UNIVERSITYOF
BIRMINGHAM

iversit}/]ofBirmin am
esearch at Birmingham

On the Parabolic and Hyperbolic Liouville Equations
Oh, Tadahiro; Robert, Tristan; Wang, Yuzhao

DOI:
10.1007/s00220-021-04125-8

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Oh, T, Robert, T & Wang, Y 2021, 'On the Parabolic and Hyperbolic Liouville Equations', Communications in
Mathematical Physics, vol. 387, no. 3, pp. 1281-1351. https://doi.org/10.1007/s00220-021-04125-8

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024


https://doi.org/10.1007/s00220-021-04125-8
https://doi.org/10.1007/s00220-021-04125-8
https://birmingham.elsevierpure.com/en/publications/2944de71-dc9b-40f2-8b2c-bd91cafde977

Commun. Math. Phys. 387, 1281-1351 (2021)
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04125-8

Communications in
Mathematical
Physics

®

Check for
updates

On the Parabolic and Hyperbolic Liouville Equations

Tadahiro Oh':2(, Tristan Robert’, Yuzhao Wang4

School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings,
Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK. E-mail: hiro.oh@ed.ac.uk

The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings,
Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK

University of Rennes CNRS, IRMAR-UMR 6625, 35000 Rennes, France.

E-mail: tristan.robert @ens-rennes.fr

School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham B15 2TT,
UK. E-mail: y.wang.14 @bham.ac.uk

8]

w

~

Received: 11 August 2019 / Accepted: 24 May 2021
Published online: 28 September 2021 — © The Author(s) 2021

Abstract: We study the two-dimensional stochastic nonlinear heat equation (SNLH)
and stochastic damped nonlinear wave equation (SANLW) with an exponential nonlin-
earity ABeP", forced by an additive space-time white noise. (i) We first study SNLH
for general A € R. By establishing higher moment bounds of the relevant Gaussian
multiplicative chaos and exploiting the positivity of the Gaussian multiplicative chaos,

we prove local well-posedness of SNLH for the range 0 < 2 < 3+82’z/§ ~ 1.37x. Our
argument yields stability under the noise perturbation, thus improving Garban’s local

well-posedness result (2020). (ii) In the defocusing case A > 0, we exploit a certain sign-
definite structure in the equation and the positivity of the Gaussian multiplicative chaos.
This allows us to prove global well-posedness of SNLH for the range: 0 < 82 < 4. (iii)
As for SANLW in the defocusing case A > 0, we go beyond the Da Prato-Debussche
argument and introduce a decomposition of the nonlinear component, allowing us to
recover a sign-definite structure for a rough part of the unknown, while the other part
enjoys a stronger smoothing property. As a result, we reduce SANLW into a system of
equations (as in the paracontrolled approach for the dynamical <I>‘3‘—model) and prove lo-

cal well-posedness of SANLW for the range: 0 < 2 < %n 2~ 0.86s. This result
(translated to the context of random data well-posedness for the deterministic nonlinear
wave equation with an exponential nonlinearity) solves an open question posed by Sun
and Tzvetkov (2020). (iv) When A > 0, these models formally preserve the associated
Gibbs measures with the exponential nonlinearity. Under the same assumption on j
as in (ii) and (iii) above, we prove almost sure global well-posedness (in particular for
SANLW) and invariance of the Gibbs measures in both the parabolic and hyperbolic
settings. (v) In Appendix, we present an argument for proving local well-posedness of
SNLH for general A € R without using the positivity of the Gaussian multiplicative
chaos. This proves local well-posedness of SNLH for the range 0 < 8% < ‘—3‘71 ~ 1.33m,
slightly smaller than that in (i), but provides Lipschitz continuity of the solution map in
initial data as well as the noise.



http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04125-8&domain=pdf
http://orcid.org/0000-0003-2313-1145

1282 T. Oh et al.

Contents
1. Introduction . . . . . . . . .. . . 1282
1.1 Parabolic and hyperbolic Liouville equations . . . . . . ... ... .. 1282
1.2 On the Gaussian multiplicative chaos . . . . . . . .. ... ... ... 1292
1.3 Outline of theproof . . . . . . . ... ... ... ... ... ... 1295
2. Deterministic Toolbox . . . . . . ... ... .. 1303
2.1 NOtations . . . . . v v v v et e e e 1303
2.2 Bessel potential and Green’s function. . . . . . .. ... ... .... 1304
2.3 On the heat kernel and the Schauder estimate . . . . . ... ... .. 1306
2.4 On the kernel of the wave operator and the Strichartz estimates . . . . 1307
2.5 Some useful results from nonlinear analysis . . . . . ... .. .... 1310
3. Gaussian Multiplicative Chaos . . . . . . . . ... ... ... ... 1314
3.1 Preliminaries . . . . . . . . ... ... 1314
3.2 Estimates on the even moments . . . . . . . . .. ... ... ..... 1315
3.3 Kahane’sapproach . . . ... ... ... ... ... ..., 1316
4. Parabolic Liouville Equation I: General Case . . . . ... ... ... ... 1319
5. Parabolic Liouville Equation II: Using the Sign-definite Structure . . . . . 1324
5.1 Global well-posedness . . . . . ... ... ... ... ... ..., 1324
5.2 On invariance of the Gibbs measure . . . . . . ... ... .. .... 1328
6. Hyperbolic Liouville Equation . . . . . . ... .. ... .. ........ 1335
6.1 Local well-posedness of SANLW . . . . . ... ... ... ...... 1335

6.2 Almost sure global well-posedness and invariance of the Gibbs measure 1341
Appendix A. On Local Well-Posedness of SNLH Without Using the Positivity . 1343
Appendix B. Moment Bounds for the Gaussian Multiplicative Chaos . . . . . . 1345

1. Introduction

1.1. Parabolic and hyperbolic Liouwville equations. We study the two-dimensional

stochastic heat and wave equations with exponential nonlinearities, driven by an addi-

tive space-time white noise forcing. More precisely, we consider the following stochastic
nonlinear heat equations (SNLH) on the two-dimensional torus T? = (R/277Z)?:

{3tu+%(1—A)u+%Aﬂeﬁ”:§ )

(t,x) e Ry xT (1.1)

uli=0 = uo,

and stochastic damped nonlinear wave equations (SANLW) on T?:

2 — pu —
{atu+3;bl+(1 Au+rpe V2t (t,x) € Ry x T2, (1.2)

(u, 0;u)|1=0 = (uo, uy),

where 8, 2 € R\ {0} and & denotes a space-time white noise on R, x T2. Our main
goal is to establish local and global well-posedness of these equations for certain ranges
of the parameter 82 > 0 and also prove invariance of the associated Gibbs measures in
the defocusing case A > 0. As we see below, due to the exponential nonlinearity, the
difficulty of these equations depends sensitively on the value of 8% > 0 as well as the
sign of A.

Our study is motivated by a number of perspectives. From the viewpoint of analysis
on singular stochastic PDEs, the equations (1.1) and (1.2) on T? are very interesting
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models. The main sources of the difficulty of these equations come from the roughness
of the space-time white noise forcing and the non-polynomial nature of the nonlinearity.
The first difficulty can already be seen at the level of the associated linear equations
whose solutions (namely, stochastic convolutions) are known to be merely distributions
for the spatial dimension d > 2. This requires us to introduce a proper renormalization,
adapted to the exponential nonlinearity, to give a precise meaning to the equations. In
recent years, we have seen a tremendous development in the study of singular stochastic
PDEzs, in particular in the parabolic setting [17,19,20,30,34,38,39,42,49,55]. Over the
last few years, we have also witnessed a rapid progress in the theoretical understanding
of nonlinear wave equations with singular stochastic forcing and/or rough random initial
data [15,23,24,35-37,58-65,69,77]. On the two-dimensional torus T2, the stochastic
heat and wave equations with a monomial nonlinearity uk (see (1.3) and (1.4) below)
have been studied in [20,35,37]. In particular, in the seminal work [20], Da Prato and
Debussche introduced the so-called Da Prato-Debussche trick! (see Sect. 1.3) which
set a new standard in the study of singular stochastic PDEs. We point out that many
of the known results focus on polynomial nonlinearities and thus it is of great interest
to extend the existing solution theory to the case of non-polynomial nonlinearities. We
will come back and elaborate further this viewpoint later. Furthermore, in this paper,
we study both SNLH (1.1) and SANLW (1.2), which allows us to point out similarity
and difference between the analysis of the stochastic heat and wave equations. See also
[57] for a comparison of the stochastic heat and wave equations on T with a quadratic
nonlinearity driven by fractional derivatives of a space-time white noise.

Another important point of view comes from mathematical physics. It is well known
that many of singular stochastic PDEs studied in the references mentioned above corre-
spond to parabolic and hyperbolic? stochastic quantization equations for various models
arising in Euclidean quantum field theory; namely, the resulting dynamics preserves
a certain Gibbs measure on an infinite-dimensional state space of distributions. See
[70,74]. For example, the well-posedness results in [20,35,37] show that, for an odd
integer k > 3, the d>’§+1—measure3 is invariant under the dynamics of the parabolic

(Dé“-model on T?:
du+ 51— Mu+ut =¢ (1.3)
and the hyperbolic CD’E“-model on T2:

0%u + du + (1 — Ayu +u* = V2§, (1.4)

respectively. From this point of view, when A > 0, the equations (1.1) and (1.2) corre-
spond to the parabolic and hyperbolic stochastic quantization equations for the exp(®),-
measure constructed in [2] (see (1.15) and (1.23) below); namely, they formally preserve
the associated Gibbs measures with the exponential nonlinear potential. This provides
another motivation to study well-posedness of the equations (1.1) and (1.2). We also
point out that the exp(®);-measure and the resulting Gaussian multiplicative chaos play
an important role in Liouville quantum gravity [21,22,25,26,46,66]; see also a recent
paper [30] for a nice exposition and further references therein. We also mention the
works [1,4] on the elliptic exp(®),-model.

1 See also the work by McKean [54] and Bourgain [10].
2 This is the so-called “canonical” stochastic quantization equation. See [74].
3 In the hyperbolic case, it is coupled with the white noise measure j( on the d;u-component. See (1.23).
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Let us now come back to the viewpoint of analysis on singular stochastic PDEs and
discuss the known results for the stochastic heat and wave equations with non-polynomial
nonlinearities. In the one-dimensional case, the stochastic convolution (for the heat or
wave equation) has positive regularity and thus there is no need for renormalization. In
this case, the well-posedness theory for (1.1) and (1.2) on the one-dimensional torus T
and invariance of the associated Gibbs measures (when A > 0) follow in a straightfor-
ward manner [3,77]. In the two-dimensional case, the stochastic convolution is only a
distribution, making the problem much more delicate. To illustrate this, we first discuss
the case of the sine-Gordon models on T2 studied in [19,42,63,64]. In the parabolic
setting, Hairer-Shen [42] and Chandra-Hairer-Shen [19] studied the following parabolic
sine-Gordon model on TZ:

du+ 5(1 — A)u +sin(Bu) = &. (1.5)

In this series of work, they observed that the difficulty of the problem depends sensitively
on the value of 82 > 0. By comparing the regularities of the relevant singular stochastic
terms,* we can compare this sine-Gordon model (1.5) with the CI>3- and bel-models, at

least at a heuristic level; for example, the <I>L31-model (and the @3-m0del, respectively)

formally corresponds to (1.5) withd = 2 + % (andd =2+ %, respectively). In terms
of the actual well-posedness theory, the Da Prato-Debussche trick [20] along with a
standard Wick renormalization yields local well-posedness of (1.5) for 0 < B2 < 4.
For the sine-Gordon model (1.5) on T2, there is an infinite number of thresholds: ,32 =

ﬁ&r, J € N, where one encounters new divergent stochastic objects, requiring further
renormalizations. By using the theory of regularity structures [39], Chandra, Hairer, and
Shen proved local well-posedness of (1.5) for the entire subcritical regime 0 < A% < 8.
More recently, the authors with P. Sosoe studied the hyperbolic counterpart of the sine-
Gordon problem [63,64]. Due to a weaker smoothing property of the wave propagator,
however, the resulting solution theory is much less satisfactory than that in the parabolic
case; in the damped wave case, local well-posedness was established only for 0 <
B% < 2. See also Remark 1.19(ii) below. It is this lack of strong smoothing in the
wave case which makes the problems in the hyperbolic setting much more analytically
challenging than those in the parabolic setting,” and one of our main goals in this paper
is to make a progress in the solution theory of the more challenging SANLW (1.2) with
the exponential nonlinearity. See also Remark 1.10.

In terms of regularity analysis, SNLH (1.1) and SANLW (1.2) with the exponential
nonlinearity can also be formally compared to the @3- and <I>3-models by the heuris-
tic argument mentioned above, which yields the same correspondence as in the sine-
Gordon case. While the sine-Gordon model enjoys a certain charge cancellation property
[42,63], there is no such cancellation property in the exponential model under consider-
ation, which provides an additional difficulty in studying the regularity property of the
relevant stochastic term (see Proposition 1.12 below). See also [30] for a discussion on
intermittency of the problem with an exponential nonlinearity.

4 Namely, compare the regularities of the imaginary Gaussian multiplicative chaos with the stochastic
convolution for the @Z—model and with the renormalized square power of the stochastic convolution for the

@3 -model.

5 We mention the recent works [15,36,59,60] on the paracontrolled approach to study the stochastic wave
equations on the three-dimensional torus T3, which are substantially more involved than the paracontrolled
approach in the parabolic setting [17,55]. Note that a standard application of the Da Prato-Debussche trick
suffices to handle the quadratic nonlinearity on T3 in the parabolic setting [27], while it is not the case in the
hyperbolic setting considered in [36].
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In a recent paper [30], motivated from the viewpoint of Liouville quantum gravity,
Garban studied the stochastic nonlinear heat equation (1.1) on T? with an exponential
nonlinearity e*:

du— SAu+ 1P =¢. (1.6)

(2m)2
See also (1.59) below. By studying the regularity property of the Gaussian multiplicative
chaos (see (1.39) below) and applying Picard’s iteration argument, he proved local well-

posedness of (1.6) for 0 < % < % ~ 0.577.° Furthermore, by exploiting the

positivity of the Gaussian multiplicative chaos, he also proved local well-posedness for
the range: 87 _ < B2 < —87__ ~ 1.37x. This latter result is without stability under

T+4/3 — (1++4/2)2

the perturbation of the noise and, in particular, the solution u was not shown to be a limit
of the solutions with regularized noises.

Before we state our first main result on SNLH (1.1), let us introduce some nota-
tions. Given N € N, we denote by Py a smooth frequency projector onto the (spatial)
frequencies {n € Z? : |n| < N}, associated with a Fourier multiplier

xn(m) = x(N"'n) (1.7)

for some fixed non-negative even function y € CSO(RZ) with supp x C {& € R? :
€] < 1}and x = lon {& € R?: |§| < %}. Let {gx},c72 and {h,}, 7> be sequences
of mutually independent standard complex-valued’ Gaussian random variables on a
probability space (£2p, P) conditioned so that g, = g, and h_, = h,, n € 72.
Moreover, we assume that {g,},.72 and {h,}, .7 are independent from the space-time
white noise £ in the equations (1.1) and (1.2). Then, we define random functions wg and
w by setting

wg=3 g'zi‘;)en and  wf = 3 ha(@en, (1.8)
neZ? neZ?

where (n) = /14 |n|? and e, (x) = %ei”"‘ as in (2.1). Lastly, given s € R, let u;
denote the Gaussian measure on D’(T?) with the density:
dus = Z- e 2145 gy, (1.9)

On T?, itis well known that s is a Gaussian probability measure supported on W*~1=47
(T?) for any ¢ > 0 and 1 < p < oo. Note that the laws of wp and wi in (1.8) are given
by the massive Gaussian free field ;t1 and the white noise measure ¢, respectively.
We study the following truncated SNLH:
duy + 51— Auy + 12BCyefN =PyE (L10)
UNlr=0 = uo,N

for a suitable renormalization constant Cy > 0, with initial data ug x of the form:
uo,N = vo +Pywo, (1.11)

where vg is a given deterministic function and wy is as in (1.8). We now state our first
local well-posedness result for SNLH (1.1).

6 Here, the numerology is converted to our scaling convention. See Remark 1.16 below.
7 This means that 20, ho ~ Ng(0, 1) and Reg,, Img,,, Reh,, Imh, ~ Ng (0, %) forn # 0.
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Theorem 1.1. (local well-posedness in the general case) Let & # 0 and 0 < B> <

ﬂﬁeat = 3:;’15 >~ 1.37n. Then, there exists a sequence of positive constants {Cn}yeN,

tending to 0, (see (1.40) below) such that the stochastic nonlinear heat equation (1.1)
is locally well-posed in the following sense; given vy € L™ (T?), there exist an almost
surely positive stopping time T = T (|| voll L, B, A) and a non-trivial® stochastic process
ueC(0,t]; H ¢ (Tz))for any ¢ > 0 such that, given any small T > 0, on the event
{t > T}, the solution u y to the truncated SNLH (1.10) with initial data ug n of the form
(1.11) converges in probability to u in C ([0, T1; H ¢ (T?)).

Formally speaking, the limit # in Theorem 1.1 is a solution to the following “equa-
tion”:

1 -1 _
du+5(1 — Au+ o0~ aBef =& (1.12)
u|t=0 = Vg + wo.
We will describe a precise meaning of this limiting equation in Sect. 1.3.
Note that the model (1.6) studied in [30] corresponds to (a massless version of) our
—1
model (1.1) with A = 28 . In view of the symmetry (in law) for (1.1): (u, &, B, A) —
(2m)2
(—u, —&, —pB, A), Garban’s result covers both® A > 0 and A < O as in Theorem 1.1.
After rescaling, the upper bound 87 _ ~ 1.377 on 2 in Theorem 1.1 agrees with the

3422
“critical” value ypos = 242 —2in [30]. See Remark 1.16 below. Namely, the ranges of
the parameter 82 in Theorem 1.1 and [30, Theorems 1.7 and 1.11] agree. The difference

between the result in [30] and Theorem 1.1 for the range 73‘% ~ 0577 < ﬁz <
8 -

325 = 1.377 appears in the approximation property of the solution. In [30], Garban
proved local well-posedness of the limiting equation (1.12) in the Da Prato-Debussche
formulation but without continuity in the noise. In Sect. 4, we will prove convergence of
the solution u y of the truncated SNLH (1.10) to the limit u, thus establishing continuity
in the noise.

In proving Theorem 1.1, we apply the Da Prato-Debussche trick as in [30]. By
exploiting the positivity of the Gaussian multiplicative chaos, we construct a solution
by a standard Picard’s iteration argument. For this purpose, we study higher moment
bounds of the Gaussian multiplicative chaos. This is done with two different approaches:
the first one using the Brascamp-Lieb inequality [13]!° (see Lemma 2.11 below), and
the other one relying on Kahane’s classical approach.

This local well-posedness result by a contraction argument does not directly pro-
vide continuity in the noise since in studying the difference of Gaussian multiplicative
chaoses, we can no longer exploit any positivity. In order to prove convergence of the
solutions uy to the truncated SNLH (1.10), we employ a more robust energy method

8 Here, non-triviality means that the limiting process u is not zero or a linear solution. As we see below,
the limiting process u admits a decomposition u = v + z + W, where z = P (¢)vg denotes the (deterministic)
linear solution defined in (1.44), ¥ denotes the stochastic convolution defined in (1.35), and the residual
term v satisfies the nonlinear equation (1.46). See, for example, [41,58,63], where in contrast some triviality
phenomena appear. A similar comment applies in the following statements.

9 What is important is the sign of A, not its magnitude. Furthermore, as for the local well-posedness theory,
there is no essential difference between the massive and massless case.

10 This is not to be confused with the Brascamp-Lieb concentration inequality [14, Theorem 5.1] in prob-
ability theory, which was used in the study of the Gibbs measure for the defocusing nonlinear Schrodinger
equations on the real line [11].



On the Parabolic and Hyperbolic Liouville Equations 1287

(namely, an a priori bound and a compactness argument) and combine it with the unique-
ness of a solution to the limiting equation (1.12) in the Da Prato-Debussche formulation.
This is turn yields the continuity in the noise property. See also Remark 1.3 (ii) below.

In the defocusing case 1 > 0, we can improve the local well-posedness result of
Theorem 1.1 on two aspects. The first one is that the defocusing nonlinearity allows us
to prove a global-in-time result in place of a local one. The second and less obvious one
is that we can improve on the range of 2 > 0. Namely, the defocusing nature of the
nonlinearity also improves the local Cauchy theory.

Theorem 1.2. (global well-posedness in the defocusing case) Let A > 0 and 0 < B2 <
(ﬂﬁ;at)2 :=4m. Let {Cn}nen be as in Theorem 1.1. Then, the stochastic nonlinear heat
equation (1.1) is globally well-posed in the following sense; given vy € L*(T?), there
exists a non-trivial stochastic process u € C(Ry; H™¢ (T?)) for any ¢ > 0 such that,
given any T > 0, the solution uy to the truncated SNLH (1.10) with initial data uo
of the form (1.11) converges in probability to u in C ([0, T1; H¢(T?)).

When A > 0, Eq. (1.10) indeed has a sign-definite structure; see (1.47) for example.
We exploit such a sign-definite structure at the level of the Da Prato-Debussche formu-
lation to prove Theorem 1.2. For g2 > 87 _ we need to employ an energy method

— 34227
even to prove existence of solutions. Both the sign-definite structure and the positivity

of the Gaussian multiplicative chaos play an important role. We then prove uniqueness
by establishing an energy estimate for the difference of two solutions. Continuity in the
noise is shown by an analogous argument to that in the proof of Theorem 1.1. Theo-
rem 1.2 thus shows that there is a significant improvement from [30] on the range of >

from 0 < B2 < 7+84—7z/§ ~ 0.577 in [30] to 0 < B2 < 4m when A > 0. This answers

Question 7.1 in [30], showing that the value ;05 in [30] does not correspond to a critical
threshold, at least in the & > 0 case. In view of the heuristic comparison to the CDi-model
mentioned above, the range: 0 < 2 < 4 in Theorem 1.2 corresponds to the sub-Cbg
case. Note that in this range, the Da Prato-Debussche trick and a contraction argument
suffice for the parabolic sine-Gordon model [42,64].

Remark 1.3. (i) For the sake of the argument, Theorems 1.1 and 1.2 are stated for the
initial data ug, y of the form (1.11). By a slight modification of the argument, however,
we can also treat general deterministic initial data ug y = vo € L°°(T?). See Remark
1.19 below. A similar comment applies to Theorem 1.8 for SANLW (1.2).

(i1) In Appendix A, we present a local well-posedness argument in the sense of The-
orem 1.1, in particular for any A € R \ {0}, for the slightly smaller range 0 < > <
‘—3‘71 2~ 1.33x than that in Theorem 1.1, but without using the positivity of the Gaussian
multiplicative chaos or any sign-definite structure of the equation. This argument also
provides stronger Lipschitz dependence on initial data and noise. See also Remark 4.3.
(iii) The well-posedness results in Theorem 1.1 and Theorem A.1 for general A # 0 are
directly applicable to the following parabolic sinh-Gordon equation on T?:

du+ 5(1 — A)u+ 3 sinh(Bu) = §, (1.13)

providing local well-posedness of (1.13) for the same range of B2, in particular, with
continuity in the noise. The model (1.13) corresponds to the so-called cosh-interaction
in quantum field theory. See Remark 1.18 below.
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We now investigate an issue of invariant measures for (1.1) when A > 0. Define the
energy Epea by

1
Eheat (1) = §/T2 |<V)u|2a'x+xfTz ePrax, (1.14)

where (V) = /1 — A. The condition A > 0 guarantees that the problem is defocusing.
Note that the equation (1.1) formally preserves the Gibbs measure ppeq; associated with
the energy Eneat, Whose density is formally given by

“Apheat = Z ‘e Erea® gy — 71 exp ( — k/ eﬁ”dx)d,ul”, (1.15)
T2

where ] is the massive Gaussian free field defined in (1.9). In view of the low regularity
of the support of 11, we need to apply a renormalization to the density in (1.15) so that
Oheat €an be realized as a weighted Gaussian measure on D’ (Tz).

In order to preserve the sign-definite structure of the equation for A > 0, we can not
use an arbitrary approximation to the identity for regularization but we need to use those
with non-negative convolution kernels. Let p be a smooth, non-negative, even function
compactly supported in T2 ~ [—7, )% and such that fRZ p(x)dx = 1. Then, given
N € N, we define a smoothing operator Q, by setting

Qvf =pn*f= 2aonm) e, (1.16)
neZ?

where the mollifier py is defined by
pN(x) = N?p(Nx). (1.17)

We then define the truncated Gibbs measure ppear v by

dpneatn = Zy' exp ( —ACn f P QN”dx)dm, (1.18)
'H'Z

where Cy is the renormalization constant from Theorem 1.1 but with Qp instead of Py .
As a corollary to the analysis on the Gaussian multiplicative chaos (see Proposition 1.12
below), we have the following convergence result.

Proposition 1.4. Let A > 0and 0 < % < (ﬂlteat)z = 4. The sequence {pheat, N}NeN Of
the renormalized truncated Gibbs measures converges in total variation to some limiting
probability measure. With a slight abuse of notation, we denote the limit by pheat. Then,

the limiting renormalized Gibbs measure phear and the massive Gaussian free field 1

are mutually absolutely continuous.

Remark 1.5. We only discuss the construction and invariance of the Gibbs measure in
the defocusing case A > 0. Indeed, in the focusing case A < 0, the Gibbs measure (1.18)
is not normalizable. More precisely, in [66, Appendix A], N. Tzvetkov and the authors
showed that the partition function satisfies

ZN=/exp<—)»CN'/ eﬂQN“dx>dM1 — 00,
T2

as N — oo in the case A < 0. See Proposition A.1 in [66]. See also [12,16,51,59,60,
67,68,73] on non-normalizability results for focusing Gibbs measures.
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The truncated Gibbs measure ppeqae, v is invariant under the following truncated SNLH:

duy +5(1— Auy + 3ABCNQuef Wiv =&
Gi}l\)/bs

(1.19)
UN|r=0 = ug

~ Pheat,N-

See Lemma 5.2 below. By taking N — oo, we then have the following almost sure global
well-posedness and invariance of the renormalized Gibbs measure phear for SNLH (1.1).

Theorem 1.6. Let & > 0 and 0 < p? < (,3;1"eat)2 = 4m. Then, the stochastic nonlinear
heat equation (1.1) is almost surely globally well-posed with respect to the random initial
data distributed by the renormalized Gibbs measure phey:. Furthermore, the renormal-
ized Gibbs measure ppeq is invariant under the resulting dynamics.

More precisely, there exists a non-trivial stochastic process u € C(Ry; H¢(T?))
forany ¢ > 0 such that, given any T > 0, the solution uy to the truncated SNLH (1.19)

with the random initial data qui]l\)]bs distributed by the truncated Gibbs measure pheat, N

in (1.18) converges in probability to u in C ([0, T]; H™¢ (T?)). Furthermore, the law of
u(t) for any t € Ry is given by the renormalized Gibbs measure ppey;.

A variant of Theorem 1.2 implies global well-posedness of (1.19). Then, in view of
the mutual absolute continuity of the renormalized Gibbs measure pheye and the massive
Gaussian free field w1 and the convergence in total variation of the truncated Gibbs
mMeasure Ppear, v in (1.18) to the limiting renormalized Gibbs measure ppeye (Proposition
1.4), the proof of Theorem 1.6 follows from a standard argument. See Sect. 5.2.

Remark 1.7. Note that the positivity of the operator Qy is needed only for proving local
well-posedness of the truncated SNLH (1.19) and that Proposition 1.4 holds with Py
(or any approximation to the identity) in place of Q. Then, noting that the proof of
Theorem 1.1 does not exploit any sign-definite structure of the equation, we conclude
that even if we replace Qun with Py in (1.19), the conclusion of Theorem 1.6 holds
true for the range 0 < B2 < g+827:f2 ~ 1.37m. Since Theorem 1.1 only provides lo-

cal well-posedness, we need to use Bourgain’s invariant measure argument [9,10] to
construct almost sure global-in-time dynamics. We refer to [37,40,59,60,65] for the
implementation of Bourgain’s invariant measure argument in the context of singular
SPDE:s.

Next, we turn our attention to the stochastic damped nonlinear wave equation (1.2).
Due to a weaker smoothing property of the associated linear operator, the problem in
this hyperbolic setting is harder than that in the parabolic setting discussed above. In the
following, we restrict our attention to the defocusing case (A > 0), where we can hope
to exploit a (hidden) sign-definite structure of the equation. Given N € N, we study the
following truncated SANLW:

d2un + duy + (1 — Auy + ABCnePN = /2PyE

(1.20)
(upn, dun)|i=0 = (wo,n, u1,N)

with the renormalization constant Cy from Theorem 1.1 and initial data (1 n, u1 n) of
the form:

(uo,n, u1,n) = (vo, v1) + Pywo, Pywy), (L.21)

where (vg, v1) is a pair of given deterministic functions and (wg, wp) is as in (1.8).
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Theorem 1.8. Let 1 > 0, 0 < p% < B2, = 2=1887 ~ 0867, and s > 1.
Then, the stochastic damped nonlinear wave equation (1.2) is locally well-posed in
the following sense; given (vg, v1) € HS('JTz) = H(T?%) x H*~N(T?), there exist
an almost surely positive stopping time T = r(||(vo, v) s, B, A) and a non-trivial
stochastic process (u, d;u) € C([0, T]; H¢(T?)) for any ¢ > O such that, given any
small T > 0, on the event {t > T}, the solution (uy, d;uy) to the truncated SANLW
(1.20) with initial data (uo,n , u1,n) of the form (1.21) converges in probability to (u, 0;u)
in C([0, T1; H¢(T?)).

Due to a weaker smoothing property of the linear wave operator, the range of 52
in Theorem 1.8 is much smaller than that in Theorem 1.2 and we can only prove local
well-posedness for SANLW (1.2). Furthermore, we do not know how to prove local well-
posedness of SANLW (1.2) in the focusing case (A < 0). Namely, there is no analogue
of Theorem 1.1 in this hyperbolic setting at this point.

As in the proof of Theorem 1.2, we proceed with the Da Prato-Debussche trick but the
proof of Theorem 1.8 in the hyperbolic setting is more involved than that of Theorem 1.2
in the parabolic setting. Due to the oscillatory nature of the Duhamel integral operator
(see (1.32) below) associated with the damped Klein-Gordon operator 8,2 +0;+(1—A),
we can not exploit any sign-definite structure as it is. We point out, however, that near the
singularity, the kernel for the Duhamel integral operator is essentially non-negative. This
observation motivates us to decompose the residual term v in the Da Prato-Debussche
argument as v = X + Y, where the low regularity part X enjoys a sign-definite structure
and the other part Y enjoys a stronger smoothing property. As a result, we reduce the
equation (1.20) to a system of equations; see (1.54) below. This decomposition of the
unknown into a less regular but structured part X and a smoother part Y is reminiscent
of the paracontrolled approach to the dynamical @g—model in [17,55]. See also [36]. We
will describe an outline of the proof of Theorem 1.8 in Sect. 1.3.

Lastly, we study the Gibbs measure pyave for SANLW (1.2) associated with the
energy:

1
Evave(t, 0;16) = Eneat() + 5 / (du)*dx,
']I‘Z

where Epey 1S as in (1.14). As in the parabolic case, we need to introduce a renormal-
ization. Define the truncated Gibbs measure pyave v by

dpwave Nt 3iut) = Z ' d(Ohear, v @ p0) (U, du0), (1.22)

where g is the white noise measure defined in (1.9). Then, it follows from Proposi-
tion 1.4 that when 0 < ,32 < 47, the truncated Gibbs measure py,ye, y cOnverges in total
variation to the renormalized Gibbs measure pyaye given by

dpwave(t, 1) = Z'd(pheat ® 10) (1, dyu1). (1.23)

Now, consider the following truncated SANLW:

Gibbs  Gibbs (1.24)

un +duy + (1 — Auy + ABCyQueP Wiy = /2¢
(un, un)li=o = (ug'y"  uy'y"),
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where Qu is the mollifier with a non-negative kernel defined in (1.16) and Cy is the
renormalization constant from Theorem 1.1 but with Qp instead of Py. Decomposing
the truncated SANLW (1.24) into the deterministic nonlinear wave dynamics:

Duy + (1 — Ay +1BCyQuef Qv = 0
and the Ornstein-Uhlenbeck process (for 0,ux):
Py + iy + (1 — Ay = V3%,

we see that the truncated Gibbs measure pwave ny is invariant under the truncated
SANLW (1.24). See Section 4 in [37]. As a result, we obtain the following almost sure
global well-posedness of (1.2) and invariance of the renormalized Gibbs measure pyaye.-

Theorem 1.9. Let & > 0 and 0 < B2 < Bl = 22187 ~ 0.867. Then, the
stochastic damped nonlinear wave equation (1.2) is almost surely globally well-posed
with respect to the renormalized Gibbs measure pyave. Furthermore, the renormalized
Gibbs measure pwaye is invariant under the resulting dynamics.

More precisely, there exists a non-trivial stochastic process (u, d;u) € C(Ry;
HE(T?)) for any ¢ > 0 such that, given any T > 0, the solution (uy, d;uy) to
the truncated SANLW (1.24) with the random initial data (ug‘xbs, u?‘}z,bs) distributed by
the truncated Gibbs measure pyayve N in (1.22) converges in probability to (u, o;u) in
C([0, T1; H™¢(T?)). Furthermore, the law of (u(t), 8,u(t)) for any t € R, is given by
the renormalized Gibbs measure pyaye.

Unlike Theorem 1.2 in the parabolic setting, Theorem 1.8 does not yield global
well-posedness of SANLW (1.2). Therefore, in order to prove Theorem 1.9, we need to
employ Bourgain’s invariant measure argument [9, 10] to first prove almost sure global
well-posedness by exploiting invariance of the truncated Gibbs measure ppear, v for the
truncated dynamics (1.24). Since such an argument is by now standard, we omit details.
See, for example, [15,59,60,65,77] in the context of the (stochastic) nonlinear wave
equations.

Remark 1.10. In[77], Sunand Tzvetkov studied the following (deterministic) dispersion-
generalized nonlinear wave equation (NLW) on T¢ with the exponential nonlinearity:

Fu+(1—A)u+e" =0 (1.25)

and the associated Gibbs measure p,. When o > %, they proved almost sure global
well-posedness of (1.25) with respect to the Gibbs measure p,, and invariance of p,. We

point out that, when « > %, a solution u is a function and no normalization is required.
As such, the analysis in [77] also applies to!!

u+(1—A)u+ef' =0 (1.26)

for any B € R\ {0} and a precise value of f is irrelevant in this non-singular setting.

When d = 2, their result barely misses the o« = 1 case, corresponding to the wave
equation, and the authors in [77] posed the @ = 1 case on T? as an interesting and
challenging open problem. By adapting the proofs of Theorems 1.8 and 1.9 to the deter-
ministic NLW setting, our argument yields almost sure global well-posedness of (1.26)
fora = 1and 0 < B2 < B2,.. with respect to the (renormalized) Gibbs measure p;
(= pwave 1n (1.23)) and invariance of pwaye, thus answering the open question in an
affirmative manner in this regime of 2.

1 In the massless case: 8,2u + (=AY + P =0, by scaling analysis, we can reduce the problem to the
B = 1 case (on a dilated torus, where the analysis in [77] still applies).
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1.2. On the Gaussian multiplicative chaos. In this subsection, we go over a renormal-
ization procedure for our problems. In the following, we present a discussion in terms of
the frequency truncation operator Py but exactly the same results hold for the smoothing
operator Qy defined in (1.16). We begin by studying the following linear stochastic heat
equation with a regularized noise:

dwheat 4 1(1 — Aywheat = Pyg
wheat|, _; = Pyw,

where wy is the random distribution defined in (1.8), distributed according to the massive
Gaussian free field pt1. Then, the truncated stochastic convolution \IJl}Sat is given by

t
Wi (1) = P(t)Pywo + / P(t —1PydW (1), (1.27)
0

where P(t) = ¢2®=D denotes the linear heat operator defined by

P)f = et &0 f = 37 20 e, (1.28)

neZ?

and W denotes the cylindrical Wiener process on L?(T?) defined by

W(t) =Y Bu(t)ey. (1.29)
neZz?
Here, { By, },,c72 1s a family of mutually independent complex-valued Brownian motions
conditioned so that B_,, = B,, n € Z>. By convention, we normalize B, such that
Var(B,(t)) = t and assume that {B,,},.72 is independent from wo and wy in (1.8).
Given N € N, we have \P}}\e,at e C(R; x 'IFZ). For each fixed > 0 and x € T2, it is
easy to see that \Ill}sat(t, x) is a mean-zero real-valued Gaussian random variable with
variance (independent of (7, x) € Ry x T2):

n>2

1 -t t no2 12
ol = E[Wi" @, x)*] = 2 > Xz%/(n)<e<n>2 +/0 [e%(“)“‘)z} dz’)
neZz?

1 1
=13 Z Xﬁ(n)w ~log N —> 00, (1.30)
ZZ

as N — oo. This essentially shows that {Wy (¢)}yen is almost surely unbounded in
WOP(T?) forany 1 < p < oo.

In the case of the wave equation, we consider the following linear stochastic damped
wave equation with a regularized noise:

BPW + BN + (1 — AYUYe = VIPyE,
(PR W) =0 = Py wo, Pywy),

where wg and wy are as in (1.8). Then, the stochastic convolution W%*® in this case is
given by

t
W) = 8, D(t)Pywo + D(@)Py (wo +w1) + ﬁf D(t = tPydW (), (1.31)
0
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where the linear damped wave operator D(t) is given by

, sin (t % — A)
D)= I ——-, (1.32)
3
2o
viewed as a Fourier multiplier operator:
sin (t 3y |n|2> R
——— f(n)ey. (1.33)

Di)f=e2 Y
neZ?

One can easily derive the propagator D(¢) in (1.32) by writing the linear damped wave
equation Btzu + d;u + (1 — A)u = 0 on the Fourier side:

32u(r, n) + 3,1 (t, n) + (n)*u(z,n) =0

and solving it directly for each spatial frequency n € Z>. Then, a standard variation-of-
parameter argument yields the expression (1.31). By a direct computation using (1.31)
and (1.33), we obtain, for any (¢, x) € R, x T2,

1 1
2 2
O,v]\\/]ave E[\IIWNave(t’x) ] — 47[_2 EZQ XN(n)W ~logN — oo, (1.34)
ne

as N — oo.
In the following, we set

Wy = llll}\e,at or Y and oy = Ut}\?at = o\

Since we do not study the stochastic heat and wave equations at the same time, their
meaning will be clear from the context.

By a standard argument, we then have the following regularity and convergence result
for the (truncated) stochastic convolution. See, for example, [35, Proposition 2.1] in the
context of the wave equation.

Lemma 1.11. Given any T, ¢ > 0 and finite p > 1, {¥n}neN is a Cauchy sequence in
LP(Q; C([0, T1; W—5°°(T?))), converging to some limit W in L? (2; C ([0, T]; W=
(T2))). Moreover, Uy converges almost surely to the same limit W € C([0, T]; W&

(T?)).

Clearly, the limiting stochastic convolution is given by formally taking N — 00 in
(1.27) or (1.31). Namely, in the heat case, we have
1

(1) = Wity = P(r)ywy +/ P(t —tHhdW(t'), (1.35)
0

while in the wave case, it is given by

t
W(r) = WY(r) = 8, D(t)wo + D(1) (wo + wy) + fzf D(t —t)dW('). (1.36)
0
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Next, we study the Gaussian multiplicative chaos formally given by
puy _ N Bk
ePYN = ];‘) TN

Since \IJII§1 ,k > 2,does not have any nice limiting behavioras N — 0o, we now introduce
the Wick renormalization:

Wk (6, x): E H (W, x); o), (1.37)

where Hj denotes the kth Hermite polynomial, defined through the generating function:
i _
e =kZOEHk(x;a). (1.38)

From (1.37) and (1.38), the (renormalized) Gaussian multiplicative chaos is then given
by

def o] ,Bk
ON (7, x) =IO E E o :‘Il,kv(t,x):
k=0 (1.39)

2
— ¢  TONPYNGX)

We also set Cy = Cn () by

2
Cy=e 708 0, (1.40)

as N — oo.
The following proposition provides the regularity and convergence properties of the
Gaussian multiplicative chaos ®y.

Proposition 1.12. (i) Given 0 < > < 8, let 1 < p < %—’2[ and define a« = a(p) by

a2
- DF 4:‘9 <alp) <2. (1.41)

Then, given any T > 0, the sequence of stochastic processes ® is uniformly bounded
in

LP(S; LP([0, T1; WP (T?))).

(ii) Given 0 < B> < 4w, let1 < p < 2—” and a(p) as in (1.41). Then, given any
T > 0, {®y}neN is a Cauchy sequence in LP(2; LP ([0, T, WP (T2))) and hence
converges to some limit ® in the same class. In particular, ® y converges in probability

to © in LP ([0, T]; W—%P(T?)).



On the Parabolic and Hyperbolic Liouville Equations 1295

In the following, we write the limit ® as

O =:efY:= lim Oy = lim Cyef'v. (1.42)
N—o0 N—o00

We point out that by applying Fubini’s theorem, a proof of Proposition 1.12 reduces

to analysis for fixed (f,x) € Ry X T2. Therefore, the proof is identical for Wy =

\I,heat and Wvave

N N

In [30], Garban established an analogous result on the Gaussian multiplicative chaos
but in the context of the space-time Holder regularity; see [30, Theorem 3.10]. See also
[1, Theorem 6] for an analogous approach in the elliptic setting, working in the L”-based
Besov spaces but only for 1 < p < 2.

In the case of a polynomial nonlinearity [35,36], the pth moment bound follows
directly from the second moment estimate combined with the Wiener chaos estimate
(see, for example, Lemma 2.5 in [36]), since the stochastic objects in [35,36] all belong
to Wiener chaoses of finite order. However, the Gaussian multiplicative chaos ®y in
(1.39) does not belong to any Wiener chaos of finite order. Therefore, we need to estimate
all the higher moments by hand. The approach in [30] is based on Kahane’s convexity
inequality [46]; see Lemma 3.4. In Sect. 3, we first compute higher even moments,
using the Brascamp-Lieb inequality [8,13,52]. See Lemma 2.11 and Corollary 2.12.
We believe that our approach based on the Brascamp-Lieb inequality is of independent
interest. In order to compare this approach with Kahane’s, we also provide a proof of
Proposition 1.12 based on Kahane’s inequality. See Propositions 3.2 and 3.6 as well as
Appendix B.

We conclude this subsection by briefly discussing a proof of Proposition 1.4.

Proof of Proposition 1.4. As mentioned above, the proof of Proposition 1.12 is based
on reducing the problem for fixed (¢, x) € R, x T?. In particular, it follows from the
proof of Proposition 1.12 presented in Sect. 3 that ® (0) at time r = 0 converges to
©(0) in LP(Q2; WP (T?)). Then, by restricting to the (spatial) zeroth Fourier mode,
we obtain convergence in probability (with respect to the Gaussian free field 14 in (1.9))
of the density

Ry = exp ( - ACN/ P QN“dx> =exp (—2720y(0,0)) (1.43)
T2
to
R =exp ( — A/ cePu dx) = exp (— 2720(0, 0)).
TZ

Moreover, by the positivity of ®y and X, the density Ry in (1.43) is uniformly bounded
by 1. Putting together, we conclude the L? (i 1)-convergence of the density Ry to R by
a standard argument (see [79, Remark 3.8]). More precisely, the L”-convergence of Ry
follows from the uniform L”-bound on Ry and the softer convergence in probability. O

1.3. Outline of the proof. In the following, we briefly describe an outline of the proofs
of Theorems 1.1, 1.2, 1.6, 1.8, and 1.9.

e Parabolic case: Given vg € L>(T?), we consider the truncated SNLH (1.10). We
proceed with the Da Prato-Debussche trick and write a solution u to (1.10) as

uy = vy +z+ Wy,
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where Yy = \Dl}sm is the truncated stochastic convolution in (1.27) and z denotes the
linear solution given by

z = P(t)vo. (1.44)

Then, the residual term vy satisfies the following equation:

1 1
oy +5(1— Ay + 31BePeP VO =0 (145)
vnli=0 =0,
where Oy = :eﬂ‘l’hﬁm : denotes the Gaussian multiplicative noise defined in (1.39).

When 0 < g2 < 3+82—”ﬁ =~ 1.37m, we prove local well-posedness of (1.45) by a stan-

dard contraction argument. The key ingredients are Proposition 1.12 on the regularity of
the Gaussian multiplicative chaos ® y and the positivity of the nonlinearity, in particular
the positivity of ®y (see Lemma 2.14). In studying continuity in the noise, we can no
longer exploit any positivity. For this part of the argument, we use a more robust energy
method and combine it with the uniqueness of a solution to the limiting equation (see
(1.46) below).

Theorem 1.1 follows once we prove the following local well-posedness result for
(1.45).

Theorem 1.13. Let A # 0 and 0 < % < ﬁﬁem = 3+82_n\/§ ~ 1.37x. Given any vy €

L%(T?), the Cauchy problem (1.45) is uniformly locally well-posed in the following
sense; there exists Ty = T0(||v0||Loo, B, A) > O such that given) < T < Toand N € N,
there exists a set Qn(T) C Q such that

(i) for any w € Qn(T), there exists a unique solution vy to (1.45) in the class:

C ([0, T1; WSP(T?)) € C([0, T1; L (T?))

for some appropriate O < s < 1 and p > 2, satisfying sp > 2. (ii) there exists a uniform
estimate on the probability of the complement of Qn(T):

P(QN(T)") — 0,

uniformlyin N e N, as T — 0,
Furthermore, there exist an almost surely positive stopping time T = 1:(||v0 oo, ﬂ)
and a stochastic process v € C([0, T1; WSP(T?)) such that, given any small T >

0, on the event {t > T}, the sequence {vy}neN converges in probability to v in
C([0, T1; WP (T?)).

The limit v satisfies the following equation:

1.46
v]i=0 =0, ( )

{a,v +11 = A+ Lagefiefre =0
where O is the limit of ® y constructed in Proposition 1.12. Then, u = v+z+ W formally
satisfies the equation (1.12).

Next, we discuss the A > O case. In this case, the equation (1.45) enjoys a sign-definite
structure. By writing (1.45) in the Duhamel formulation, we have

t
oy (t) = —%Aﬂ/(; P(t — t’)(eﬁzeﬁ”N Oy))dr'.
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Since the kernel for P(t) = e (=D and the integrand ePieP'N @y are both positive,
we see that

Buy < 0. (1.47)

This observation shows that the nonlinearity ¢~ is in fact bounded, allowing us to
rewrite (1.45) as

oy + 11— Ayvy + 51BeP F(Buy)Oy =0

1.48
UN|r=0 =0, (14%)

where F is a smooth bounded function such that
F(x)=¢" (1.49)

forx < 0 and F|g, € C°(R4; Ry). In particular, F is Lipschitz. By making use of
this particular structure and the positivity of the Gaussian multiplicative chaos ®y, we
prove a stronger well-posedness result, from which Theorem 1.2 follows.

Theorem 1.14. Let 1. > 0 and 0 < B2 < (,Bfl‘eat)2 = 47. Given any vy € L*°(T?), any
T > 0, and any N € N, there exists a unique solution vy to (1.45) in the energy space:

Zr = C([0, TT; L*(T?) N L*([0, T]; H'(T?)) (1.50)

almost surely such that vy converges in probability to some limit v in the class Zr.
Furthermore, v is the unique solution to the equation (1.46) in the class Zr.

For Theorem 1.14, a contraction argument does not suffice even for constructing

solutions and thus we proceed with an energy method. Namely, we first establish a
uniform (in N) a priori bound for a solution to (1.48). Then, by applying a compactness
lemma (Lemma 2.16) and extracting a convergent subsequence, we prove existence of
a solution. Uniqueness follows from an energy consideration for the difference of two
solutions in the energy space Zr. As for continuity in the noise, in particular convergence
of vy to v, we lose the positivity of the stochastic term (i.e. ® y — ® is not positive). We
thus first establish convergence in some weak norm and then combine this with strong
convergence (up to a subsequence) via the compactness argument mentioned above and
the uniqueness of the limit v as a solution to (1.46) in the energy space Zr.
e Hyperbolic case: Next, we discuss the stochastic damped nonlinear wave equation
when A > 0. Let N € N U {o0}. Given (vg, v1) € H5(T?2), let uy be the solution to
(1.20). Proceeding with the Da Prato-Debussche trick uy = vy +z+W3*, the residual
term vy satisfies the following equation:

(1.51)

32vy + dun + (1 — A)uy + ABefieP'NOy =0
(vn, 9rvn) =0 = (0, 0),

where Oy =: YN for N e N, O = 0 = limy_, Oy constructed in Proposi-
tion 1.12, and z denotes the linear solution given by

z(t) = o/ D(t)vo + D(t) (vo +v1), (1.52)
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satisfying the following linear equation:

2z +dz+(1—A)z=0
(z, 9:2)li=0 = (vo, v1).

Since the smoothing property of the wave operator is weaker than that of the heat
equation, there is no uniform (in N) L°°-control for vy (which is crucial in bounding
the nonlinearity ¢#¥V) and thus we need to exploit a sign-definite structure as in SNLH
(1.1) for & > 0 discussed above. The main issue is the oscillatory nature of the kernel
for D(t) defined in (1.32). In particular, unlike the case of the heat equation, there is no
explicit sign-definite structure for (1.51).

In the following, we drop the subscript N for simplicity of notations. Write (1.51) in
the Duhamel formulation:

t
v(t) = _)‘,3/ D(t — t’)(eﬂzeﬂv®)dt/,
0

where D(¢) is as in (1.32). The main point is that while the kernel for D(¢) is not sign-
definite, it is essentially non-negative near the singularity. This motivates us to introduce
a further decomposition of the unknown:

v=X+7Y, (1.53)

where (X, Y) solves the following system of equations:

4 11
X(1) = -8 / e TS — 1) (P ePX P ) (1 )ar
0 , (1.54)
Y(t) = —1B / (Dt — ') — e 7St — 1)) (P2 ePX Y 0) ()dt .
0

Here, S(¢) denotes the forward propagator for the standard wave equation: afu —Au=0
with initial data (u, 0;u)|;=0 = (0, u1) given by
sin(¢|V])
S(t) = ——F—. (1.55)
V]
The key point in that, in view of the positivity of the kernel for S(z) (see Lemma 2.5
below), there is a sign-definite structure for the X-equation when A > 0 and we have

BX <0.
With F as in (1.49), we can then write (1.54) as

t it
X(t) = —AB / s — ) (P F(BX)ePY ©)(t)at,
0 / (1.56)
Y(t) = — 3B / (Dt — 1) — e TSt — 1)) (P F(BX)ePY ©)(1yar .
0

Thus, the nonlinear contribution F(8X) from X is bounded thanks to the sign-definite
structure. This is crucial since, as we see below, X does not have sufficient regularity
to be in L>°(T?). While X and Y both enjoy the Strichartz estimates, the difference
of the propagators in the Y-equation provides an extra smoothing, gaining two deriva-
tives (see Lemma 2.6 below). This smoothing of two degrees allows us to place Y in
C([0, T]; H*(T?)) for some s > 1 and to make sense of ¢#Y. In Sect. 6, we prove the
following theorem.
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Theorem 1.15. Let & > 0, 0 < 2 < 2, = 21687 ~ 0867, and s > 1.
Suppose that a deterministic positive distribution ©® satisfies the regularity property
stated in Proposition 1.12. Namely, ® € LP([0, 1]; W’“’P(Tz)) forl < p < ?3—2,
where o = a(p) is as in (1.41). Then, given (vy, v1) € H*(T2), there exist T =
T(||(vo, V1) |15 ||®||L?W;ot.p) > 0 and a unique solution (X, Y) to (1.56) in the class:

Xyl x Y C C([0, T1; H(T?) x C ([0, TT; H(T%)

for some 0 < s1 < 1 < sy and some («, p) satisfying (1.41). Moreover; the solution
(X, Y) depends continuously on

(v0. v1, ©) € H'(T?) x LP([0, T]; WP (T?))
for sufficiently small ¢ > 0 (such that the pair (@ + €, p) satisfies the condition (1.41)).

Here, the spaces X;' and V;? are defined by

X3t = C([0, T1; H'(T?) n CL([0, T1; H*'~1(T?)) N LI([0, T]; L' (T?), (1.57)
V2 =C([0, T1; H2(T*) N C'([0, T]; H>~(T?)), (1.58)

for some suitable s1-admissible pair (g, r). See Sect. 2.4. Note that Theorem 1.8 directly
follows from Theorem 1.15. As for Theorem 1.9, a small modification of the proof of
Theorem 1.15 yields the result. See Sect. 6 for details.

We point out that this reduction of (1.51) to the system (1.56), involving the decom-
position of the unknown (in the Da Prato-Debussche argument) into a less regular but
structured part and a smoother part, has some similarity to the paracontrolled approach
to the dynamical <I>§‘-model.12 Once we arrive at the system (1.56), we can apply the
Strichartz estimates for the X-equation (Lemma 2.8) and the extra smoothing for the
Y-equation (Lemma 2.6) along with the positivity of ® (Lemma 2.14) to construct a
solution (X, Y) by a standard contraction argument.

‘We conclude this introduction by stating some remarks and comments.

Remark 1.16. In [30], Garban studied the closely related massless stochastic nonlinear
heat equation with an exponential nonlinearity on (R/Z)?:

1 -
X — —AX +e"X =, (1.59)
4

where E is a space-time white noise on R, x (R/Z)2. By setting

! x) and s(r,x)z%E(L x),

1
ta = _X N~ o~
u(t, x) 27 <271 2 m)2 2 2w

we see that £ is a space-time white noise on R, x T2 and that  satisfies the massless
equation (1.6) with coupling constant

B =A+2my.
This provides the conversion of the parameters y in [30] and g in this paper.
12 This is not to be confused with the Da Prato-Debussche trick or its higher order variants, where we

decompose an unknown into a sum of a less regular but explicitly known (random) distribution and a smoother
remainder. The point of the decomposition (1.53) is that both X and Y are unknown.
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Remark 1.17. As mentioned before, the massive equation (1.1) (with A > 0) arises as the
stochastic quantization of the so-called Hgegh-Krohn model [2,43] in Euclidean quan-
tum field theory, while the massless model (1.59) treated in [30] comes from the stochas-
tic quantization of Liouville Conformal Field Theory (LCFT). In [66], with N. Tzvetkov,
we extended the results of this paper on the stochastic nonlinear heat equation (1.6) on
the torus T? to the case of a massless stochastic nonlinear heat equation with “punctures”
on any closed Riemannian surface, thus addressing properly the stochastic quantization
of LCFT. See Theorem 1.4 in [66]. We point out that the corresponding problem in the
hyperbolic case, i.e. the massless analogue of Theorem 1.15 for the “canonical” stochas-
tic quantization of LCFT, was not treated in [66] and remains open. See also Remark
4.4 in [66].

Remark 1.18. (stochastic quantization of the cosh(®);-model) The parabolic sinh-
Gordon equation (1.13) formally preserves (a renormalized version of) the Gibbs mea-
sure of the form:

“dpsion = Z e (u)du”,

associated with the energy:

Eginn (1) = %/:EZ {(V)u|>dx +./1;2 cosh(Bu)dx.

In view of Proposition 1.12, we can proceed as in the proof of Proposition 1.4 and
construct the renormalized Gibbs measure pgjnp, as a limit of the truncated Gibbs measure:

dpsinh,N = ZX/I exp ( —Cy /ﬂﬂ COSh(ﬂQNM))dM (1.60)

for 0 < 52 < 47, where (1 is the massive Gaussian free field defined in (1.9) and Cy
is the renormalization constant defined in (1.40) but with Qp instead of Py.

As in the case of the truncated SNLH (1.19), it is easy to see that the truncated
Gibbs measure pginn, v in (1.60) is invariant under the following truncated sinh-Gordon
equation:

dun +5(1 — Auy + $BCyQy sinh(BQyuy) = &. (1.61)

Since the equation (1.61) does not enjoy any sign-definite structure, we can not apply
(the proof of) Theorem 1.2. On the other hand, our proof of Theorem 1.1 is applicable to

study (1.61), yielding local well-posedness of (1.61) for the range 0 < B2 < %ﬁ o~

1.377. The key point is that, unlike [30, Theorem 1.11], this local well-posedness result
yields convergence of the solution uy of the truncated sinh-Gordon equation (1.61)
to some limit . Combining this local well-posedness result with Bourgain’s invariant
measure argument [9,10], we then obtain almost sure global well-posedness for the
parabolic sinh-Gordon equation (1.13) and invariance of the renormalized Gibbs measure
psinh 10 the sense of Theorem 1.9.

Note that these results for the sinh-Gordon equation hold only in the parabolic setting
since, when A < 0, we do not know how to handle SANLW (1.2) for any ﬁz > 0.
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Remark 1.19. (i) In Theorem 1.1, we treat initial data u¢_y of the form (1.11). Due to
the presence of the random part Py wq of the initial data, the variance ok}\‘}a‘ in (1.30) is
time-independent, which results in the time-independent renormalization constant Cy
in Theorem 1.1. It is, however, possible to treat deterministic initial data ug y = vg €
L°(T?). In this case, the associated truncated stochastic convolution \Tl[}\l,eat is given by

t
ﬁ}?}eat(r) — / P(t —t)PydW(t)
0

~heat :

whose variance oy is now time-dependent and given by

a«[l\l]eat(t) — ]E["\I;lhveat(t Z XN (l’l)
nez? (1.62)

1 1
~——TlogN T+ —1 VN = —log(1Vv+IN
5 log +2 og(v/1 ) =3 Og( VIN),

where A vV B = max(A, B). Here, the third step of (1.62) follows from Lemmas 2.2
and 2.3 below, by viewing e/‘*~1 as a regularization operator Q with a regularizing

parameter 13 By comparing (1.30) and (1.62), we see that 51°() < o*, which
allows us to establish an analogue of Proposition 1.12 in this case. As a result, we obtain
an analogue of Theorem 1.1 but with a time-dependent renormalization constant. A
similar comment applies to Theorem 1.8 in the wave case.

(i1) In [63], the authors (with P.Sosoe) studied the (undamped) stochastic hyperbolic
sine-Gordon equation on T?:

32u + (1 — A)u + rsin(Bu) = &. (1.63)

Due to the undamped structure, the variance of the truncated stochastic convolution
Wy (¢, x) behaves like ~ ¢log N; compare this with (1.34) and (1.62). This time de-
pendence allows us to make the variance as small as we like for any 8> > 0 by taking
t > O sufficiently small. As a result, we proved local well-posedness of the renormalized
version of (1.63) for any B% > 0, with a (random) time of existence T <8 -2,

Similarly, if we consider the undamped stochastic nonlinear wave equation (SNLW)
with an exponential nonlinearity:

0%u+ (1 — Ayu+ 1Bl = V28, (1.64)

then we see that Proposition 1.12 holds with the regularity « given by (1.41) with g2
replaced by 2T. Thus, given any g2 > 0, we can make o > 0 arbitrarily small by
taking 7 ~ =2 > 0 small. See also Proposition 1.1 in [63]. This allows us to prove
local well-posedness of SNLW (1.64) for any 2 > 0.

Note that in view of (1.62), due to the exponential convergence to equilibrium for
the linear stochastic heat equation, we have El}éeat(t) ~ oy as soon as t > N~2*0 for
some (small) & > 0, and thus the regularization effect as in the wave case can only be
captured at time scales <« N~>*?, which prevents us from building a local solution
with deterministic initial data for arbitrary g2 > 0 in the parabolic case.
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Remark 1.20. As we mentioned above, in the recent work [1], Albeverio, De Vecchi
and Gubinelli investigated the elliptic analogue of (1.1) and (1.2), namely the authors
studied the following singular elliptic SPDE:

(1—Ay)p+a:e®®: =¢ (1.65)

forg : (x,2) € R2 x R?2 > ¢(x,z) € R, where £ is a space-time white noise on R*.
Here, due to scaling considerations, the coupling constant corresponds to & = 2,/7 B.
The authors of [1] then proved that (1.65) is well-posed in the regime 0 < o? < ozfnax =
4(8 — 4\/5)71 - (4m); see [1, Theorem 25 and Proposition 36]. In particular, note that

Broa = VAT < ;‘:;g < +/87. Their proof also relies on the Da Prato-Debussche trick,

writing ¢ as ¢ = (1 — A)~'& + ¢ and solving the corresponding elliptic PDE for the
nonlinear component ¢. One of the benefits of the elliptic setting is that, due to the
dimension being d = 4, the L>-regime corresponds to 0 < a®> < 87 - (47r), namely to
the full sub-critical regime 0 < B2 < 8 for the reduced coupling constant § = ﬁ;

This in particular yields an analogue of Proposition 1.12 for the (elliptic) Gaussian

multiplicative chaos : ¢*(1=27'€ . in the entire range 0 < & < 87 - (47) for which
the construction of the exp(®),-measure holds, by just working in L?-based Sobolev
spaces. See [ 1, Lemma 22]. Note that the same approach here only gives the convergence
of Oy for 0 < B2 < 4x. The well-posedness of the elliptic SPDE (1.65) then follows
from an argument similar as that in Sect. 5 adapted to the elliptic setting. Heuristically
speaking, this should provide well-posedness in the whole range 0 < o < 87 - (47).
However, there seems to be an issue similar to that discussed after (6.9). Namely, ¢ does
not have sufficient regularity to use an analogue of the condition (i) in Lemma 2.14 for
bounding the product of a distribution and a measure, which instead forces the use of an
agalogue of condition (ii) in Lemma 2.14. This in turn restricts the range of admissible
a® > 0.

Remark 1.21. (i) In [44], Hoshino, Kawabi, and Kusuoka studied SNLH (1.1) withA =1
and independently established Theorem 1.2 and Theorem 1.6. While the analytical part
of the argument is analogous,'? the approaches for studying the Gaussian multiplicative
chaos Oy ([44, Theorem 2.4] and Proposition 1.12 above) are quite different. The proof
in [44] is based on the Fourier side approach as in [35,56], establishing only the second
moment bound. On the other hand, our argument is based on the physical side approach
as in our previous work [63,64] on the hyperbolic sine-Gordon model. By employing the
Brascamp-Lieb inequality (and Kahane’s convexity inequality), we also obtain higher
moment bounds on the Gaussian multiplicative chaos, which is a crucial ingredient to
prove Theorem 1.1 for SNLH (1.1) with general A € R\ {0} and Theorem 1.8 on SANLW
(1.2).

After the submission of this paper, the same authors proved well-posedness and
invariance of the Gibbs measure for the parabolic SPDE (1.1) in the full “L'" regime
0 < B% < 8m; see [45]. This relies on arguments similar to those presented in Sect. 5
but working in L?-based spaces with 1 < p < 2 instead of the L>-based Sobolev spaces
used in the proof of Theorem 1.6. In particular, this requires extending the convergence
part of Proposition 1.12to thecase | < p < 2.

13 The sign-definite structure of the equation in the defocusing case also plays an important role in [44].
See, for example, the proof of Lemma 3.10 in [44].



On the Parabolic and Hyperbolic Liouville Equations 1303

(i1) In arecent preprint [73], the second author studied the fractional nonlinear Schrédinger
equation with an exponential nonlinearity on a d-dimensional compact Riemannian man-
ifold:

P9+ (=A% + BP0

with the dispersion parameter « > d. In the defocusing case (A > 0), under some
assumption, the author proved almost sure global well-posedness and invariance of the
associated Gibbs measure. See [73] for precise statements. In the focusing case (A < 0),
it was shown that the Gibbs measure is not normalizable for any 8 > 0. See also
Remark 1.5. Our understanding of the Schrodinger problem, however, is far from being
satisfactory at this point and it is of interest to investigate further issues in this direction.

This paper is organized as follows. In Sect. 2, we introduce notations and state various
tools from deterministic analysis. In Sect. 3, we study the regularity and convergence
properties of the Gaussian multiplicative chaos (Proposition 1.12). In Sect. 4, we prove
local well-posedness of SNLH (1.1) for general A € R \ {0} (Theorem 1.1). In Sect 5,
we discuss the A > 0 case for SNLH (1.1) and present proofs of Theorems 1.2 and 1.6.
Section 6 is devoted to the study of SANLW (1.2). In Appendix A, we present a simple
contraction argument to prove local well-posedness of SNLH (1.46) for any A € R\ {0},
in the range 0 < B2 < %n ~ 1.337 without using the positivity of the Gaussian
multiplicative chaos. Lastly, in Appendix B, we present a proof of Lemma 3.5, which is
crucial in establishing moment bounds for the Gaussian multiplicative chaos.

2. Deterministic Toolbox

In this section, we introduce some notations and go over preliminaries from deterministic
analysis. In Sects. 2.2, 2.3, and 2.4, we recall key properties of the kernels of elliptic, heat,
and wave equations. We also state the Schauder estimate (Lemma 2.4) and the Strichartz
estimates (Lemma 2.8). In Sect. 2.5, we state other useful lemmas from harmonic and
functional analysis.

2.1. Notations. We first introduce some notations. We set

1 .
en(x) & s ne 72, 2.1)

for the orthonormal Fourier basis in L2(T?). Given s € R, we define the Sobolev space
H*(T?) by the norm:

L g2y = 1) F) L2 z2,

where f(n) is the Fourier coefficient of f and (-) = (1 + - |2)%. We also set

def

HS (TZ) H* (TZ) % H'™ 1(T2)

Givens € Rand p > 1, we define the L”-based Sobolev space (Bessel potential space)
WP (T2) by the norm:

I lwse = 1Y) fllee = | F () F@)]|,,
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When p = 2, we have H S(T2) = W*2(T?). When we work with space-time function
spaces, we use short-hand notations such as Cr H; = C([0, T]; H® (’]IQ)).

For A, B > 0, weuse A < B to mean that there exists C > 0 such that A < CB. By
A ~ B,wemeanthat A < B and B < A. We also use a subscript to denote dependence
on an external parameter; for example, A <, B means A < C(«)B, where the constant
C(a) > 0 depends on a parameter . Given two functions f and g on T?, we write

f~g
if there exist some constants ¢y, ¢2 € R such that f(x)+c; < g(x) < f(x) +c, for any
x € TA\{0} = [—m, 7)% \ {0}. Given A, B > 0, we also set A V B = max(A, B) and
A A B =min(A, B).
Given a random variable X, we use Law(X) to denote its distribution.

2.2. Bessel potential and Green’s function. In this subsection, we recall several facts
about the Bessel potentials and the Green’s function for (1 — A) on T2. See also Section 2
in [63].
For o > 0, the Bessel potential of order « on T is given by (V)™ = (1 — A)™ 2
viewed as a Fourier multiplier operator. Its convolution kernel is given by
def . 1 XN (1)

Jo) & fim —
w(x) = fim — ()
ne

e, (x), 2.2)

where the limit is interpreted in the sense of distributions on T<. We recall from [63,
Lemma 2.2] the following local description of these kernels.

Lemma 2.1. Forany 0 < o < d, the distribution J agrees with an integrable function,
which is smooth away from the origin. Furthermore, there exist a constant cy 4 > 0 and
a smooth function R on T¢ such that

Jo(x) = caalx|*™? + R(x)

forall x € T4\ {0} = [—x, 7)4 \ {0}

An important remark is that the coefficient ¢, 4 is positive; see (4,2) in [5]. This in
particular means that the singular part of the Bessel potential J, is positive. We will
use this remark in Lemma 2.14 below to establish a refined product estimate involving
positive distributions.

In the following, we focus on d = 2. The borderline case @« = d = 2 corresponds to
the Green’s function G for I — A. On T?, G is given by

def 1. 1 1
G=(-a)" =~ > e (2.3)

neZ?
It is well known that G is an integrable function, smooth away from the origin, and that

it satisfies the asymptotics
1
Gx)= ~5 log|x|+ R(x), xe€T?\ {0}, (2.4)
T

for some smooth function R on T2. See (2.5) in [63].

We also recall the following description of the truncated Green’s function Py G,
where Py is the smooth frequency projector with the symbol yu in (1.7). See Lemma
2.3 and Remark 2.4 in [63].
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Lemma 2.2. Let Np > Ny > 1. Then, we have
1 -1
Py, Py, G(x) ~ —Zlog (Ix]+ Ny )

for any x € T? \ {0}. Similarly, we have
[P} G(x) — Py, Py, G()] < (1v —log (lx] + N; 1)) A (N7 x| ™")

for j =1,2and any x € T? \ {0}.

In establishing invariance of the Gibbs measures (Theorems 1.6 and 1.9), we need
to consider the truncated dynamics (1.19) and (1.24) with the truncated nonlinearity.
In order to preserve the sign-definite structure, it is crucial that we use the smoothing
operator Qu defined in (1.16) with a non-negative kernel. In particular, we need to
construct the Gaussian multiplicative chaos ®y with the smoothing operator Qy in
place of Py . For this purpose, we state an analogue of Lemma 2.2 for the truncation of
the Green’s function by Qy .

Lemma 2.3. Let N > Ny > 1. Then we have
1 -1
Qi Qn, G(x) & ——log (|x[ + Ny ') (2.5)
for any x € T2\ {0}. Similarly, we have
Q},G() — Qu QN G| S (1v —Tlog (Ix]+ N; 1) A (N Hxl ™)

for j =1,2and any x € T? \ {0}.

Proof. We mainly follow the proof of Lemma 2.3 in [63]. We only show (2.5) for
N1 = Ny = N, since the other claims follow from a straightforward modification. Fix
x € T2\ {0} = [—7, )%\ {0}.

e Case 1: We first treat the case |x| < N~ Since p € CSO(RZ), we have

l0gpn (&) S NTH(N—Tg) = (2.6)

for any k € (Zzo)z, ¢t eN,and & € R2. Then, by (2.3), the mean value theorem, and
(2.6) with |k| = 0 and £ = 2, we have

~ 0
SN ) - en<0>)‘

nez? (I’l)

-~ 2
<3 O < S s Y N O
\

neZ? ) |n|<N n|>N
S N|x| 5 1.

|Q}G(x) — Q3 G(0)| =27
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Similarly, by (2.3), the mean value theorem with py (0) = %, and (2.6) with £ = 1, we
have
1 1 Ar2pn(n)* —1 N
2
GO) - — — S — |+ C —_—
(OO -7z 2 Gr| S| 2~ qp 2 o
[n|<N In|=N [n|=N
In| (2.8)
< +1
~ Z N(n)2
[n|<N
<1
Hence, from (2.7) and (2.8), we conclude that
Q3 G(x) ~ L Z LN ilogzv ~ ——log (Jx|+ N71)
N 472 (n)2  2m ’

where we used Lemma 3.2 in [41] at the second step.
e Case 2: Next, we consider the case |x| > N~!. Since G is integrable and py is
non-negative and integrates to 1, we have

Q%G () — G| = )/T /T o = Yoy = (G — G(w)dzdy|

S / / pN(x — Y)pn(y —2)|log (E>
T2 JT2 x|

where, at the second step, we used (2.4) and the fact that R in (2.4) is smooth. Since
pn is supported in a ball of radius O(N~!) centered at 0, we have |x — z]| Sl —yl+
ly—z| SN ~1in the above integrals, which implies that |x| ~ |z| under the assumption
|x| > N~!. Hence, the log term in (2.9) is bounded and we obtain

(2.9)

dzdy + 1,

QG -G £ /T /T PN (&= Y)pN(y = Ddady+1~ 1. (210)
Therefore, from (2.4) and (2.10), we have
QLG (x) ~ G(x) ~ —Llog |x| ~ —Llog (|x| + N_l)
N 2 2 '

This concludes the proof of Lemma 2.3. O

2.3. On the heat kernel and the Schauder estimate. In this subsection, we summarize
the properties of the linear heat propagator P (¢) defined in (1.28). We denote the kernel
of P(t) by

Pl‘ déf L e_%(n
2

neZ?

2
Yen.

Then, we have the following lemma by passing the corresponding result on R? to the
periodic torus T2 via the Poisson summation formula (see [33, Theorem 3.2.8]). See
also (2.1) in [63].
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Lemma 2.4. Let t > 0. (i) P; is a positive smooth function. (ii) Let« > 0and 1 < p <
q < oo. Then, we have

~

[P F ] ey 175U Fllere) (2.11)

forany f € LP(T?).

Proof. By the Poisson summation formula, and the positivity of the heat kernel on R?,
we have

P=—e2 Z ef%‘"l2 2 Z e 2|| (x +2mn) > 0,

nez? neZ?

where 2! R2 denotes the inverse Fourier transform on R2. This proves (i).

The Schauder estimate on R? follows from Young’s inequality and estimating the
kernel on R? in some Sobolev norm. As for the Schauder estimate (2.11) on T2, we apply
Young’s inequality and then use the Poisson summation formula to pass an estimate on
(fractional derivatives of) the heat kernel on T? to that in a weighted Lebesgue space on
RZ. This proves (ii). O

2.4. On the kernel of the wave operator and the Strichartz estimates. Next, we turn our
attention to the linear operators for the (damped) wave equations. Let S(z) be the forward
propagator for the standard wave equation defined in (1.55). We denote its kernel by S;,
which can be written as the following distribution:

def 1 sin(t|n])
t — N -, no
2 n
neZ? Il
where we set % = t by convention.

We say that a distribution 7T is positive if its evaluation 7 (¢) at any non-negative test
function ¢ is non-negative. We have the following positivity result for S;.

Lemma 2.5. For any t > 0, the distributional kernel S; on the two-dimensional torus
T2 is positive.

Proof. As a distribution, we have
ST = — —en =

2 n
neZ? | |

n»

1 sin(z|n|) . hm Z sm(t|n|)

where py is as in (1.16). In particular, we can use the Poisson summation formula to
write

- Sln(l|€|) z(x+27'[m) &
Si(x) = N~>oo 2 Z / |$| “

) sm(t|V|)
= 1] — +2 .
dim > ] PN+ 2mm)
meZ?

2.12)
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Let uy be the solution to the following linear wave equation on R?:

{33141\/ — Auy =0,

2.13
(un. dun)|,_y = (0, pn). 2.13)

It is well known (see, for example, (27) on p.74 in [28]) that in the two-dimensional
case, the solution uy to (2.13) is given by the following Poisson’s formula:

1
MN(I,X)=—/ pN—(y)dyzO
27 JBry /12 — |x — y)?

for any x € R2 and ¢ > 0, where B (x,1) C R2 is the ball of radius ¢ centered at x in
R2. Hence, from (2.12), we conclude that

S;(x) = lim Z un (x +27m) > 0. (2.14)
N—o00
meZ?
We point out that the sum in (2.14) (for fixed N € N) is convergent thanks to the compact

support of py and the finite speed of propagation for the wave equation. O

The next lemma shows that the operators D(¢) in (1.32) and e S (t) in (1.55) are
close in the sense that their difference provides an extra smoothing property. This extra
smoothing plays a crucial role for estimating Y in (1.56).

Lemma 2.6. Let t > 0 and s € R. (i) The operator D(t) — e_%S(t) is bounded from
HS(T?) to H**2(T?). (ii) The operator 8, (D(t) — et S(t)) is bounded from H*(T?) to
Hs+l (']1*2)

Proof. (i) It suffices to show that the symbol of (V)Z(e%D(t) -8 (t)) is bounded. Since

(n) ~ ,/% + |n|2 for any n € 72, it suffices to bound, for n # 0,

G+wacm0%+wa_mww»
Jewe

= W(sm (rW) - sin(tlnl))

+(G+nP) Sin(f|"|)<; : )

/3 n
Z+|n|2 | |

= I +IL

By the mean value theorem, we have

1
1S m)]y3 + 0P = 1nl| S ) ——— S 1.
V3 + P+ Inl

Similarly, we can bound the second term by

1
| < (n)? <1.

3 3 ~
Inly/ 1+ |n|2(|n| +yit In|?)
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This proves (i).
(i) In this case, we show the boundedness of the symbol for

(V)3 (D(t) — e~ 25(1))

- —%(V)(D(r) —eTIS() + e—‘z<v><cos (z 3o A) _ cos(t|V|)>
— T +1V.

The symbol of III is clearly bounded by the argument above. As for the symbol of IV,
it follows from the mean value theorem that

(n)|:cos (t,/% + |n|2) - COS(t|n|)i| < <n>(\/% +[n|2 — Inl) Sl

This completes the proof of Lemma 2.6. O
Next, we state the Strichartz estimates for the linear wave equation.

Definition 2.7. Given 0 < s < 1, we say that a pair (g, r) of exponents (and a pair

(q,7), respectively) is s-admissible (and dual s-admissible, respectively), if 1 < g <

2<g<ooandl <7 <2 <r < oo and if they satisfy the following scaling and

admissibility conditions:
1 2

—+Z=1-s5=
q r

+ +

1
-

|

=

N ==

1
< -, and
2

|
‘l\)
QN
SRS

Given % <s < %, we fix the following s-admissible and dual s-admissible pairs:

~(2. ¢ i GH=(— 0 2.15
an=(35T5) w0 @n=(3o0y) e

In Sect. 6, we will only use these pairs.
Let0 < T < 1, % <5 < % and fix the s-admissible pair (g, r) and the dual
s-admissible pair (g, 7) given in (2.15). We then define the Strichartz space:

X5 = C([0,T1; H(TH) N C ([0, T1; H*~N(T?) N LI([0, T1; L"(T)  (2.16)
and its “dual” space:
s = L([0, T); H~'(T?)) + L9([0, T]; LT (T?)). (2.17)

We now state the Strichartz estimates. The Strichartz estimates on R? are well-known;
see [32,48,53]. Thanks to the finite speed of propagation, the same estimates also hold
on T¢ locally in time.

Lemma 2.8. The solution u to the linear wave equation:

u—Au=F
(u, u)|r=0 = (uo, u1)
satisfies the following Strichartz estimate:
lull g < NCuo, uD)llys + I FlIazss

uniformly in0 < T < 1.
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We also recall from [35] the following interpolation result for X’;. and V3. See (3.22)
and (3.23) in [35] for the proof.

Lemma 2.9. The following continuous embeddings hold:
(i) Let 0 < a < s and?2 < q1,r) < oo satisfy the scaling condition:

1 1— 1 1-—
s ol gy Lz s
q1 q o) 1 r 2

Then, we have
< y
IIMIIL;I wert S Nl g -

(ii)Let0 <a <1 —sand 1 < q\,7 < 2 satisfy the scaling condition:

1—a/(1—s)+ot/(1—s) and l

i 1—a/(1—s)+ot/(1—s)
qQ q 1 r 7 ‘

r 2

—

Then, we have

leellay < Neell 1 gy -

2.5. Some useful results from nonlinear analysis. We conclude this section by presenting
some further results from harmonic and functional analysis.

We first state the Brascamp-Lieb inequality [13]. This inequality plays an important
role in the proof of Proposition 1.12. In particular, it allows us to establish a good bound
on the pth moment of the Gaussian multiplicative chaos ®y when p > 2. The version
we present here is due to [8].

Definition 2.10. We say that a pair (B, q) is a Brascamp-Lieb datum, if, for some m €
NU{0}and d,d;,...,d, € N,B = (By, ..., By) is a collection of linear maps from
RéItoRY, j=1,...,m,andq = (q1,...,qm) € R".

We now state the m-linear Brascamp-Lieb inequality.

Lemma 2.11. (Theorem 1.15 in [8]) Let (B, q) be a Brascamp-Lieb datum. Suppose
that the following conditions hold:

e Scaling condition:
m
> ajdj=d. (2.18)
j=1
e Dimension condition: for all subspace V- C R?, there holds

dim(V) <) q; dim(B, V). (2.19)
j=1
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Then, there exists a positive constant BL(B, q) < oo such that

m m qj
/;w 1_[1 fi(Bjx)¥dx < BL(B, q) l_[l <Adj fj(y)dy>
Jj= =

for any non-negative functions f; € L'R%), j=1,...,m.

We point out that the conditions (2.18) and (2.19) guarantee that the Brascamp-Lieb
data is non-degenerate, i.e. the maps B;, j = 1, ..., m, are surjective and their common
kernel is trivial. See [8, Remarks 1.16].

For our purpose, we only need the following special version of Lemma 2.11.

Corollary 2.12. Let p € N. Then, we have

[ TL tnsmaconas

1<j<k=<2p (2 20)
1 .

2p—1
s |k 5 50 dx ~dxk)
1_[ <\/(']I‘2)2 J J J

1<j<k<2p
forany fji € LY (T? x T?). Here, 7k denotes the projection defined by m; j(x) =
Tk (X1, x2p) = (0, x) for x = (x1, ..., x2p) € (T

This is precisely the geometric Brascamp-Lieb inequality stated in [8, Example 1.6].
For readers’ convenience, we include its reduction to Lemma 2.11.

Proof. Write (R?)%P = ]_[Z | R? and define projections 7 : (R?)?? — R? and 7,4 :
(Rz)zl’ — R? X R% for j # k in the usual way. Now, wesetB = (7, : 1 < j <k <

2p) and
1 1 2p—1)
= e RPZPTD,
4 (Zp—l 2p—1) "

It is also easy to check that the scaling condition (2.18) holds since d; x = 4,1 < j <
k<2pandm = pQ2p—1)andqji = 2;—_1 while the total dimension is d = 4p.
As for the dimension condition (2.19), first note that

dim(w; V) = dim(w; V) + dim(m; V)

for j # k. Then, we have

2p
1
dim(V) <) " dim(w; V) = 5 > dim(ri V),
j=1 P~ cjck=op

verifying (2.19).
The desired estimate (2.20) follows from extending f; x on (T?)2 as a compactly

supported measurable function on R* by extending it by 0 outside of (T2)? ~ [—, 7)*
and applying Lemma 2.11. O

We now recall several product estimates. See Lemma 3.4 in [35] for the proofs.
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Lemma 2.13. Let 0 < s < L. (i) Suppose that 1 < pj,qj,r < oo, pl] + qu — %
j =1, 2. Then, we have

(V) (fo)

L7 (T4) f, ||<V)Sf||Lp1 (’]I‘d)”g”L‘II (Td) + ”f”LPZ(']I'd)||<V)sg||Lq2(Td)-

(ii) Suppose that 1 < p, q,r < oo satisfy % +- < % + 5. Then, we have

[(V)~*(f9)

Ly S ”W)Xf“m(qrd) ”Wrsg”m(w)‘ (2.21)

Note that while Lemma 2.13 (ii) was shown only for % + % = % + 5 in [35], the
general case % + cl, < % + % follows from the inclusion L (T?) C L">(T%) for r > r».

The next lemma shows that an improvement over (2.21) in Lemma 2.13 (ii) is possible
if g happens to be a positive distribution.

Lemma 2.14. Let 0 <s < land 1 < p < oo. Then, we have
I | Lo gy S W@y IV gl Lo (2.22)

for any f € L*®(T%) and any positive distribution g € WP (T%), satisfying one of
the following two conditions: (i) f € C(T¢) or (ii) f € WS4 (T%) for some 1 < g < oo
satisfying % + % <1+3.

This lemma plays an important role in estimating a product involving the non-negative
Gaussian multiplicative chaos ® . In studying continuity in the noise, we need to es-
timate the difference of the Gaussian multiplicative chaoses. In this case, there is no
positivity to exploit and hence we instead apply Lemma 2.13 (ii).

Proof. We consider 0 < s < 1 since the s = 0 case corresponds to Holder’s inequality.
Since g is a positive distribution, it can be identified with a positive Radon measure on
T2; see for example [29, Theorem 7.2]. If f € C (T" ), then the product fg is a well-

defined function in L!(T9). With py as in (1.17), we have fyg & (py * f)g — fgin
L! (’]I‘d), in particular in the distributional sense. Hence, from Fatou’s lemma, we have

V) (f)lle < lim inf VYT (v llee. (2.23)

Since py is non-negative, we see that gyr = pys *x g is a well-defined smooth, positive
distribution which converges to g in W57 (T9). Then, it follows from Lemma 2.13 (ii)
that, for each fixed N € N, fy gy converges to fygin W7 (T?) as M — oo. Hence, it
suffices to prove (2.22) for fy gy, N, M € N.Indeed, if (2.22) holds for fxy gy, N, M €
N, then by (2.23), (2.22) for fy g, the convergence of (V) gy = pyr x ((V) ¥ g) to
(V)=Sgin LP(T%), and Young’s inequality with [|py || 1 = 1, we obtain

(VY7 (f@llee < liminf lim (V)™ (fyvgm)llLr
N—oo M—o0
< liminf i o |(V)~* .
Sliminf L fvlizee 1(V) ™ garll
< liminf || fy [l [I{V) " gllLr
N—o00

S I f (VY gl
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It remains to prove (2.22) for fyguy. By Lemma 2.1, we have

Y (fngm) e = s * (fvgm) e
< H / Ix — I v (D gm () Idy
Td

LP

Since g, is non-negative,

< . Sid*
SV (R I

Using Lemma 2.1 again,
~ |G = R < gu|

< Il (I09) " galr + [ (V) R) % ((9) )] . )
Szl (V) gullLo,

where in the last step we used the fact that R is smooth. This shows (2.22) for fyrgm
and hence for f € C(T?) and a positive distribution g € W57 (T4).

In view of Lemma 2.13 (ii), the condition (ii) guarantees that the product operation
(f,g) € WH4(T?) x W=5P(T?) > fg € W=51*(T?) for some small ¢ > 0 is a
continuous bilinear map. Namely, it suffices to prove (2.22) for fngm = (on * f)(pm *
g), which we already did above. This completes the proof of Lemma 2.14. O

Next, we recall the following fractional chain rule from [31]. The fractional chain
rule on RY was essentially proved in [18].14 As for the estimates on TY, see [31].

Lemma 2.15. Let 0 < s < 1. (i) Suppose that F is a Lipschitz function with Lipschitz
constant K > 0. Then, for any 1 < p < 0o, we have

|||V| F(”)HLp(Td) S K”|vlsu”LP('ﬂ‘f’)‘

(ii) Suppose that F € C'(R) satisfies
|F'(zx+ (1 = 0)y)| < c((IF' @)+ F' (1))

foreveryt €[0,1]and x,y € R, where ¢ € L' ([0, 1]). Then for 1 < p,q,r < 0o with

p+ —l we have

|“V|SF(”)HL' (Td) ~ < | (”)”LP(W)”WP”“Lq(Td)

Lastly, we state a tool from functional analysis. The following classical Aubin-Lions
lemma [6] provides a criterion for compactness. See also [75, Corollary 4 on p. 85].

Lemma 2.16. Let X1, Xy, X| be Banach spaces satisfying the continuous embeddings
X1 C Xy C X_1 such that the embedding X1 C Xy is compact. Suppose that B is
bounded in LP([0, T]; X1) such that {d;u : u € B} is bounded in L9([0, T]; X_1) for
some T > 0 and finite p, q > 1. Then, B is relatively compact in L? ([0, T1; Xo) More-
over, if B is boundedin L*° ([0, T1; X}) and {0;u : u € B}isboundedin L1 ([0, T]; X_1)
for some q > 1, then B is relatively compact in C ([0, T]; Xp).

14 A pointed out in [76], the proof in [18] needs a small correction, which yields the fractional chain rule
in a less general context. See [47,76,78].
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3. Gaussian Multiplicative Chaos

In this section, we establish the regularity and convergence properties of the Gaussian
multiplicative chaos @y = :ef¥N: claimed in Proposition 1.12, where Wy denotes the
truncated stochastic convolution for either the heat equation or the wave equation. These
properties are of central importance for the study of the truncated SNLH (1.10) and the
truncated SANLW (1.20). As in the case of the sine-Gordon model studied in [42,63],
the main difficulty comes from the fact that the processes ®y do not belong to any
Wiener chaos of finite order. There is, however, a major difference from the analysis
on the imaginary Gaussian multiplicative chaos : e/~ : studied for the sine-Gordon
model in [42,63]. As for the imaginary Gaussian multiplicative chaos, the regularity
depends only on the values of 2. On the other hand, the regularity of ®y depends
not only on the values of A2 but also on the integrability index (either for moments or
space-time integrability). In particular, for higher moments, the regularity gets worse.
This phenomenon is referred to as intermittency in [30]. See Remark 3.3 below.

3.1. Preliminaries. Since the definition (1.39) of ® y involves polynomials of arbitrarily
high degrees, it seems more convenient to study ® y on the physical space, as in the case
of the sine-Gordon equation [63], rather than in the frequency space as in [35]. For this
purpose, we first recall the main property of the covariance function:

def
1—‘Nl,Nz (tv X — y) = IEI:\I'[Nl (tv x)\IJNz (tv y)]
for the truncated stochastic convolution \IJNj = \IIR,‘“}*“ or \Ilﬁj_‘ve, where the truncation

may be given by the smooth frequency projector P or the smoothing operator Q with
a positive kernel defined in (1.16). When N = N| = N,, we set

'y =InNnN.

As stated in Sect. 1.2, the results in this section hold for both Py and Qy.

The next lemma follows as a corollary to Lemmas 2.2 and 2.3. See Lemma 2.7 in
[63] for the proof.

Lemma 3.1. Let No > Ny > 1. Then we have

1 -1
FN],Nz(tsx - )’) ~ _Elog (|x - )’| +N1 )
for any t > 0. Similarly, we have

\FN]-(Z‘,X - y) - FN],Nz(tvx _y)|

(3.1)
S(1v —log (lx =yl + NN A (N e =y

forj=1,2andt > 0.
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3.2. Estimates on the even moments. In this subsection, we prove the following propo-
sition for the uniform control on the even moments of the random variables ® y (¢, x)
for any fixed (7, x) € Ry x T2 and N € N.

Proposition 3.2. Ler 0 < B2 < 8x. Then, the following statements hold. (i) For any
t >0, x €T2 and N € N, we have E[|®N(t,x)|] = 1, (ii) Let p > 2 be even. Let

O<a<2and(p— 1)% < min(1, «). Then, for any T > 0, we have

sup ]E[ |(V)_“®N(t,x)|p] < ().
t€[0,T],xeT2,NeN

(iii) Let 0 < a < 2 and % < min(1, «). Then, there exists small ¢ > 0 such that
- 2 _
sup E[[(V) (0, (1, 1) - O, 0)[*] = N
t€[0,T],xeT?
forany T > 0 and any Np > N1 > 1.
Proof. For fixed (¢, x) € Ry x T2, Wx(z, x) is a mean-zero Gaussian random variable
with variance oy . Hence, from the positivity of ®y and (1.39), we have
52
E[|On(t, x)|] = e” ZVE[PINED] = 1,

This proves (i).
Next, we consider (ii). Let p = 2m, m € N. Fix (¢,x) € [0, T] x T2. Recalling
(V)T f = Jy = f, where J, is as in (2.2), we have

]

2m
. . . 3.2
= e*mﬁzmv KTZ)Z ]E|:e’3 paril qlN(t”‘J):I ( 1_[ Jo(x — Yj))dy o

j=1
—mpBloy :32 2m ) 2m i
= ¢ MB /(-—ﬂ-z)Zm exp <7EH ;\I—’N(l‘, )’j)) ]) (]1:[1 Jo(x — )’j)>dy.

where dy = dyj---dyy, and we used the fact that 22.":11 Wy (t, y;) is a Gaussian

random variable at the last step. From the definition (1.30) of o and Lemma 3.1, we
have

E[\(V)‘“@N(t,x)fm]

= e_mﬂzoNEH / Jo(x — y)eﬂ\l’N(t,y)dy
T

2m

exp (52w ])
j=1

2
— PPN exp (52 Z E[Wn(t, y)¥n(t, yk)]) (3.3)
1<j<k<2m
_£
S emﬁng 1_[ (|yj _ yk| +N—1) iz

1<j<k<2m
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Hence, from (3.2) and (3.3), we obtain

]E[|(V)’°‘®N(t, x)|2’”]

R 2m }
g/(’]ﬁ)”"( l—[ (|)’j—yk|+N_1) 2n><l_[|Ja(X—yj)|>dy
j=1

1<j<k<2m

(3.4)

dy.

1
_/ |Ja(x_Yj)Jot(x_Yk)|2m_l
(’]I‘Z)Zm . ﬁ
1<j<k<2m (ij — vkl + N—I)Zn

By applying the geometric Brascamp-Lieb inequality (Corollary 2.12) and proceeding
as in the proof of Proposition 1.1 in [63] to bound the resulting integral, we then obtain

RHS of (3.4) < ]—[ (/22
(T2)

1<j<k<2m

o (x = yj)Ja(x = yi)l =t
- L 7 dyjdyx
(lyj = wl+N-1)

J _ J _ m
_ (/ [Jo(x — y)Jo(x z)lﬁ2 dydz)
232 —_1)2Z
T (Iy—z|+N*1)(2m D=

S
uniformly int € [0, T], x € T2,and N € N, provided (2m — 1)/32 < 47 min(1, @) and
O<a<?2.

Lastly, Part (iii) for the case p = 2 follows from the last part of the proof of Propo-
sition 1.1 in [63] (with t = 2), provided that B2 < 4rmin(l,a) and 0 < o < 2.
The second estimate (3.1) in Lemma 3.1 is needed here. This completes the proof of
Proposition 3.2. O

Remark 3.3. When p = 2, the proof of Proposition 3.2 is identical to that in [63, Propo-
sition 1.1]. For p > 2, however, the bounds are quite different. In computing higher
moments for the imaginary Gaussian multiplicative chaos : e/#¥¥ : | it was crucial to
exploit certain cancellation property [42,63]. Namely, in the “multipole picture” for the
imaginary Gaussian multiplicative chaos (and more generally log-correlated Gaussian
fields [50]), there is a “charge cancellation” in estimating higher moments of :e/#¥N :
due to its complex nature.

In the current setting, i.e. without the “i”” in the exponent, there is no such cancellation
taking place; the charges accumulate and contribute to worse estimates in the sense that
the higher moment estimates require more smoothing. This is the source of the so-called
intermittency phenomenon [30], which is quantified by the dependence on p for the
choice of « in Proposition 3.2 (ii) above.

3.3. Kahane’s approach. Proposition 3.2 in the previous subsection allows to get part
of the result claimed in Proposition 1.12. Indeed, using Fubini’s theorem and arguing as
in the proof of Proposition 1.1 in [63], interpolating between (ii) and (iii) in Proposition
3.2 above implies the convergence of {®y}yen in L (2; LP([0, T]; W—%P(T?))) in
the case of even p > 2, for all @ = a(p) as in (1.41).

Note, however, that when p € (1, 2) or p > 2 is not even, we only get a weaker result
than Proposition 1.12. Indeed, when p > 2isnoteven,if2m < p < 2m+2forsomem €
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N, Proposition 3.2 provides convergence in both L2m(Q; L2 ([0, T1; W22 (T2))) and
L2M+2(Q; L¥™*2([0, T1; W~%2m+2(T2))), which by interpolation provides convergence
in L?(S2; LP([0, T]; W—%P(T?))) for « = a(p) as in (1.41). Such an argument then
imposes the condition

4

0<pPec—
2m+2)—1

(3.5)

which gives a smaller range than the natural one 0 < % < %. The condition (3.5)

comes from the requirement that {®y}ycn be uniformly bounded in L2m+2(Q; [ 2m+2
([0, T71; W’”‘*zm”(']l‘z))), On the other hand, in the case p € (1, 2), interpolating be-
tween (i) and (iii) of Proposition 3.2 provides the convergence of {® y}yen in L? (2; LP
([0, T); W=%P(T?))) only for in a more restricted range o > %(> a(p)).

The argument presented in the previous subsection still has the advantage of be-
ing applicable to a large class of processes. Namely, whenever the k-points correlation
functions can be expressed as a product, the use of the Brascamp-Lieb inequality (Corol-
lary 2.12) allows to decouple them into a product of 2-points correlation functions. As
pointed out above, however, this only works for even p > 2, which restricts the range
of admissible ,32 > ( in studying (1.1) or (1.2).

In this subsection, we instead follow the classical approach of Kahane [46] which re-
lies on the following comparison inequality for the renormalized exponential of Gaussian
random variables. See, for example, [71, Theorem 2.1] and [72, Corollary A.2].

Lemma 3.4. (Kahane’s convexity inequality) Given n € N, let {X j}?:l and {Y j}'}:l be
two centered Gaussian vectors satisfying

E[X; Xi] < E[Y; Y]

forall j,k =1,...,n. Then, for any sequence {p; 7:1 of non-negative numbers and

any convex function F : [0, 00) — R with at most polynomial growth at infinity, it holds

" 1 2 " | 2
]E[F(ijeXJ_ZE[XJ‘])] < E[F(ijer—zE[Yj]>].
=1 =

As an application of Lemma 3.4, one has the following bound on the moments of the
random measure!> M N(t, ), t > 0 defined by

My (t, A) =/ On(t, x)dx (3.6)
A

for A € B(T?), where B(T?) is the Borel o -algebra of T2.

Lemma 3.5. Forany 0 < %> < 8w and1 < p < 8—7;, we have

sup ]E[MN(t, A)”] < 0.
teR,,AeB(T?),NeN

15 In the literature, this random measure is also referred to as a multiplicative chaos. See [72].
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Lemma 3.5 is a classical result in the theory of Gaussian multiplicative chaoses. See
for example Proposition 3.5 in [72]. We present a self-contained proof in Appendix B
below.

With the bounds of Lemmas 3.4 and 3.5, we can prove the following uniform estimate
on {Oy}yeN.

Proposition 3.6. Let 0 < 2 < 87, 1 < p < 3%, and 0 < « < 2 such that o >

B>’
(p — l)%. Then, we have for any T > 0

sup ]E[ |(V)_°‘(~)N(t,x)|p] < C(T). 3.7)
t€[0,T],xeT?2,NeN

Note that in Proposition 3.6, we do not need to assume that p is even. The uniform
bound in Proposition 1.12 (i) follows from (3.7), while the convergence part of Proposi-
tion 1.12 follows from interpolating (3.7) in Proposition 3.6 and Proposition 3.2 (iii) and
using the same argument as in the proof of Proposition 1.1 in [63]. When 1 < p < 2,
the use of Proposition 3.2 (iii) imposes the condition 0 < B2 < 4, which yields the
restriction on the range of 2 in Proposition 1.12 (ii).

Proof of Proposition 3.6. We split the proof into two steps.
o Step 1: multifractal spectrum. We first establish the following bound on the moments
of the random measure M y (t) over small balls:

ﬂz ﬂ2
sp  E[ M, Blxg, )| S r@Hir i’ (3.8)
te[0,T],x0eT?2,NeN

forany r € (0, 1).
By a change of variables, the positivity of ®py, and a Riemann sum approximation,
we have

E[MN(t, B(xo,r))p] - rZP]E[(/B(O ) @N(t,x0+ry)dy>pi|

< rsz[(/Tz OnN(t, xo +FY)dy)p} (3.9)

=72 lim E ! A ﬁ\pN(f,XO‘”,ij)—gUN P
=20 Jim B (D e D),

— 00
J.k=1

where yj, j,k=1,...,J,is givenby y; s = (—71+27”(j —1), -7+ 2T”(k— D) e
T2 ~ [—, n)z. From Lemma 3.1, we can bound the covariance function as

E[Wn (1, x0 +ryj i) YN X0+ 7Y js k)]

IA

1 -1
—5, log (rlyjiki = Ykl + N +C

IA

1 _ 1
Ton log (|yj1,k1 — Yol + (rN) 1) - Zlogr +C (3.10)

1 _1 1
< —Elog (|yj1,kl — Vol + N ) — glogr+C

= IEI:("IJN(I’ Viik) + hr)(“IJN(t’ Vi ko) + hr)]
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forany 0 < r < 1 and ji, j2,k1,k2 = 1,...,J, where h, is a mean-zero Gaussian
random variable with variance — % logr + C, independent from Wy . Then, by applying
Kahane’s convexity inequality (Lemma 3.4) with the convex function x +— x?, a Rie-
mann sum approximation, and the independence of 4, from Wy, it follows from (3.9)
that

L\ an? 2 2\ P
E[MN(t, B(xo. r))P] <2 Jlim E[( 3 7e/fi(\vN<r,y,~,k>+hr)—TIE[(\IJN(r,y.,r,k>+hy> ]) ]

—00
Jik=1

2 v B oy phi—E (— L logr+C) 5 )P
=r'E (/ ePYNUY)I= 0N oBhr =5 (= o7 logre )d)’)
T2
= rsz[epﬂhripé(ﬁ10g%+c)j|]E|:</. eﬁ\l‘N(t,)’)*éaNdy)p]
T
= r2”e(”2—!’)g(—ﬁlogf+C)E[(/ ef‘\DN(t,y)—gaNdY)p]
11'2
82y, B2 2
< FCHEIP— P E[MN(I, TZ)[)].
Hence, the bound (3.8) follows Lemma 3.5.

e Step 2: From (2.2), Lemma 2.1, where the remainder R is bounded on T2, and
Minkowski’s integral inequality, we have

E[|(v) . 0|’ =E[\/ Ja(x—y)@)N(r,y)dy\"}
T2

< E[(/T = y“ 20N, y)dy)”}
—(ax—2 p % P
5{22 ‘ )‘E[( /XM_« On(t, )dy) } }

=0

< sup zf(afzfs)peE[MN(t’ B(x, 2713))17]
>0

for ¢ > 0, uniformly inz € R;, x € T2, and N € N, Then, using (3.8), we obtain

E[|<V)_Q@N(I,x)‘p] < sup2_(“_2‘8)"‘52%!’2‘3—(%%)!74 <1
>0

by choosing ¢ > 0 sufficiently small, provided thato > (p — 1) f—;. This proves (3.7). O

4. Parabolic Liouville Equation I: General Case

In this section, we present a proof of Theorem 1.13. Namely, we prove local well-
posedness of the truncated SNLH (1.45) for vy = uy — z — Wy in the Da Prato-
Debussche formulation in the range:

8w
0 < p? < p2 def O
P = Prea 3+242
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without assuming the positivity of A. Here, z denotes the deterministic linear solution
defined in (1.44) and W denotes the truncated stochastic convolution defined in (1.27).
Writing (1.45) in the Duhamel formulation, we have

- _—m/ P(t —t)(ePePrVON ) (at . (4.1)
Given vy € L®(T?) and a space-time distribution ®, we define a map @ by
D) = Dy o) Y _-m / P(t — 1) (ePPO0ePrO) (1)ar'. 4.2)

Then, (4.1) can be written as the following fixed point problem:
vy = Pyy0 (VN).

In the following, we fix 0 < o, s < 1 and p > 2 such that

,o+s
2

See (4.9) below for a concrete choice of these parameters. Then, we have the following
deterministic well-posedness result for the fixed point problem:

v =Dy 0. 4.4)

<1 and sp>2. 4.3)

Proposition 4.1. Let «, s, p be as above. Then, given any vy € L°(T?) and R > 0,
there exists T = T (|lvgllre, R) > 0 such that given any positive distribution ® €
LP([0, T1; W=%P(T?)) satisfying

”@”Lé’_w;avl’ = R, (45)

there exists a unique solution v € C([0, T]; W5 P (T%)) 10 (4.4), depending continuously
on the initial data vy.

Note that we do not claim any continuity of the solution v in ® for Proposition 4.1.

Proof. Fix R > 0. We prove that there exists T = T (|lvg|| ., R) > 0 such that &,
is a contraction on the ball B C C([0, T]; W52 (T?)) of radius O(1) centered at the
origin.

Let v € B. Then, by Sobolev’s embedding theorem (with sp > 2), we have v €
C([0, T]; C(T?)). For vy € L>(T?), we also have z € C((0, T]; C(T?)). In particular,
eP2eP? (1) is continuous in x € T? for any ¢t € (0, T']. Then, by the Schauder estimate
(Lemma 2.4 (ii)), Lemma 2.14, and Young’s inequality with (4.3), we have

(P2 )" | pdt’

1Ol e, e S H/ (1
L°([0,T])
S lefee? )

_Gto)
o (Mol 17 727) % 110,11 Ol y—aur 4.6)

Ly

S, p

Clvll
< T0eCM0le FEW @),
T

< TP R ¢CllvoliLoo <1
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forv € B andapositive distribution ® satisfying (4.5), by choosing T = T (||vo| >, R) >
0 sufficiently small.
By the fundamental theorem of calculus, we have

1
PV — e = B(v) — vz)/ eProthi=niv gy 4.7)
0

Then, proceeding as in (4.6) with (4.7), we have

191) = D@l yer S T (P = eP2)

i 1Ol

Cllviligoe +llv2lizoe )
S TGReC”UO“Loce Ly L7, llv; — U2”L7°.° (4.8)
X

< 79 ReCllvoll o llv; — v2||CTW§’p

for v, vy € B and a positive distribution ©® satisfying (4.5).

Hence, from (4.6) and (4.8), we see that @ is a contraction on B by taking T =
T (JlvollL>, R) > 0O sufficiently small. The continuity of the solution v in initial data
follows from a standard argument and hence we omit details. O

Remark 4.2. In the proof of Proposition 4.1, a contraction argument shows the unique-
ness of the solution v only in the ball B C C([0, T']; W*? (T2)). By a standard continuity
argument, we can upgrade the uniqueness statement to hold in the entire C ([0, T']; W*-?
(T?2)). Since such an argument is standard, we omit details.

Now, let ®y be the Gaussian multiplicative chaos in (1.39). In view of Proposition
1.12, in order to determine the largest admissible range for 82, we aim to maximize

4o p—

ﬂ2< < 8
p—1 pp-1

7 =:h(p),

where we used both of the inequalities in (4.3). A direct computation shows that / has
a unique maximum in [2, co) reached at p = p, =2 + ﬁ, for which we have

h(py) = max h(p) = 8 = ﬁz
— max - .
P p=2 b 3+2ﬁ heat

Therefore, for % < ﬂ%eat, we see that the constraints (4.3) are satisfied by taking

p=2+«/§, s=2—\/§+8, and
/31% (4.9)
Ol:(p—l)4—eat—28=2(«/§—1)—2£
T

for sufficiently small ¢ > O suchthata > (p — 1)%. With this choice of the parameters,
Proposition 4.1 with Proposition 1.12 establishes local well-posedness of (4.1).

In the remaining part of this section, we fix the parameters «, s, and p as in (4.9) and
proceed with a proof of Theorem 1.13.
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Proof of Theorem 1.13. Given vy € L®(T?) and Oy in (1.39), let vy = Dyy.05 (UN)
be the solution to (4.1) given by Proposition 4.1. Proceeding as in the proof of Theorem
1.2in [63], it suffices to prove the continuity of the solution map ® = &, @ constructed
in Proposition 4.1 with respect to ®.

In the proof of Proposition 4.1, the positivity of the distribution ® played an impor-
tant role, allowing us to apply Lemma 2.14. In studying the difference Oy — ©, we
lose such positivity and can no longer apply Lemma 2.14. This prevents us from show-
ing convergence of vy in C([0, T]; W*?(T?)) directly. We instead use a compactness
argument.

Let us take a sequence of positive distributions ®y converging to some limit ® in
LP([0,TT1; W*""P(’]I‘z)) N L"([0, T]; W*”S”(Tz)), where r is defined by

L_Ams—e) o V2 (4.10)

2
IBheat 2
with s as in (4.9). Note that the pair (s — ¢, ) (in place of («, p)) satisfies (1.41) for any
B < IBI%eat'
Let us then denote by vy and v the corresponding solutions to (1.45) and (1.46),

respectively, constructed in Proposition 4.1. We first show an extra regularity for these
solutions:

dun € LP([0, TT; WS 2P (T?)).

Indeed, using Eq. (1.45) with p < coand s — 2 < —a«, we have

100l e = | 5(A = Do = TapeP<eP v @y

s—2
LEwy=P

S ||UN||Lc;oW;vn + HeﬂzeﬂUGNH#W;a,p.

Note that both of the terms on the right-hand side are already bounded in the proof of
Proposition 4.1 (by switching the order of Lemma 2.14 and Young’s inequality in (4.6)).

Next, observe that by taking s > s, sufficiently close to s, we can repeat the proof of
Proposition 4.1 without changing the range of 8 < ﬂgeat. This shows that {vy}yen is
bounded in C ([0, T'; ws-p (T?)). Then, by Rellich’s lemma and the Aubin-Lions lemma
(Lemma 2.16), we see that the embedding:

Ar € cqo, T1; WEP ) N {a,0 e LP([0, T1; W2P(T2)} € C([0, T1; WHP(T?))

is compact. Since {vy}yen is bounded in A7, given any subsequence of {vy}yen, We
can extract a further subsequence {vy, }xen such that vy, converges to some limit v in
C ([0, T1; WP (T?)). In the following, we show that ¥ = v. This implies that the limit
is independent of the choice of subsequences and hence the entire sequence {vy}yeN
converges to v in C([0, T']; W*P(T?)).
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It remains to prove ¥ = v. In the following, we first show that vy, = ®y,.0 Ne ()
converges to @y, (V) in LY([0, T]; W*'P(T2)) for some s’ < —s. From (4.2), we have

[, 05, (VN,) — o0

Lhw?
t o~
P(t — 1) (PP Oy, — ©))(t)dl’
0 LLwsr
t W (4.11)
+ / P(t —t') (e (e —eﬂ§)®Nk)(t/)dt/
0 Lhw
= I +1L

1 ]y the Schauder estimate (Lemma 2.4), Young’s inequality, Lemma 2.13 (ii) with

st < + 5 (which is guaranteed by sp > 2), we have

IS HI TG PP (O, — ©)]ysver y
< Heﬁzeﬁ’ﬁ(G)N - @) ||L1 W—Hs,r (412)
< Heﬂ(z+v)| L7 W ep1ON — ®”L' Csver

By Sobolev’s inequality and the fractional chain rule (Lemma 2.15 (ii)), we have

~

(12D 0 | S IVIFPED 0] sl ol znlw @+DO] -

l+sp/2
This yields

” P |

Lo S < B (1 + ||z+v||L,T/W;-,,,)

- -13)
oo S ~

S eCllvollzoe o 7L Wy (1+||v0||L°°+||U||Lgowf"’>~

In the last step, we used the following bound which follows from the Schauder estimate
(Lemma 2.4):

_s
Il yyer S N2 voller | S lvollos

since %r’ < 1in view of (4.9) and (4.10). Therefore, from (4.12) and (4.13), we obtain

Clvl 5.p ~
1S €Il R (1 fug e + 7] ey ) 1O, = Ol g ysser . (414)

As for the second term II on the right-hand side of (4.11), we can use the positivity

of ®y, and proceed as in (4.8):
Clllvoll oo +lvng Il e s p +IT1l 0oy s ~
< T ( L NilpgowyP L WXP) lvn, — ””L%CWQP ||@Nk||L§_WX—ot,p. 4.15)
Since vy, — ¥ in C([0, T]; W*P(T?)) and ®y — © in LP ([0, T]; W% (T?)) N
L7 ([0, T]; W57 (T2)), it follows from (4.11), (4.14), and (4.15) that N, = ®v0,®1vk
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(vn,) converges to @, @ (V) in L0, T1; ws'sp (T?)). By the uniqueness of the distri-
butional limit, we conclude that

V= Dy 0. (4.16)

Since v belongs to C ([0, T; WP (T2)), we conclude from the uniqueness of the solution
to (4.16) that v = v, where v denotes the unique fixed point to (4.16) in the class
C([0, T]; WS P(T?)) constructed in Proposition 4.1. See also Remark 4.2. O

Remark 4.3. While the argument above shows the continuity of the solution map in
@, its dependence is rather weak. For the range 0 < 2 < %n, we can strengthen this
result by proving local well-posedness and convergence without the positivity of ®. This
argument shows that, for the range 0 < 8% < %n, the solution map is also Lipschitz
with respect to ®, as in the hyperbolic case presented in Sect. 6 below. See Appendix A.

5. Parabolic Liouville Equation II: Using the Sign-definite Structure

In this section, we study SNLH (1.1) in the defocusing case (. > 0) and present a proof
of Theorem 1.2 and Theorem 1.6. As we will see below, the particular structure of the
equation makes the exponential nonlinearity behave as a smooth bounded function. This
allows us to treat the full range 0 < B2 < 47 in this case.

5.1. Global well-posedness. In this subsection, we focus on the equation:

1 1

qv+3(1 — A+ 31BePefrO =0 5.0
U|t:0 - Oa

where z = P (t)vg for some vy € L™ (T2),Oisa given deterministic positive space-time
distribution, and A > 0. In this case, as explained in Sect. 1.3, Eq. (5.1) can be written
as

5.2)
v|i=0 =0,

{Btv + 11 = A+ IaBefF(B)© =0
where F is a smooth bounded and Lipschitz function defined in (1.49). Indeed, by
writing (5.2) in the Duhamel formulation:

t
u(t) = —%)\,3 fo Pt — 1) (P F(Bv)®)(1)dr, (5.3)

it follows from the non-negativity of A, ®, and F along with Lemma 2.4 (i) that v < 0.
This means that the Cauchy problems (5.1) and (5.2) are equivalent.
Given N € N, consider the following equation:

(5.4)

don +3(1 — Ay + 3ABeP F(Buy)Oy =0
vNlr=0 =0

for some given smooth space-time non-negative function ® 5. Then, since ® y is smooth
and F is bounded and Lipschitz, we can apply a standard contraction argument to prove
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local well-posedness of (5.4) in the class C ([0, t]; L2(T?)) for some small t = 7y > 0.
Thanks to the boundedness of F, we can also establish an a priori bound on the L?-
norm of the solution vy on any time interval [0, T']; see (5.7) below. This shows global
existence of vy.

Our main goal in this subsection is to prove global well-posedness of (5.2).

Proposition 5.1. Let vy € L*®(T?) and ® € L*([0, T); H~**(T?)) be a positive
distribution for some ¢ > 0. Given T > 0, suppose that a sequence {On}neN Of
smooth non-negative functions converges to © in LZ([O, T1; H 1+ (Tz)). Then, the
corresponding solution vy to (5.4) converges to a limit v in the energy space Z7 defined
in (1.50). Furthermore, the limit v is the unique solution to (5.2) in the energy class Zr.

In view of Proposition 1.12 with p = 2, given 0 < B2 < 4, we can choose & > 0

2
sufficiently small such that f—n < 1—e¢, which guarantees that the Gaussian multiplicative

chaos ®y in (1.39) belongs to L2([0, T]; H~'*£(T?)) for any T > 0, almost surely.
Moreover, ® y converges in probability to ® in (1.42) in the same class. Then, Theorem
1.14 follows from Proposition 5.1 above.

Proof of Proposition 5.1. With a slight abuse of notation, we set
P=P, 90 and Dy =Dy e,
where @, @ is defined in (4.2). In particular, we have
vy = Py (vy) = Py 0, (VN)

t 5.5
= _%,\,3/ P(t — ') (P F(Bun)ON)(t)dr . 4:3)
0

Fix T > 0. Given vy € L®(T?), we see that z = P(f)vp and vy belong to
C((0, T]; C(T?)) in view of the Schauder estimate (Lemma 2.4) and (5.5) with smooth
©y. Hence, we can apply Lemma 2.14 to estimate the product ¢f* F(Bvy)®y thanks
to the positivity of .

Fix small § > 0. Then, by the Schauder estimate (Lemma 2.4), Lemma 2.14, and
Young’s inequality, we have

4 —¢
||vN||L%HI+25 5 H / (t — t’)*z 225 || (v>7]+8(eﬂ2F(ﬁvN)®N)(t/) ||L2dt/ i
X 0 X L

T

(5.6)

< e FBom) | o

t
o 2428 , ,
— DN —l+e
f t—1)" 2 ONE) | y-1+edt
X
0 12

Cllvollpoe
5 e ”@N”L%H;Hs’

uniformly in N € N, provided that 2§ < ¢. Here, we crucially used the boundedness of
F. Similarly, we have

t
o 1128 , ,
/ (t=1)" 2 ON)l y-1+dt
0 ,

C
”vN”L;CH}S <e [lvoll Loo
Ly 5.7
Clluollpoo )
S e ”®N”L2TH;1H'
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and

180w l2 v = | 58 = Doy = JaBePF(Bun)@n |

LZTH;HZB
Bz
S llonllz2 ges + e F(Bun)©ON ||L%HX_1+S (5.8)
Cllvoll oo
S/e L ||®N||L2TH;1+E,

uniformly in N € N.
Given s € R, define 23 and ZY by

Zj = C([0, T]; H*(T*) N L*([0, T]; H'™ (T%),
Z5 ={ve 2o e LX(0, T, H*(T?)).
Then, it follows from Rellich’s lemma and the Aubin-Lions lemma (Lemma 2.16) that

the embedding of Z7 Z28 25 is compact. Then, from (5.6), (5.7), and (5.8) along with the

convergence of @N to © in L2([0, T] H~1*2(T2)), we see that {vn}nen is bounded
in ZT and thus is precompact in Z Hence, there exists a subsequence {vy, }keN

converging to some limit v in Z‘S .
Next, we show that the limit v satisfies the Duhamel formulation (5.3). In particular,
we prove that @, (vy,) converges to @ (v) in L' ([0, T1; H~'*¢(T?)). Write

t
1®N, (W) = Py e S H/O P(t — 1) (P F(Bun,)(On, — ©))(t")drt’

1 py—1+
Ly Hy €

+

/0 P(t — 1) (P (F(Bun,) — F(Bv)O) ()1’

—l+e
L%—Hx +e

= I +IL (5.9

By the Schauder estimate (Lemma 2.4), Young’s inequality, and Lemma 2.13 (ii), we
have

I < [e*F(Bun)(@On, — @)ULl o

< e FBowy)| 610

1me. L 1ON = Ol 2 14
TWx = T
for sufficiently small ¢ > 0.

By the fractional Leibniz rule (Lemma 2.13 (i)), we have
S ACIUN] B
LyWwe (5.11)

S ez e IFBono [ e + €] oo [F BN 13 1

By the fractional chain rule (Lemma 2.15 (ii)), we have

[P0z e ~ ez + 191172 ”Lzm

C
ST e g V12,

< C(T)eCIIee (14 12| 2y 1-24)
T"Wx
< C(T)eC Mol (1 + Jlvg <),
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where we used the Schauder estimate (Lemma 2.4) in the last step. Similarly, by the
fractional chain rule (Lemma 2.15 (i)) along with the boundedness of F, we have

”F(:BUN/()”L?THX‘—E ~ ||F(,3ka)||Lz“ + |||V|178F(ISUN;()“L%X
1
ST2+ ”|V|1_8UNk ”LZT ‘ (5.13)
=C(M)(1+ IIUNkllgg)-
Hence, putting (5.10), (5.11), (5.12), and (5.13) together, we obtain
1S el (14 ugll + w29 108 = Ollz yoree: (5:14)

As for the second term II in (5.9), we use the fundamental theorem of calculus and
write

F(Bun,) — F(Bv) = Blun, —v)G (v, v), (5.15)

where
1
G(vl,v2)=/ F'(tBvy + (1 — 1)Bva)dr. (5.16)
0

Since F is Lipschitz, we see that G is bounded. Since vy, , v € Zg,we have vy, (1), v(t) €
C(T?) for almost every t € [0,T]. Then, by the Schauder estimate (Lemma 2.4),
Lemma 2.14, and Holder’s inequality, we have

< ||eﬂz(ka —v)G(vy,, v)®||L}H;”‘E

< e wn, — v)Guy,, v)”L%L;,O||®||L2THX_m

el 5.17)
<e T lowe = vllp2 e IGWng Vg 1Ol 2 o1

C
S e llvoll oo ”ka — UHZ; ||®||L%HX—I+5.

From (5.9), (5.14), and (5.17) along with the convergence of vy, to v in Zi and
Op, to ® in L2([0, TT; H’“E(Tz)), we conclude that @y, (vy, ) converges to ®(v) in
LY([0, T1; H~'*(T?)). Since vy, = @y (vy,), this shows that

v= lim vy, = lim Py, (vy,) = P(v)
k— o0 k—o00

as distributions and hence as elements in Zg since v € Zg. This proves existence of a
solution to (5.3) in Zg C Zr.

Lastly, we prove uniqueness of solutions to (5.3) in the energy space Z7. Let v, v2 €
Zr be two solutions to (5.3). Then, by setting w = v; — v7, the difference w satisfies

dw+ 3(1 — Aw + FapeP*(F(Bvy) — F(Bv2))® = 0. (5.18)
Since Bv; < 0, j = 1,2, it follows from (1.49) and (5.16) that

1
G(v, 1) = / exp (r,Bvl +(1— r)ﬂvz)dt > 0.
0
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Now, define an energy functional:

def

1
g = ||w(t)||i% *3 ||w(t/)”2xd;/ > 0.

Since w € Zr, the energy functional £(¢) is a well-defined differentiable function.
Moreover, with (5.18) and (5.15), we have

i5(;):/ w(t) (20,w(r) + (1 — A)yw())dx
dt T2

= —2p? f w2 ()P G (v1, 12)O(1)dx
T2
<0

thanks to the positivity of G and ® and the assumption that A > 0. Since w(0) = 0, we
conclude that £(t) = 0 for any ¢+ > 0 and v; = v;. This proves uniqueness in the energy
space Z7.

The solution v € Z? constructed in the existence part depends a priori on a choice
of a subsequence vy,. The uniqueness in Z7r D 23 however, shows that the limit v
is independent of the choice of a subsequence and hence the entire sequence {vy}yen
converges to v in Z% C Zr. This completes the proof of Proposition 5.1. O

5.2. Oninvariance of the Gibbs measure. In this subsection, we briefly go over the proof
of Theorem 1.6. Given N € N, we consider the truncated SNLH (1.19) with initial data
given by uny |;=0 = wo, where wy is as in (1.8) distributed by the massive Gaussian free
field w. For this problem, there is no deterministic linear solution z and hence write u
asuy = vy + W Then, the residual term vy satisfies

t
on (1) = —%Aﬂ/o P(t —1)Qun (PO ) (1)dt', (5.19)

where © y is the Gaussian multiplicative chaos defined in terms of Q. Since the smooth-
ing operator Qy in (1.16) is equipped with a non-negative kernel, Eq. (5.19) enjoys the
sign-definite structure:

t
P (D) = =338 [ Pt = QR (O Or) i <0,

Namely, we can rewrite (5.19) as

1 1
uN (1) = —E/\ﬂfo P(t —1)Qn(F(BQnun)ON)(1))dl, (5.20)

where F is as in (1.49).

In view of the uniform (in N) boundedness of Qx on LP(T?), 1 < p < 00, we can
argue as in Sect. 5.1 to prove local well-posedness of (5.20) and establish an a priori
bound on {vy}yen in Z%‘S C Zg. Then, by the Aubin-Lions lemma (Lemma 2.16),
we see that there exists a subsequence {vy, }ken converging to some limit v in Z%.
Moreover, the uniqueness argument for solutions to the limiting equation (5.3) remains
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true. Therefore, in view of the argument in Sect. 5.1, it suffices to show that the limit v
satisfies the equation (5.3).
With a slight abuse of notation, let ®y, denotes the right-hand side of (5.20):

C l ! /! / /
O, (uy) (1) E —Ekﬁ/o P(t — 1)Qun, (F(BQn,vN)ON, ) (t)d1. (521

Then, it suffices to show that @y, (vy,) converges to ®(v) in L'([0, T1; H~(T?)),
where ® = &, @ is as in (4.2) (with vy = 0). From (4.2) and (5.21), we have

”q)Nk(ka) - (D(v)”LITHX_l

1
S H/o P(t —1")(F(BQnun)(On, — ©))(t"dl

LyH:!

t
+ / Pt — 1) ((F(BQu,vn,) — F(Bv)O)(t")dr’
0 Ly H!
t
+ / Pt —1)Qn, —1d)(F(BQn,vN)ON, ) (t)dl'
0 LLH!
— [ +11+1IL (5.22)

The terms I and II can be handled exactly as in Sect. 5.1 and, hence, it remains to treat
the extra term III.

When viewed as a Fourier multiplier operator, the symbol for Qy is given by 27 oy ';
see (1.16). Note that, for 0 < 51 — s < 1, the symbol

my (&) € NI ()T 2w () — 1) (5.23)

satisfies the bound
ogmy ©)] < (€)W (5.24)

for any k € (Zzo)z. Indeed, when no derivatives hits 27t oy — 1, we can use the mean
value theorem (as 2 p(0) = 1) to get the bound

[Nk (€)™ - (2rpv ) — 1) S N e T T (1A NTHE)
<&,

whereas when at least one derivative hits 27t oy — 1, we gain a negative power of N from
on (£) = p(N~'£) and we use the fast decay of p and its derivatives; with |a|+|8] = |k],
we have

N9 () - of (2 pn(®) — 1)| S Nl (v g7ty
<&,

verifying (5.24).

Hence, by the transference principle ([33, Theorem 4.3.7]) and the Mihlin-Hérmander
multiplier theorem ( [33, Theorem 6.2.7]), the Fourier multiplier operator N*1 = (V) =51
(Qn — 1d) with the symbol my in (5.23) is bounded from L?(T?) to LP(T?) for any
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1 < p < oo with norm independent of N. This implies that the following estimate
holds:

1Qn = 1d) fllwspery S N UL sty (5.25)

forany 0 <s; —s < land 1 < p < oo. Then, applying (5.25) and Lemma 2.14 again,
we can bound III in (5.22) by

“ (QNk - Id)(F(,BQNk UNk)®Nk) HL]THX_I
S NNIF(BQu, UNI 2 o0 ||®Nk||L2THX—1+a (5.26)

S Nkis I ®Nk ”L%H;HS .
Hence, from (5.22), the convergence of I and I to 0 as shown in Sect. 5.1, and (5.26), we
conclude that @y, (vy, ) in (5.21) converges to ®(v) in L' ([0, T1; H~'(T?)). Combined
with the uniqueness of the solution to (5.3) in Z7, this shows that the solution vy to the
truncated SNLH (5.20) converges to the solution v to SNLH (5.3) (with z = 0).
Lastly, we establish invariance of the Gibbs measure phey constructed in Proposi-
tion 1.4 under the dynamics of SNLH (1.1). In the following, we write ® y (¢) and ®(¢)
for the flow maps of the truncated SNLH (1.19) and SNLH (1.1), respectively, con-
structed above. Note that @ (¢)(up) is interpreted as () (uog) = ¥ + v, where W is the
stochastic convolution defined in (1.27) (with wy = ug) and v is the solution to (5.1)
(with z = 0). In the remaining part of this section, we take the space-time white noise
& = £ in the equation to be on a probability space (21, IP) and use w to denote the
randomness coming from the space-time white noise. Moreover, we use E,, to denote an
expectation with respect to the noise, namely, integration with respect to the probability
measure P. In the following, we write ®“(#)(1¢), when we emphasize the dependence
of the solution on the noise. A similar comment applies to @ (¢). Given N € N, we use
P,N to denote the Markov semigroup associated with the truncated dynamics &% (¢):

P (F) (o) = B[ F(®F (1) (0))] =/Q F(F (1) (u0)dP(w).

We first show invariance of the truncated Gibbs measure ppear v in (1.18) under the
truncated dynamics (1.19).

Lemma 5.2. Let N € N and ¢ > 0. Then, for any continuous and bounded function
F : H4(T?) — R, we have

[ PN (F)(uo)dphea v (o) = / F (t0)dpheat N (10)-

Proof. Since the truncated Gibbs measure ppear,n in (1.18) truncated by Qx does not
have a finite Fourier support, we first approximate it by

dpnea, N, = Zy'yy €XP ( —ACN.m / eﬂPMQN“dx>dm, (5.27)
, -

where P, is the Fourier multiplier with a compactly supported symbol y in (1.7) and

2 2
hy 2
— o Tonm = o FEPHQN Y DT oy
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as M — oo. Here, Wheat i5 as in (1.35).
Let

£ heat 82 heat
Oy = e~ 7N SVY and Oy = e 2N SPVAVYTER

Then, a slight modification of the proof of Proposition 1.12 shows that ®) N.m(0,0)

converges to O N(0,0)in LP(Q) for 1 < p < %—7; Namely, we have

—XCN’M[ PPy —)»CN/
T2

PV gy (5.28)
TZ

in LP(uy) forl < p < %—’; and also in probability. Let Ry be as in (1.43) and define
Rn,m by

Ry.m = exp ( — )\CN,M/ eﬂPNQN“dx>. (5.29)
T2

Then, it follows from (5.28) that Ry 3s converges to Ry in probability as M — o0o. More-
over, by the positivity of ®y, Ox », and A, the densities Ry and Ry js are uniformly
bounded by 1. As in the proof of Proposition 1.4, this implies the L? (x.1)-convergence of
the density Ry ym to Ry as M — oo, which in turn shows convergence in total variation
Pheat,N.M —> Pheat,N 88 M — 00.

Next, consider the truncated dynamics (1.19) with the Gaussian initial data Law (i« 5 (0))
= 1. Then, proceeding as in the proof of Theorem 1.2, we see that the flow @y of
(1.19) is a limit in probability (with respect to P® w1 (dw, dug)) in C([0, T]; H~¢(T?)),
& > 0, of the flow ® s for the following truncated dynamics:

dun.m + 31— Ay, + FABCN uPyQueP PuQiiny = ¢

i (5.30)
U, Mmli=0 = uo with Law(up) = p1.

Let us now discuss invariance of ppear, v, 7 under (5.30). Let Iy, be the sharp
Fourier truncation on frequencies {|n| < M}. Then, from the definition (1.7) of Py,
we have 1y Py = Py for any M € N. In particular, with l'[2lM = Id — Ty,

we have I'IZLMPM = 0. Then, it follows from (5.27) that the pushforward measure
(H%M)#pheat,N,M is Gaussian:
(Tapp)#Pheat v = (Tap )i

Hence, we have the following decomposition:

Pheat, N = (Tlan)# Pheat, v @ (Tag )uid1.
By writing
un,pm = Iopun py+ H%_MMN,M =4 +u(2),

where, for simplicity, we dropped the subscripts on the right-hand side, we see that the
high frequency part u® satisfies the linear stochastic heat equation:

du® + 11— Au® =T3¢, (5.31)
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Since this is a linear equation where spatial frequencies are decoupled,'® it is easy to
check that the Gaussian measure (Hj‘M)# (1 is invariant under (5.31).

The low frequency part u(D satisfies the following equation:
u + 11— MuV + Ny = My, (5.32)
where the nonlinearity ' = Ny _y is given by
N@) = Ny m(u) = 51BCxn uPyQuel PHNe, (5.33)

On the Fourier side, (5.32) is a finite-dimensional system of SDEs. As such, one can
easily check by hand that (ITaas)#Oheat, v, a 18 invariant under (5.32). In the following,
we review this argument.

In the current real-valued setting, we have ;(1\)(—11) = u/(-l\)(n). Then, by writing
uM(n) =a, +ib, for a,, b, € R, we have

a_p,=a, and b_, = —b,. (5.34)
Defining the index sets A = A(2M) C 7% and Ay = Ag(2M) C 72, M € N:
A:{(Nx{O})U(ZxN)}ﬂ{neZZ:|n|§2M} and Ao =AU{(0,0)},
we can write (5.32) as

da, = (— Ln)2a, — Re./\m)(n))dt +d(ReB,)

o (5.35)
db, = <_ Ln)2b, — Im/\/(u(l))(n))dt +d(ImB,)
forn € A and
day = (— Lag —m)(O))dt +dBy. (5.36)

Here, {B,}scn, is a family of mutually independent complex-valued Brownian mo-
tions as in (1.29). Note that Var(ReB, (t)) = Var(ImB, (1)) = % for n € A, while
Var(By(t)) = t. B

Let F be a continuous and bounded function on (a, b) = (am, by)mergnen €
R2IA+L Then, by Ito’s lemma, the generator £ = Ly m of the Markov semigroup
associated with (5.35) and (5.36) is given by

LF@b) =Y [( ~ Lo, - Re/\m)(n))BanF(Zz, b + :—‘ajnF(a, 15)}

2
neho
3 [( - %<n>2bn - Im,/@)(n))é)an(&, b) + %agnF(d, 15)}
neA
1, -
+ 9 F @ D) (537)

16 1 particular, by writing (5.31) on the Fourier side, we see that u(2) (n) is the (independent) Ornstein-
Uhlenbeck process for each frequency whose invariant measure is Gaussian.
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The last term takes into account the different forcing in (5.36). In order to prove invariance

of ptll‘é‘:t N M = (HzM)# Pheat, N, i under the low-frequency dynamics (5.32), it suffices

to prove
1
(5)*/)11% nm =0.

By viewing ,oheat N,y s @ measure on (a, b) with a slight abuse of notation, this is
equivalent to proving

/ LF(@.b)dpyy y i@, b) = f LF@, be ™M dadb = o, (5.38)
where M (u") is given by

1
M@V)y =rCn.u f PP g 4 Z(n>2(a,2, +b2) + =aj. (5.39)
T2 2

nea
A direct computation with (5.34) shows
2700, o [(PrQut )] 0) = 24ReF [ParQu (PrQuut ") ),
(5.40)
2705, o [(PrrQuu )] 0) = 2Im F [Py Qu (@1 Quut ") ()

forn € A and
27000 Fr[ P Qv )] (0) = k[ ParQu (PrrQu) 1) | 0).
By the Taylor expansion with (5.40) and (5.33), we have

b, (ACN,M / eﬁMQN"%) — ACpt - 27000, FlPPH OV} 0)
Tz

B 90, F [ PrQuu)F] (0) (5.41)
k!

=ACN. M - 27‘[2
k=0

— 4ReN (D) (n)

for n € A. By a similar computation, we have

b, (ACN,M / i PPt g )—4ImN(u<l>)(n) (5.42)
T

forn € A, and

aaO(AcN,M / 2 PP g ) 2N @ D)(0). (5.43)
T
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Then, using (5.37), (5.39), (5.41), (5.42), and (5.43), we can rewrite the generator L as

— 1 -1 -
LF@.b)y=> [— 2 dan M), F (@, b) + 207 F (@, b)
nea

— %abn/\/t(u“))aan(d, b) + %agnF(a, z})} (5.44)
— %Bao./\/l(u(l))aaoF(&, b) + %BfoF(Ez, b).
Then, with (5.39) and (5.44), integration by parts yields
/[ZF(&, ByeM“Dgadp

1 7 = -
=1 Zf (3,1"6—/\/1(“(1)) . 3anF(a,b)+8§nF(a’b).e—M(u(n))dadb
neiA

1 ] ] _
t7 2 / <3bne*M<u<1>) - 0p, F (@, b) + 0}, F (@, b) - e’M(“(l)))dadb
nei

1 ) ) ]
+3 f (aaoe—M“‘“’) Bag F (@, b) + 02 F (@, b) - e‘M(”m))d&db

=0.

This proves (5.38) and hence invariance of pllfé;"t v = (ITom)#Phear, N,m under the
low-frequency dynamics (5.32).
We are now ready to prove invariance of ppeqr, vy under @y (). This follows from
(1) the convergence of pPheat, N, M tO Phear,v 1N total variation, (ii) the convergence of
Cb‘]‘\’,,M(I)(uo) to ®% (¢) (o) in probability with respect to P ® w1 (w, ug), and (iii) the
invariance of ppear, v, under @ 7 ().
Indeed, for any F : H™¢ (Tz) — R, continuous and bounded, and any ¢ > 0, we have

‘ / E, [ F (@4 () (10)) Jdpheat v (ut0) — / Eo [ F(@%, 411 (w0)) Jdoheat v t0)

< Z;,,lM/ ‘]Ew[F(q)%(t)(uo))] - Ew[F(CD%,M(I)(uo))]‘RN,M(Mo)dul(uo)

+

k]

/Ew[F(CD%(l)(uo))]dpheat,N(uo) —/Ew[F@‘X,(t)(uo))]dpheat,N,M(uo)
(5.45)

where Ry p is as in (5.29). The second term on the right-hand side tends to O as
M — 00 since Pnhear, N, M CONVEIges to Phear,n 1N total variation. As for the first term,
by the uniform bound Ry p < 1, we have

[ [BalF @5 @20000] ~ Bu[F (5,300 w0)]| R s o) )
= [ 1F @500 ~ F@F 40 wo)]d®® ). 10

< 6420l - P @ i (| (@500 (w0)) = F(® 1 (0 (wo))| > 8)
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forany 6 > 0. In view of the convergence of ®%, Vo (t)(up) to ®%; (¢)(up) in probability
with respect to P ® w1 (w, ug) as M — oo, we then obtain

Jim / (B[ F (@3 (00 m0)] = o[ F (5 44 (1) to))] | Ry, ()i () < 5

Since the choice of § > 0 was arbitrary, we conclude that

Jim / [ [F (0% 00))] = B [F(®8, 4y (0)wo))] | Ry o) ar (o) = 0.
(5.46)

Hence, from (5.45), (5.46), and Zy p — Zy together with the invariance of ppeat, v, p
under @y p/(¢), we obtain

f o F(®F (1) (10)) |dphea N (10) = Jim / [F (@ 4 (1)(u0)) |dpnear, v.m (o)

= lim F (uo)dpneat, N, m (10) Z/F(MO)dpheat,N(M0)~
M— o0

This concludes the proof of Lemma 5.2. O

With Lemma 5.2, we can finally prove invariance of the Gibbs measure ppey in
Theorem 1.6. Indeed, proceeding as in the proof of Lemma 5.2 above, we can easily
deduce invariance of the Gibbs measure ppeqa from (i) the convergence of the truncated
Gibbs measures pheat, v to the Gibbs measure ppea in total variation (Proposition 1.4), (ii)
the convergence in probability (with respect to P ® ¢1) of the truncated dynamics (5.20)
to the full dynamics (5.3) (with z = 0) (Theorem 1.2), and (iii) the invariance of the
truncated Gibbs measure ppeq, v in (1.18) under the truncated SNLH (1.19) (Lemma 5.2).
(We also use the absolute continuity of the truncated Gibbs measure ppear vy With respect to
the massive Gaussian free field 11, with the uniformly (in N) bounded density Ry < 1.)
This concludes the proof of Theorem 1.6.

6. Hyperbolic Liouville Equation

In this section, we study the stochastic damped nonlinear wave equation (1.2) with the
exponential nonlinearity. We restrict our attention to the defocusing case (A > 0).

6.1. Local well-posedness of SANLW. In this subsection, we present a proof of Theo-
rem 1.15 on local well-posedness of the system (1.56):

X)) =o1(X,Y)

. t t—t
Ly / S — )P BT O) (1)ar
0

(6.1)
Y(t) = &r(X,Y)
t 7
Y / (DG~ 1) = e~ T S — 1)) (P F(BX)ePY @) (1har .
0

where F is as in (1.49) and O is a positive distribution in L? ([0, 1]; W %7 (T?)) with
aand 1 < p < %—’; satisfying (1.41). Here, D(¢) and S(¢) are the linear propagators
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defined in (1.32) and (1.55) and z denotes the linear solution in (1.52) with initial data
(vo, v1) € H*(T?) for some s > 1.

We prove local well-posedness of (6.1) by a contraction argument for (X,Y) €
X;' x Y77, where the Strichartz type spaces X' and Y;? are defined in (1.57) and (1.58)
for some le <5 < % and 1 < sp < 2 (to be chosen later). See also (2.16). In the
following, we fix the following sj-admissible pair (g, r) and dual sj-admissible pair
(¢, 7) (see Definition 2.7 for (dual) admissible pairs):

36 36
5 = ) d N, = 5 . 6.2
@n <s1 3—4s1) and(@.7) (2+s1 7—4s1> 62

Wealso fix p > 2,0 <o <min(s;, 1 —s1) < 1,1 <g<q1 <2<¢g <q <00,
and 1 <7 <7 <2 <r <r < oo, satisfying the following constraints: (i) For the
interpolation lemma (Lemma 2.9):

I l—ot/sl+a/s1 I 1—0(/S1+Ol/S1
q1 q 00 r r 27 63)
1 _1—0l/(1—S1)+01/(1—31) 1 1—0t/(1—S1)+06/(1—Sl) )
o q R v 2
(i1) For Lemmas 2.13 (ii) and 2.14:
1 1 1
<42 6.4)
rn p_r; 2
(iii) For Holder’s inequality in time ||fg||Lq~1 <7f A1l o IIgIILg for some 6 > 0:
T T
1 1 1
—t+— < =, (6.5)
q p q1
(iv) For Sobolev’s inequality W= (T2) ¢ H272(T?):
2 —s5p) — 1 1
TR -2 (6.6)

2 -7 2

The constraints (i)—(iv) allow us to prove local well-posedness of the system (6.1).
We aim to obtain the best possible range 0 < 2 < ,B\%ave under the constraint (1.41)
from Proposition 1.12:

/32
oz (p—DH=e, (6.7)
4
First, note that from (6.3) with (6.2), % — 7]1- depends only on «, not on s7. Then, by

saturating (6.4) in the constraint (ii) above and substituting % -4 = %a — %, we obtain

r1
o in terms of p, which reduces (6.7) to

3+4/3
2

The right-hand side is maximized when p = ~ 2.37, giving

32 - 1643
B2 = 2-16v3 o g6r.

wave 5
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Thisinturnimpliese = (p—1) % = 2‘[% As for the other parameters, we have free-
dom to take any s; € [@, | — o] which determines the values of ¢, r, 1,71, 4,7, q1,T1.
In the following, we set s; = 1 — o (which gives the best regularity for X). For the sake
of concreteness, we choose the following parameters:

) 32 -16V3 3+4/3 23 -2
ﬂwavezTT[’ P = 7 O‘:Tv
S1=1—Ot, S2=Sl+1,
15 15 _
=—’ 1=—7 1= 9
W N=9"4p3 1
30 30 o ©5)
y= =, ry = —— 5 ry = 4. .
83 — 13 " 6v3 21 :

We point out that the constraints (6.5) and (6.6) are satisfied with this choice of param-
eters.

Proof of Theorem 1.15. Let0 < T < 1and B C X' x Y7 denotes the ball of radius
O (1) centered at the origin. We set

K =)o, vl and R =101, e
for (vg, v1) € H*(T?) for some s > 1 and a positive distribution ® € L” ([0, 1]; W %7
(T%)).

e Step 1: Let (X,Y) € B C X;' x V7. By the Strichartz estimate (Lemma 2.8) with
the definitions (2.16) and (2.17) of the Strichartz space X;' and the dual space N},
Lemma 2.9, and Holder’s inequality (with 71, g1 < 2 < p in view of (6.8)), we have

I@1(X, V)l S ||eﬁZF(/3X)eﬂy®”N;l

S ||eﬁZ F(BX)ef’ 0 ”L? o 6.9)

ST P F(BX)P O 1y

for some 6 > 0.

As in the parabolic case, we would like to exploit the positivity of ® and apply
Lemma 2.14 at this point. Unlike the parabolic case, however, the function X does not
have sufficient regularity in order to apply Lemma 2.14 (i). Namely, we do not know if
X (t) is continuous (in x) for almost every ¢ € [0, T']. We instead rely on the hypothesis
(i1) in Lemma 2.14.

In the following discussion, we only discuss spatial regularities holding for almost
every ¢t € [0, T]. For simplicity, we suppress the time dependence. If we have

P F(BX)PY € W (T?) (6.10)

for some roy < ry sufficiently close to ry, then the condition (6.4) guarantees the hypoth-
esis (ii) in Lemma 2.14:

L N 6.11)
—+— —+=|+te<l+= )
72 2
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for some small & > 0, since 7] > 1. We now verify (6.10). The fractional Leibniz rule

(Lemma 2.13 (1)) with % = % + % for some large but finite r, yields

|e/3(z+Y)

|7 F(BX)ePY [ yyaro < IFBX) gy
+IFBX)N,

L2

eﬁ(z+Y) H o (6.12)

Recall that F' is Lipschitz. Hence, by the fractional chain rules (Lemma 2.15 (1)), we
have

IFBX)yen ~ IFBXln + [ IVI*F(BX)]

S T+]X | yen < oo,

L (6.13)

since Lemma 2.9 (i) ensures that X € W% (T?). Similarly, by the fractional chain rule
(Lemma 2.15 (i1)), we have

e arp ™~ z r + e
e g ~ e g [r91eescn?

+ L
< eClIHY g | ||e/3(z+Y)| L IVI*(z+7Y) L (6.14)

Cllz+Y
< Ol |\H;+s(1+||z+y||Hx1) < 00

for some large but finite 73 and small ¢ > 0, since z € H* (T?) and Y € H*2(T?) with

s, s> > 1. In the last step, we used Sobolev’s inequality 1_7“ > % - rlh—s’ which is

guaranteed from (6.8):

o 1
- < — 6.15
2 = r ( )

and choosing ¢ > 0 sufficiently small. Putting (6.12), (6.13), and (6.14), we see that
(6.10) is satisfied for almost every ¢ € [0, T].
By applying Lemma 2.14 to (6.9), we have

11X, V) S TP F(BX)eP || o 11O p gy

Cllz+Y || 00

Tox ||@||L¥ . (6.16)

<71%
< T9eCKR.

Next, by applying Lemma 2.6, Sobolev’s inequality with (6.6) and p > 7}, and
proceeding as in (6.16), we have

192X Dllyz 5 [ FBXLTO] oz
ST P F(BX)PY O oW (6.17)
< T9.CKR.

By choosing T = T (K, R) > 0 sufficiently small, the estimates (6.16) and (6.17)
show boundedness of ® = (@1, ;) on the ball B C X;' x V7.
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e Step 2: Next, we establish difference estimates. Let (X1, Y1), (X2,Y2) € B C X;l X
YV;?. Write
(X1, Y1) — (X2, ¥2)ll 1,y
= 1P1(X1, Y1) — @1(X2, YDl o + [ @2(X1, Y1) — @2(X2, V)l
+P1(X2, Y1) — P1(X2, Vo)l yor + [[@2(X2, Y1) — P2(X2, V)l

(6.18)
=:1;+ I,+1I; +1I,.
Recall from (5.15) and (5.16) that
F(pX1) — F(BX2) = B(X1 — X2)G (X1, X2).

Then, by the Strichartz estimate (Lemma 2.8), Lemma 2.9 (ii), and Lemma 2.13 (ii), we
have

L1 S [ (F(BX1) — F(BX2)e O]
< e (X1 = X2)G (X1 X2)ePM0]| 31 s

ST = X e

G (X1, X2)eP O] 1y,

provided that
+ & (6.19)
2’ '

which are precisely the constraints (6.5) and (6.4). Then, applying Lemma 2.14 as in
(6.16) along with the boundedness of G, we obtain

I S TN RIX1 = Xall o (6.20)

where we also used Lemma 2.9 (i) to estimate the norm of X — X». Asfor 1, Lemma 2.6
and Sobolev’s inequality with (6.6) yield

I < [ (X1 = X2)G (X1, X0)eP 0] na
T X
< e (x1 - X2)G (X1, XZ)eﬁY1®||L1 W
T"Wx
Then, proceeding as above, we obtain

I, <T9CKR|X, = Xall - 6.21)

As for IIj, by Lemmas 2.8 and 2.9 (ii), the fundamental theorem of calculus (as
in (5.15) and (5.16)), Lemma 2.13 (ii) with (6.19), and then proceeding as in (6.16) with
Lemma 2.14, we have
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I < ||ePF(BX2) (PN — eP)O 4y -omi

q1
Liw

<

1
PTF(BXo)(Y) — Yz)f exp (Y1 + (1 — 1)BY2)dt - ©
0

—a,7]
x

q1
Li'w

1
STO|Y - Y, ||L;1 e eﬂZF(ﬁxz)/ exp (tBY) + (1 — 1)BY2)dt - ©
* 0

LEw P
< T9CKR|Y, — Vallys. (6.22)

In the last step, we use the embedding H*2(T?) C W%’ (T?), which is guaranteed
by (6.15) and 5o > 1. Similarly, by applying Lemma 2.6 and Sobolev’s inequality with
(6.6) and proceeding as in (6.22), we have

I < [|e#*F(BXy)(efM — e’sYZ)@”L1 .
T Wx

(6.23)
STk R|Y) — Vallyse.

From Step 1, (6.18), (6.20), (6.21), (6.22), and (6.23), we conclude that ® = (D1, D)
is a contraction on the ball B C X;l X y;z, thus establishing local well-posedness of
(6.1).
e Step 3: Continuous dependence of the solution (X, Y) on initial data (vg, vy) easily
follows from the argument in Step 2. Hence, it remains to prove continuous dependence
of the solution (X, Y) on the “noise” term ®.

Let (X, Y;) € B C X;' x Y7 be solutions to (6.1) with a noise term O, j = 1, 2.
In estimating the difference, we can apply the argument in Step 2 to handle all the terms
except for the following two terms:

t t—t/
/ TS~ 1) (P F(BX ) (@) — ©2) (1)
0

S1
XT

+

t 4
/ (Dt —1') — e 7 St — 1)) (P F(BX1)eP"1 (0 — ©2))(t)dr’
0

VP
=: 1II; + 11L,.

The main point is that the difference ®; — ®; does not enjoy positivity and hence we
can not apply Lemma 2.14.
Let ro < ry sufficiently close to ry, satisfying (6.11):

1 1-
ro p

< -+ (6.24)

Y =
N R

By the Strichartz estimate (Lemma 2.8), Lemma 2.9 (ii), and Lemma 2.13 (ii) with (6.24),
we have

L < [ F(BX1)eP (01 — )

—a,7]

Liw,
0 . Y
ST F XD | Lo yen|O1 = Ol
L

7 "x
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Then, applying (6.12), (6.13), and (6.14) along with Holder’s inequality in time and
Sobolev’s inequality, we obtain

L < 77K 1+ K) 101 — O], p-as2er.
T "X

Thanks to Lemma 2.6 and the embedding L7 ([0, T]; W~%71(T2)) c L'([0, T]; H*>"2
(T?)) (see (6.6)), the second term III, can be handled in an analogous manner.

Let0 < B2 < :3v2vave- Then, the pair (o, p) in (6.8) satisfies the condition (1.41). Then,
by taking ¢ > O sufficiently small, we see that the pair (¢ — 2e, p) also satisfies the
condition (1.41). Hence, as ©, tends to @ in LP ([0, 1]; W~%*26-P(T2)), we conclude
that III; + III, — 0, establishing the continuity of the solution map (vg, ®) — (X, Y).

This completes the proof of Theorem 1.15. O

6.2. Almost sure global well-posedness and invariance of the Gibbs measure. In this
subsection, we briefly discuss a proof of Theorem 1.9. As mentioned in Sect. 1, the
well-posedness result of Theorem 1.15 proved in the previous subsection is only local
in time and hence we need to apply Bourgain’s invariant measure argument [9,10] to
extend the dynamics globally in time almost surely with respect to the Gibbs measure
Pwave and then show invariance of the Gibbs measure pyave-

Given N € N, we consider the following truncated SANLW:

(6.25)

d2un + duy + (1 — Auy + ABCyQuePUuN = \/2¢
(uy, dun)li=0 = (Qnwo, Qnwy),

where Qy isasin (1.16) and (wq, wy) is asin (1.8). Namely, Law (wq, wi) = u1 ®,u0.17
By writing uy = Xy + Yy + W, where ¥ = WW%"¢ js as in (1.36), we have

Xn(t) = —1B fol TS — 1)Qy (PN XN QNN @ ) (1)at,
Yn(t) = —AB /O l (D@t —1) - e—('_T’/)S(r — 1)) Qu (P XN PUINQ ) ()dt.
By the positivity of the smoothing operator Qx, X enjoys the sign-definite structure:
BQy Xy = —1f° /0 s 0@, (PUXNPUING ) (i)t < 0,

thanks to & > 0 and the positivity of the linear wave propagator S(¢) (Lemma 2.5).
Hence, it is enough to consider

t ’
Xn(t) = —1B / e T8t — )YQu (F(BQy X )P @) (1ar,
0

13 !
Y () = =B /0 (D(t — 1) — e 77 5t — 1)) Qu (F(BQw X )PV W O ) (),
(6.26)

17 In view of the equivalence of 11 ® g and the Gibbs measure pwave in (1.23), it suffices to study (6.25)
with the initial data distributed by 111 ® pg.
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where F is as in (1.49).

In view of the uniform (in N') boundedness of Qi on L?(T?),1 < p < 0o, we can ar-
gue as in Sect. 6.1 to prove local well-posedness of the system (6.26) in a uniform manner
forany N € N. In order to prove convergence of the solution ((X N, 0: XNn), YN, 0 YN))
to (6.26) towards the solution ((X ,0:X), (Y, B,Y)) of the untruncated dynamics (6.1),
we can repeat the argument in Step 3 of the previous subsection to estimate the difference
between ((XN, 0 Xn), (Yn, atYN)) and ((X, 9 X), (Y, B,Y)). As in Sect. 5.2, we need
to estimate the terms with Qy — Id:

t —t
/0 e 778 — 1)(Qu — 1) (F(BQu Xy )eP ¥ @) (t')dr’

S1
2C‘T

t ’
+ /(D(t—t/)—e_wTI)S(t—t/))(QN—Id)(F(ﬁQNXN)eﬂQNYN@N)(t/)dt/
0

T

= IV +1V,.

The property (5.25) of Qy allows us to gain a negative power of N at a slight expense
of regularity. By a slight modification of the argument from the previous subsection (see
(6.16)), we have

V1 S | (Qu — 10)(F(BQu Xme @M 0y)|

SN FBQnXn)e’ DN ey [ 1 oo (6.27)
S T0N7€ exp (C“YN”L%OH;Z) H@N ||L;W;a+s,p.

Note that by choosing & > 0 sufficiently small, the range 0 < 2 < 2., does not

change even when we replace —« in (6.16) by —« + € in (6.27). Similarly, we have
V2 S TN~ exp (C1Yy | ) €] LW (6.28)

The estimates (6.27) and (6.28) combined with the argument in the previous sub-
section allows us to prove the desired convergence of ((X N, 0 Xn), Yy, 0/ Y N)) to

((X ,01X), (Y, 0,Y )). The rest of the argument follows from applying Bourgain’s invari-
ant measure argument [9,10]. Since it is standard, we omit details. See, for example,
[15,37,59,60,65,77] for details.
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Appendix A. On Local Well-Posedness of SNLH Without Using the Positivity
In this appendix, we revisit the fixed point problem (4.4) for SNLH:
v = Dy 0(v), (A.1)

where the map ® = @, ¢ isdefinedin (4.2). In Sects. 4 and 5, we studied this problem by
exploiting the positivity of ® and furthermore the sign-definite structure of the equation
when A > 0. In the following, we study (4.4) for general A € R\ {0} and present a
simple contraction argument without using any positivity of © for the range 0 < 2 <
‘—3‘71 2~ 1.33x. This simple argument provides Lipschitz dependence of a solution on
initial data vo and noise .

LetO0 < o < 1 and p > 2 such that

Sooo 1 2

pl=+—) <1 ad O<oa=<-—. (A.2)

2
4 14

Theorem A.l. Leta, p be as above. Then, given any vy € Hlte (Tz) and® € LP(]0, 1];

WP (T?)) for some small ¢ > 0, there exist T = T(”U()”Loo, ||(~)||L,,([0 1]_Wfot.p)) >0

and a unique solution v € C([0, T]; W& a (T?)) to (A.1), depending continuously on
the initial data v and the noise ©.

In view of Proposition 1.12 on the regularity of the Gaussian multiplicative chaos © y,
we see that Theorem A.1 provides local well-posedness of SNLH (1.45) for the range:

.1 2

4 min(—-,1— =

0<p< e < 8m (p p)
p—1 p—1

)

where we used both of the inequalities in (A.2). Hence, optimizing

(155 2856 )
min { max ———, max —— |,
p=3 p(p—1) 2=p=3 p(p— 1)
4

we find that the maximum is attained at p = 3, which gives the range 0 < 8% < 3T,

With p = 3, we can take o = % — ¢ for some small ¢ > 0 such that (A.2) is satisfied.

We point out that our argument requires the initial data vy to belong to a smaller space
Hl+e (TZ) C LOO(TZ).

Proof of Theorem A.1. Fix small ¢ > 0 such that

Sfoa+e 1
P\—*- < 1. (A.3)
p
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Givenvy € H*¢(T?) and ® € L?([0, 1]; W“’"l’(Tz)),Weconsiderthemazp<I> =dy0
defined in (4.2) and set z = P(f)vg as in (1.44). Let B C C([0, T]; W**a (T2)) be the
ball of radius O (1) centered at the origin and set

K =lvllgi+e and R =[O|Lrqo,1;; w-er)-

LetO0 < T < 1. By the Schauder estimate (Lemma 2.4) with g > p (as guaranteed
1

in (A.2)), Lemma 2.13 (ii) w1th -+ 2/—a =-+9 5, and Holder’s mequahty in time with
(A.3), we have
LICTIRPERS H / (0 =) TG [P0 | erdr!

r ate 1
SN el f =) F N0 ywrdt A
L?‘OW’C.Q 0 x

ST |z 1Oy
T

for some 6 > 0. By the fractional chain rule (Lemma 2.15 (ii)) and the Sobolev embed-
dings:

H1+8(T2) C WOH-E’D%(TZ) N LOO(TZ)

(A.5)
Were 3 (T2) ¢ W (T2) N L®(T2),
we have
e PR e I (L]
LPW,' @ LPLY LOOL“
< ec||z+v\|L;fx + ||eﬁ(z+v) ” 2 ” IV (z + v)|| 2
L (A.6)
< exp (C(lluoll e + ||v||L%QW3H%))
x (1+ lvoll grse + 1] ;)
L¥wW, ¢
Hence, from (A.4) and (A.6), we have
[e@)] 2 ST KU+ KOR (A7)

Cr Wy

for any v € B.
Proceeding as in (A.4), we have

Iew) = WDl o2 ST PP =) 2118l pyar.  (A8)
Cr Wy ¢ L;“OW)C “ T
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By (4.7), the fractional Leibniz rule (Lemma 2.13 (i)), followed by the fractional chain
rule as in (A.6), we have

”eﬁZ(eﬂvl _ eﬂvz)H W2
LW, @

Clllvilizge +lvallpoo )
S L R e L A
LW, ‘a—e/2 T.x
7 Wx
Clizll Lo Cllvtligee +llv2llzoe )
T, — T.x T,
e x{nvl vl ekl e (A.9)
T "x
1
+|lvg —v exp (tBv1 + (1 — 1)Burr)dr
o) Z”L%/o p(thur+ (1= 1)pw2) meﬁj}
X
K
< e (1+K)(||U1_U2||L‘;°X+”Ul—U2|| a,i)
B LE}O oa—e

for any vy, v» € B. Hence, from (A.8) and (A.9) with (A.5), we have

@) =PI a2 ST KA+ KRV —vall .2 (A.10)
CTWx « L%o x o

for any vy, vy € B.
From (A.7) and (A.10), a contraction argument yields a solution map:

(v0, ©) € H™(T2) x LP([0, 1]; WP (T2)) —> v € C([0, T]; W& (T))
for some T = T(||vo||H1+e, ||®||L1,([O 1],W—a,p)) € (0, 1], where v is the unique fixed
point of ®,,, @ intheball B C C([0, T1; W"‘”’%(Tz)). As for the Lipschitz dependence

of the solution map on ®, if we take ®1, ®> € LP([0, 1]; W=*? (T2)), then in estimating

the difference @y, 0, (v1) — Pyy,0,(v2) forvy, v2 € B C C([0, T1; W““"%(’]I‘z)), there
is one additional term of the form:

t
/ Pt — t/)(eﬁzeﬂ”‘ (©1 — O))(t"dr'.
0

By proceeding as in (A.4) and (A.6), we can bound this additional term as

a+e 2

Crw, ¥
S TgeCK(l + K)“@l - ®2”L¥W\'_a‘p'

13
H / P(t — 1) (eP2eP1(0) — ©))(t)dl’
0

This completes the proof of Theorem A.1. O

Appendix B. Moment Bounds for the Gaussian Multiplicative Chaos

In this last section, we give a proof of Lemma 3.5 on the uniform boundedness of the
moments of the random measure My (f) in (3.6). We mainly follow the arguments in
[7,72].

First of all, in view of the positivity of ®y (¢), it suffices to prove Lemma 3.5 with
A = T2. Moreover, the bound for p = 1 being a consequence of Proposition 3.2 (i), we
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may assume p > 1. We start by fixing some large number K >> 1,independentof N € N,
and we partition T? ~ [—, rr)zintocubeka[ _x,f,d+[ z 1)2 k.t=1,...,K

of side length 27 K ! centered at xk ¢ = ( -+ —(k -1, -7+ —(E )) e T2
We then group these into four families of cubes:

K

K
My (t, T?) = / On(t, x)dx + Z / On(t, x)dx
Ckg Che

k =1 A=
k even, £ even k even, £ odd

+ / Opn, x)dx +
Ch.e

/ On(t, x)dx
k.t=1 k=1 YCke
k odd, £ even k odd, £ odd

= MP@e)+ M2+ MO 1) + MP0).

It follows from the (spatial) translation invariance of the law of Wy (¢, -) that M%)(t),
j =1,...,4, have the same law. Hence, by Minkowski’s inequality, we have

E[ My, 7] = CE[MP . T)7].

In order to estimate the last expectation, we proceed as in Step 1 of the proof of Propo-
sition 3.6. Namely, by a change of variables and a Riemann sum approximation, we
have

E[Mgvl)(mrz)p]zla[( i K2A2®N(taxlfé+K1y)dy>pi|

k,0=1
k even, £ even

; E[( T 4x? K (=2, BN xfﬁKlX:/_)_ﬁ;gN)p}
= hm — e Tk, i .
Z 2 Z
I ij=1 7 k=1

k even, £ even

Using Lemma 3.1, we can bound the covariance function by

IE[\IJN(t,xg’Zl K7 Uy xf v K ]2)]
K K 1 J
= FN(t’ xk],f] xkz 1% + K~ ('xll g1 'xiz,jz)) (Bl)
1
S—Elogox,f’el xk2(2+K "o/ . — )|+N >+C

i1 12 J2

for some constant C > 0 independent of J, K, and N. When (k{, 1) = (ka, £2), we
thus have the bound

IE[\IJN(t,x/f,el +K Xiy, /1)qlN(t xkz ot KX, /2):|

1 | 1

< —Zlogﬂx“ P J2|+(K N+ o —logK +C (B.2)
1 1

< ——log(lx{ ; — |+ N7') + —logK +C.
27T 1,J1 l2 J2 27
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See also (3.10). In the case (k1, £1) # (ka, £2), we first note that |x,§ 0 xk2 [2| >2. 2”

since ki, k2, £1, £» are all even. Then, with the trivial bound |x | < <2 271

inji lz i
we have

)| =@ - f)— (B.3)

K 1
|xk1,€1 xkz 2% K- (xll i 12 J2

Thus, from (B.1) and (B.3), we have

1
B[ xf p, + K] )Un @l + K7 )] < sologK+C (B4

Hence, from (B.2) and (B.4), we obtain
E[\IJN(t,x,fjl K7 U v K n)]
< ]E[(WN,kl,zl (. x} ;) +hi) (VN kot (X7 ) + hK)]

where Yy i ¢ are some independent'® copies of Wy and Ak is a mean-zero Gaussian
random variable with variance % log K + C independent from ¥y x ¢.

By applying Kahane’s convexity inequality (Lemma 3.4) and using the independence
of hg from Yy k¢ with E[h 1=5- log K + C, we have

E[M{ 0, T)7]

J K
< lim E|:( Z 47272 Z K*Zeﬁ(llfzv,k,z(t,xi{j)+h1<)—*(oN+]E[h§<])) ]

J—00 =
i,j=1 k=1
k even, £ even

K

82 2 52 »
:E[( Z KfzeﬂhK*TE[hK]/ eﬁlﬁN,k_g(l,y)—TgNdy) i|
k=1 TZ
k even, £ even
K
2 g2 P )
=K —me[( 2, K7 / eﬁw’k’w’””‘wdy” (B.5)
T
k,t=1

k even, ¢ even
for some constant C > 0 independent of K and N.
It then remains to bound the expectation in (B.5). Let m > 2 be an integer such that
m — 1 < p < m. Then, by the embedding Elﬁ C ¢!, we have

K
8 P
IE|:< Z K2 /Tz eﬂ‘pN,k,é(tay)—TUNdy) ]

k=1
k even, £ even

¢ 25 BYUN ke (t y)*ﬁmv kK
S| 8 e[ et

k,0=1
k even, £ even

=:E[Ak].

(B.6)

18 1n particular, we have E[yy x, ¢, (7, "z, “)WN k. 0o (T, x! )] = 0 when (ky, £1) # (kp, €3).

i2.J2
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We divide Ak into two pieces:
K

Ag = Z KZPIE|:</ PN ket )= GNdy) ]
T2
k,0=1
k even, £ even
m 2 P B.7)
3 ([ ]
kLA, j=1 T
_. A (2)
= Ay + Ay,
where the index set A, is given by
Am = {k,0) = ki, ..., km.l1,....tn) €{1,..., K} kj, £ even, (kj, £;) not all equal}.

Since ¥y k¢ are identically distributed, we can bound the diagonal term by
E[AY] = K2 2E[ My, T . (B.8)

As for the second sum Ag) in (B.7), grouping the terms with the same values of (k, £)
together, each term within the sum can be written in the form

E[ﬁ(ﬁrz BYNkj.0; ()= GNd)~f'I:'i| (B.9)

j=1
for some n < m and some a; € {0,...,m — 1} such that Z?:l aj = mand (kj, £;),
j =1,...,n, are all distinct. Noting that ¥ ¢ are independent and identically dis-

tributed, it follows from Holder’s inequality with a; % <m — 1 that

n
(B.9) < HE[(/ eﬂwN,kj,zj(t,y)Bzngdy>“j;,:,i|
- . T2
j=l1
- 82 m—171% m=
< HE (/ eﬁTIfN,kj.@j(t,y)—ToNdy>
= i1 -

I D a-#
:E[<[ ﬁ‘kal L y)— oNdy)m 1] J=1 %) m(m=T1)
T

_P
= E[ My, "™
Putting (B.5), (B.6), (B.7), (B.8), and (B.10) together, we obtain
2
E[ My, T)7] < CKW P - K22PE[ My, TP |+ Ch uE [MN(t T?)" ‘]’” "

(B.10)

Under the assumption'® that 1 < p < the exponent (p? — p) mt2-2p =

ﬂz’

(% p— 2) (p — 1) of K in the first term on the right-hand side above is negative. Hence,

by taking K > 1 (independent of N), we arrive at the bound:
p
E[ My (@, T)?] < CuB[ My, T, (B.11)

19 Recall that we assume p > 1in view of Proposition 3.2 (i).
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uniformly in N € N.

‘We now conclude the proof of Lemma 3.5 by inductiononm > 2 withm—1 < p < m.
When m = 2, i.e. p € (1, 2], the conclusion of Lemma 3.5 follows from (B.11) and
Proposition 3.2 (i). Now, given an integer m > 3, assume that Lemma 3.5 holds for all

l<p<m-1Fixl<p< %—Z such thatm — 1 < p < m. Then, from (B.11) and the
inductive hypothesis, we have

P
sup E[MNO,TZ)”] < sup CmIE[/\/lN(t,’}1‘2)’"—1]’”*l < oo.
teR,NeN teR,NeN

Therefore, by induction, we conclude the proof of Lemma 3.5.
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