasure:

dρsinh,N = Z−1N exp

(
− CN

∫
T2

cosh(βQNu)

)
dμ1 (1.60)

for 0 < β2 < 4π , where μ1 is the massive Gaussian free field defined in (1.9) and CN
is the renormalization constant defined in (1.40) but with QN instead of PN .

As in the case of the truncated SNLH (1.19), it is easy to see that the truncated
Gibbs measure ρsinh,N in (1.60) is invariant under the following truncated sinh-Gordon
equation:

∂t uN + 1
2 (1−�)uN + 1

2βCNQN sinh(βQNuN ) = ξ. (1.61)

Since the equation (1.61) does not enjoy any sign-definite structure, we can not apply
(the proof of) Theorem 1.2. On the other hand, our proof of Theorem 1.1 is applicable to
study (1.61), yielding local well-posedness of (1.61) for the range 0 < β2 < 8π

3+2
√
2
�

1.37π . The key point is that, unlike [30, Theorem 1.11], this local well-posedness result
yields convergence of the solution uN of the truncated sinh-Gordon equation (1.61)
to some limit u. Combining this local well-posedness result with Bourgain’s invariant
measure argument [9,10], we then obtain almost sure global well-posedness for the
parabolic sinh-Gordon equation (1.13) and invariance of the renormalizedGibbsmeasure
ρsinh in the sense of Theorem 1.9.

Note that these results for the sinh-Gordon equation hold only in the parabolic setting
since, when λ < 0, we do not know how to handle SdNLW (1.2) for any β2 > 0.



On the Parabolic and Hyperbolic Liouville Equations 1301

Remark 1.19. (i) In Theorem 1.1, we treat initial data u0,N of the form (1.11). Due to
the presence of the random part PNw0 of the initial data, the variance σ heat

N in (1.30) is
time-independent, which results in the time-independent renormalization constant CN
in Theorem 1.1. It is, however, possible to treat deterministic initial data u0,N = v0 ∈
L∞(T2). In this case, the associated truncated stochastic convolution �̃heat

N is given by

�̃heat
N (t) =

∫ t

0
P(t − t ′)PNdW (t ′)

whose variance σ̃ heat
N is now time-dependent and given by

σ̃ heat
N (t) = E

[
�̃heat

N (t, x)2
] = 1

4π2

∑
n∈Z2

χ2
N (n)

1− e−t〈n〉2

〈n〉2

≈ − 1

2π
log N−1 + 1

2π
log(

√
t ∨ N−1) = 1

2π
log

(
1 ∨√t N

)
,

(1.62)

where A ∨ B = max(A, B). Here, the third step of (1.62) follows from Lemmas 2.2
and 2.3 below, by viewing et (�−1) as a regularization operator QN with a regularizing

parameter t− 1
2 . By comparing (1.30) and (1.62), we see that σ̃ heat

N (t) < σ heat
N , which

allows us to establish an analogue of Proposition 1.12 in this case. As a result, we obtain
an analogue of Theorem 1.1 but with a time-dependent renormalization constant. A
similar comment applies to Theorem 1.8 in the wave case.
(ii) In [63], the authors (with P.Sosoe) studied the (undamped) stochastic hyperbolic
sine-Gordon equation on T

2:

∂2t u + (1−�)u + λ sin(βu) = ξ. (1.63)

Due to the undamped structure, the variance of the truncated stochastic convolution
�N (t, x) behaves like ∼ t log N ; compare this with (1.34) and (1.62). This time de-
pendence allows us to make the variance as small as we like for any β2 > 0 by taking
t > 0 sufficiently small. As a result, we proved local well-posedness of the renormalized
version of (1.63) for any β2 > 0, with a (random) time of existence T � β−2.

Similarly, if we consider the undamped stochastic nonlinear wave equation (SNLW)
with an exponential nonlinearity:

∂2t u + (1−�)u + λβeβu = √2ξ, (1.64)

then we see that Proposition 1.12 holds with the regularity α given by (1.41) with β2

replaced by β2T . Thus, given any β2 > 0, we can make α > 0 arbitrarily small by
taking T ∼ β−2 > 0 small. See also Proposition 1.1 in [63]. This allows us to prove
local well-posedness of SNLW (1.64) for any β2 > 0.

Note that in view of (1.62), due to the exponential convergence to equilibrium for
the linear stochastic heat equation, we have σ̃ heat

N (t) ∼ σN as soon as t � N−2+θ for
some (small) θ > 0, and thus the regularization effect as in the wave case can only be
captured at time scales t � N−2+θ , which prevents us from building a local solution
with deterministic initial data for arbitrary β2 > 0 in the parabolic case.
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Remark 1.20. As we mentioned above, in the recent work [1], Albeverio, De Vecchi
and Gubinelli investigated the elliptic analogue of (1.1) and (1.2), namely the authors
studied the following singular elliptic SPDE:

(1−�x,z)φ + α :eαφ : = ξ (1.65)

for φ : (x, z) ∈ R
2 × R

2 �→ φ(x, z) ∈ R, where ξ is a space-time white noise on R
4.

Here, due to scaling considerations, the coupling constant corresponds to α = 2
√

πβ.
The authors of [1] then proved that (1.65) is well-posed in the regime 0 < α2 < α2

max =
4(8 − 4

√
3)π · (4π); see [1, Theorem 25 and Proposition 36]. In particular, note that

β∗heat =
√
4π < αmax

2
√

π
<
√
8π . Their proof also relies on the Da Prato-Debussche trick,

writing φ as φ = (1 − �)−1ξ + φ and solving the corresponding elliptic PDE for the
nonlinear component φ. One of the benefits of the elliptic setting is that, due to the
dimension being d = 4, the L2-regime corresponds to 0 < α2 < 8π · (4π), namely to
the full sub-critical regime 0 < β2 < 8π for the reduced coupling constant β = α

2
√

π
.

This in particular yields an analogue of Proposition 1.12 for the (elliptic) Gaussian
multiplicative chaos : eα(1−�)−1ξ : in the entire range 0 < α2 < 8π · (4π) for which
the construction of the exp(�)2-measure holds, by just working in L2-based Sobolev
spaces. See [1, Lemma 22]. Note that the same approach here only gives the convergence
of �N for 0 < β2 < 4π . The well-posedness of the elliptic SPDE (1.65) then follows
from an argument similar as that in Sect. 5 adapted to the elliptic setting. Heuristically
speaking, this should provide well-posedness in the whole range 0 < α2 < 8π · (4π).
However, there seems to be an issue similar to that discussed after (6.9). Namely, φ does
not have sufficient regularity to use an analogue of the condition (i) in Lemma 2.14 for
bounding the product of a distribution and a measure, which instead forces the use of an
analogue of condition (ii) in Lemma 2.14. This in turn restricts the range of admissible
α2 > 0.

Remark 1.21. (i) In [44], Hoshino, Kawabi, andKusuoka studied SNLH (1.1)withλ = 1
and independently established Theorem 1.2 and Theorem 1.6. While the analytical part
of the argument is analogous,13 the approaches for studying the Gaussian multiplicative
chaos �N ([44, Theorem 2.4] and Proposition 1.12 above) are quite different. The proof
in [44] is based on the Fourier side approach as in [35,56], establishing only the second
moment bound. On the other hand, our argument is based on the physical side approach
as in our previous work [63,64] on the hyperbolic sine-Gordonmodel. By employing the
Brascamp-Lieb inequality (and Kahane’s convexity inequality), we also obtain higher
moment bounds on the Gaussian multiplicative chaos, which is a crucial ingredient to
prove Theorem 1.1 for SNLH (1.1) with general λ ∈ R\{0} and Theorem 1.8 on SdNLW
(1.2).

After the submission of this paper, the same authors proved well-posedness and
invariance of the Gibbs measure for the parabolic SPDE (1.1) in the full “L1" regime
0 < β2 < 8π ; see [45]. This relies on arguments similar to those presented in Sect. 5
but working in L p-based spaces with 1 < p < 2 instead of the L2-based Sobolev spaces
used in the proof of Theorem 1.6. In particular, this requires extending the convergence
part of Proposition 1.12 to the case 1 < p < 2.

13 The sign-definite structure of the equation in the defocusing case also plays an important role in [44].
See, for example, the proof of Lemma 3.10 in [44].
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(ii) In a recent preprint [73], the secondauthor studied the fractional nonlinearSchrödinger
equationwith an exponential nonlinearity on a d-dimensional compactRiemannianman-
ifold:

i∂t u + (−�)
α
2 + λβeβ|u|2u = 0

with the dispersion parameter α > d. In the defocusing case (λ > 0), under some
assumption, the author proved almost sure global well-posedness and invariance of the
associated Gibbs measure. See [73] for precise statements. In the focusing case (λ < 0),
it was shown that the Gibbs measure is not normalizable for any β > 0. See also
Remark 1.5. Our understanding of the Schrödinger problem, however, is far from being
satisfactory at this point and it is of interest to investigate further issues in this direction.

This paper is organized as follows. In Sect. 2, we introduce notations and state various
tools from deterministic analysis. In Sect. 3, we study the regularity and convergence
properties of the Gaussian multiplicative chaos (Proposition 1.12). In Sect. 4, we prove
local well-posedness of SNLH (1.1) for general λ ∈ R \ {0} (Theorem 1.1). In Sect 5,
we discuss the λ > 0 case for SNLH (1.1) and present proofs of Theorems 1.2 and 1.6.
Section 6 is devoted to the study of SdNLW (1.2). In Appendix A, we present a simple
contraction argument to prove local well-posedness of SNLH (1.46) for any λ ∈ R\{0},
in the range 0 < β2 < 4

3π � 1.33π without using the positivity of the Gaussian
multiplicative chaos. Lastly, in Appendix B, we present a proof of Lemma 3.5, which is
crucial in establishing moment bounds for the Gaussian multiplicative chaos.

2. Deterministic Toolbox

In this section, we introduce some notations and go over preliminaries fromdeterministic
analysis. In Sects. 2.2, 2.3, and 2.4, we recall key properties of the kernels of elliptic, heat,
and wave equations. We also state the Schauder estimate (Lemma 2.4) and the Strichartz
estimates (Lemma 2.8). In Sect. 2.5, we state other useful lemmas from harmonic and
functional analysis.

2.1. Notations. We first introduce some notations. We set

en(x)
def= 1

2π
ein·x , n ∈ Z

2, (2.1)

for the orthonormal Fourier basis in L2(T2). Given s ∈ R, we define the Sobolev space
Hs(T2) by the norm:

‖ f ‖Hs (T2) = ‖〈n〉s f̂ (n)‖�2(Z2),

where f̂ (n) is the Fourier coefficient of f and 〈 · 〉 = (1 + | · |2) 1
2 . We also set

Hs(T2)
def= Hs(T2)× Hs−1(T2).

Given s ∈ R and p ≥ 1, we define the L p-based Sobolev space (Bessel potential space)
Ws,p(T2) by the norm:

‖ f ‖Ws,p = ‖〈∇〉s f ‖L p = ∥∥F−1(〈n〉s f̂ (n))
∥∥
L p .
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When p = 2, we have Hs(T2) = Ws,2(T2). When we work with space-time function
spaces, we use short-hand notations such as CT Hs

x = C([0, T ]; Hs(T2)).
For A, B > 0, we use A � B to mean that there exists C > 0 such that A ≤ CB. By

A ∼ B, we mean that A � B and B � A. We also use a subscript to denote dependence
on an external parameter; for example, A �α B means A ≤ C(α)B, where the constant
C(α) > 0 depends on a parameter α. Given two functions f and g on T

2, we write

f ≈ g

if there exist some constants c1, c2 ∈ R such that f (x) + c1 ≤ g(x) ≤ f (x)+ c2 for any
x ∈ T

2\{0} ∼= [−π, π)2 \ {0}. Given A, B ≥ 0, we also set A ∨ B = max(A, B) and
A ∧ B = min(A, B).

Given a random variable X , we use Law(X) to denote its distribution.

2.2. Bessel potential and Green’s function. In this subsection, we recall several facts
about the Bessel potentials and theGreen’s function for (1−�) onT

2. See also Section 2
in [63].

For α > 0, the Bessel potential of order α on T
d is given by 〈∇〉−α = (1 − �)− α

2

viewed as a Fourier multiplier operator. Its convolution kernel is given by

Jα(x)
def= lim

N→∞
1

2π

∑
n∈Zd

χN (n)

〈n〉α en(x), (2.2)

where the limit is interpreted in the sense of distributions on T
d . We recall from [63,

Lemma 2.2] the following local description of these kernels.

Lemma 2.1. For any 0 < α < d, the distribution Jα agrees with an integrable function,
which is smooth away from the origin. Furthermore, there exist a constant cα,d > 0 and
a smooth function R on T

d such that

Jα(x) = cα,d |x |α−d + R(x)

for all x ∈ T
d \ {0} ∼= [−π, π)d \ {0}.

An important remark is that the coefficient cα,d is positive; see (4,2) in [5]. This in
particular means that the singular part of the Bessel potential Jα is positive. We will
use this remark in Lemma 2.14 below to establish a refined product estimate involving
positive distributions.

In the following, we focus on d = 2. The borderline case α = d = 2 corresponds to
the Green’s function G for 1−�. On T

2, G is given by

G
def= (1−�)−1δ0 = 1

2π

∑
n∈Z2

1

〈n〉2 en . (2.3)

It is well known that G is an integrable function, smooth away from the origin, and that
it satisfies the asymptotics

G(x) = − 1

2π
log |x | + R(x), x ∈ T

2 \ {0}, (2.4)

for some smooth function R on T
2. See (2.5) in [63].

We also recall the following description of the truncated Green’s function PNG,
where PN is the smooth frequency projector with the symbol χN in (1.7). See Lemma
2.3 and Remark 2.4 in [63].
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Lemma 2.2. Let N2 ≥ N1 ≥ 1. Then, we have

PN1PN2G(x) ≈ − 1

2π
log

(|x | + N−11

)

for any x ∈ T
2 \ {0}. Similarly, we have

|P2
N j
G(x)− PN1PN2G(x)| � (

1 ∨ − log
(|x | + N−1j

)) ∧ (
N−11 |x |−1)

for j = 1, 2 and any x ∈ T
2 \ {0}.

In establishing invariance of the Gibbs measures (Theorems 1.6 and 1.9), we need
to consider the truncated dynamics (1.19) and (1.24) with the truncated nonlinearity.
In order to preserve the sign-definite structure, it is crucial that we use the smoothing
operator QN defined in (1.16) with a non-negative kernel. In particular, we need to
construct the Gaussian multiplicative chaos �N with the smoothing operator QN in
place of PN . For this purpose, we state an analogue of Lemma 2.2 for the truncation of
the Green’s function by QN .

Lemma 2.3. Let N2 ≥ N1 ≥ 1. Then we have

QN1QN2G(x) ≈ − 1

2π
log

(|x | + N−11

)
(2.5)

for any x ∈ T
2 \ {0}. Similarly, we have

∣∣Q2
N j
G(x)−QN1QN2G(x)

∣∣ �
(
1 ∨− log

(|x | + N−1j
)) ∧ (

N−11 |x |−1)
for j = 1, 2 and any x ∈ T

2 \ {0}.
Proof. We mainly follow the proof of Lemma 2.3 in [63]. We only show (2.5) for
N1 = N2 = N , since the other claims follow from a straightforward modification. Fix
x ∈ T

2 \ {0} ∼= [−π, π)2 \ {0}.
• Case 1: We first treat the case |x | � N−1. Since ρ ∈ C∞c (R2), we have

|∂kξ ρ̂N (ξ)| � N−|k|〈N−1ξ 〉−� (2.6)

for any k ∈ (Z≥0)2, � ∈ N, and ξ ∈ R
2. Then, by (2.3), the mean value theorem, and

(2.6) with |k| = 0 and � = 2, we have

∣∣Q2
NG(x)−Q2

NG(0)
∣∣ = 2π

∣∣∣∣ ∑
n∈Z2

ρ̂N (n)2

〈n〉2 (en(x)− en(0))

∣∣∣∣
�

∑
n∈Z2

ρ̂N (n)2

〈n〉 |x | �
∑
|n|≤N

〈n〉−1|x | +
∑
|n|≥N

N 2|n|−3|x |

� N |x | � 1.

(2.7)
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Similarly, by (2.3), the mean value theorem with ρ̂N (0) = 1
2π , and (2.6) with � = 1, we

have∣∣∣∣Q2
NG(0)− 1

4π2

∑
|n|≤N

1

〈n〉2
∣∣∣∣ �

∣∣∣∣ ∑
|n|≤N

4π2ρ̂N (n)2 − 1

〈n〉2
∣∣∣∣ + C

∑
|n|≥N

N

〈n〉2|n|

�
∑
|n|≤N

|n|
N 〈n〉2 + 1

� 1.

(2.8)

Hence, from (2.7) and (2.8), we conclude that

Q2
NG(x) ≈ 1

4π2

∑
|n|≤N

1

〈n〉2 ≈
1

2π
log N ≈ − 1

2π
log

(|x | + N−1
)
,

where we used Lemma 3.2 in [41] at the second step.
• Case 2: Next, we consider the case |x | � N−1. Since G is integrable and ρN is
non-negative and integrates to 1, we have

∣∣Q2
NG(x)− G(x)

∣∣ = ∣∣∣ ∫
T2

∫
T2

ρN (x − y)ρN (y − z)
(
G(z)− G(x)

)
dzdy

∣∣∣
�
∫
T2

∫
T2

ρN (x − y)ρN (y − z)

∣∣∣∣ log
( |z|
|x |

)∣∣∣∣dzdy + 1,
(2.9)

where, at the second step, we used (2.4) and the fact that R in (2.4) is smooth. Since
ρN is supported in a ball of radius O(N−1) centered at 0, we have |x − z| � |x − y| +
|y− z| � N−1 in the above integrals, which implies that |x | ∼ |z| under the assumption
|x | � N−1. Hence, the log term in (2.9) is bounded and we obtain

∣∣Q2
NG(x)− G(x)

∣∣ �
∫
T2

∫
T2

ρN (x − y)ρN (y − z)dzdy + 1 ∼ 1. (2.10)

Therefore, from (2.4) and (2.10), we have

Q2
NG(x) ≈ G(x) ≈ − 1

2π
log |x | ≈ − 1

2π
log

(|x | + N−1
)
.

This concludes the proof of Lemma 2.3. ��

2.3. On the heat kernel and the Schauder estimate. In this subsection, we summarize
the properties of the linear heat propagator P(t) defined in (1.28). We denote the kernel
of P(t) by

Pt
def= 1

2π

∑
n∈Z2

e−
t
2 〈n〉2en .

Then, we have the following lemma by passing the corresponding result on R
2 to the

periodic torus T
2 via the Poisson summation formula (see [33, Theorem 3.2.8]). See

also (2.1) in [63].
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Lemma 2.4. Let t > 0. (i) Pt is a positive smooth function. (ii) Let α ≥ 0 and 1 ≤ p ≤
q ≤ ∞. Then, we have

∥∥P(t) f
∥∥
Lq (T2)

� t−
α
2−( 1

p− 1
q )‖〈∇〉−α f ‖L p(T2) (2.11)

for any f ∈ L p(T2).

Proof. By the Poisson summation formula, and the positivity of the heat kernel on R
2,

we have

Pt = 1

2π
e−

t
2
∑
n∈Z2

e−
t
2 |n|2en = 1

2π
e−

t
2
∑
n∈Z2

F−1
R2

(
e−

t
2 |·|2)(x + 2πn) > 0,

where F−1
R2 denotes the inverse Fourier transform on R

2. This proves (i).

The Schauder estimate on R
2 follows from Young’s inequality and estimating the

kernel onR
2 in some Sobolev norm. As for the Schauder estimate (2.11) onT

2, we apply
Young’s inequality and then use the Poisson summation formula to pass an estimate on
(fractional derivatives of) the heat kernel on T

2 to that in a weighted Lebesgue space on
R
2. This proves (ii). ��

2.4. On the kernel of the wave operator and the Strichartz estimates. Next, we turn our
attention to the linear operators for the (damped) wave equations. Let S(t) be the forward
propagator for the standard wave equation defined in (1.55). We denote its kernel by St ,
which can be written as the following distribution:

St
def= 1

2π

∑
n∈Z2

sin(t |n|)
|n| en,

where we set sin(t |0|)
|0| = t by convention.

We say that a distribution T is positive if its evaluation T (ϕ) at any non-negative test
function ϕ is non-negative. We have the following positivity result for St .

Lemma 2.5. For any t ≥ 0, the distributional kernel St on the two-dimensional torus
T
2 is positive.

Proof. As a distribution, we have

St = 1

2π

∑
n∈Z2

sin(t |n|)
|n| en = lim

N→∞
∑
n∈Z2

ρ̂N (n)
sin(t |n|)
|n| en,

where ρN is as in (1.16). In particular, we can use the Poisson summation formula to
write

St (x) = lim
N→∞

1

2π

∑
m∈Z2

∫
R2

ρ̂N (ξ)
sin(t |ξ |)
|ξ | ei(x+2πm)·ξdξ

= lim
N→∞

∑
m∈Z2

sin(t |∇|)
|∇| ρN (x + 2πm).

(2.12)
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Let uN be the solution to the following linear wave equation on R
2:{

∂2t uN −�uN = 0,
(uN , ∂t uN )

∣∣
t=0 = (0, ρN ).

(2.13)

It is well known (see, for example, (27) on p. 74 in [28]) that in the two-dimensional
case, the solution uN to (2.13) is given by the following Poisson’s formula:

uN (t, x) = 1

2π

∫
B(x,t)

ρN (y)√
t2 − |x − y|2 dy ≥ 0

for any x ∈ R
2 and t ≥ 0, where B(x, t) ⊂ R

2 is the ball of radius t centered at x in
R
2. Hence, from (2.12), we conclude that

St (x) = lim
N→∞

∑
m∈Z2

uN (x + 2πm) ≥ 0. (2.14)

We point out that the sum in (2.14) (for fixed N ∈ N) is convergent thanks to the compact
support of ρN and the finite speed of propagation for the wave equation. ��

The next lemma shows that the operators D(t) in (1.32) and e− t
2 S(t) in (1.55) are

close in the sense that their difference provides an extra smoothing property. This extra
smoothing plays a crucial role for estimating Y in (1.56).

Lemma 2.6. Let t ≥ 0 and s ∈ R. (i) The operator D(t) − e− t
2 S(t) is bounded from

Hs(T2) to Hs+2(T2). (ii) The operator ∂t
(D(t)− e− t

2 S(t)
)
is bounded from Hs(T2) to

Hs+1(T2).

Proof. (i) It suffices to show that the symbol of 〈∇〉2(e t
2D(t)− S(t)

)
is bounded. Since

〈n〉 ∼
√

3
4 + |n|2 for any n ∈ Z

2, it suffices to bound, for n �= 0,

( 3
4 + |n|2)( sin

(
t
√

3
4 + |n|2)√

3
4 + |n|2

− sin(t |n|)
|n|

)

=
√

3
4 + |n|2

(
sin

(
t
√

3
4 + |n|2

)
− sin(t |n|)

)

+ ( 34 + |n|2) sin(t |n|)
(

1√
3
4 + |n|2

− 1

|n|
)

=: I + II.

By the mean value theorem, we have

| I | � 〈n〉
∣∣∣√ 3

4 + |n|2 − |n|
∣∣∣ � 〈n〉 1√

3
4 + |n|2 + |n|

� 1.

Similarly, we can bound the second term by

|II| � 〈n〉2 1

|n|
√

3
4 + |n|2(|n| +√ 3

4 + |n|2) � 1.
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This proves (i).
(ii) In this case, we show the boundedness of the symbol for

〈∇〉∂t
(D(t)− e−

t
2 S(t)

)
= −1

2
〈∇〉(D(t)− e−

t
2 S(t)

)
+ e−

t
2 〈∇〉

(
cos

(
t
√

3
4 −�

)
− cos(t |∇|)

)
=: III + IV.

The symbol of III is clearly bounded by the argument above. As for the symbol of IV,
it follows from the mean value theorem that

〈n〉
[
cos

(
t
√

3
4 + |n|2

)
− cos(t |n|)

]
� 〈n〉

(√
3
4 + |n|2 − |n|

)
� 1.

This completes the proof of Lemma 2.6. ��
Next, we state the Strichartz estimates for the linear wave equation.

Definition 2.7. Given 0 < s < 1, we say that a pair (q, r) of exponents (and a pair
(q̃, r̃), respectively) is s-admissible (and dual s-admissible, respectively), if 1 ≤ q̃ ≤
2 ≤ q ≤ ∞ and 1 < r̃ ≤ 2 ≤ r < ∞ and if they satisfy the following scaling and
admissibility conditions:

1

q
+
2

r
= 1− s = 1

q̃
+
2

r̃
− 2,

2

q
+
1

r
≤ 1

2
, and

2

q̃
+
1

r̃
≥ 5

2
.

Given 1
4 < s < 3

4 , we fix the following s-admissible and dual s-admissible pairs:

(q, r) =
(
3

s
,

6

3− 4s

)
and (q̃, r̃) =

(
3

2 + s
,

6

7− 4s

)
. (2.15)

In Sect. 6, we will only use these pairs.
Let 0 < T ≤ 1, 1

4 < s < 3
4 and fix the s-admissible pair (q, r) and the dual

s-admissible pair (q̃, r̃) given in (2.15). We then define the Strichartz space:

X s
T = C([0, T ]; Hs(T2)) ∩ C1([0, T ]; Hs−1(T2)) ∩ Lq([0, T ]; Lr (T2)) (2.16)

and its “dual” space:

N s
T = L1([0, T ]; Hs−1(T2)) + Lq̃([0, T ]; Lr̃ (T2)). (2.17)

Wenow state the Strichartz estimates. The Strichartz estimates onR
d arewell-known;

see [32,48,53]. Thanks to the finite speed of propagation, the same estimates also hold
on T

d locally in time.

Lemma 2.8. The solution u to the linear wave equation:{
∂2t u −�u = F
(u, ∂t u)|t=0 = (u0, u1)

satisfies the following Strichartz estimate:

‖u‖X s
T

� ‖(u0, u1)‖Hs + ‖F‖N s
T
,

uniformly in 0 < T ≤ 1.
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We also recall from [35] the following interpolation result forX s
T andN s

T . See (3.22)
and (3.23) in [35] for the proof.

Lemma 2.9. The following continuous embeddings hold:
(i) Let 0 ≤ α ≤ s and 2 ≤ q1, r1 ≤ ∞ satisfy the scaling condition:

1

q1
= 1− α/s

q
+

α/s

∞ and
1

r1
= 1− α/s

r
+

α/s

2
.

Then, we have

‖u‖Lq1
T W

α,r1
x

� ‖u‖X s
T
.

(ii) Let 0 ≤ α ≤ 1− s and 1 ≤ q̃1, r̃1 ≤ 2 satisfy the scaling condition:

1

q̃1
= 1− α/(1− s)

q̃
+

α/(1− s)

1
and

1

r̃1
= 1− α/(1− s)

r̃
+

α/(1− s)

2
.

Then, we have

‖u‖N s
T

� ‖u‖
L
q̃1
T W

−α,̃r1
x

.

2.5. Someuseful results fromnonlinear analysis. Weconclude this section by presenting
some further results from harmonic and functional analysis.

We first state the Brascamp-Lieb inequality [13]. This inequality plays an important
role in the proof of Proposition 1.12. In particular, it allows us to establish a good bound
on the pth moment of the Gaussian multiplicative chaos �N when p > 2. The version
we present here is due to [8].

Definition 2.10. We say that a pair (B,q) is a Brascamp-Lieb datum, if, for some m ∈
N ∪ {0} and d, d1, . . . , dm ∈ N, B = (B1, . . . , Bm) is a collection of linear maps from
R
d to R

d j , j = 1, . . . ,m, and q = (q1, . . . , qm) ∈ R
m
+ .

We now state the m-linear Brascamp-Lieb inequality.

Lemma 2.11. (Theorem 1.15 in [8]) Let (B,q) be a Brascamp-Lieb datum. Suppose
that the following conditions hold:

• Scaling condition:

m∑
j=1

q jd j = d. (2.18)

• Dimension condition: for all subspace V ⊂ R
d , there holds

dim(V ) ≤
m∑
j=1

q j dim(BjV ). (2.19)
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Then, there exists a positive constant BL(B,q) <∞ such that

∫
Rd

m∏
j=1

f j (Bj x)
q j dx ≤ BL(B,q)

m∏
j=1

(∫
R
d j

f j (y) dy

)q j

for any non-negative functions f j ∈ L1(Rd j ), j = 1, . . . ,m.

We point out that the conditions (2.18) and (2.19) guarantee that the Brascamp-Lieb
data is non-degenerate, i.e. the maps Bj , j = 1, . . . ,m, are surjective and their common
kernel is trivial. See [8, Remarks 1.16].

For our purpose, we only need the following special version of Lemma 2.11.

Corollary 2.12. Let p ∈ N. Then, we have∫
(T2)2p

∏
1≤ j<k≤2p

| f j,k(π j,k(x))|
1

2p−1 dx

�
∏

1≤ j<k≤2p

(∫
(T2)2

| f j,k(x j , xk)|dx jdxk
) 1

2p−1
(2.20)

for any f j,k ∈ L1(T2 × T
2). Here, π j,k denotes the projection defined by π j,k(x) =

π j,k(x1, . . . , x2p) = (x j , xk) for x = (x1, . . . , x2p) ∈ (T2)2p.

This is precisely the geometric Brascamp-Lieb inequality stated in [8, Example 1.6].
For readers’ convenience, we include its reduction to Lemma 2.11.

Proof. Write (R2)2p = ∏2p
�=1 R

2
� and define projections π� : (R2)2p → R

2
� and π j,k :

(R2)2p → R
2
j × R

2
k for j �= k in the usual way. Now, we set B = (π j,k : 1 ≤ j < k ≤

2p) and

q =
(

1

2p − 1
, . . . ,

1

2p − 1

)
∈ R

p(2p−1)
+ .

It is also easy to check that the scaling condition (2.18) holds since d j,k = 4, 1 ≤ j <

k ≤ 2p and m = p(2p − 1) and q j,k = 1
2p−1 , while the total dimension is d = 4p.

As for the dimension condition (2.19), first note that

dim(π j,kV ) = dim(π j V ) + dim(πkV )

for j �= k. Then, we have

dim(V ) ≤
2p∑
j=1

dim(π j V ) = 1

2p − 1

∑
1≤ j<k≤2p

dim(π j,kV ),

verifying (2.19).
The desired estimate (2.20) follows from extending f j,k on (T2)2 as a compactly

supported measurable function on R
4 by extending it by 0 outside of (T2)2 � [−π, π)4

and applying Lemma 2.11. ��
We now recall several product estimates. See Lemma 3.4 in [35] for the proofs.
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Lemma 2.13. Let 0 ≤ s ≤ 1. (i) Suppose that 1 < p j , q j , r < ∞, 1
p j

+ 1
q j
= 1

r ,

j = 1, 2. Then, we have∥∥〈∇〉s( f g)∥∥Lr (Td )
�
∥∥〈∇〉s f ∥∥L p1 (Td )

‖g‖Lq1 (Td ) + ‖ f ‖L p2 (Td )

∥∥〈∇〉sg∥∥Lq2 (Td )
.

(ii) Suppose that 1 < p, q, r <∞ satisfy 1
p + 1

q ≤ 1
r + s

d . Then, we have∥∥〈∇〉−s( f g)∥∥Lr (Td )
�
∥∥〈∇〉s f ∥∥Lq (Td )

∥∥〈∇〉−sg∥∥L p(Td )
. (2.21)

Note that while Lemma 2.13 (ii) was shown only for 1
p + 1

q = 1
r + s

d in [35], the

general case 1
p +

1
q ≤ 1

r +
s
d follows from the inclusion Lr1(Td) ⊂ Lr2(Td) for r1 ≥ r2.

The next lemma shows that an improvement over (2.21) in Lemma 2.13 (ii) is possible
if g happens to be a positive distribution.

Lemma 2.14. Let 0 ≤ s ≤ 1 and 1 < p <∞. Then, we have

‖〈∇〉−s( f g)∥∥L p(Td )
� ‖ f ‖L∞(Td )‖〈∇〉−sg‖L p(Td ) (2.22)

for any f ∈ L∞(Td) and any positive distribution g ∈ W−s,p(Td), satisfying one of
the following two conditions: (i) f ∈ C(Td) or (ii) f ∈ Ws,q(Td) for some 1 < q <∞
satisfying 1

p + 1
q < 1 + s

d .

This lemmaplays an important role in estimating a product involving the non-negative
Gaussian multiplicative chaos �N . In studying continuity in the noise, we need to es-
timate the difference of the Gaussian multiplicative chaoses. In this case, there is no
positivity to exploit and hence we instead apply Lemma 2.13 (ii).

Proof. We consider 0 < s ≤ 1 since the s = 0 case corresponds to Hölder’s inequality.
Since g is a positive distribution, it can be identified with a positive Radon measure on
T
2; see for example [29, Theorem 7.2]. If f ∈ C(Td), then the product f g is a well-

defined function in L1(Td). With ρN as in (1.17), we have fN g
def= (ρN ∗ f )g→ f g in

L1(Td), in particular in the distributional sense. Hence, from Fatou’s lemma, we have

‖〈∇〉−s( f g)‖L p ≤ lim inf
N→∞ ‖〈∇〉−s( fN g)‖L p . (2.23)

Since ρM is non-negative, we see that gM = ρM ∗g is a well-defined smooth, positive
distribution which converges to g in W−s,p(Td). Then, it follows from Lemma 2.13 (ii)
that, for each fixed N ∈ N, fN gM converges to fN g inW−s,p(Td) asM →∞. Hence, it
suffices to prove (2.22) for fN gM , N , M ∈ N. Indeed, if (2.22) holds for fN gM , N , M ∈
N, then by (2.23), (2.22) for fN gM , the convergence of 〈∇〉−sgM = ρM ∗ (〈∇〉−sg) to
〈∇〉−sg in L p(Td), and Young’s inequality with ‖ρN‖L1 = 1, we obtain

‖〈∇〉−s( f g)‖L p ≤ lim inf
N→∞ lim

M→∞‖〈∇〉
−s( fN gM )‖L p

� lim inf
N→∞ lim

M→∞‖ fN‖L∞‖〈∇〉
−sgM‖L p

≤ lim inf
N→∞ ‖ fN‖L∞‖〈∇〉−sg‖L p

≤ ‖ f ‖L∞‖〈∇〉−sg‖L p .
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It remains to prove (2.22) for fN gM . By Lemma 2.1, we have

‖〈∇〉−s( fN gM )‖L p = ‖Js ∗ ( fN gM )‖L p

�
∥∥∥∥
∫
Td
|x − y|s−d | fN (y)gM (y)|dy

∥∥∥∥
L p

Since gm is non-negative,

� ‖ fN‖L∞
∥∥∥| · |s−d ∗ gM∥∥∥

L p

Using Lemma 2.1 again,

∼ ‖ fN‖L∞
∥∥∥(Js − R) ∗ gM

∥∥∥
L p

≤ ‖ fN‖L∞
(
‖〈∇〉−sgM‖L p +

∥∥(〈∇〉s R) ∗ (〈∇〉−sgM)∥∥L p

)
� ‖ fN‖L∞‖〈∇〉−sgM‖L p ,

where in the last step we used the fact that R is smooth. This shows (2.22) for fMgM
and hence for f ∈ C(Td) and a positive distribution g ∈ W−s,p(Td).

In view of Lemma 2.13 (ii), the condition (ii) guarantees that the product operation
( f, g) ∈ Ws,q(Td) × W−s,p(Td) �→ f g ∈ W−s,1+ε(Td) for some small ε > 0 is a
continuous bilinear map. Namely, it suffices to prove (2.22) for fN gM = (ρN ∗ f )(ρM ∗
g), which we already did above. This completes the proof of Lemma 2.14. ��

Next, we recall the following fractional chain rule from [31]. The fractional chain
rule on R

d was essentially proved in [18].14 As for the estimates on T
d , see [31].

Lemma 2.15. Let 0 < s < 1. (i) Suppose that F is a Lipschitz function with Lipschitz
constant K > 0. Then, for any 1 < p <∞, we have∥∥|∇|s F(u)

∥∥
L p(Td )

� K
∥∥|∇|su∥∥L p(Td )

.

(ii) Suppose that F ∈ C1(R) satisfies∣∣F ′(τ x + (1− τ)y
)∣∣ ≤ c(τ )

(|F ′(x)| + |F ′(y)|)
for every τ ∈ [0, 1] and x, y ∈ R, where c ∈ L1([0, 1]). Then for 1 < p, q, r <∞ with
1
p + 1

q = 1
r , we have∥∥|∇|s F(u)

∥∥
Lr (Td )

�
∥∥F ′(u)

∥∥
L p(Td )

∥∥|∇|su∥∥Lq (Td )
.

Lastly, we state a tool from functional analysis. The following classical Aubin-Lions
lemma [6] provides a criterion for compactness. See also [75, Corollary 4 on p.85].

Lemma 2.16. LetX−1,X0,X1 be Banach spaces satisfying the continuous embeddings
X1 ⊂ X0 ⊂ X−1 such that the embedding X1 ⊂ X0 is compact. Suppose that B is
bounded in L p([0, T ];X1) such that {∂t u : u ∈ B} is bounded in Lq([0, T ];X−1) for
some T > 0 and finite p, q ≥ 1. Then, B is relatively compact in L p([0, T ];X0). More-
over, if B is bounded in L∞([0, T ];X1) and {∂t u : u ∈ B} is bounded in Lq([0, T ];X−1)
for some q > 1, then B is relatively compact in C([0, T ];X0).

14 As pointed out in [76], the proof in [18] needs a small correction, which yields the fractional chain rule
in a less general context. See [47,76,78].
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3. Gaussian Multiplicative Chaos

In this section, we establish the regularity and convergence properties of the Gaussian
multiplicative chaos �N = : eβ�N : claimed in Proposition 1.12, where �N denotes the
truncated stochastic convolution for either the heat equation or the wave equation. These
properties are of central importance for the study of the truncated SNLH (1.10) and the
truncated SdNLW (1.20). As in the case of the sine-Gordon model studied in [42,63],
the main difficulty comes from the fact that the processes �N do not belong to any
Wiener chaos of finite order. There is, however, a major difference from the analysis
on the imaginary Gaussian multiplicative chaos : eiβ�N : studied for the sine-Gordon
model in [42,63]. As for the imaginary Gaussian multiplicative chaos, the regularity
depends only on the values of β2. On the other hand, the regularity of �N depends
not only on the values of β2 but also on the integrability index (either for moments or
space-time integrability). In particular, for higher moments, the regularity gets worse.
This phenomenon is referred to as intermittency in [30]. See Remark 3.3 below.

3.1. Preliminaries. Since the definition (1.39) of�N involves polynomials of arbitrarily
high degrees, it seems more convenient to study�N on the physical space, as in the case
of the sine-Gordon equation [63], rather than in the frequency space as in [35]. For this
purpose, we first recall the main property of the covariance function:

�N1,N2(t, x − y)
def= E

[
�N1(t, x)�N2(t, y)

]
for the truncated stochastic convolution �N j = �heat

N j
or �wave

N j
, where the truncation

may be given by the smooth frequency projector PN or the smoothing operatorQN with
a positive kernel defined in (1.16). When N = N1 = N2, we set

�N = �N ,N .

As stated in Sect. 1.2, the results in this section hold for both PN and QN .
The next lemma follows as a corollary to Lemmas 2.2 and 2.3. See Lemma 2.7 in

[63] for the proof.

Lemma 3.1. Let N2 ≥ N1 ≥ 1. Then we have

�N1,N2(t, x − y) ≈ − 1

2π
log

(|x − y| + N−11

)

for any t ≥ 0. Similarly, we have

∣∣�N j (t, x − y)− �N1,N2(t, x − y)
∣∣

�
(
1 ∨− log

(|x − y| + N−1j
)) ∧ (

N−11 |x − y|−1) (3.1)

for j = 1, 2 and t ≥ 0.
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3.2. Estimates on the even moments. In this subsection, we prove the following propo-
sition for the uniform control on the even moments of the random variables �N (t, x)
for any fixed (t, x) ∈ R+ × T

2 and N ∈ N.

Proposition 3.2. Let 0 < β2 < 8π . Then, the following statements hold. (i) For any
t ≥ 0, x ∈ T

2, and N ∈ N, we have E
[|�N (t, x)|] = 1, (ii) Let p ≥ 2 be even. Let

0 < α < 2 and (p − 1) β2

4π < min(1, α). Then, for any T > 0, we have

sup
t∈[0,T ],x∈T2,N∈N

E

[ ∣∣〈∇〉−α�N (t, x)
∣∣p ] ≤ C(T ).

(iii) Let 0 < α < 2 and β2

4π < min(1, α). Then, there exists small ε > 0 such that

sup
t∈[0,T ],x∈T2

E

[∣∣〈∇〉−α
(
�N1(t, x)−�N2(t, x)

)∣∣2] ≤ C(T )N−ε
1

for any T > 0 and any N2 ≥ N1 ≥ 1.

Proof. For fixed (t, x) ∈ R+ × T
2, �N (t, x) is a mean-zero Gaussian random variable

with variance σN . Hence, from the positivity of �N and (1.39), we have

E
[|�N (t, x)|] = e−

β2

2 σN E[eβ�N (t,x)] = 1.

This proves (i).
Next, we consider (ii). Let p = 2m, m ∈ N. Fix (t, x) ∈ [0, T ] × T

2. Recalling
〈∇〉−α f = Jα ∗ f , where Jα is as in (2.2), we have

E

[∣∣〈∇〉−α�N (t, x)
∣∣2m]

= e−mβ2σN E

[∣∣∣∣
∫
T2

Jα(x − y)eβ�N (t,y)dy

∣∣∣∣
2m]

= e−mβ2σN

∫
(T2)2m

E

[
eβ

∑2m
j=1 �N (t,y j )

]( 2m∏
j=1

Jα(x − y j )

)
d �y

= e−mβ2σN

∫
(T2)2m

exp

(
β2

2
E

[∣∣∣ 2m∑
j=1

�N (t, y j )
∣∣∣2])( 2m∏

j=1
Jα(x − y j )

)
d �y.

(3.2)

where d �y = dy1 · · · dy2m and we used the fact that
∑2m

j=1 �N (t, y j ) is a Gaussian
random variable at the last step. From the definition (1.30) of σN and Lemma 3.1, we
have

exp

(
β2

2
E

[∣∣∣ 2m∑
j=1

�N (t, y j )
∣∣∣2])

= emβ2σN exp

(
β2

∑
1≤ j<k≤2m

E
[
�N (t, y j )�N (t, yk)

])

� emβ2σN
∏

1≤ j<k≤2m

(|y j − yk | + N−1
)− β2

2π .

(3.3)
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Hence, from (3.2) and (3.3), we obtain

E

[∣∣〈∇〉−α�N (t, x)
∣∣2m]

�
∫

(T2)2m

( ∏
1≤ j<k≤2m

(|y j − yk | + N−1
)− β2

2π

)( 2m∏
j=1
|Jα(x − y j )|

)
d �y

=
∫

(T2)2m

∏
1≤ j<k≤2m

|Jα(x − y j )Jα(x − yk)| 1
2m−1(|y j − yk | + N−1

) β2
2π

d �y.

(3.4)

By applying the geometric Brascamp-Lieb inequality (Corollary 2.12) and proceeding
as in the proof of Proposition 1.1 in [63] to bound the resulting integral, we then obtain

RHS of (3.4) �
∏

1≤ j<k≤2m

(∫
(T2)2

|Jα(x − y j )Jα(x − yk)|(|y j − yk | + N−1
)(2m−1) β2

2π

dy jdyk

) 1
2m−1

=
(∫

(T2)2

|Jα(x − y)Jα(x − z)|(|y − z| + N−1
)(2m−1) β2

2π

dydz

)m

� 1,

uniformly in t ∈ [0, T ], x ∈ T
2, and N ∈ N, provided (2m − 1)β2 < 4π min(1, α) and

0 < α < 2.
Lastly, Part (iii) for the case p = 2 follows from the last part of the proof of Propo-

sition 1.1 in [63] (with t = 2), provided that β2 < 4π min(1, α) and 0 < α < 2.
The second estimate (3.1) in Lemma 3.1 is needed here. This completes the proof of
Proposition 3.2. ��
Remark 3.3. When p = 2, the proof of Proposition 3.2 is identical to that in [63, Propo-
sition 1.1]. For p > 2, however, the bounds are quite different. In computing higher
moments for the imaginary Gaussian multiplicative chaos : eiβ�N : , it was crucial to
exploit certain cancellation property [42,63]. Namely, in the “multipole picture” for the
imaginary Gaussian multiplicative chaos (and more generally log-correlated Gaussian
fields [50]), there is a “charge cancellation” in estimating higher moments of : eiβ�N :
due to its complex nature.

In the current setting, i.e. without the “i” in the exponent, there is no such cancellation
taking place; the charges accumulate and contribute to worse estimates in the sense that
the higher moment estimates require more smoothing. This is the source of the so-called
intermittency phenomenon [30], which is quantified by the dependence on p for the
choice of α in Proposition 3.2 (ii) above.

3.3. Kahane’s approach. Proposition 3.2 in the previous subsection allows to get part
of the result claimed in Proposition 1.12. Indeed, using Fubini’s theorem and arguing as
in the proof of Proposition 1.1 in [63], interpolating between (ii) and (iii) in Proposition
3.2 above implies the convergence of {�N }N∈N in L p(
; L p([0, T ];W−α,p(T2))) in
the case of even p ≥ 2, for all α = α(p) as in (1.41).

Note, however, that when p ∈ (1, 2) or p > 2 is not even, we only get a weaker result
than Proposition 1.12. Indeed,when p > 2 is not even, if 2m < p < 2m+2 for somem ∈
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N, Proposition 3.2 provides convergence in both L2m(
; L2m([0, T ];W−α,2m(T2))) and
L2m+2(
; L2m+2([0, T ];W−α,2m+2(T2))), which by interpolation provides convergence
in L p(
; L p([0, T ];W−α,p(T2))) for α = α(p) as in (1.41). Such an argument then
imposes the condition

0 < β2 <
4π

(2m + 2)− 1
, (3.5)

which gives a smaller range than the natural one 0 < β2 < 4π
p−1 . The condition (3.5)

comes from the requirement that {�N }N∈N be uniformly bounded in L2m+2(
; L2m+2

([0, T ];W−α,2m+2(T2))), On the other hand, in the case p ∈ (1, 2), interpolating be-
tween (i) and (iii) of Proposition 3.2 provides the convergence of {�N }N∈N in L p(
; L p

([0, T ];W−α,p(T2))) only for in a more restricted range α >
(p−1)β2

2πp (> α(p)).
The argument presented in the previous subsection still has the advantage of be-

ing applicable to a large class of processes. Namely, whenever the k-points correlation
functions can be expressed as a product, the use of the Brascamp-Lieb inequality (Corol-
lary 2.12) allows to decouple them into a product of 2-points correlation functions. As
pointed out above, however, this only works for even p ≥ 2, which restricts the range
of admissible β2 > 0 in studying (1.1) or (1.2).

In this subsection, we instead follow the classical approach of Kahane [46] which re-
lies on the following comparison inequality for the renormalized exponential ofGaussian
random variables. See, for example, [71, Theorem 2.1] and [72, Corollary A.2].

Lemma 3.4. (Kahane’s convexity inequality) Given n ∈ N, let {X j }nj=1 and {Y j }nj=1 be
two centered Gaussian vectors satisfying

E
[
X j Xk

] ≤ E
[
Y jYk

]
for all j, k = 1, . . . , n. Then, for any sequence {p j }nj=1 of non-negative numbers and
any convex function F : [0,∞) → R with at most polynomial growth at infinity, it holds

E

[
F
( n∑

j=1
p j e

X j− 1
2E[X2

j ]
)]
≤ E

[
F
( n∑

j=1
p j e

Y j− 1
2E[Y 2

j ]
)]

.

As an application of Lemma 3.4, one has the following bound on the moments of the
random measure15 MN (t, ·), t ≥ 0 defined by

MN (t, A) =
∫
A

�N (t, x)dx (3.6)

for A ∈ B(T2), where B(T2) is the Borel σ -algebra of T
2.

Lemma 3.5. For any 0 < β2 < 8π and 1 ≤ p < 8π
β2 , we have

sup
t∈R+,A∈B(T2),N∈N

E

[
MN (t, A)p

]
<∞.

15 In the literature, this random measure is also referred to as a multiplicative chaos. See [72].
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Lemma 3.5 is a classical result in the theory of Gaussian multiplicative chaoses. See
for example Proposition 3.5 in [72]. We present a self-contained proof in Appendix B
below.

With the bounds of Lemmas 3.4 and 3.5, we can prove the following uniform estimate
on {�N }N∈N.
Proposition 3.6. Let 0 < β2 < 8π , 1 ≤ p < 8π

β2 , and 0 < α < 2 such that α >

(p − 1) β2

4π . Then, we have for any T > 0

sup
t∈[0,T ],x∈T2,N∈N

E

[ ∣∣〈∇〉−α�N (t, x)
∣∣p ] ≤ C(T ). (3.7)

Note that in Proposition 3.6, we do not need to assume that p is even. The uniform
bound in Proposition 1.12 (i) follows from (3.7), while the convergence part of Proposi-
tion 1.12 follows from interpolating (3.7) in Proposition 3.6 and Proposition 3.2 (iii) and
using the same argument as in the proof of Proposition 1.1 in [63]. When 1 < p < 2,
the use of Proposition 3.2 (iii) imposes the condition 0 < β2 < 4π , which yields the
restriction on the range of β2 in Proposition 1.12 (ii).

Proof of Proposition 3.6. We split the proof into two steps.
• Step 1:multifractal spectrum.Wefirst establish the following bound on themoments
of the random measure MN (t) over small balls:

sup
t∈[0,T ],x0∈T2,N∈N

E

[
MN (t, B(x0, r))

p
]

� r (2+ β2

4π )p− β2

4π p2 (3.8)

for any r ∈ (0, 1).
By a change of variables, the positivity of �N , and a Riemann sum approximation,

we have

E

[
MN (t, B(x0, r))

p
]
= r2pE

[( ∫
B(0,1)

�N (t, x0 + r y)dy
)p
]

≤ r2pE

[( ∫
T2

�N (t, x0 + r y)dy
)p
]

= r2p lim
J→∞E

[( J∑
j,k=1

4π2

J 2
eβ�N (t,x0+r y j,k )− β2

2 σN
)p
]
,

(3.9)

where y j,k , j, k = 1, . . . , J , is given by y j,k =
(− π + 2π

J ( j − 1),−π + 2π
J (k − 1)

) ∈
T
2 � [−π, π)2. From Lemma 3.1, we can bound the covariance function as

E
[
�N (t, x0 + r y j1,k1)�N (t, x0 + r y j2,k2)

]
≤ − 1

2π
log

(
r |y j1,k1 − y j2,k2 | + N−1

)
+ C

≤ − 1

2π
log

(|y j1,k1 − y j2,k2 | + (r N )−1
)− 1

2π
log r + C

≤ − 1

2π
log

(|y j1,k1 − y j2,k2 | + N−1
)− 1

2π
log r + C

≤ E

[(
�N (t, y j1,k1) + hr

)(
�N (t, y j2,k2) + hr

)]
(3.10)
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for any 0 < r < 1 and j1, j2, k1, k2 = 1, . . . , J , where hr is a mean-zero Gaussian
random variable with variance− 1

2π log r +C , independent from �N . Then, by applying
Kahane’s convexity inequality (Lemma 3.4) with the convex function x �→ x p, a Rie-
mann sum approximation, and the independence of hr from �N , it follows from (3.9)
that

E

[
MN (t, B(x0, r))

p
]
≤ r2p lim

J→∞E

[( J∑
j,k=1

4π2

J 2
eβ(�N (t,y j,k )+hr )− β2

2 E[(�N (t,y j,k )+hr )2]
)p
]

= r2pE

[( ∫
T2

eβ�N (t,y)− β2

2 σN eβhr− β2

2 (− 1
2π log r+C)dy

)p
]

= r2pE

[
epβhr−p β2

2

(
1
2π log 1

r +C
)]

E

[( ∫
T2

eβ�N (t,y)− β2

2 σN dy
)p
]

= r2pe(p2−p) β2

2 (− 1
2π log r+C)

E

[( ∫
T2

eβ�N (t,y)− β2

2 σN dy
)p
]

� r (2+ β2

4π )p− β2

4π p2
E

[
MN (t, T

2)p
]
.

Hence, the bound (3.8) follows Lemma 3.5.
• Step 2: From (2.2), Lemma 2.1, where the remainder R is bounded on T

2, and
Minkowski’s integral inequality, we have

E

[∣∣〈∇〉−α�N (t, x)
∣∣p] = E

[∣∣∣ ∫
T2

Jα(x − y)�N (t, y)dy
∣∣∣p]

� E

[( ∫
T2
|x − y|α−2�N (t, y)dy

)p
]

�
{∑

�≥0
2−(α−2)�

E

[( ∫
|x−y|∼2−�

�N (t, y)dy
)p
] 1

p
}p

� sup
�≥0

2−(α−2−ε)p�
E

[
MN

(
t, B(x, 2−�)

)p]

for ε > 0, uniformly in t ∈ R+, x ∈ T
2, and N ∈ N, Then, using (3.8), we obtain

E

[∣∣〈∇〉−α�N (t, x)
∣∣p] � sup

�≥0
2−(α−2−ε)p�2

β2

4π p2�−(2+ β2

4π )p� � 1

by choosing ε > 0 sufficiently small, provided that α > (p−1) β2

4π . This proves (3.7). ��

4. Parabolic Liouville Equation I: General Case

In this section, we present a proof of Theorem 1.13. Namely, we prove local well-
posedness of the truncated SNLH (1.45) for vN = uN − z − �N in the Da Prato-
Debussche formulation in the range:

0 < β2 < β2
heat

def= 8π

3 + 2
√
2
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without assuming the positivity of λ. Here, z denotes the deterministic linear solution
defined in (1.44) and �N denotes the truncated stochastic convolution defined in (1.27).

Writing (1.45) in the Duhamel formulation, we have

vN = −1

2
λβ

∫ t

0
P(t − t ′)

(
eβzeβvN �N

)
(t ′)dt ′. (4.1)

Given v0 ∈ L∞(T2) and a space-time distribution �, we define a map � by

�(v) = �v0,�(v)
def= −1

2
λβ

∫ t

0
P(t − t ′)

(
eβP(t)v0eβv�

)
(t ′)dt ′. (4.2)

Then, (4.1) can be written as the following fixed point problem:

vN = �v0,�N (vN ).

In the following, we fix 0 < α, s < 1 and p ≥ 2 such that

p′α + s

2
< 1 and sp > 2. (4.3)

See (4.9) below for a concrete choice of these parameters. Then, we have the following
deterministic well-posedness result for the fixed point problem:

v = �v0,�(v). (4.4)

Proposition 4.1. Let α, s, p be as above. Then, given any v0 ∈ L∞(T2) and R > 0,
there exists T = T (‖v0‖L∞ , R) > 0 such that given any positive distribution � ∈
L p([0, T ];W−α,p(T2)) satisfying

‖�‖L p
T W

−α,p
x

≤ R, (4.5)

there exists a unique solution v ∈ C([0, T ];Ws,p(T2)) to (4.4), depending continuously
on the initial data v0.

Note that we do not claim any continuity of the solution v in � for Proposition 4.1.

Proof. Fix R > 0. We prove that there exists T = T (‖v0‖L∞ , R) > 0 such that �v0,�

is a contraction on the ball B ⊂ C([0, T ];Ws,p(T2)) of radius O(1) centered at the
origin.

Let v ∈ B. Then, by Sobolev’s embedding theorem (with sp > 2), we have v ∈
C([0, T ];C(T2)). For v0 ∈ L∞(T2), we also have z ∈ C((0, T ];C(T2)). In particular,
eβzeβv(t) is continuous in x ∈ T

2 for any t ∈ (0, T ]. Then, by the Schauder estimate
(Lemma 2.4 (ii)), Lemma 2.14, and Young’s inequality with (4.3), we have

‖�(v)‖CT W
s,p
x

�
∥∥∥∥
∫ t

0
(t − t ′)−

(s+α)
2
∥∥〈∇〉−α

(
eβzeβv�

)
(t ′)

∥∥
L p
x
dt ′

∥∥∥∥
L∞t ([0,T ])

� ‖eβzeβv‖L∞T,x

∥∥∥∥(1[0,T ]| · |− (s+α)
2
) ∗ ‖1[0,T ]�‖W−α,p

x

∥∥∥∥
L∞t

� T θeC‖v0‖L∞ e
C‖v‖

L∞T W
s,p
x ‖�‖L p

T W
−α,p
x

� T θ R eC‖v0‖L∞ � 1

(4.6)
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forv ∈ B and apositive distribution� satisfying (4.5), by choosingT = T (‖v0‖L∞ , R) >

0 sufficiently small.
By the fundamental theorem of calculus, we have

eβv1 − eβv2 = β(v1 − v2)

∫ 1

0
eβτv1+β(1−τ)v2dτ. (4.7)

Then, proceeding as in (4.6) with (4.7), we have

‖�(v1)−�(v2)‖CT W
s,p
x

� T θ
∥∥∥eβz(eβv1 − eβv2

)∥∥∥
L∞T,x

‖�‖L p
T W

−α,p
x

� T θ ReC‖v0‖L∞ e
C(‖v1‖L∞T,x

+‖v2‖L∞T,x
)‖v1 − v2‖L∞T,x

� T θ ReC‖v0‖L∞‖v1 − v2‖CT W
s,p
x

(4.8)

for v1, v2 ∈ B and a positive distribution � satisfying (4.5).
Hence, from (4.6) and (4.8), we see that � is a contraction on B by taking T =

T (‖v0‖L∞ , R) > 0 sufficiently small. The continuity of the solution v in initial data
follows from a standard argument and hence we omit details. ��
Remark 4.2. In the proof of Proposition 4.1, a contraction argument shows the unique-
ness of the solution v only in the ball B ⊂ C([0, T ];Ws,p(T2)). By a standard continuity
argument, we can upgrade the uniqueness statement to hold in the entireC([0, T ];Ws,p

(T2)). Since such an argument is standard, we omit details.

Now, let �N be the Gaussian multiplicative chaos in (1.39). In view of Proposition
1.12, in order to determine the largest admissible range for β2, we aim to maximize

β2 <
4πα

p − 1
<

p − 2

p(p − 1)
8π =: h(p),

where we used both of the inequalities in (4.3). A direct computation shows that h has
a unique maximum in [2,∞) reached at p = p∗ = 2 +

√
2, for which we have

h(p∗) = max
p≥2 h(p) = 8π

3 + 2
√
2
= β2

heat.

Therefore, for β2 < β2
heat, we see that the constraints (4.3) are satisfied by taking

p = 2 +
√
2, s = 2−√2 + ε, and

α = (p − 1)
β2
heat

4π
− 2ε = 2(

√
2− 1)− 2ε

(4.9)

for sufficiently small ε > 0 such that α > (p−1) β2

4π . With this choice of the parameters,
Proposition 4.1 with Proposition 1.12 establishes local well-posedness of (4.1).

In the remaining part of this section, we fix the parameters α, s, and p as in (4.9) and
proceed with a proof of Theorem 1.13.
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Proof of Theorem 1.13. Given v0 ∈ L∞(T2) and �N in (1.39), let vN = �v0,�N (vN )

be the solution to (4.1) given by Proposition 4.1. Proceeding as in the proof of Theorem
1.2 in [63], it suffices to prove the continuity of the solution map� = �v0,� constructed
in Proposition 4.1 with respect to �.

In the proof of Proposition 4.1, the positivity of the distribution � played an impor-
tant role, allowing us to apply Lemma 2.14. In studying the difference �N − �, we
lose such positivity and can no longer apply Lemma 2.14. This prevents us from show-
ing convergence of vN in C([0, T ];Ws,p(T2)) directly. We instead use a compactness
argument.

Let us take a sequence of positive distributions �N converging to some limit � in
L p([0, T ];W−α,p(T2)) ∩ Lr ([0, T ];W−s+ε,r (T2)), where r is defined by

r = 4π(s − ε)

β2
heat

+ 1 = 2 +

√
2

2
(4.10)

with s as in (4.9). Note that the pair (s− ε, r) (in place of (α, p)) satisfies (1.41) for any
β2 < β2

heat.
Let us then denote by vN and v the corresponding solutions to (1.45) and (1.46),

respectively, constructed in Proposition 4.1. We first show an extra regularity for these
solutions:

∂tvN ∈ L p([0, T ];Ws−2,p(T2)).

Indeed, using Eq. (1.45) with p <∞ and s − 2 < −α, we have

‖∂tvN‖L p
T W

s−2,p
x

=
∥∥∥ 1
2 (�− 1)v − 1

2λβe
βzeβvN �N

∥∥∥
L p
T W

s−2,p
x

� ‖vN‖L∞T Ws,p
x

+
∥∥eβzeβv�N

∥∥
L p
T W

−α,p
x

.

Note that both of the terms on the right-hand side are already bounded in the proof of
Proposition 4.1 (by switching the order of Lemma 2.14 and Young’s inequality in (4.6)).

Next, observe that by taking s̃ > s, sufficiently close to s, we can repeat the proof of
Proposition 4.1 without changing the range of β2 < β2

heat. This shows that {vN }N∈N is
bounded inC([0, T ];Ws̃,p(T2)). Then, by Rellich’s lemma and the Aubin-Lions lemma
(Lemma 2.16), we see that the embedding:

AT
def= C([0, T ];Ws̃,p(T2)) ∩ {

∂tv∈ L p([0, T ];Ws−2,p(T2))
} ⊂ C([0, T ];Ws,p(T2))

is compact. Since {vN }N∈N is bounded in AT , given any subsequence of {vN }N∈N, we
can extract a further subsequence {vNk }k∈N such that vNk converges to some limit ṽ in
C([0, T ];Ws,p(T2)). In the following, we show that ṽ = v. This implies that the limit
is independent of the choice of subsequences and hence the entire sequence {vN }N∈N
converges to v in C([0, T ];Ws,p(T2)).
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It remains to prove ṽ = v. In the following, we first show that vNk = �v0,�Nk
(vNk )

converges to �v0,�(̃v) in L1([0, T ];Ws′,p(T2)) for some s′ ≤ −s. From (4.2), we have

‖�v0,�Nk
(vNk )−�v0,�(̃v)‖

L1
T W

s′,p
x

�
∥∥∥∥
∫ t

0
P(t − t ′)

(
eβzeβṽ(�Nk −�)

)
(t ′)dt ′

∥∥∥∥
L1
T W

s′,p
x

+

∥∥∥∥
∫ t

0
P(t − t ′)

(
eβz(eβvNk − eβṽ)�Nk

)
(t ′)dt ′

∥∥∥∥
L1
T W

s′,p
x

=: I + II.

(4.11)

By the Schauder estimate (Lemma 2.4), Young’s inequality, Lemma 2.13 (ii) with
1
r + 1

p < 1
r + s

2 (which is guaranteed by sp > 2), we have

I �
∥∥∥| · |−( 1r − 1

p ) ∗ ∥∥eβzeβṽ(�Nk −�)
∥∥
W−s+ε,r

x

∥∥∥
L1
T

�
∥∥eβzeβṽ(�Nk −�)

∥∥
L1
T W

−s+ε,r
x

�
∥∥eβ(z+ṽ)

∥∥
Lr
′
T W

s−ε,p‖�Nk −�‖LrT W−s+ε,r
x

.

(4.12)

By Sobolev’s inequality and the fractional chain rule (Lemma 2.15 (ii)), we have∥∥|∇|s−εeβ(z+ṽ)(t)
∥∥
L p
x

�
∥∥|∇|seβ(z+ṽ)(t)

∥∥
L

p
1+εp/2
x

�
∥∥eβ(z+ṽ)(t)

∥∥
L

2
ε
x

∥∥|∇|s(z + ṽ)(t)
∥∥
L p
x
.

This yields

∥∥eβ(z+ṽ)
∥∥
Lr
′
T W

s−ε,p �
∥∥eβ(z+ṽ)

∥∥
L∞T,x

(
1 + ‖z + ṽ‖Lr ′T Ws,p

x

)
� eC‖v0‖L∞ e

C ‖̃v‖
L∞T W

s,p
x

(
1 + ‖v0‖L∞ + ‖̃v‖L∞T Ws,p

x

)
.

(4.13)

In the last step, we used the following bound which follows from the Schauder estimate
(Lemma 2.4):

‖z‖Lr ′T Ws,p
x

�
∥∥t− s

2 ‖v0‖L p
∥∥
Lr
′
T

� ‖v0‖L∞

since s
2r
′ < 1 in view of (4.9) and (4.10). Therefore, from (4.12) and (4.13), we obtain

I � eC‖v0‖L∞ e
C ‖̃v‖

L∞T W
s,p
x

(
1 + ‖v0‖L∞ + ‖̃v‖L∞T Ws,p

x

)
‖�Nk −�‖LrT W−s+ε,r

x
. (4.14)

As for the second term II on the right-hand side of (4.11), we can use the positivity
of �Nk and proceed as in (4.8):

II � T θe
C
(
‖v0‖L∞+‖vNk ‖L∞T W

s,p
x

+‖̃v‖
L∞T W

s,p
x

)
‖vNk − ṽ‖L∞T Ws,p

x
‖�Nk‖L p

T W
−α,p
x

. (4.15)

Since vNk → ṽ in C([0, T ];Ws,p(T2)) and �N → � in L p([0, T ];W−α,p(T2)) ∩
Lr ([0, T ];W−s+ε,r (T2)), it follows from (4.11), (4.14), and (4.15) that vNk = �v0,�Nk
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(vNk ) converges to �v0,�(̃v) in L1([0, T ];Ws′,p(T2)). By the uniqueness of the distri-
butional limit, we conclude that

ṽ = �v0,�(̃v). (4.16)

Since ṽ belongs toC([0, T ];Ws,p(T2)), we conclude from the uniqueness of the solution
to (4.16) that v = ṽ, where v denotes the unique fixed point to (4.16) in the class
C([0, T ];Ws,p(T2)) constructed in Proposition 4.1. See also Remark 4.2. ��
Remark 4.3. While the argument above shows the continuity of the solution map in
�, its dependence is rather weak. For the range 0 < β2 < 4

3π , we can strengthen this
result by proving local well-posedness and convergencewithout the positivity of�. This
argument shows that, for the range 0 < β2 < 4

3π , the solution map is also Lipschitz
with respect to �, as in the hyperbolic case presented in Sect. 6 below. See Appendix A.

5. Parabolic Liouville Equation II: Using the Sign-definite Structure

In this section, we study SNLH (1.1) in the defocusing case (λ > 0) and present a proof
of Theorem 1.2 and Theorem 1.6. As we will see below, the particular structure of the
equation makes the exponential nonlinearity behave as a smooth bounded function. This
allows us to treat the full range 0 < β2 < 4π in this case.

5.1. Global well-posedness. In this subsection, we focus on the equation:{
∂tv + 1

2 (1−�)v + 1
2λβe

βzeβv� = 0
v|t=0 = 0,

(5.1)

where z = P(t)v0 for some v0 ∈ L∞(T2),� is a given deterministic positive space-time
distribution, and λ > 0. In this case, as explained in Sect. 1.3, Eq. (5.1) can be written
as {

∂tv + 1
2 (1−�)v + 1

2λβe
βz F(βv)� = 0

v|t=0 = 0,
(5.2)

where F is a smooth bounded and Lipschitz function defined in (1.49). Indeed, by
writing (5.2) in the Duhamel formulation:

v(t) = −1

2
λβ

∫ t

0
P(t − t ′)

(
eβz F(βv)�

)
(t ′)dt ′, (5.3)

it follows from the non-negativity of λ, �, and F along with Lemma 2.4 (i) that βv ≤ 0.
This means that the Cauchy problems (5.1) and (5.2) are equivalent.

Given N ∈ N, consider the following equation:{
∂tvN + 1

2 (1−�)vN + 1
2λβe

βz F(βvN )�N = 0
vN |t=0 = 0

(5.4)

for some given smooth space-time non-negative function�N . Then, since�N is smooth
and F is bounded and Lipschitz, we can apply a standard contraction argument to prove
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local well-posedness of (5.4) in the classC([0, τ ]; L2(T2)) for some small τ = τN > 0.
Thanks to the boundedness of F , we can also establish an a priori bound on the L2-
norm of the solution vN on any time interval [0, T ]; see (5.7) below. This shows global
existence of vN .

Our main goal in this subsection is to prove global well-posedness of (5.2).

Proposition 5.1. Let v0 ∈ L∞(T2) and � ∈ L2([0, T ]; H−1+ε(T2)) be a positive
distribution for some ε > 0. Given T > 0, suppose that a sequence {�N }N∈N of
smooth non-negative functions converges to � in L2([0, T ]; H−1+ε(T2)). Then, the
corresponding solution vN to (5.4) converges to a limit v in the energy spaceZT defined
in (1.50). Furthermore, the limit v is the unique solution to (5.2) in the energy class ZT .

In view of Proposition 1.12 with p = 2, given 0 < β2 < 4π , we can choose ε > 0

sufficiently small such that β2

4π < 1−ε, which guarantees that theGaussianmultiplicative
chaos �N in (1.39) belongs to L2([0, T ]; H−1+ε(T2)) for any T > 0, almost surely.
Moreover, �N converges in probability to � in (1.42) in the same class. Then, Theorem
1.14 follows from Proposition 5.1 above.

Proof of Proposition 5.1. With a slight abuse of notation, we set

� = �v0,� and �N = �v0,�N ,

where �v0,� is defined in (4.2). In particular, we have

vN = �N (vN ) = �v0,�N (vN )

= −1

2
λβ

∫ t

0
P(t − t ′)

(
eβz F(βvN )�N

)
(t ′)dt ′.

(5.5)

Fix T > 0. Given v0 ∈ L∞(T2), we see that z = P(t)v0 and vN belong to
C((0, T ];C(T2)) in view of the Schauder estimate (Lemma 2.4) and (5.5) with smooth
�N . Hence, we can apply Lemma 2.14 to estimate the product eβz F(βvN )�N thanks
to the positivity of �N .

Fix small δ > 0. Then, by the Schauder estimate (Lemma 2.4), Lemma 2.14, and
Young’s inequality, we have

‖vN‖L2
T H

1+2δ
x

�
∥∥∥∥
∫ t

0
(t − t ′)−

2+2δ−ε
2

∥∥〈∇〉−1+ε
(
eβz F(βvN )�N

)
(t ′)

∥∥
L2
x
dt ′

∥∥∥∥
L2
T

�
∥∥eβz F(βvN )

∥∥
L∞T,x

∥∥∥∥
∫ t

0
(t − t ′)−

2+2δ−ε
2 ‖�N (t ′)‖H−1+ε

x
dt ′

∥∥∥∥
L2
T

� eC‖v0‖L∞‖�N‖L2
T H

−1+ε
x

,

(5.6)

uniformly in N ∈ N, provided that 2δ < ε. Here, we crucially used the boundedness of
F . Similarly, we have

‖vN‖L∞T H2δ
x

� eC‖v0‖L∞
∥∥∥∥
∫ t

0
(t − t ′)−

1+2δ−ε
2 ‖�N (t ′)‖H−1+ε

x
dt ′

∥∥∥∥
L∞T

� eC‖v0‖L∞‖�N‖L2
T H

−1+ε
x

(5.7)
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and

‖∂tvN‖L2
T H

−1+2δ
x

=
∥∥∥ 1
2 (�− 1)vN − 1

2λβe
βz F(βvN )�N

∥∥∥
L2
T H

−1+2δ
x

� ‖vN‖L2
T H

1+2δ
x

+
∥∥eβz F(βvN )�N

∥∥
L2
T H

−1+ε
x

� eC‖v0‖L∞
∥∥�N

∥∥
L2
T H

−1+ε
x

,

(5.8)

uniformly in N ∈ N.
Given s ∈ R, define Zs

T and Z̃s
T by

Zs
T = C([0, T ]; Hs(T2)) ∩ L2([0, T ]; H1+s(T2)),

Z̃s
T =

{
v ∈ Zs

T : ∂tv ∈ L2([0, T ]; H−1+s(T2))
}
.

Then, it follows from Rellich’s lemma and the Aubin-Lions lemma (Lemma 2.16) that
the embedding of Z̃2δ

T ⊂ Zδ
T is compact. Then, from (5.6), (5.7), and (5.8) alongwith the

convergence of �N to � in L2([0, T ]; H−1+ε(T2)), we see that {vN }N∈N is bounded
in Z̃2δ

T and thus is precompact in Zδ
T . Hence, there exists a subsequence {vNk }k∈N

converging to some limit v in Zδ
T .

Next, we show that the limit v satisfies the Duhamel formulation (5.3). In particular,
we prove that �Nk (vNk ) converges to �(v) in L1([0, T ]; H−1+ε(T2)). Write

‖�Nk (vNk )−�(v)‖L1
T H

−1+ε
x

�
∥∥∥∥
∫ t

0
P(t − t ′)

(
eβz F(βvNk )(�Nk −�)

)
(t ′)dt ′

∥∥∥∥
L1
T H

−1+ε
x

+

∥∥∥∥
∫ t

0
P(t − t ′)

(
eβz(F(βvNk )− F(βv))�

)
(t ′)dt ′

∥∥∥∥
L1
T H

−1+ε
x

=: I + II. (5.9)

By the Schauder estimate (Lemma 2.4), Young’s inequality, and Lemma 2.13 (ii), we
have

I �
∥∥eβz F(βvNk )(�Nk −�)

∥∥
L1
T W

−1+ε,1
x

�
∥∥eβz F(βvNk )

∥∥
L2
T W

1−ε, 1
1−ε

x

‖�Nk −�‖L2
T H

−1+ε
x

(5.10)

for sufficiently small ε > 0.
By the fractional Leibniz rule (Lemma 2.13 (i)), we have∥∥eβz F(βvNk )

∥∥
L2
T W

1−ε, 1
1−ε

x

�
∥∥eβz‖L2

T H
1−ε
x

∥∥F(βvNk )
∥∥
L∞T,x

+
∥∥eβz

∥∥
L∞T,x

∥∥F(βvNk )
∥∥
L2
T H

1−ε
x

.
(5.11)

By the fractional chain rule (Lemma 2.15 (ii)), we have∥∥eβz‖L2
T H

1−ε
x
∼ ∥∥eβz‖L2

T,x
+
∥∥|∇|1−εeβz

∥∥
L2
T,x

� T
1
2 e

C‖z‖L∞T,x +
∥∥eβz

∥∥
L∞T L4

x

∥∥|∇|1−εz
∥∥
L2
T L

4
x

≤ C(T )eC‖v0‖L∞
(
1 + ‖z‖L2

T W
1−ε,4
x

)
≤ C(T )eC‖v0‖L∞

(
1 + ‖v0‖L∞

)
,

(5.12)
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where we used the Schauder estimate (Lemma 2.4) in the last step. Similarly, by the
fractional chain rule (Lemma 2.15 (i)) along with the boundedness of F , we have∥∥F(βvNk )

∥∥
L2
T H

1−ε
x
∼ ∥∥F(βvNk )

∥∥
L2
T,x

+
∥∥|∇|1−εF(βvNk )

∥∥
L2
T,x

� T
1
2 +

∥∥|∇|1−εvNk

∥∥
L2
T,x

≤ C(T )
(
1 + ‖vNk‖Zδ

T

)
.

(5.13)

Hence, putting (5.10), (5.11), (5.12), and (5.13) together, we obtain

I � eC‖v0‖L∞
(
1 + ‖v0‖L∞ + ‖vNk‖Zδ

T

)
‖�Nk −�‖L2

T H
−1+ε
x

. (5.14)

As for the second term II in (5.9), we use the fundamental theorem of calculus and
write

F(βvNk )− F(βv) = β(vNk − v)G(vNk , v), (5.15)

where

G(v1, v2) =
∫ 1

0
F ′
(
τβv1 + (1− τ)βv2

)
dτ. (5.16)

Since F isLipschitz,we see thatG is bounded. SincevNk , v ∈ Zδ
T ,wehavevNk (t), v(t) ∈

C(T2) for almost every t ∈ [0, T ]. Then, by the Schauder estimate (Lemma 2.4),
Lemma 2.14, and Hölder’s inequality, we have

II �
∥∥eβz(vNk − v)G(vNk , v)�

∥∥
L1
T H

−1+ε
x

�
∥∥eβz(vNk − v)G(vNk , v)

∥∥
L2
T L

∞
x
‖�‖L2

T H
−1+ε
x

� e
C‖z‖L∞T,x ‖vNk − v‖L2

T L
∞
x
‖G(vNk , v)‖L∞T,x

‖�‖L2
T H

−1+ε
x

� eC‖v0‖L∞‖vNk − v‖Zδ
T
‖�‖L2

T H
−1+ε
x

.

(5.17)

From (5.9), (5.14), and (5.17) along with the convergence of vNk to v in Zδ
T and

�Nk to � in L2([0, T ]; H−1+ε(T2)), we conclude that �Nk (vNk ) converges to �(v) in
L1([0, T ]; H−1+ε(T2)). Since vNk = �N (vNk ), this shows that

v = lim
k→∞ vNk = lim

k→∞�Nk (vNk ) = �(v)

as distributions and hence as elements in Zδ
T since v ∈ Zδ

T . This proves existence of a
solution to (5.3) in Zδ

T ⊂ ZT .
Lastly, we prove uniqueness of solutions to (5.3) in the energy spaceZT . Let v1, v2 ∈

ZT be two solutions to (5.3). Then, by setting w = v1 − v2, the difference w satisfies

∂tw + 1
2 (1−�)w + 1

2λβe
βz(F(βv1)− F(βv2)

)
� = 0. (5.18)

Since βv j ≤ 0, j = 1, 2, it follows from (1.49) and (5.16) that

G(v1, v2) =
∫ 1

0
exp

(
τβv1 + (1− τ)βv2

)
dτ ≥ 0.
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Now, define an energy functional:

E(t)
def= ‖w(t)‖2L2

x
+
1

2

∫ t

0
‖w(t ′)‖2H1

x
dt ′ ≥ 0.

Since w ∈ ZT , the energy functional E(t) is a well-defined differentiable function.
Moreover, with (5.18) and (5.15), we have

d

dt
E(t) =

∫
T2

w(t)
(
2∂tw(t) + (1−�)w(t)

)
dx

= −λβ2
∫
T2

w2(t)eβzG(v1, v2)�(t)dx

≤ 0

thanks to the positivity of G and � and the assumption that λ > 0. Since w(0) = 0, we
conclude that E(t) = 0 for any t ≥ 0 and v1 ≡ v2. This proves uniqueness in the energy
space ZT .

The solution v ∈ Zδ
T constructed in the existence part depends a priori on a choice

of a subsequence vNk . The uniqueness in ZT ⊃ Zδ
T , however, shows that the limit v

is independent of the choice of a subsequence and hence the entire sequence {vN }N∈N
converges to v in Zδ

T ⊂ ZT . This completes the proof of Proposition 5.1. ��

5.2. On invariance of theGibbsmeasure. In this subsection, we briefly go over the proof
of Theorem 1.6. Given N ∈ N, we consider the truncated SNLH (1.19) with initial data
given by uN |t=0 = w0, where w0 is as in (1.8) distributed by the massive Gaussian free
field μ1. For this problem, there is no deterministic linear solution z and hence write uN
as uN = vN + �heat. Then, the residual term vN satisfies

vN (t) = −1

2
λβ

∫ t

0
P(t − t ′)QN

(
eβQN vN �N

)
(t ′)dt ′, (5.19)

where�N is theGaussianmultiplicative chaos defined in terms ofQN . Since the smooth-
ing operator QN in (1.16) is equipped with a non-negative kernel, Eq. (5.19) enjoys the
sign-definite structure:

βQNvN (t) = −1

2
λβ2

∫ t

0
P(t − t ′)Q2

N

(
eβQN vN �N

)
(t ′)dt ′ ≤ 0.

Namely, we can rewrite (5.19) as

vN (t) = −1

2
λβ

∫ t

0
P(t − t ′)QN

(
F(βQNvN )�N

)
(t ′)dt ′, (5.20)

where F is as in (1.49).
In view of the uniform (in N ) boundedness of QN on L p(T2), 1 ≤ p ≤ ∞, we can

argue as in Sect. 5.1 to prove local well-posedness of (5.20) and establish an a priori
bound on {vN }N∈N in Z̃2δ

T ⊂ Zδ
T . Then, by the Aubin-Lions lemma (Lemma 2.16),

we see that there exists a subsequence {vNk }k∈N converging to some limit v in Zδ
T .

Moreover, the uniqueness argument for solutions to the limiting equation (5.3) remains
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true. Therefore, in view of the argument in Sect. 5.1, it suffices to show that the limit v
satisfies the equation (5.3).

With a slight abuse of notation, let �Nk denotes the right-hand side of (5.20):

�Nk (vNk )(t)
def= −1

2
λβ

∫ t

0
P(t − t ′)QNk

(
F(βQNkvNk )�Nk

)
(t ′)dt ′. (5.21)

Then, it suffices to show that �Nk (vNk ) converges to �(v) in L1([0, T ]; H−1(T2)),
where � = �v0,� is as in (4.2) (with v0 = 0). From (4.2) and (5.21), we have

‖�Nk (vNk )−�(v)‖L1
T H

−1
x

�
∥∥∥∥
∫ t

0
P(t − t ′)

(
F(βQNkvNk )(�Nk −�)

)
(t ′)dt ′

∥∥∥∥
L1
T H

−1
x

+

∥∥∥∥
∫ t

0
P(t − t ′)

(
(F(βQNkvNk )− F(βv))�

)
(t ′)dt ′

∥∥∥∥
L1
T H

−1
x

+

∥∥∥∥
∫ t

0
P(t − t ′)(QNk − Id)

(
F(βQNkvNk )�Nk

)
(t ′)dt ′

∥∥∥∥
L1
T H

−1
x

=: I + II + III. (5.22)

The terms I and II can be handled exactly as in Sect. 5.1 and, hence, it remains to treat
the extra term III.

When viewed as a Fourier multiplier operator, the symbol forQN is given by 2πρ̂N ;
see (1.16). Note that, for 0 < s1 − s < 1, the symbol

mN (ξ)
def= Ns1−s〈ξ 〉s−s1(2πρ̂N (ξ)− 1

)
(5.23)

satisfies the bound

|∂kξ mN (ξ)| � 〈ξ 〉−|k| (5.24)

for any k ∈ (Z≥0)2. Indeed, when no derivatives hits 2πρ̂N − 1, we can use the mean
value theorem (as 2πρ̂(0) = 1) to get the bound∣∣Ns1−s∂kξ (〈ξ 〉s−s1) · (2πρ̂N (ξ)− 1

)∣∣ � Ns1−s〈ξ 〉s−s1−|k|(1 ∧ N−1|ξ |)
≤ 〈ξ 〉−|k|,

whereas when at least one derivative hits 2πρ̂N −1, we gain a negative power of N from
ρ̂N (ξ) = ρ̂(N−1ξ) andwe use the fast decay of ρ̂ and its derivatives; with |α|+|β| = |k|,
we have∣∣Ns1−s∂α

ξ (〈ξ 〉s−s1) · ∂β
ξ

(
2πρ̂N (ξ)− 1

)∣∣ � Ns1−s−|β|〈ξ 〉s−s1−|α| · (N |ξ |−1)s−s1+|β|
� 〈ξ 〉−|k|,

verifying (5.24).
Hence, by the transferenceprinciple ( [33,Theorem4.3.7]) and theMihlin-Hörmander

multiplier theorem ( [33, Theorem 6.2.7]), the Fourier multiplier operator Ns1−s〈∇〉s−s1(
QN − Id

)
with the symbol mN in (5.23) is bounded from L p(T2) to L p(T2) for any
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1 < p < ∞ with norm independent of N . This implies that the following estimate
holds:

‖(QN − Id) f ‖Ws,p(T2) � Ns−s1‖ f ‖Ws1,p(T2) (5.25)

for any 0 < s1 − s < 1 and 1 < p <∞. Then, applying (5.25) and Lemma 2.14 again,
we can bound III in (5.22) by∥∥(QNk − Id

)(
F(βQNkvNk )�Nk

)∥∥
L1
T H

−1
x

� N−ε
k ‖F(βQNkvNk )‖L2

T L
∞
x
‖�Nk‖L2

T H
−1+ε
x

� Nk
−ε‖�Nk‖L2

T H
−1+ε
x

.

(5.26)

Hence, from (5.22), the convergence of I and II to 0 as shown in Sect. 5.1, and (5.26), we
conclude that�Nk (vNk ) in (5.21) converges to�(v) in L1([0, T ]; H−1(T2)). Combined
with the uniqueness of the solution to (5.3) in ZT , this shows that the solution vN to the
truncated SNLH (5.20) converges to the solution v to SNLH (5.3) (with z = 0).

Lastly, we establish invariance of the Gibbs measure ρheat constructed in Proposi-
tion 1.4 under the dynamics of SNLH (1.1). In the following, we write �N (t) and �(t)
for the flow maps of the truncated SNLH (1.19) and SNLH (1.1), respectively, con-
structed above. Note that �(t)(u0) is interpreted as �(t)(u0) = � + v, where � is the
stochastic convolution defined in (1.27) (with w0 = u0) and v is the solution to (5.1)
(with z ≡ 0). In the remaining part of this section, we take the space-time white noise
ξ = ξω in the equation to be on a probability space (
1, P) and use ω to denote the
randomness coming from the space-time white noise. Moreover, we useEω to denote an
expectation with respect to the noise, namely, integration with respect to the probability
measure P. In the following, we write �ω(t)(u0), when we emphasize the dependence
of the solution on the noise. A similar comment applies to �N (t). Given N ∈ N, we use
PN
t to denote the Markov semigroup associated with the truncated dynamics �ω

N (t):

PN
t (F)(u0) = Eω

[
F(�ω

N (t)(u0))
] = ∫


1

F(�ω
N (t)(u0))dP(ω).

We first show invariance of the truncated Gibbs measure ρheat,N in (1.18) under the
truncated dynamics (1.19).

Lemma 5.2. Let N ∈ N and ε > 0. Then, for any continuous and bounded function
F : H−ε(T2)→ R, we have∫

PN
t (F)(u0)dρheat,N(u0) =

∫
F(u0)dρheat,N(u0).

Proof. Since the truncated Gibbs measure ρheat,N in (1.18) truncated by QN does not
have a finite Fourier support, we first approximate it by

dρheat,N ,M = Z−1N ,M exp

(
− λCN ,M

∫
T2

eβPMQN udx

)
dμ1, (5.27)

where PM is the Fourier multiplier with a compactly supported symbol χN in (1.7) and

CN ,M = e−
β2

2 σN ,M = e−
β2

2 E[(PMQN�heat(t,x))2] −→ CN ,
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as M →∞. Here, �heat is as in (1.35).
Let

�N = e−
β2

2 σN eβQN�heat
and �N ,M = e−

β2

2 σN eβPNQN�heat
.

Then, a slight modification of the proof of Proposition 1.12 shows that �̂N ,M (0, 0)
converges to �̂N (0, 0) in L p(
) for 1 ≤ p < 8π

β2 . Namely, we have

−λCN ,M

∫
T2

eβQNPMudx −→ −λCN

∫
T2

eβQN udx (5.28)

in L p(μ1) for 1 ≤ p < 8π
β2 and also in probability. Let RN be as in (1.43) and define

RN ,M by

RN ,M = exp

(
− λCN ,M

∫
T2

eβ PNQN udx

)
. (5.29)

Then, it follows from (5.28) that RN ,M converges to RN in probability asM →∞.More-
over, by the positivity of �N , �N ,M , and λ, the densities RN and RN ,M are uniformly
bounded by 1. As in the proof of Proposition 1.4, this implies the L p(μ1)-convergence of
the density RN ,M to RN as M →∞, which in turn shows convergence in total variation
ρheat,N ,M → ρheat,N as M →∞.

Next, consider the truncateddynamics (1.19)with theGaussian initial dataLaw(uN (0))
= μ1. Then, proceeding as in the proof of Theorem 1.2, we see that the flow �N of
(1.19) is a limit in probability (with respect to P⊗μ1(dω, du0)) inC([0, T ]; H−ε(T2)),
ε > 0, of the flow �N ,M for the following truncated dynamics:{

∂t uN ,M + 1
2 (1−�)uN ,M + 1

2λβCN ,MPMQNeβ PMQN uN ,M = ξ

uN ,M |t=0 = u0 with Law(u0) = μ1.
(5.30)

Let us now discuss invariance of ρheat,N ,M under (5.30). Let �M be the sharp
Fourier truncation on frequencies {|n| ≤ M}. Then, from the definition (1.7) of PM ,
we have �2MPM = PM for any M ∈ N. In particular, with �⊥

2M = Id − �2M ,
we have �⊥

2MPM = 0. Then, it follows from (5.27) that the pushforward measure
(�⊥

2M )#ρheat,N ,M is Gaussian:

(�⊥
2M )#ρheat,N ,M = (�⊥

2M )#μ1.

Hence, we have the following decomposition:

ρheat,N ,M = (�2M )#ρheat,N ,M ⊗ (�⊥
2M )#μ1.

By writing

uN ,M = �2MuN ,M + �⊥
2MuN ,M =: u(1) + u(2),

where, for simplicity, we dropped the subscripts on the right-hand side, we see that the
high frequency part u(2) satisfies the linear stochastic heat equation:

∂t u
(2) + 1

2 (1−�)u(2) = �⊥
2Mξ. (5.31)
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Since this is a linear equation where spatial frequencies are decoupled,16 it is easy to
check that the Gaussian measure (�⊥

2M )#μ1 is invariant under (5.31).
The low frequency part u(1) satisfies the following equation:

∂t u
(1) + 1

2 (1−�)u(1) +N (u(1)) = �2Mξ, (5.32)

where the nonlinearity N = NN ,M is given by

N (u) = NN ,M (u) = 1
2λβCN ,MPMQNe

β PMQN u . (5.33)

On the Fourier side, (5.32) is a finite-dimensional system of SDEs. As such, one can
easily check by hand that (�2M )#ρheat,N ,M is invariant under (5.32). In the following,
we review this argument.

In the current real-valued setting, we have û(1)(−n) = û(1)(n). Then, by writing
û(1)(n) = an + ibn for an, bn ∈ R, we have

a−n = an and b−n = −bn . (5.34)

Defining the index sets � = �(2M) ⊂ Z
2 and �0 = �0(2M) ⊂ Z

2, M ∈ N:

� = {
(N× {0}) ∪ (Z× N)

} ∩ {n ∈ Z
2 : |n| ≤ 2M} and �0 = � ∪ {(0, 0)},

we can write (5.32) as

dan =
(
− 1

2 〈n〉2an − Re ̂N (u(1))(n)
)
dt + d(ReBn)

dbn =
(
− 1

2 〈n〉2bn − Im ̂N (u(1))(n)
)
dt + d(ImBn)

(5.35)

for n ∈ � and

da0 =
(
− 1

2a0 − ̂N (u(1))(0)
)
dt + dB0. (5.36)

Here, {Bn}n∈�0 is a family of mutually independent complex-valued Brownian mo-
tions as in (1.29). Note that Var(ReBn(t)) = Var(ImBn(t)) = t

2 for n ∈ �, while
Var(B0(t)) = t .

Let F be a continuous and bounded function on (ā, b̄) = (am, bn)m∈�0,n∈� ∈
R
2|�|+1. Then, by Ito’s lemma, the generator L = LN ,M of the Markov semigroup

associated with (5.35) and (5.36) is given by

LF(ā, b̄) =
∑
n∈�0

[(
− 1

2
〈n〉2an − Re ̂N (u(1))(n)

)
∂an F(ā, b̄) +

1

4
∂2an F(ā, b̄)

]

+
∑
n∈�

[(
− 1

2
〈n〉2bn − Im ̂N (u(1))(n)

)
∂bn F(ā, b̄) +

1

4
∂2bn F(ā, b̄)

]

+
1

4
∂2a0F(ā, b̄). (5.37)

16 In particular, by writing (5.31) on the Fourier side, we see that ̂u(2)(n) is the (independent) Ornstein-
Uhlenbeck process for each frequency whose invariant measure is Gaussian.
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The last term takes into account the different forcing in (5.36). In order to prove invariance

of ρlow
heat,N ,M

def= (�2M )#ρheat,N ,M under the low-frequency dynamics (5.32), it suffices
to prove

(L)∗ρlow
heat,N ,M = 0.

By viewing ρlow
heat,N ,M as a measure on (ā, b̄) with a slight abuse of notation, this is

equivalent to proving

∫
LF(ā, b̄) dρlow

heat,N ,M (ā, b̄) =
∫

LF(ā, b̄)e−M(u(1))dādb̄ = 0, (5.38)

where M(u(1)) is given by

M(u(1)) = λCN ,M

∫
T2

eβPMQN u(1)
dx +

∑
n∈�

〈n〉2(a2n + b2n) +
1

2
a20 . (5.39)

A direct computation with (5.34) shows

2π∂anFx
[
(PMQNu

(1))k
]
(0) = 2kReFx

[
PMQN

(
(PMQNu

(1))k−1
)]

(n),

2π∂bnFx
[
(PMQNu

(1))k
]
(0) = 2kImFx

[
PMQN

(
(PMQNu

(1))k−1
)]

(n)
(5.40)

for n ∈ � and

2π∂a0Fx
[
(PMQNu

(1))k
]
(0) = kFx

[
PMQN

(
(PMQNu

(1))k−1
)]

(0).

By the Taylor expansion with (5.40) and (5.33), we have

∂an

(
λCN ,M

∫
T2

eβPMQN u(1)
dx

)
= λCN ,M · 2π∂anFx [eβPMQN u(1)](0)

= λCN ,M · 2π
∞∑
k=0

βk∂anFx
[
(PMQNu(1))k

]
(0)

k!
= 4Re ̂N (u(1))(n)

(5.41)

for n ∈ �. By a similar computation, we have

∂bn

(
λCN ,M

∫
T2

eβPMQN u(1)
dx

)
= 4Im ̂N (u(1))(n) (5.42)

for n ∈ �, and

∂a0

(
λCN ,M

∫
T2

eβPMQN u(1)
dx

)
= 2 ̂N (u(1))(0). (5.43)
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Then, using (5.37), (5.39), (5.41), (5.42), and (5.43), we can rewrite the generator L as

LF(ā, b̄) =
∑
n∈�

[
− 1

4
∂anM(u(1))∂an F(ā, b̄) +

1

4
∂2an F(ā, b̄)

− 1

4
∂bnM(u(1))∂bn F(ā, b̄) +

1

4
∂2bn F(ā, b̄)

]

− 1

2
∂a0M(u(1))∂a0F(ā, b̄) +

1

2
∂2a0F(ā, b̄).

(5.44)

Then, with (5.39) and (5.44), integration by parts yields∫
LF(ā, b̄)e−M(u(1))dādb̄

= 1

4

∑
n∈�

∫ (
∂an e

−M(u(1)) · ∂an F(ā, b̄) + ∂2an F(ā, b̄) · e−M(u(1))
)
dādb̄

+
1

4

∑
n∈�

∫ (
∂bn e

−M(u(1)) · ∂bn F(ā, b̄) + ∂2bn F(ā, b̄) · e−M(u(1))
)
dādb̄

+
1

2

∫ (
∂a0e

−M(u(1)) · ∂a0F(ā, b̄) + ∂2a0F(ā, b̄) · e−M(u(1))
)
dādb̄

= 0.

This proves (5.38) and hence invariance of ρlow
heat,N ,M = (�2M )#ρheat,N ,M under the

low-frequency dynamics (5.32).
We are now ready to prove invariance of ρheat,N under �N (t). This follows from

(i) the convergence of ρheat,N ,M to ρheat,N in total variation, (ii) the convergence of
�ω

N ,M (t)(u0) to �ω
N (t)(u0) in probability with respect to P⊗ μ1(ω, u0), and (iii) the

invariance of ρheat,N ,M under �N ,M (t).
Indeed, for any F : H−ε(T2)→ R, continuous and bounded, and any t ≥ 0, we have∣∣∣∣
∫

Eω

[
F(�ω

N (t)(u0))
]
dρheat,N(u0)−

∫
Eω

[
F(�ω

N ,M (t)(u0))
]
dρheat,N ,M (u0)

∣∣∣∣
≤ Z−1N ,M

∫ ∣∣∣Eω

[
F(�ω

N (t)(u0))
]− Eω

[
F(�ω

N ,M (t)(u0))
]∣∣∣RN ,M (u0)dμ1(u0)

+

∣∣∣∣
∫

Eω

[
F(�ω

N (t)(u0))
]
dρheat,N(u0)−

∫
Eω

[
F(�ω

N (t)(u0))
]
dρheat,N ,M (u0)

∣∣∣∣,
(5.45)

where RN ,M is as in (5.29). The second term on the right-hand side tends to 0 as
M → ∞ since ρheat,N ,M converges to ρheat,N in total variation. As for the first term,
by the uniform bound RN ,M ≤ 1, we have∫ ∣∣∣Eω

[
F(�ω

N (t)(u0))
]− Eω

[
F(�ω

N ,M (t)(u0))
]∣∣∣RN ,M (u0)dμ1(u0)

≤
∫ ∣∣F(�ω

N (t)(u0))− F(�ω
N ,M (t)(u0))

∣∣d(P⊗ μ1)(ω, u0)

≤ δ + 2‖F‖L∞ · P⊗ μ1

(∣∣F(�ω
N (t)(u0))− F(�ω

N ,M (t)(u0))
∣∣ > δ

)
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for any δ > 0. In view of the convergence of�ω
N ,M (t)(u0) to�ω

N (t)(u0) in probability
with respect to P⊗ μ1(ω, u0) as M →∞, we then obtain

lim
M→∞

∫ ∣∣∣Eω

[
F(�ω

N (t)(u0))
]− Eω

[
F(�ω

N ,M (t)(u0))
]∣∣∣RN ,M (u0)dμ1(u0) ≤ δ

Since the choice of δ > 0 was arbitrary, we conclude that

lim
M→∞

∫ ∣∣∣Eω

[
F(�ω

N (t)(u0))
]− Eω

[
F(�ω

N ,M (t)(u0))
]∣∣∣RN ,M (u0)dμ1(u0) = 0.

(5.46)

Hence, from (5.45), (5.46), and ZN ,M → ZN together with the invariance of ρheat,N ,M
under �N ,M (t), we obtain∫

Eω

[
F(�ω

N (t)(u0))
]
dρheat,N(u0) = lim

M→∞

∫
Eω

[
F(�ω

N ,M (t)(u0))
]
dρheat,N ,M (u0)

= lim
M→∞

∫
F(u0)dρheat,N ,M (u0) =

∫
F(u0)dρheat,N(u0).

This concludes the proof of Lemma 5.2. ��
With Lemma 5.2, we can finally prove invariance of the Gibbs measure ρheat in

Theorem 1.6. Indeed, proceeding as in the proof of Lemma 5.2 above, we can easily
deduce invariance of the Gibbs measure ρheat from (i) the convergence of the truncated
Gibbsmeasures ρheat,N to the Gibbsmeasure ρheat in total variation (Proposition 1.4), (ii)
the convergence in probability (with respect to P⊗μ1) of the truncated dynamics (5.20)
to the full dynamics (5.3) (with z = 0) (Theorem 1.2), and (iii) the invariance of the
truncatedGibbsmeasureρheat,N in (1.18) under the truncated SNLH (1.19) (Lemma5.2).
(Wealsouse the absolute continuity of the truncatedGibbsmeasureρheat,Nwith respect to
the massive Gaussian free fieldμ1, with the uniformly (in N ) bounded density RN ≤ 1.)
This concludes the proof of Theorem 1.6.

6. Hyperbolic Liouville Equation

In this section, we study the stochastic damped nonlinear wave equation (1.2) with the
exponential nonlinearity. We restrict our attention to the defocusing case (λ > 0).

6.1. Local well-posedness of SdNLW. In this subsection, we present a proof of Theo-
rem 1.15 on local well-posedness of the system (1.56):

X (t) = �1(X,Y )

def= −λβ

∫ t

0
e−

(t−t ′)
2 S(t − t ′)

(
eβz F(βX)eβY�

)
(t ′)dt ′,

Y (t) = �2(X,Y )

def= −λβ

∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)(
eβz F(βX)eβY�

)
(t ′)dt ′,

(6.1)

where F is as in (1.49) and � is a positive distribution in L p([0, 1];W−α,p(T2)) with
α and 1 < p < 8π

β2 satisfying (1.41). Here, D(t) and S(t) are the linear propagators
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defined in (1.32) and (1.55) and z denotes the linear solution in (1.52) with initial data
(v0, v1) ∈ Hs(T2) for some s > 1.

We prove local well-posedness of (6.1) by a contraction argument for (X,Y ) ∈
X s1
T ×Ys2

T , where the Strichartz type spacesX s1
T and Ys2

T are defined in (1.57) and (1.58)
for some 1

4 < s1 < 3
4 and 1 < s2 < 2 (to be chosen later). See also (2.16). In the

following, we fix the following s1-admissible pair (q, r) and dual s1-admissible pair
(q̃, r̃) (see Definition 2.7 for (dual) admissible pairs):

(q, r) =
(
3

s1
,

6

3− 4s1

)
and (q̃, r̃) =

(
3

2 + s1
,

6

7− 4s1

)
. (6.2)

We also fix p ≥ 2, 0 < α ≤ min(s1, 1 − s1) < 1, 1 ≤ q̃ ≤ q̃1 ≤ 2 ≤ q ≤ q1 ≤ ∞,
and 1 ≤ r̃ ≤ r̃1 ≤ 2 ≤ r1 ≤ r < ∞, satisfying the following constraints: (i) For the
interpolation lemma (Lemma 2.9):

1

q1
= 1− α/s1

q
+

α/s1
∞ ,

1

r1
= 1− α/s1

r
+

α/s1
2

,

1

q̃1
= 1− α/(1− s1)

q̃
+

α/(1− s1)

1
,

1

r̃1
= 1− α/(1− s1)

r̃
+

α/(1− s1)

2
,

(6.3)

(ii) For Lemmas 2.13 (ii) and 2.14:

1

r1
+
1

p
≤ 1

r̃1
+

α

2
, (6.4)

(iii) For Hölder’s inequality in time ‖ f g‖
L
q̃1
T

� T θ‖ f ‖Lq1
T
‖g‖L p

T
for some θ > 0:

1

q1
+
1

p
<

1

q̃1
, (6.5)

(iv) For Sobolev’s inequality W−α,̃r1(T2) ⊂ Hs2−2(T2):

2− s2 − α

2
≥ 1

r̃1
− 1

2
. (6.6)

The constraints (i)–(iv) allow us to prove local well-posedness of the system (6.1).
We aim to obtain the best possible range 0 < β2 < β2

wave under the constraint (1.41)
from Proposition 1.12:

α ≥ (p − 1)
β2
wave

4π
. (6.7)

First, note that from (6.3) with (6.2), 1
r1
− 1

r̃1
depends only on α, not on s1. Then, by

saturating (6.4) in the constraint (ii) above and substituting 1
r1
− 1

r̃1
= 4

3α− 2
3 , we obtain

α in terms of p, which reduces (6.7) to

β2
wave ≤

2p − 3

5p(p − 1)
8π.

The right-hand side is maximized when p = 3+
√
3

2 � 2.37, giving

β2
wave =

32− 16
√
3

5
π � 0.86π.
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This in turn impliesα = (p−1)β2
wave
4π = 2

√
3−2
5 .As for the other parameters,wehave free-

dom to take any s1 ∈ [α, 1− α] which determines the values of q, r, q1, r1, q̃, r̃ , q̃1, r̃1.
In the following, we set s1 = 1− α (which gives the best regularity for X ). For the sake
of concreteness, we choose the following parameters:

β2
wave =

32− 16
√
3

5
π, p = 3 +

√
3

2
, α = 2

√
3− 2

5
,

s1 = 1− α, s2 = s1 + 1,

q = 15

7− 2
√
3
, q1 = 15

9− 4
√
3
, q̃1 = 1,

r = 30

8
√
3− 13

, r1 = 30

16
√
3− 21

, r̃1 = 2. (6.8)

We point out that the constraints (6.5) and (6.6) are satisfied with this choice of param-
eters.

Proof of Theorem 1.15. Let 0 < T < 1 and B ⊂ X s1
T × Ys2

T denotes the ball of radius
O(1) centered at the origin. We set

K = ‖(v0, v1)‖Hs and R = ‖�‖L p([0,1];W−α,p
x )

for (v0, v1) ∈ Hs(T2) for some s > 1 and a positive distribution � ∈ L p([0, 1];W−α,p

(T2)).
• Step 1: Let (X,Y ) ∈ B ⊂ X s1

T × Ys2
T . By the Strichartz estimate (Lemma 2.8) with

the definitions (2.16) and (2.17) of the Strichartz space X s1
T and the dual space N s1

T ,
Lemma 2.9, and Hölder’s inequality (with r̃1, q̃1 ≤ 2 < p in view of (6.8)), we have

‖�1(X,Y )‖X s1
T

�
∥∥eβz F(βX)eβY�

∥∥N s1
T

�
∥∥eβz F(βX)eβY�

∥∥
L
q̃1
T W

−α,̃r1
x

� T θ
∥∥eβz F(βX)eβY�

∥∥
L p
T W

−α,p
x

(6.9)

for some θ > 0.
As in the parabolic case, we would like to exploit the positivity of � and apply

Lemma 2.14 at this point. Unlike the parabolic case, however, the function X does not
have sufficient regularity in order to apply Lemma 2.14 (i). Namely, we do not know if
X (t) is continuous (in x) for almost every t ∈ [0, T ]. We instead rely on the hypothesis
(ii) in Lemma 2.14.

In the following discussion, we only discuss spatial regularities holding for almost
every t ∈ [0, T ]. For simplicity, we suppress the time dependence. If we have

eβz F(βX)eβY ∈ Wα,r0(T2) (6.10)

for some r0 < r1 sufficiently close to r1, then the condition (6.4) guarantees the hypoth-
esis (ii) in Lemma 2.14:

1

r0
+
1

p
≤
(
1

r̃1
+

α

2

)
+ ε < 1 +

α

2
(6.11)
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for some small ε > 0, since r̃1 > 1. We now verify (6.10). The fractional Leibniz rule
(Lemma 2.13 (i)) with 1

r0
= 1

r1
+ 1

r2
for some large but finite r2 yields

∥∥eβz F(βX)eβY
∥∥
W

α,r0
x

� ‖F(βX)‖Wα,r1
x

∥∥eβ(z+Y )
∥∥
L
r2
x

+ ‖F(βX)‖Lr2x
∥∥eβ(z+Y )

∥∥
W

α,r1
x

.
(6.12)

Recall that F is Lipschitz. Hence, by the fractional chain rules (Lemma 2.15 (i)), we
have

‖F(βX)‖Wα,r1
x

∼ ‖F(βX)‖Lr1x +
∥∥|∇|αF(βX)

∥∥
L
r1
x

� 1 + ‖X‖Wα,r1
x

<∞,
(6.13)

since Lemma 2.9 (i) ensures that X ∈ Wα,r1(T2). Similarly, by the fractional chain rule
(Lemma 2.15 (ii)), we have∥∥eβ(z+Y )

∥∥
W

α,r1
x

∼ ∥∥eβ(z+Y )
∥∥
L
r1
x
+
∥∥|∇|αeβ(z+Y )

∥∥
L
r1
x

� eC‖z+Y‖L∞x +
∥∥eβ(z+Y )

∥∥
L
r3
x

∥∥|∇|α(z + Y )
∥∥
L
r1+ε
x

� e
C‖z+Y‖

H1+ε
x

(
1 + ‖z + Y‖H1

x

)
<∞

(6.14)

for some large but finite r3 and small ε > 0, since z ∈ Hs(T2) and Y ∈ Hs2(T2) with
s, s2 > 1. In the last step, we used Sobolev’s inequality 1−α

2 ≥ 1
2 − 1

r1+ε
, which is

guaranteed from (6.8):

α

2
<

1

r1
(6.15)

and choosing ε > 0 sufficiently small. Putting (6.12), (6.13), and (6.14), we see that
(6.10) is satisfied for almost every t ∈ [0, T ].

By applying Lemma 2.14 to (6.9), we have

‖�1(X,Y )‖X s1
T

� T θ
∥∥eβz F(βX)eβY

∥∥
L∞T,x
‖�‖L p

T W
−α,p
x

� T θe
C‖z+Y‖L∞T,x ‖�‖L p

T W
−α,p
x

� T θeCK R.

(6.16)

Next, by applying Lemma 2.6, Sobolev’s inequality with (6.6) and p > r̃1, and
proceeding as in (6.16), we have

‖�2(X,Y )‖Ys2
T

�
∥∥eβz F(βX)eβY�

∥∥
L1
T H

s2−2
x

� T θ
∥∥eβz F(βX)eβY�

∥∥
L p
T W

−α,p
x

� T θeCK R.

(6.17)

By choosing T = T (K , R) > 0 sufficiently small, the estimates (6.16) and (6.17)
show boundedness of � = (�1,�2) on the ball B ⊂ X s1

T × Ys2
T .
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• Step 2: Next, we establish difference estimates. Let (X1,Y1), (X2,Y2) ∈ B ⊂ X s1
T ×

Ys2
T . Write

‖�(X1,Y1)−�(X2,Y2)‖X s1
T ×Y

s2
T

≤ ‖�1(X1,Y1)−�1(X2,Y1)‖X s1
T

+ ‖�2(X1,Y1)−�2(X2,Y1)‖Ys2
T

+ ‖�1(X2,Y1)−�1(X2,Y2)‖X s1
T

+ ‖�2(X2,Y1)−�2(X2,Y2)‖Ys2
T

=: I 1 + I 2 + II1 + II2.

(6.18)

Recall from (5.15) and (5.16) that

F(βX1)− F(βX2) = β(X1 − X2)G(X1, X2).

Then, by the Strichartz estimate (Lemma 2.8), Lemma 2.9 (ii), and Lemma 2.13 (ii), we
have

I 1 �
∥∥eβz(F(βX1)− F(βX2)

)
eβY1�

∥∥N s1
T

�
∥∥eβz(X1 − X2)G(X1, X2)e

βY1�
∥∥
L
q̃1
T W

−α,̃r1
x

� T θ
∥∥X1 − X2

∥∥
L
q1
T W

α,r1
x

∥∥eβzG(X1, X2)e
βY1�

∥∥
L p
T W

−α,p
x

,

provided that

θ = 1

q̃1
− 1

q1
− 1

p
> 0 and

1

r1
+
1

p
≤ 1

r̃1
+

α

2
, (6.19)

which are precisely the constraints (6.5) and (6.4). Then, applying Lemma 2.14 as in
(6.16) along with the boundedness of G, we obtain

I 1 � T θeCK R‖X1 − X2‖X s1
T

, (6.20)

wherewe also usedLemma2.9 (i) to estimate the normof X1−X2. As for I 2, Lemma2.6
and Sobolev’s inequality with (6.6) yield

I 2 �
∥∥eβz(X1 − X2)G(X1, X2)e

βY1�
∥∥
L1
T H

s2−2
x

�
∥∥eβz(X1 − X2)G(X1, X2)e

βY1�
∥∥
L1
T W

−α,̃r1
x

.

Then, proceeding as above, we obtain

I 2 � T θeCK R‖X1 − X2‖X s1
T

. (6.21)

As for II1, by Lemmas 2.8 and 2.9 (ii), the fundamental theorem of calculus (as
in (5.15) and (5.16)), Lemma 2.13 (ii) with (6.19), and then proceeding as in (6.16) with
Lemma 2.14, we have
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II1 �
∥∥eβz F(βX2)

(
eβY1 − eβY2

)
�
∥∥
L
q̃1
T W

−α,̃r1
x

�
∥∥∥∥eβz F(βX2)(Y1 − Y2)

∫ 1

0
exp

(
τβY1 + (1− τ)βY2

)
dτ ·�

∥∥∥∥
L
q̃1
T W

−α,̃r1
x

� T θ
∥∥Y1 − Y2

∥∥
L
q1
T W

α,r1
x

∥∥∥∥eβz F(βX2)

∫ 1

0
exp

(
τβY1 + (1− τ)βY2

)
dτ ·�

∥∥∥∥
L p
T W

−α,p
x

� T θeCK R‖Y1 − Y2‖Ys2
T

. (6.22)

In the last step, we use the embedding Hs2(T2) ⊂ Wα,r1(T2), which is guaranteed
by (6.15) and s2 > 1. Similarly, by applying Lemma 2.6 and Sobolev’s inequality with
(6.6) and proceeding as in (6.22), we have

II2 �
∥∥eβz F(βX2)

(
eβY1 − eβY2

)
�
∥∥
L1
T W

−α,̃r1
x

� T θeCK R‖Y1 − Y2‖Ys2
T

.
(6.23)

From Step 1, (6.18), (6.20), (6.21), (6.22), and (6.23), we conclude that � = (�1,�2)

is a contraction on the ball B ⊂ X s1
T × Ys2

T , thus establishing local well-posedness of
(6.1).
• Step 3: Continuous dependence of the solution (X,Y ) on initial data (v0, v1) easily
follows from the argument in Step 2. Hence, it remains to prove continuous dependence
of the solution (X,Y ) on the “noise” term �.

Let (X j ,Y j ) ∈ B ⊂ X s1
T ×Ys2

T be solutions to (6.1) with a noise term � j , j = 1, 2.
In estimating the difference, we can apply the argument in Step 2 to handle all the terms
except for the following two terms:∥∥∥∥

∫ t

0
e−

(t−t ′)
2 S(t − t ′)

(
eβz F(βX1)e

βY1(�1 −�2)
)
(t ′)dt ′

∥∥∥∥X s1
T

+

∥∥∥∥
∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)(
eβz F(βX1)e

βY1(�1 −�2)
)
(t ′)dt ′

∥∥∥∥Ys2
T

=: III1 + III2.

The main point is that the difference �1 − �2 does not enjoy positivity and hence we
can not apply Lemma 2.14.

Let r0 < r1 sufficiently close to r1, satisfying (6.11):

1

r0
+
1− εp

p
≤ 1

r̃1
+

α

2
. (6.24)

By the Strichartz estimate (Lemma2.8), Lemma2.9 (ii), andLemma2.13 (ii) with (6.24),
we have

III1 �
∥∥eβz F(βX1)e

βY1(�1 −�2)
∥∥
L
q̃1
T W

−α,̃r1
x

� T θ
∥∥eβz F(βX1)e

βY1
∥∥
L
q1
T W

α,r0
x
‖�1 −�2‖

L p
T W

−α,
p

1−εp
x

.
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Then, applying (6.12), (6.13), and (6.14) along with Hölder’s inequality in time and
Sobolev’s inequality, we obtain

III1 � T θeCK (1 + K )‖�1 −�2‖L p
T W

−α+2ε,p
x

.

Thanks to Lemma 2.6 and the embedding Lq̃1([0, T ];W−α,̃r1(T2)) ⊂ L1([0, T ]; Hs2−2
(T2)) (see (6.6)), the second term III2 can be handled in an analogous manner.

Let 0 < β2 < β2
wave. Then, the pair (α, p) in (6.8) satisfies the condition (1.41). Then,

by taking ε > 0 sufficiently small, we see that the pair (α − 2ε, p) also satisfies the
condition (1.41). Hence, as �2 tends to �1 in L p([0, 1];W−α+2ε,p(T2)), we conclude
that III1 + III2 → 0, establishing the continuity of the solution map (v0,�) �→ (X,Y ).
This completes the proof of Theorem 1.15. ��

6.2. Almost sure global well-posedness and invariance of the Gibbs measure. In this
subsection, we briefly discuss a proof of Theorem 1.9. As mentioned in Sect. 1, the
well-posedness result of Theorem 1.15 proved in the previous subsection is only local
in time and hence we need to apply Bourgain’s invariant measure argument [9,10] to
extend the dynamics globally in time almost surely with respect to the Gibbs measure
ρwave and then show invariance of the Gibbs measure ρwave.

Given N ∈ N, we consider the following truncated SdNLW:{
∂2t uN + ∂t uN + (1−�)uN + λβCNQNeβQN uN = √2ξ
(uN , ∂t uN )|t=0 = (QNw0,QNw1),

(6.25)

whereQN is as in (1.16) and (w0, w1) is as in (1.8). Namely, Law(w0, w1) = μ1⊗μ0.17

By writing uN = XN + YN + �, where � = �wave is as in (1.36), we have

XN (t) = −λβ

∫ t

0
e−

(t−t ′)
2 S(t − t ′)QN

(
eβQN XN eβQNYN �N

)
(t ′)dt ′,

YN (t) = −λβ

∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)
QN

(
eβQN XN eβQNYN �N

)
(t ′)dt ′.

By the positivity of the smoothing operator QN , XN enjoys the sign-definite structure:

βQN XN = −λβ2
∫ t

0
e−

(t−t ′)
2 S(t − t ′)Q2

N

(
eβQN XN eβQNYN �N

)
(t ′)dt ′ ≤ 0,

thanks to λ > 0 and the positivity of the linear wave propagator S(t) (Lemma 2.5).
Hence, it is enough to consider

XN (t) = −λβ

∫ t

0
e−

(t−t ′)
2 S(t − t ′)QN

(
F(βQN XN )eβQNYN �N

)
(t ′)dt ′,

YN (t) = −λβ

∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)
QN

(
F(βQN XN )eβQNYN �N

)
(t ′)dt ′,

(6.26)

17 In view of the equivalence of μ1 ⊗ μ0 and the Gibbs measure ρwave in (1.23), it suffices to study (6.25)
with the initial data distributed by μ1 ⊗ μ0.
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where F is as in (1.49).
In view of the uniform (in N ) boundedness ofQN on L p(T2), 1 ≤ p ≤ ∞, we can ar-

gue as in Sect. 6.1 to prove local well-posedness of the system (6.26) in a uniformmanner
for any N ∈ N. In order to prove convergence of the solution

(
(XN , ∂t XN ), (YN , ∂t YN )

)
to (6.26) towards the solution

(
(X, ∂t X), (Y, ∂t Y )

)
of the untruncated dynamics (6.1),

we can repeat the argument in Step 3 of the previous subsection to estimate the difference
between

(
(XN , ∂t XN ), (YN , ∂t YN )

)
and

(
(X, ∂t X), (Y, ∂t Y )

)
. As in Sect. 5.2, we need

to estimate the terms with QN − Id:∥∥∥∥
∫ t

0
e−

(t−t ′)
2 S(t − t ′)

(
QN − Id

)(
F(βQN XN )eβQN YN �N

)
(t ′)dt ′

∥∥∥∥X s1
T

+

∥∥∥∥
∫ t

0

(D(t − t ′)− e−
(t−t ′)

2 S(t − t ′)
)(
QN − Id

)(
F(βQN XN )eβQN YN �N

)
(t ′)dt ′

∥∥∥∥Ys2
T

=: IV1 + IV2.

The property (5.25) ofQN allows us to gain a negative power of N at a slight expense
of regularity. By a slight modification of the argument from the previous subsection (see
(6.16)), we have

IV1 �
∥∥∥(QN − Id

)(
F(βQN XN )eβQNYN �N

)∥∥∥
L
q̃1
T W

−α,̃r1
x

� N−ε
∥∥F(βQN XN )eβQNYN �N

∥∥
L
q̃1
T W

−α+ε,̃r1
x

� T θ N−ε exp
(
C‖YN‖L∞T H

s2
x

)∥∥�N
∥∥
L p
T W

−α+ε,p
x

.

(6.27)

Note that by choosing ε > 0 sufficiently small, the range 0 < β2 < β2
wave does not

change even when we replace −α in (6.16) by −α + ε in (6.27). Similarly, we have

IV2 � T θ N−ε exp
(
C‖YN‖L∞T H

s2
x

)∥∥�∥∥
L p
T W

−α+ε,p
x

. (6.28)

The estimates (6.27) and (6.28) combined with the argument in the previous sub-
section allows us to prove the desired convergence of

(
(XN , ∂t XN ), (YN , ∂t YN )

)
to(

(X, ∂t X), (Y, ∂t Y )
)
. The rest of the argument follows from applying Bourgain’s invari-

ant measure argument [9,10]. Since it is standard, we omit details. See, for example,
[15,37,59,60,65,77] for details.
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Appendix A. On Local Well-Posedness of SNLH Without Using the Positivity

In this appendix, we revisit the fixed point problem (4.4) for SNLH:

v = �v0,�(v), (A.1)

where themap� = �v0,� is defined in (4.2). InSects. 4 and5,we studied this problemby
exploiting the positivity of � and furthermore the sign-definite structure of the equation
when λ > 0. In the following, we study (4.4) for general λ ∈ R \ {0} and present a
simple contraction argument without using any positivity of � for the range 0 < β2 <
4
3π � 1.33π . This simple argument provides Lipschitz dependence of a solution on
initial data v0 and noise �.
Let 0 < α < 1 and p ≥ 2 such that

p′
(

α

2
+
1

p

)
< 1 and 0 < α ≤ 2

p
. (A.2)

Theorem A.1. Letα, p be as above. Then, given any v0 ∈ H1+ε(T2) and� ∈ L p([0, 1];
W−α,p(T2)) for some small ε > 0, there exist T = T

(‖v0‖L∞ , ‖�‖L p([0,1];W−α,p
x )

)
> 0

and a unique solution v ∈ C([0, T ];Wα+ε, 2
α (T2)) to (A.1), depending continuously on

the initial data v0 and the noise �.

In view of Proposition 1.12 on the regularity of the Gaussian multiplicative chaos �N ,
we see that Theorem A.1 provides local well-posedness of SNLH (1.45) for the range:

0 < β2 <
4πα

p − 1
< 8π

min
( 1
p , 1− 2

p

)
p − 1

,

where we used both of the inequalities in (A.2). Hence, optimizing

min

(
max
p≥3

1

p(p − 1)
, max
2≤p≤3

p − 2

p(p − 1)

)
,

we find that the maximum is attained at p = 3, which gives the range 0 < β2 < 4
3π .

With p = 3, we can take α = 2
3 − ε for some small ε > 0 such that (A.2) is satisfied.

We point out that our argument requires the initial data v0 to belong to a smaller space
H1+ε(T2) ⊂ L∞(T2).

Proof of Theorem A.1. Fix small ε > 0 such that

p′
(

α + ε

2
+
1

p

)
< 1. (A.3)

http://creativecommons.org/licenses/by/4.0/
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Givenv0 ∈ H1+ε(T2) and� ∈ L p([0, 1];W−α,p(T2)),we consider themap� = �v0,�

defined in (4.2) and set z = P(t)v0 as in (1.44). Let B ⊂ C([0, T ];Wα+ε, 2
α (T2)) be the

ball of radius O(1) centered at the origin and set

K = ‖v0‖H1+ε and R = ‖�‖L p([0,1];W−α,p).

Let 0 < T ≤ 1. By the Schauder estimate (Lemma 2.4) with 2
α
≥ p (as guaranteed

in (A.2)), Lemma 2.13 (ii) with 1
p + 1

2/α = 1
p + α

2 , and Hölder’s inequality in time with
(A.3), we have

‖�(v)‖
CT W

α+ε, 2α
x

�
∥∥∥∥
∫ t

0
(t − t ′)−

2α+ε
2 −( 1

p− α
2 )
∥∥eβzeβv�(t ′)

∥∥
W−α,p

x
dt ′

∥∥∥∥
L∞T

�
∥∥eβ(z+v)

∥∥
L∞T W

α, 2α
x

∫ T

0
(t − t ′)−

α+ε
2 − 1

p ‖�(t ′)‖W−α,p
x

dt ′

� T θ
∥∥eβ(z+v)

∥∥
L∞T W

α, 2α
x

‖�‖L p
T W

−α,p
x

(A.4)

for some θ > 0. By the fractional chain rule (Lemma 2.15 (ii)) and the Sobolev embed-
dings:

H1+ε(T2) ⊂ Wα+ε, 2
α (T2) ∩ L∞(T2),

Wα+ε, 2
α (T2) ⊂ Wα, 2

α−ε (T2) ∩ L∞(T2),
(A.5)

we have

∥∥eβ(z+v)
∥∥
L∞T W

α, 2α
x

∼ ∥∥eβ(z+v)
∥∥
L∞T L

2
α
x

+
∥∥|∇|αeβ(z+v)

∥∥
L∞T L

2
α
x

� e
C‖z+v‖L∞T,x +

∥∥eβ(z+v)
∥∥
L∞T L

2
ε
x

∥∥|∇|α(z + v)
∥∥
L∞T L

2
α−ε
x

� exp
(
C
(‖v0‖H1+ε + ‖v‖

L∞T W
α+ε, 2α
x

))
×
(
1 + ‖v0‖H1+ε + ‖v‖

L∞T W
α+ε, 2α
x

)
.

(A.6)

Hence, from (A.4) and (A.6), we have

∥∥�(v)
∥∥
CT W

α+ε, 2α
x

� T θeCK (1 + K )R (A.7)

for any v ∈ B.
Proceeding as in (A.4), we have

‖�(v1)−�(v2)‖
CT W

α+ε, 2α
x

� T θ
∥∥eβz(eβv1 − eβv2)

∥∥
L∞T W

α, 2α
x

‖�‖L p
T W

−α,p
x

. (A.8)
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By (4.7), the fractional Leibniz rule (Lemma 2.13 (i)), followed by the fractional chain
rule as in (A.6), we have∥∥eβz(eβv1 − eβv2)

∥∥
L∞T W

α, 2α
x

�
∥∥eβz

∥∥
L∞T W

α, 2
α−ε/2

x

‖v1 − v2‖L∞T,x
e
C(‖v1‖L∞T,x

+‖v2‖L∞T,x
)

+ e
C‖z‖L∞T,x

{
‖v1 − v2‖

L∞T W
α, 2

α−ε
x

e
C(‖v1‖L∞T,x

+‖v2‖L∞T,x
)

+ ‖v1 − v2‖L∞T,x

∥∥∥∥
∫ 1

0
exp

(
τβv1 + (1− τ)βv2

)
dτ

∥∥∥∥
L∞T W

α, 2
α−ε/2

x

}

� eCK (1 + K )
(
‖v1 − v2‖L∞T,x

+ ‖v1 − v2‖
L∞T W

α, 2
α−ε

x

)

(A.9)

for any v1, v2 ∈ B. Hence, from (A.8) and (A.9) with (A.5), we have

‖�(v1)−�(v2)‖
CT W

α+ε, 2α
x

� T θeCK (1 + K )R‖v1 − v2‖
L∞T W

α+ε, 2α
x

(A.10)

for any v1, v2 ∈ B.
From (A.7) and (A.10), a contraction argument yields a solution map:

(v0,�) ∈ H1+ε(T2)× L p([0, 1];W−α,p(T2)) �−→ v ∈ C([0, T ];Wα+ε, 2
α (T2))

for some T = T
(‖v0‖H1+ε , ‖�‖L p([0,1];W−α,p

x )

) ∈ (0, 1], where v is the unique fixed

point of�v0,� in the ball B ⊂ C([0, T ];Wα+ε, 2
α (T2)). As for the Lipschitz dependence

of the solutionmapon�, ifwe take�1,�2 ∈ L p([0, 1];W−α,p(T2)), then in estimating

the difference �v0,�1(v1)−�v0,�2(v2) for v1, v2 ∈ B ⊂ C([0, T ];Wα+ε, 2
α (T2)), there

is one additional term of the form:∫ t

0
P(t − t ′)

(
eβzeβv1(�1 −�2)

)
(t ′)dt ′.

By proceeding as in (A.4) and (A.6), we can bound this additional term as∥∥∥∥
∫ t

0
P(t − t ′)

(
eβzeβv1(�1 −�2)

)
(t ′)dt ′

∥∥∥∥
CT W

α+ε, 2α
x

� T θeCK (1 + K )‖�1 −�2‖L p
T W

−α,p
x

.

This completes the proof of Theorem A.1. ��

Appendix B. Moment Bounds for the Gaussian Multiplicative Chaos

In this last section, we give a proof of Lemma 3.5 on the uniform boundedness of the
moments of the random measure MN (t) in (3.6). We mainly follow the arguments in
[7,72].
First of all, in view of the positivity of �N (t), it suffices to prove Lemma 3.5 with

A = T
2. Moreover, the bound for p = 1 being a consequence of Proposition 3.2 (i), we
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may assume p > 1.We start byfixing some large number K � 1, independent of N ∈ N,
and we partition T

2 � [−π, π)2 into cubes Ck,� = xKk,� + [− π
K , π

K )2, k, � = 1, . . . , K

of side length 2πK−1 centered at xKk,� =
( − π + 2π

K (k − 1),−π + 2π
K (� − 1)

) ∈ T
2.

We then group these into four families of cubes:

MN (t, T
2) =

K∑
k,�=1

k even, � even

∫
Ck,�

�N (t, x)dx +
K∑

k,�=1
k even, � odd

∫
Ck,�

�N (t, x)dx

+
K∑

k,�=1
k odd, � even

∫
Ck,�

�N (t, x)dx +
K∑

k,�=1
k odd, � odd

∫
Ck,�

�N (t, x)dx

=:M(1)
N (t) +M(2)

N (t) +M(3)
N (t) +M(4)

N (t).

It follows from the (spatial) translation invariance of the law of �N (t, ·) that M( j)
N (t),

j = 1, . . . , 4, have the same law. Hence, by Minkowski’s inequality, we have

E

[
MN (t, T

2)p
]
≤ CpE

[
M(1)

N (t, T)p
]
.

In order to estimate the last expectation, we proceed as in Step 1 of the proof of Propo-
sition 3.6. Namely, by a change of variables and a Riemann sum approximation, we
have

E

[
M(1)

N (t, T
2)p

]
= E

[( K∑
k,�=1

k even, � even

K−2
∫
T2

�N (t, xKk,� + K−1y)dy
)p
]

= lim
J→∞E

[( J∑
i, j=1

4π2

J 2

K∑
k,�=1

k even, � even

K−2eβ�N (t,xKk,�+K
−1x Ji, j )− β2

2 σN
)p
]
.

Using Lemma 3.1, we can bound the covariance function by

E

[
�N (t, xKk1,�1 + K−1x J

i1, j1)�N (t, xKk2,�2 + K−1x J
i2, j2)

]
= �N

(
t, xKk1,�1 − xKk2,�2 + K−1(x J

i1, j1 − x J
i2, j2)

)
≤ − 1

2π
log

(∣∣xKk1,�1 − xKk2,�2 + K−1(x J
i1, j1 − x J

i2, j2)
∣∣ + N−1

)
+ C

(B.1)

for some constant C > 0 independent of J , K , and N . When (k1, �1) = (k2, �2), we
thus have the bound

E

[
�N (t, xKk1,�1 + K−1x J

i1, j1)�N (t, xKk2,�2 + K−1x J
i2, j2)

]
≤ − 1

2π
log

(|x J
i1, j1 − x J

i2, j2 | + (K−1N )−1
)
+

1

2π
log K + C

≤ − 1

2π
log

(|x J
i1, j1 − x J

i2, j2 | + N−1
)
+

1

2π
log K + C.

(B.2)
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See also (3.10). In the case (k1, �1) �= (k2, �2), we first note that |xKk1,�1−xKk2,�2 | ≥ 2 · 2πK
since k1, k2, �1, �2 are all even. Then, with the trivial bound |x J

i1, j1
− x J

i2, j2
| ≤ √2 · 2π ,

we have ∣∣xKk1,�1 − xKk2,�2 + K−1(x J
i1, j1 − x J

i2, j2)
∣∣ ≥ (2−√2)

2π

K
. (B.3)

Thus, from (B.1) and (B.3), we have

E

[
�N (t, xKk1,�1 + K−1x J

i1, j1)�N (t, xKk2,�2 + K−1x J
i2, j2)

]
≤ 1

2π
log K + C. (B.4)

Hence, from (B.2) and (B.4), we obtain

E

[
�N (t, xKk1,�1 + K−1x J

i1, j1)�N (t, xKk2,�2 + K−1x J
i2, j2)

]
≤ E

[(
ψN ,k1,�1(t, x

J
i1, j1) + hK

)(
ψN ,k2,�2(t, x

J
i2, j2) + hK

)]
,

where ψN ,k,� are some independent18 copies of �N and hK is a mean-zero Gaussian
random variable with variance 1

2π log K + C independent from ψN ,k,�.
By applying Kahane’s convexity inequality (Lemma 3.4) and using the independence

of hK from ψN ,k,� with E[h2K ] = 1
2π log K + C , we have

E

[
M(1)

N (t, T
2)p

]

≤ lim
J→∞E

[( J∑
i, j=1

4π2 J−2
K∑

k,�=1
k even, � even

K−2eβ(ψN ,k,�(t,x Ji, j )+hK )− β2

2 (σN+E[h2K ])
)p
]

= E

[( K∑
k,�=1

k even, � even

K−2eβhK− β2

2 E[h2K ]
∫
T2

eβψN ,k,�(t,y)− β2

2 σN dy
)p
]

≤ CK (p2−p) β2

4π E

[( K∑
k,�=1

k even, � even

K−2
∫
T2

eβψN ,k,�(t,y)− β2

2 σN dy
)p
]

(B.5)

for some constant C > 0 independent of K and N .
It then remains to bound the expectation in (B.5). Let m ≥ 2 be an integer such that

m − 1 < p ≤ m. Then, by the embedding �
p
m ⊂ �1, we have

E

[( K∑
k,�=1

k even, � even

K−2
∫
T2

eβψN ,k,�(t,y)− β2

2 σN dy
)p
]

≤ E

[{ K∑
k,�=1

k even, � even

K−2
p
m

( ∫
T2

eβψN ,k,�(t,y)− β2

2 σN dy
) p

m
}m]

=: E[AK ].

(B.6)

18 In particular, we have E[ψN ,k1,�1 (t, x
J
i1, j1

)ψN ,k2,�2 (t, x
J
i2, j2

)] = 0 when (k1, �1) �= (k2, �2).
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We divide AK into two pieces:

AK =
K∑

k,�=1
k even, � even

K−2pE
[( ∫

T2
eβψN ,k,�(t,y)− β2

2 σN dy
)p
]

+
∑

(kkk,���)∈�m

K−2pE
[ m∏

j=1

( ∫
T2

eβψN ,k j ,� j (t,y)− β2

2 σN dy
) p

m
]

=: A(1)
K + A(2)

K ,

(B.7)

where the index set �m is given by

�m =
{
(kkk, ���) = (k1, . . . , km , �1, . . . , �m) ∈ {1, . . . , K }2m : k j , � j even, (k j , � j ) not all equal

}
.

Since ψN ,k,� are identically distributed, we can bound the diagonal term by

E
[
A(1)
K

] ≤ K 2−2p
E

[
MN (t, T

2)p
]
. (B.8)

As for the second sum A(2)
K in (B.7), grouping the terms with the same values of (k, �)

together, each term within the sum can be written in the form

E

[ n∏
j=1

( ∫
T2

eβψN ,k j ,� j (t,y)− β2

2 σN dy
)a j

p
m
]

(B.9)

for some n ≤ m and some a j ∈ {0, . . . ,m − 1} such that
∑n

j=1 a j = m and (k j , � j ),
j = 1, . . . , n, are all distinct. Noting that ψN ,k,� are independent and identically dis-
tributed, it follows from Hölder’s inequality with a j

p
m ≤ m − 1 that

(B.9) ≤
n∏
j=1

E

[( ∫
T2

eβψN ,k j ,� j (t,y)− β2

2 σN dy
)a j

p
m
]

≤
n∏
j=1

E

[( ∫
T2

eβψN ,k j ,� j (t,y)− β2

2 σN dy
)m−1]a j

p
m(m−1)

= E

[( ∫
T2

eβψN ,k1,�1 (t,y)− β2

2 σN dy
)m−1]∑n

j=1 a j
p

m(m−1)

= E
[MN (t, T

2)m−1
] p
m−1

.

(B.10)

Putting (B.5), (B.6), (B.7), (B.8), and (B.10) together, we obtain

E

[
MN (t, T

2)p
]
≤ CK (p2−p) β2

4π · K 2−2p
E

[
MN (t, T

2)p
]
+ CK ,mE

[
MN (t, T

2)m−1
] p

m−1
.

Under the assumption19 that 1 < p < 8π
β2 , the exponent (p2 − p) β2

4π + 2 − 2p =( β2

4π p− 2
)
(p− 1) of K in the first term on the right-hand side above is negative. Hence,

by taking K � 1 (independent of N ), we arrive at the bound:

E

[
MN (t, T

2)p
]
≤ CmE

[
MN (t, T

2)m−1
] p
m−1

, (B.11)

19 Recall that we assume p > 1 in view of Proposition 3.2 (i).
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uniformly in N ∈ N.
We now conclude the proof of Lemma 3.5 by induction onm ≥ 2withm−1 < p ≤ m.

When m = 2, i.e. p ∈ (1, 2], the conclusion of Lemma 3.5 follows from (B.11) and
Proposition 3.2 (i). Now, given an integer m ≥ 3, assume that Lemma 3.5 holds for all
1 < p ≤ m − 1. Fix 1 < p < 8π

β2 such that m − 1 < p ≤ m. Then, from (B.11) and the
inductive hypothesis, we have

sup
t∈R,N∈N

E

[
MN (t, T

2)p
]
≤ sup

t∈R,N∈N
CmE

[
MN (t, T

2)m−1
] p
m−1

<∞.

Therefore, by induction, we conclude the proof of Lemma 3.5.
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