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a b s t r a c t

The interplay between structure and function affects the emerging properties of many natural systems.
Here we use an adaptive neural network model that couples activity and topological dynamics
and reproduces the experimental temporal profiles of synaptic density observed in the brain. We
prove that the existence of a transient period of relatively high synaptic connectivity is critical for
the development of the system under noise circumstances, such that the resulting network can
recover stored memories. Moreover, we show that intermediate synaptic densities provide optimal
developmental paths with minimum energy consumption, and that ultimately it is the transient
heterogeneity in the network that determines its evolution. These results could explain why the
pruning curves observed in actual brain areas present their characteristic temporal profiles and they
also suggest new design strategies to build biologically inspired neural networks with particular
information processing capabilities.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Complex networks are ubiquitous in nature: almost every bio-
ogical and social system, as well as many man-made structures,
evelop intricate relations among its components, resulting in
network configuration that is usually far from being homo-
eneous (Barabási & Albert, 1999; Boccaletti, Latora, Moreno,
havez, & Hwang, 2006; Newman, 2018). Research on com-
lex networks has received a tremendous amount of attention
ver recent decades, in order both to understand natural net-
orks and to optimize technical designs. Most studied networks
ave thus been shown to present non-trivial topological fea-
ures, such as high clustering and short minimum paths (small-
orldness), modular structure, and cost-efficient wiring (Albert,
005; Eguíluz, Chialvo, Cecchi, Baliki, & Apkarian, 2005; Gastner
Ódor, 2016). Recurrent common properties are also a highly

eterogeneous degree distribution (where the degree of a node
s its number of neighbours) and, often, negative degree–degree
orrelations — a property known as disassortativity (Johnson, Tor-
es, Marro, & Muñoz, 2011; Ódor, 2013; Piraveenan, Prokopenko,
Zomaya, 2008). In other words, many networks of interest

nclude a small number of highly connected nodes, called hubs,
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893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
which tend to be connected to low-degree nodes (Achard, Sal-
vador, Whitcher, Suckling, & Bullmore, 2006; Crossley et al., 2014;
Newman, 2003). These structural properties influence the emerg-
ing dynamics on the network. For instance, degree heterogeneity
and degree–degree correlations strongly influence the signal to
noise ratio in certain dynamical systems (de Franciscis, Johnson,
& Torres, 2011; Marro & Torres, 2021; Maslov & Sneppen, 2002;
Ódor & Hartmann, 2018; Schmidt, LaFleur, de Reus, van den Berg,
& van den Heuvel, 2015; Torres, Muñoz, Marro, & Garrido, 2004),
and the synchronization and diffusive properties of a complex
network strongly depend on its dimensionality (Millán, Gori,
Battiston, Enss, & Defenu, 2021; Millán, Torres and Bianconi,
2018, 2019), to name a few examples (Barrat, Barthelemy, &
Vespignani, 2008).

In order to understand how such non-trivial networked struc-
tures come about, much work has gone into investigating mech-
anisms of network evolution. Models in which networks are
gradually formed, for instance by the addition and/or deletion
of nodes and links, or by the rewiring of the latter, have been
studied in various contexts (Barabási & Albert, 1999; Berg, Lässig,
& Wagner, 2004; Bianconi & Rahmede, 2016; Johnson, Torres, &
Marro, 2009; Navlakha, Barth, & Bar-Joseph, 2015). Certain evolu-
tion rules have thus been shown to generate network topologies
with particular properties, such as small-world, scale-free, or
hierarchical-modular structures (Barabási & Albert, 1999; Bian-
coni, Darst, Iacovacci, & Fortunato, 2014; Bianconi & Rahmede,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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016; Millán et al., 2021; Watts & Strogatz, 1998). These rules of-
en give rise to phase transitions, such that qualitatively different
inds of network topologies can ensue depending on parame-
ers (Albert, 2005; Newman, 2003). In most studied networks
he evolution of the topology is invariably linked to the state of
he network and vice versa (Gross & Blasius, 2007), which has
iven rise to a novel field of study: adaptive or co-evolving net-
orks (Sayama et al., 2013). The coupling between form and func-
ion creates a feedback loop between dynamics and topology, and
ields some interesting dynamic phenomena, such as the forma-
ion of complex topologies, robust dynamical self-organization,
nd spontaneous emergence of different classes of nodes (Su,
uan, Guan, & Liu, 2013; Vazquez, Eguíluz, & San Miguel, 2008;
iedermann, Donges, Heitzig, Lucht, & Kurths, 2015).
Co-evolving models can be naturally applied to study brain

evelopment. The mammalian brain is initially formed through
n initial rapid proliferation of synapses. Synaptic density thus
eaches a peak during early infancy and from then on it begins
steady decline down to about half this value later in life, in a
rocess known as synaptic pruning (Chechik, Meilijson, & Ruppin,
998; Iglesias, Eriksson, Grize, Tomassini, & Villa, 2005). It is
elieved that the reason for reducing synaptic density is becom-
ng more energetically efficient (Chechik, Meilijson, & Ruppin,
999; Stepanyants, Hof, & Chklovskii, 2002). But then a question
rises, why not begin life with the optimal synaptic density?
ecent studies have suggested that details of synaptic pruning
ay have large implications on high-level brain functions, and

hey have been related to the emergence of some neurological
isorders such as autism and schizophrenia (Faludi & Mirnics,
011; Sayama et al., 2014). Similarly, a high synaptic density
uring infancy would allow for faster learning during this critical
eriod (Knoblauch, 2017; Knoblauch, Körner, Körner, & Som-
er, 2014; Knoblauch & Sommer, 2016). However, little is so

ar known about the influence of particular pruning profiles –
escribing the change in synaptic density over time – on cognitive
evelopment.
Here we consider a computational model of synaptic pruning

hat includes an initial transient period of high synaptic density,
nd may thus serve to analyse what factors affect both pruning ef-
icacy and the structural and memory properties of the developed
etwork. Our model adapts a biologically inspired co-evolving
eural network model (Millán, Torres, Johnson and Marro, 2018;
illán, Torres and Marro, 2019) in which a feedback loop emerges
etween structure and dynamics, leading to two qualitatively
ifferent kinds of behaviours (Millán, Torres, Johnson et al., 2018;
illán, Torres, Marro, 2019): the network structure can become
eterogeneous and disassortative, and display good memory sta-
ility, or the structure may remain homogeneous and incapable
f memory retrieval. Here we show that the inclusion of an initial,
ransient period of relatively high synaptic density, even in a
imple case, introduces a dependence of the evolution of the
ystem on the initial synaptic density. This can, under certain cir-
umstances, lead towards an increased memory stability, even in
he presence of high levels of noise. Since our co-evolving system
ouples neuronal dynamics and network development, memory
tability strongly depends on the features of the developing net-
ork and mainly on its level of heterogeneity. Moreover, we
how that this mechanism is robust with respect to some of
he details of the model. The basic mechanism which illustrates
ur model here need not be restricted to neural networks, but
ay help understanding how other structures form. For instance,
rotein interaction networks also change in evolutionary time
cales in a way that is related to their physiological activity (Berg
t al., 2004). In fact, as is the case of our model, most biological
etworks change with time so that pruning may be a general

echanism for network optimization trying to minimize energy T

45
consumption in an environment of limited resources without the
need for a great amount of information specifying the initial
topology. Moreover, this optimization strategy could also be of
use for technical applications, allowing, e.g., the design of partic-
ular network architectures of artificial neural networks that are
optimal for the realization of particular tasks.

2. Synaptic pruning model

In this work we make use of a previously defined mathe-
matical framework to describe synaptic pruning (Johnson, Torres,
Marro and Muñoz, 2010; Millán, Torres, Johnson et al., 2018).
The model defines an evolving network on top of which a neu-
ronal activity model runs. This model was previously shown to
reproduce several aspects of brain networks, including a realistic
pruning profile during development (Huttenlocher & Dabholkar,
1997; Johnson, Marro and Torres, 2010; Millán, Torres, Johnson
et al., 2018; Navlakha et al., 2015) and a realistic scale-free degree
distribution with an exponent between −2 and −3, as commonly
bserved experimentally (Eguíluz et al., 2005; Gastner & Ódor,
016), with the emergence of hubs (Crossley et al., 2014; Stam,
010). As we describe in detail below, the network backbone
ntrinsically affects neuronal dynamics through the structure of
onnections. In turn, the evolution of the network depends also
n the activity state of the neurons through the synaptic currents.
n this way, we define a co-evolving model in which the network
tructure (or form) and the neuronal activity (or function) are
oupled.
Overall, the system consists of an undirected N-node network

hose links change at discrete times. The neuronal model con-
ists of an autoassociative Amari–Hopfield model (Amit, 1989),
hereas network evolution is characterized by a preferential at-
achment mechanism (Johnson, Marro et al., 2010; Millán, Torres,
ohnson et al., 2018; Millán, Torres, Marro, 2019). There is an
mplicit separation of time-scales in the model as node dynamics
s considered to be much faster than link dynamics. In this man-
er, the network backbone is fixed during neuronal dynamics. In
he following, we refer with t to the time-scale of link dynamics,
nd with τ to the time-scale of neuronal activity, in between link
hanges.
At time t , the adjacency matrix is {eij(t)}, i, j = 1, . . . ,N ,

ii(t) = 0, ∀t , with element 1 or 0 according to whether there
xists or not a link between the pair of nodes (i, j), respectively.
he degree of node i at time t , indicating its number of links (and

thus neighbouring nodes), is ki(t) =
∑N

j eij(t), and the mean
egree of the network – or connectivity – is

(t) = N−1
N∑
i

ki(t). (1)

(t) thus indicates the average number of links per node in
he network. Given that the network is undirected, κ(t)N =

N
i=1

∑N
j=1 eij(t) is twice the total number of links (or synapses)

n the network. The synaptic density is thus ρ(t) ≡ κ(t)N/(2V ),
with V the total volume considered (Johnson, Marro et al., 2010).
We define κ∞ = κ(t → ∞) as the mean degree of the network
n the stationary limit.

.1. Neuronal activity model

Neuronal dynamics is defined following the canonical defi-
ition of the Amari–Hopfield model and Hebbian synapses, in
ine with a large number of previous studies (Amari, 1972; Amit,
989; de Franciscis et al., 2011; Hebb, 2005; Hopfield, 1982;
orelli, Abramson, & Kuperman, 2004; Recio & Torres, 2016;

orres et al., 2004; Uhlig, Levina, Geisel, & Herrmann, 2013), as
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standard way to define auto-associative neural networks. Each
euron i is modelled by a stochastic binary variable si(t, τ ) =

0, 1}, indicating a silent or firing neuron, respectively. Similarly,
ach link or synapse is characterized by its synaptic weight wij.
hese are set (at t = 0) to encode a memory or activity pattern
pecifying a particular state of each of the neurons in the network,
P
i . The pattern is made to be the attractor of the activity dynamics
y an appropriate definition of the synaptic weights, according
o the Hebbian learning rule (Amit, 1989; Bi & Poo, 2001; Hebb,
005),

ij =
1

κ∞a0(1 − a0)
(sPi − a0)(sPj − a0), (2)

where a0 =
⟨
sPi

⟩
is the mean activation of the pattern. In agree-

ment with previous studies, we consider here the case a0 =

.5 (Millán, Torres, Johnson et al., 2018; Millán, Torres, Marro,
019).
The neuronal states si(t, τ ) follow an Amari–Hopfield dynam-

ics, such that the neuron’s probability of being on the active state
at time τ + 1 is given by

P {si(t, τ + 1) = 1} =
1
2

[
1 + tanh

(
T−1 [hi(t, τ ) − θi(t)]

)]
, (3)

where T is a noise parameter – or temperature – setting the level
of noise in the neuron response, such that T = 0 corresponds
to the deterministic limit (Amit, 1989; Bortz, Kalos, & Lebowitz,
1975). hi(τ ) is the local field at neuron i,

hi(t, τ ) =

N∑
j=1

wijeij(t)sj(τ ), (4)

and θi(t) the neuron’s threshold setting the excitability in the
model,

θi(t) =
1
2

N∑
j=1

wijeij(t), (5)

Both hi and θi depend on the network structure through the
adjacency matrix eij(t). For the sake of simplicity, in the following
we define

Ii(t, τ ) = |hi(t, τ ) − θi(t)| , (6)

i.e.

Ii(t, τ ) =

⏐⏐⏐⏐⏐⏐
N∑
j=1

wijeij(t)
[
sj(τ ) −

1
2

]⏐⏐⏐⏐⏐⏐ , (7)

as the incoming current at each neuron from its neighbours. Thus,
Eq. (3) becomes

P {si(t, τ + 1) = 1} =
1
2

[
1 + tanh

(
T−1Ii(t, τ )

)]
, (8)

Note that the previous definitions assure that all nodes (both
silent (si = 0) and active (s1 = 1) ones) take part in the
memory state, as they are all considered in the definition of the
synaptic weights (Eq. (3)) and local current (Eq. (8)). Moreover,
the inclusion of a0 in Eqs. (3) and (5) assures that there is a
symmetry between active and inactive states. These definitions
are typically considered within the Amari–Hopfield model when
the more biologically plausible 0, 1 coding is used to define the
neuronal states, instead of the canonical −1, +1 one, since it
allows one to recover the phase diagram of the canonical, fully
connected Amari–Hopfield model (Amit, 1989). In our context,
θi(t) depends only on the existing synapses, which can be seen
as a means of homeostasis since the response of a neuron is
regulated by the number and strength of its synaptic contacts,
46
thus avoiding silencing low-degree neurons and saturation of
hubs. Furthermore, θi(t) depends indirectly on the neural activity
through the term eij(t)wij — which also characterizes the intensity
of the synaptic transmission between neurons i and j.

Within this framework, the macroscopic activity state of the
network can be measured via its overlap with the memorized (or
encoded) pattern, that is,

m(t, τ ) =
1

Na0(1 − a0)

N∑
j=1

(sPi − a0)si(t, τ ), (9)

ith m ∈ [−1, 1]. The overlap as seen by the pruning dynamics is
(t) = m(t, τ = hs). m measures the resemblance of the current
etwork state with the memorized activity pattern. Thus, m → 1
mplies that the neuronal state of the system is highly similar to
he stored pattern, in which case we say that the system is in a
emory state. On the contrary, m → 0 indicates that the neuronal
tate does not resemble the stored pattern, i.e. the system is in a
oisy state. Note that, due to the underlying symmetry, the anti-
attern (all nodes in the opposite state relative to the pattern)
s also a stable attractor, and m → −1 also indicates a memory
tate (Amit, 1989). Thus, we define the stationary overlap as m̄ ≡

m(t → ∞)| to account for this symmetry.
The canonical Amari–Hopfield model, which is here a refer-

nce, is defined on a fully connected network (eij = 1, ∀i = j).
n this case, m̄ undergoes a continuous transition as a function of
he noise level T , with a critical point at Tc = 1. The transition is
rom a ferromagnetic phase in which memory recovery is possible
m̄ → 1) and the system displays associative memory, for T < 1,
o a paramagnetic one dominated by noise (m̄ ≈ 0) in which the
ystem does not display associative memory, for T > 1. However,
ariations of different network characteristics, such as the mean
egree or the degree–degree correlations can affect the location
nd nature of the transition (Amit, 1989; de Franciscis et al., 2011;
orelli et al., 2004; Uhlig et al., 2013).
The overlap parameter is a standard way to measure memory

n attractor neural networks, and it has been commonly used
n previous analysis on the Amari–Hopfield model (Amit, 1989;
e Franciscis et al., 2011; Hebb, 2005; Millán, Torres, Johnson
t al., 2018; Millán, Torres, Marro, 2019; Morelli et al., 2004; Recio
Torres, 2016; Torres et al., 2004; Uhlig et al., 2013). Given that

ll nodes take part in the memory state (both active and silent),
hey are all taken into account in Eq. (9). The overlap indicates the
emory state regardless of the number of memorized patterns
nd their mean activity a0. Other common metrics, such as the
ean firing rate, provide no direct information within our current

ormulation, given that both the memory and noisy states have
ean firing rate of 0.5.

.2. Neural network development

The topology of the neural network changes in time following
Markov process given by the probabilities Pg

i (t) and P l
i (t) that

ach node i has to be selected to gain and lose a link at time t ,
espectively. These are assumed to factorize in two terms, a global
nd a local one, namely
g
i (t) = u [κ(t)] π [Ii(t)]
l
i (t) = d [κ(t)] η [Ii(t)] .

(10)

ere u and d represent a global dependence to account for the fact
hat these processes rely in some way on the diffusion of different
olecules through large areas of tissue, for which κ(t) is taken
s a proxy (Klintsova & Greenough, 1999). The local probabilities
and η introduce a dependence on the local properties of the

etwork. Each time a node i is selected according to Eq. (10),
second node j is then randomly chosen to be connected to
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Fig. 1. (a) The black lines represent κ(t) as given by the realistic model (black dashed line) and the linear approximation model (black solid line). The coloured lines
show two exemplary temporal evolutions of the linear model. We represent m(t) (coloured solid lines) and g(t) (coloured dashed lines) for two realizations leading
to two qualitatively different steady states, implying multistability in the system. In green, a series in which the network keeps memory and heterogeneity in the
steady state. In purple, the opposite example. All parameters are the same in both situations (N = 1600, n = 3, κ0 = 40 and κ∞ = 20 and ∆ = 5 · 104MCS). MCS
stands for Monte Carlo Steps. (b) m̄(∆̃) and (c) ḡ(∆̃) curves for different system sizes, where ∆̃ = ∆/τp . Results are for κ0 = 40 and κ∞ = 20. The parameter n is
scaled with the network size, so that n = 5, 10, 20 respectively for N = 800, 1600, 3200. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
B
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o
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(or disconnected from) i. Thus, two processes can lead to an
increase (decrease) in a node degree, and we define the effective
probabilities π̃ and η̃ to account for this.

Provided that π̃ (Ii) and η̃(Ii) are normalized over the network,
the evolution of κ(t) only depends on u(κ) and d(κ), according
to (Huttenlocher & Dabholkar, 1997; Johnson, Marro et al., 2010;
Millán, Torres, Johnson et al., 2018; Millán, Torres, Marro, 2019;
Navlakha et al., 2015)

dκ(t)
dt

= 2 [u [κ(t)] − d [κ(t)]] . (11)

he factor 2 comes from the fact that the network is undirected,
o each time a link is added or removed, it affects the degree
f two nodes. Therefore, the evolution of the mean connectiv-
ty in the network only depends on the global probabilities,
hereas the local probabilities characterize which nodes gain and

ose links. The exponential decay of the connectivity caused by
ynaptic pruning can be modelled by u and d as

(κ) =
n
N

(
1 −

κ
2κ∞

)
d (κ) =

n
N

κ
2κ∞

.
(12)

here κ∞ is the stationary mean connectivity, and n/N charac-
erizes the speed of synaptic growth and death. Considering an
nitial configuration with κ0 = κ(t = 0) > κ∞, these lead to

κ(t) = (κ0 − κ∞) exp
(
−t/τp

)
+ κ∞, (13)

where τp = Nκ∞/(2n) sets the temporal scale of the pruning
process. With this definition, κ(t) decays exponentially from κ0
to κ∞.

Experimental evidence indicates a fast growth of the synaptic
density following birth and preceding synaptic pruning, whose
47
impact on brain development is yet to be fully clarified (Navlakha
et al., 2015; Sayama et al., 2014). These profiles of synaptic den-
sity during infancy can be reproduced by considering an initial,
fast growth of synapses followed by synaptic pruning (Millán,
Torres, Johnson et al., 2018; Millán, Torres, Marro, 2019), namely

u (κ) =
n
N

[
1 −

κ
2κ∞

+ ag exp(−t/τg )
]

d (κ) =
n
N

κ
2κ∞

,
(14)

where τg and ag control the time-scale and intensity of the
initial growth. According to Eq. (14), the evolution of the mean
connectivity is given by

κ(t) = κ∞

[
1 − b exp(−t/τg ) + c exp(−t/τp)

]
, (15)

where b = agτg
(
τp − τg

)−1 and c = κ0/κ∞+b−1. This model for
κ(t) (dashed black line in Fig. 1a) has been shown to reproduce
experimental data of the mean synaptic density in the cortex in
humans and rodents (Millán, Torres, Johnson et al., 2018).

The mean synaptic density κ(t) as given by Eq. (15) presents
a maximum κ∗

= κ(t∗) at

t∗ =
τgτp

τp − τg
ln

(
τpb
τgc

)
. (16)

oth t∗ and κ∗ depend non-trivially on ag , τg and τp. In order to
educe the dimensionality of the model and study the effect of the
on-trivial transient of high connectivity on the emergent state
f the system in a systematic manner, here we consider a first
rder approximation to this realistic pruning profile. In particular,
(t) is kept constant (and high), κ(t) = κ0, at the onset of the
volution, during a ‘‘fixed-density’’ time ∆, by imposing that the
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ame number of links are created and destroyed at each time step,
amely

(t) = d(t) = d0 ∀t < ∆, (17)

here d0 = const , and in particular we consider here d0 =

/N . Thereafter, the mean degree is allowed to vary following
the pruning dynamics given by Eq. (12). This allows us to easily
control the width (∆) and height (κ∗

= max(κt )) of the pruning
process, which fully characterize it. An example of the evolution
of κ(t) for this model is shown in Fig. 1a (solid black line).

2.3. Local network structure

The local probabilities π̃ and η̃ introduce a dependence on the
activity state of the neurons, and account for local heterogeneity.
Following previous studies, we take

π (Ii) ∝ Iαi , α > 0
η(Ii) ∝ Ii,

(18)

which corresponds to synapses being chosen at random for re-
moval, which can be seen as a first order approximation of prun-
ing dynamics (Johnson et al., 2009). These definitions characterize
the coupling between neural activity and structure. However, the
particular functions are an arbitrary choice and other ones could
be considered (Millán, Torres, Johnson et al., 2018; Millán, Torres,
Marro, 2019). In this scenario, the parameter α characterizes the
dependence on the local current.

Thus, α is the control parameter characterizing the emerging
structure of the network: depending on α, nodes with high in-
coming current will be more likely to either gain (α > 1) or lose
(α < 1) links. As shown in previous works (Johnson, Marro et al.,
2010; Millán, Torres, Johnson et al., 2018), if the network is on a
memory state (m > 0), then Ii is strongly correlated to the node
degree ki through the overlap m(t). Therefore, for high α, high de-
gree nodes will continue to gain new links as the network evolves,
resulting in the appearance of hubs and a heterogeneous network
structure. However, this is only the case if the system is in a
memory state. If, on the contrary, neuronal dynamics is governed
by noise, then Ii is randomly distributed and uncorrelated to ki,
given that the overlap m(t) is also randomly distributed around 0.
Eventually, this results in random rewiring of the links and leads
to a homogeneous network with all nodes having similar, low
degrees.

Thus, in this context network structure can be characterized
by its degree distribution p(k, t) characterizing the probability
that a node has degree k at time t . This can be described by the
homogeneity parameter g(t) (Barrat et al., 2008; Johnson, Marro
et al., 2010; Millán, Torres, Johnson et al., 2018),

g(t) = exp
(
−σ 2

k (t)/κ(t)
)
, (19)

where σ 2
k (t) is the variance of the degrees of the nodes. g(t)

equals 1 if p(k) = δk0,k, corresponding to a completely homoge-
neous degree distribution, i.e. one in which all nodes are homoge-
neous and have the same degree. On the contrary, g(t) tends to 0
for networks with highly heterogeneous degree distributions. An
extreme case is a bimodal degree distribution, that is, one with
two maxima indicating the emergence of two types of nodes, one
with low and another with high degree. This describes a star-
like network in which a few hubs (nodes with high degree) are
connected to the rest of the nodes in the network, which have low
degree. Another example of a heterogeneous degree distribution
is a scale-free one, that is, a network whose degree distribution
is power-law distributed, such that all degrees have non-zero
probability to occur in the network. In the following, we refer
to networks with homogeneous (heterogeneous) degree distribu-
tions simply as homogeneous (heterogeneous) networks (Barrat
48
Table 1
Model parameters. We indicate here the values of the model parameters used
in the main text. N is the number of nodes (neurons) in the network; T is the
noise parameter of the neuronal dynamics, or temperature a0 =

⟨
sPi

⟩
is the mean

activation of the stored memory pattern; n the parameter setting the rate of
synaptic turnover (Eq. (14)); α is the pruning parameter controlling the scaling
of the nodes’ probability to gain a link; κinty is the stationary mean degree (or
connectivity) in the network; and hs is the number of MCS that the neuronal
dynamics is updated between each network change.
Parameter N T a0 n α κ∞ hs

Value 1600 1.30 0.5 3 1.20 20 10

et al., 2008). In the ‘‘topological limit’’ of this model (Ii → ki), the
stationary value ḡ ≡ g(t → ∞) undergoes a continuous phase
transition from homogeneous networks to heterogeneous ones at
αc = 1 (Johnson, Marro et al., 2010).

2.4. Monte Carlo simulations

The initial conditions for the neuronal states are randomly
selected (prob (si = 1) = 0.5 initially). Network topology is
initially given by an Erdős–Rényi network with given mean con-
nectivity κ0 (Erdős & Rényi, 1960; Molloy & Reed, 1995). This is
a homogeneous configuration with p(k, 0) = δκ0,k and g(t = 0)
→ 1.

Time evolution is then accomplished by using the BKL algo-
rithm as follows Millán, Torres, Johnson et al. (2018). At each time
step, the number of links to be added and removed is selected
according to two Poissonian distributions with means Nu(κ) and
Nd(κ) (if t > ∆) or Nd0 (if t ≤ ∆). Then, as many times
as necessary according to this draw, we select a node i with
probability π (Ii) to be assigned a new link to a node j chosen
with random uniform probability 1/N (neglecting correlations).
Similarly, we choose a new node i′ according to η(Ii′ ) to lose a
link to a node j′, also chosen with random uniform probability
1/ki′ . Therefore, the effective values of the local probabilities are
explicitly given by

π (Ii) =
1
2

(
π (Ii) +

1
N

)
η(Ii) =

1
2

(
η(Ii) +

ki
κN

)
,

(20)

where the 1/2 factor has been included to ensure normalization.
Thus, according to the definition of π̃ and η̃, one has

π (Ii) = max
(
2 Iαi

⟨Iα ⟩N −
1
N

)
,

η(Ii, ki) = max
(
2 Ii

⟨I⟩N −
ki
κN

)
,

(21)

where normalization of π , η, π̃ , η̃ has been imposed. Note that,
due to the undirected nature of the network, links that are added
and removed are bidirectional, so both the incoming and outgoing
connections are (equally) changed.

The time scale for structure changes is set by the parameter
n, whereas the time scale of the neuronal dynamics is measured
in terms of Monte Carlo Steps (MCS). Each MCS consists on the
actualization of N randomly chosen neurons (i.e. according to
Glauber dynamics Amit, 1989). In particular, the system under-
goes hs MCS of the neuronal dynamics between each structural
network update. Previous studies show a low dependence on this
parameter in the cases of interest, so we report results here for
hs = 10 MCS (Millán, Torres, Johnson et al., 2018; Millán, Torres,
arro, 2019).
In this work, we used system sizes N = 800, 1600 and 3200,

or Section 3.1, and N = 1600 in the rest. The sample size for each
esult was chosen by convergence of the mean value. A summary
f the values of the parameters used in the text (except for
ection 3.1) is shown in Table 1. Measures of the global variables
n the stationary state are obtained by averaging during a long
indow of time: f̄ = ∆t−1 ∑t0+∆t f (t).
t=t0
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. Results

The model that we have presented couples the form (as given
y the underlying network structure) and function (as given by
he neuronal dynamics) of the developing system. Under this
oupled dynamics, the macroscopic state of the system depends
n the level of thermal and topological noise, respectively char-
cterized by the temperature T , and the structural parameter
. Previous work has characterized the phase diagram of the
ystem with respect to these two parameters on a network un-
ergoing synaptic pruning (ag = 0 in Eq. (14)) (Millán, Torres,
ohnson et al., 2018; Millán, Torres, Marro, 2019). In particular,
hree phases were shown to appear, depending on parameters:
i) a phase in which the network is homogeneous and displays
emory (homogeneous memory phase) when both α and T are

ow; (ii) a phase in which the network is bimodal (appearance
f hubs) and displays memory (heterogeneous memory phase) for
igh α and bounded T ; and (iii) a phase in which the dynamics is
overned by noise and therefore networks are homogeneous and
o not display memory (homogeneous noisy phase) for high very
and bounded α.
The transition between the heterogeneous memory and ho-

ogeneous noisy phases was shown to take place through a
istability region corresponding to moderate α values, 1 < α <
, and high temperature, T > 1. The bistability is a direct
onsequence of the coupling between form and function, and ulti-
ately due to the emergence of hubs in heterogeneous networks

hat stabilize the memories. In fact, due to the presence of hubs,
eterogeneous networks are more tolerant to thermal noise than
omogeneous ones, and the critical temperature Tc separating
he memory and non-memory phases effectively diverges from
c = 1 for homogeneous networks to Tc → ∞ for heterogeneous
nes (de Franciscis et al., 2011; Torres et al., 2004). In this region,
he stationary state of the system depends on its initial configu-
ation: networks that are initially heterogeneous display memory
nd enhanced heterogeneity during the evolution of the system,
hereas homogeneous ones fall into the noisy state.
Consequently, adding the initial overgrowth of synapses ob-

erved experimentally could have important consequences on the
merging behaviour of the system in this bistability region, as
t would change the configuration of the system before synaptic
runing begins, possibly altering its subsequent development
s well. Therefore, in the following we analyse the effect of
he non-trivial transient of high connectivity preceding synaptic
runing on the dynamics of the system on the bistability region.
n particular, we consider the point α = 1.2, T = 1.3.

.1. Emerging behaviour

An example of the evolution of our system is shown in Fig. 1a.
he initial fixed-density period (t < ∆) provides a non-trivial
ransient of network evolution during which links are added and
emoved but κ(t) is kept constant and equal to κ0. Even though

> 1, if κ0 is sufficiently large, the system can retrieve the
tored pattern throughout this period, as indicated by an overlap
(t) significantly different from zero. Given that the topological
ynamics is also taking place, there is meanwhile an underlying
ewiring process that changes the underlying network structure.
nd, given that α > 1 and the system is in a memory state, high
egree nodes are more likely to gain new links. Eventually, the
etwork becomes more heterogeneous (g(t) decreases) and hubs
tart to appear.
After a time ∆, synaptic pruning begins, and the connectivity

tarts decreasing. The system can then either fall into the noise
tate and lose its heterogeneity (purple lines in Fig. 1a), or remain
n the heterogeneous memory state (green lines), showing multi-

tability. If the system remains in the memory state, it continues

49
to heterogenize (g(t) → 0), to the point that it can maintain a
memory state as κ(t) → κ∞ (dashed green line in Fig. 1a). On
he other hand, if the neural network falls into the noisy state
m(t) ≈ 0), neural activity – and hence synaptic growth and
eath – become uncorrelated with node degree, and the topology
everts gradually to a more homogeneous configuration (g(t) →

, dashed purple line), incapable of memory retrieval.
In general, for a given κ0 there is a discontinuous phase tran-

ition as ∆ is increased from the homogeneous noisy phase with
¯ → 0 and ḡ → 1 to the heterogeneous memory phase,
ith ḡ → 0 and m̄ > 0, as shown respectively in panels (b)
nd (c) of Fig. 1 (where ∆ has been re-scaled as ∆̃ = ∆/τp).
finite size analysis shows that the results hold for increasing
etwork size (Fig. 1b,c is for N = 800, 1600 and 3200). Therefore,
n the following we restrict ourselves to the case N = 1600,
hich allows faster simulations than N = 3200 whilst the phase
ransition is not strongly affected. According to this finite-size
nalysis, we expect that the results hold for increasing sizes with
n appropriate re-scaling of the model parameters. In order to
haracterize the stationary properties of the system, we define
U as the probability that a given realization of the system ends
n the heterogeneous memory state, for a given set of parameters.

.2. Non-linear effect of the initial density

The initial density κ0 also has a major effect on the dynamics,
etermining whether the system will be able to maintain memory
etrieval and the minimum time ∆̃ in the high-density state
ecessary for it. In order to visualize this, we analyse the curves
U (∆̃) for different values of κ0 in Fig. 2(a).
In the case κ0 = κ∞, κ(t) is trivially constant during the

volution of the system and, given that T > 1, the system falls
nto the noisy state regardless of ∆̃, so that pU → 0 for any
value of ∆̃, (see κ0 = 20 in Fig. 2a). However, even with a small
increase in the synaptic density (κ0 = 25), the memory state can
be reached even for very low ∆̃ and pU → 1 as ∆̃ increases.

One might expect that the memory state would become easier
to reach with higher κ0 but, in fact, the opposite effect is obtained,
and networks with increasing κ0 take longer ∆̃ to reach the
heterogeneous memory phase, for κ0 ≫ κ∞. This is illustrated
in Fig. 2(c), where the complementary representation pU (κ0),
for fixed values of ∆̃, is shown. Up to very large values of ∆̃,
the curves present a maximum for intermediate connectivities,
indicating that for these values the system is more likely to reach
the heterogeneous memory state.

This apparent paradox is explained after a deeper look at the
system. In fact, large κ0 implies that networks are initially more
homogeneous due to the finite network size. This is because, in
heterogeneous networks, the majority of the connections belong
to the hubs. If the connectivity increases, more hubs appear,
which are connected to most nodes in the network. This, in turn,
limits the minimum degree of the low-degree nodes, since they
are connected to the hubs (Barabási, 2016; Barrat et al., 2008).
Besides, more links have to be pruned to make a significant
change in the network, which slows down network evolution. In
consequence, densely connected networks are more likely to fall
into the noise state for a given ∆̃.

3.3. Robustness of the results

The previous results consider a fixed number d0 (as defined
in Eq. (17)) of rewired links during the initial high-density tran-
sient, for all values of κ0. One may argue, however, that the rate
of synaptic turnover should depend on the number of existing
synapses, that is, d0 = f (κ0). In order to estimate this relation,

we calculate the mean number dm of links added and removed
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Fig. 2. Fraction of realizations that reach the heterogeneous memory state, or up state, pU , respectively for models A (panels a and c) and B (panels b and d). (a, b)
pU is shown as function of ∆̃ and for different values of κ0 as indicated in the legend in panel b. (c, d) pU as function of κ0 for different values of ∆̃ as indicated
in the legend. N = 1600 and other parameter values as in Fig. 1. ∆̃ for model B is defined as ∆̃ = ∆/1000.
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in the realistic model between the two times t1 and t2 such that
κ(t1) = κ(t2) = κ0, t1 < t2. Namely,

dm ≡
1

t2 − t1

t2∑
t=t1

d(κ(t)). (22)

Thus, dm gives the average rate of synaptic turnover during the
maximum of high connectivity. A parabolic approximation of κ(t)
(as given by Eq. (15)) around κ∗ gives for dm

dm ≈ dPm ≡
1
4τp

(
κ∗

+
1
6
D∆2

κκ∞

)
, (23)

where D = τ−2
g (κ∗/κ∞ − 1) − c

(
τ−2
g − τ−2

p

)
e−t∗/τp and ∆κ =

κ∗
− κ0. Numerical analysis indicates that the error associated

with the parabolic approximation is less than 5%.
Eq. (23) suggests the scaling relation d0 ∝ κ0, and in particular

we consider here d0 = nκ0/(κ∞N), such that the number of links
rewired at each time depends linearly on κ0. Note that this is the
same dependence as introduced by the pruning rate in (12). In
the following, we refer to this definition as model B and to the
former with d0 = n/N as model A. We show the corresponding
phase transition curves for model B in Fig. 2(b, d). These indicate
that the main results also hold with model B, as there is also
an optimal intermediate value of κ0 that requires a minimum
time ∆ to achieve memory retrieval in the stationary state. Thus,
there is a non-linear effect of the initial density on the emerging
behaviour of the system.
50
3.4. Optimal transient connectivity

As shown in panels (b) and (d) of Fig. 2, respectively for models
A and B, pU (κ0) for a given ∆̃ shows a bell shape with a maximum
or moderate κ0, corresponding to κA

0 ≈ 27 and κB
0 ≈ 40

espectively for models A and B. More generally, one can measure
he time needed by the model in the high-density state to ensure
given percentage of memory recovery in the stationary state. In
articular, we define ∆̃a

min(κ0) as the minimum value of ∆̃ needed
to reach an average stationary mean overlap equal to ma =

.1a m̄, a = 1, 2, . . . , 10, for a given κ0. Minimal values of ∆̃a
min

indicate that lesser times are needed in the high-density state so
as to reach memory with a minimal energy consumption. Our
measures (Fig. 3(a), (b)) indicate a minimum ∆̃a

min coincidently
with κA

0 and κB
0 , in each model description. Therefore, memory is

not only reached faster but it is also stronger for the optimal κ0.
Finally, an integrated view of the effect of network dynamics

nd the emergent behaviour of the system can be obtained by the
hase diagram of the system (Fig. 4(c), (d)) representing m̄(∆̃, κ0).

High values (yellow areas) indicate the heterogeneous memory
phase, whereas the homogeneous noisy phase appears as low
values (blue areas) of m̄. The phase transition between the two
phases moves to higher ∆̃ for higher κ0 in an approximately linear
manner, as previously discussed, leading to the contraction of the
heterogeneous memory region for high κ0. On the other hand,
very small κ0 never leads to memory, due to the high thermal
noise.

Summing up, our results show the benefit of intermediate
densities with respect to very high ones during the transient
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Fig. 3. Panels (a) and (b) show ∆̃a
min(κ0) for a = 1, . . . , 8 as indicated by ma in the legend, respectively for models A and B. Panels (c) and (d) show the two

imensional phase diagram of the system, respectively for models A and B, indicated by m̄(∆̃, κ0). The homogeneous noisy phase appears as low memory values
blue region), whereas the heterogeneous memory one appears as high values (yellow region). Parameter values as in Fig. 2. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)
evelopment of the network in order to achieve memory in a
oisy environment. Interestingly, results hold when the density
f synaptic turnover d0 is re-scaled linearly with the density of
ynapses κ0, indicating that the change in time scale is stronger
than linear. Thus, the longer transient time needed to reach the
heterogeneous memory phase for higher κ0 is not only due to the
higher number of synapses that need to be rewired. This result
suggests that, for an evolving network such as the infant brain,
it would be detrimental to initially grow a very high density of
synapses, since this increases the energy costs during growth
and also during the pruning process, and it does not improve
memory retrieval or network structure. On the contrary, a neural
network with intermediate values of transient synaptic density
would perform more efficiently during pruning. We note that
these results refer to the maximum synaptic density reached
during infancy relative to the stationary value in the adult brain.
High densities in general are known to lead to higher tolerance
to noise (Amit, 1989; Millán, Torres, Marro, 2019) and also higher
memory storage capacity (Knoblauch et al., 2014).

3.5. Transient heterogeneity determines memory stability.

The previous analysis has shown a quadratic dependence of
the stationary state on κ0 (see Fig. 3), and the emergence of mul-
tistability for intermediate values. However, the question remains
of what determines, on a given trial, the stationary state of the
system. Based on the results shown above, we propose that it is
the transient level of heterogeneity (that is, the heterogeneity at
the onset of the pruning) which determines the probability that
the network will maintain memory.
51
In order to explore this hypothesis, we first define g∆ and m∆

as the values of g(t) and m(t) at the beginning of the pruning, that
is, g∆ = g(t = ∆) and m∆ = |m(t = ∆)|. These definitions allow
us to explore how the stationary state depends on the transient
evolution of the system. In Fig. 4(a), (b) we show the probability
pU that the system reaches the heterogeneous memory state
as a function of g∆. This indicates a continuous transition from
the heterogeneous memory state to the homogeneous noisy one
as g∆ increases. Moreover, there is a collapse of the curves for
different κ0. In consequence, g∆ determines whether the net-
work will be able to maintain memory once the pruning begins:
high onset heterogeneity (small g∆) implies stationary memory,
whereas low heterogeneity (high g∆) implies a stationary noisy
state. These results are independent of κ0 and of the model used,
indicating that g∆ is a strong indicator of stationary memory.

What is the memory state that leads to this configuration? In
Fig. 4(c), (d) we show pU as a function of m∆. Since m∆ does
not unequivocally determine the stationary state, the curves do
not collapse in this case. What is obtained instead is a bell-
shape dependence, indicating an optimal development process
for moderate values of the transient memory. These correlate
with minimum values of g∆, so that the value of ∆̃a

min necessary
for a stationary memory state is also minimal for this value. In
this sense, if m∆ ≪ 1, there is no transient memory because κ0 is
too small and the network cannot display memory initially, thus
remaining in a homogeneous configuration. On the other hand,
if m∆ ≈ 1, this is so because κ0 is large and the network is
still very homogeneous when pruning begins. In both cases, the
network evolves towards a homogeneous configuration. Note that
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Fig. 4. Panels (a) and (b) show pU (g∆), with different colours for different values of κ0 , as indicated by the legend, respectively for models A and B. Panels (c) and
d) show pU (m∆), with different colours for different values of ∆̃, respectively for models A and B. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
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his qualitative result does not depend on the particular definition
f d0 since it holds for both models A and B.

. Discussion

We have presented here an adaptive network model inspired
y synaptic pruning that creates a dependence of the final net-
ork structure and memory state on the transient synaptic den-
ity, as one should probably expect in nature. In this model, the
ntroduction of a high fixed-density transient allows for network
eterogenization and for the settlement of a memory state under
oisy conditions. We have analysed in detail a point of the phase
pace corresponding to a bistability area between two phases.
hese are a heterogeneous memory phase, in which the resulting
etworks have a heterogeneous structure and are capable of
emory retrieval, and a homogeneous noisy one, in which the

esulting networks are homogeneous and incapable of memory
etrieval. In this region of the phase space, the system is most
ensitive to the details of the evolution and the initial conditions.
his happens to correspond to high T – the parameter charac-
erizing the thermal noise in the neuronal dynamics (Eq. (3)) –
o that the stability of the memory states is reduced, and also
o large α – the parameter characterizing the scaling of the
robabilities that each node gains or loses a link (Eq. (20)) —,
o that the system can heterogenize. The selection of these model
arameters has not been arbitrary, as the presence of a bistability
egion leads to increase sensibility to changes in the initial con-
itions. However, the qualitative results reported in this study
ould hold for different values of T and α as long as they fall
ithin the bistability region.
 i

52
In these conditions, we have found that the model exhibits
discontinuous (first order) phase transition as one varies the

ength of the transient period of fixed density, ∆̃, and the value of
his density, κ0. In fact, there is a quadratic effect of κ0, such that
ntermediate values provide a faster and more stable evolution
owards a memory stationary state, and there is an optimal κ0
hat optimizes the evolution into such a state. We have also
hown that the transient heterogeneity determines the stationary
tate of the system. Given the aforementioned feedback loop,
his depends on the transient memory m∆ and κ0, so that the
tationary state of the system is ultimately determined by its
hysiological history.

.1. Implications for brain development

These results shed light on why brain development would
ccur through the initial creation of a great many synapses which
re then gradually pruned. If the final density is optimal for en-
rgy consumption, why should one go through a transient state of
wice this density? Our neural network with an evolving structure
ased on some simple biological considerations shows that the
ventual memory stability on the system does indeed depend on
hether it passed through a transient period of relatively high
ynaptic density. A feedback loop thus emerges between neural
ctivity and network topology such that, beginning with a ran-
om network, a transient state of high density can allow for the
ubsequent pruning of synapses as the topology is optimized for
he particular learnt memories (Knoblauch et al., 2014; Knoblauch
Sommer, 2016). This goes in line with previous studies indicat-

ng that a higher synaptic density – as occurs during infancy –
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llows for faster learning, which might be key during develop-
ent (Knoblauch et al., 2014; Knoblauch & Sommer, 2016). Thus,
larger synaptic density during infancy would serve to increase
oth the storage capacity and the stability against noise of the
ventual adult network.
What limits the maximum synaptic density then? An even

igher density would allow for faster learning and increased stor-
ge capacity during infancy (Knoblauch et al., 2014; Knoblauch,
alm, & Sommer, 2010; Knoblauch & Sommer, 2016). However,
xperimental observations indicate that the maximum synaptic
ensity during infancy is much smaller than what it could be
eached if all possible synapses (taking into account geomet-
ical and physiological constraints) existed (Chklovskii, Mel, &
voboda, 2004; Stepanyants et al., 2002). Energy consumption
onsiderations likely play a role on this bound, as not only more
ynapses would need to be maintained but also created and
runed. Our study points to another concurrent mechanism that
ould limit the maximum connectivity as further increases above
given value would not increase the stability of the memories
gainst noise. Thus, our results could help explain why real world
etworks such as those in the brain do not create enormous
umbers of synapses to begin with during early development,
s this would increase the demand for resources, whilst not
ecessarily helping network development. It is important to note,
owever, that this result refers to the maximum connectivity
eached during infancy relative to the stationary value in the
dult brain. In general, for a given setting higher connectivities
re known to increase the tolerance to noise (Amit, 1989) and also
he memory storage capacity of the network (Knoblauch et al.,
014).
Why, though, should the brain not begin with both the low

ensity – to minimize energy consumption – and high hetero-
eneity — for good memory stability? We conjecture that much
ess genetic information is needed to build a random neural
etwork that is subsequently shaped by its dynamics (under the
nfluence of actual environmental conditions), than to specify a
articular structure. This would also be a more robust devel-
pmental path. Moreover, beginning with a moderately dense
andom graph may allow for greater plasticity, since the pruning
echanism will fashion a network well-adapted to the specific
atterns stored (Knoblauch et al., 2014; Millán, Torres, Johnson
t al., 2018).

.2. Robustness of the results

We have analysed the robustness of the results to details of
he model and the validity of the approximations considered.
n particular, we have defined a more realistic approximation
uch that the rate of synaptic growth and death during the fixed
igh-density period is proportional to this connectivity. We have
ound that the qualitative behaviour of the system does not
epend on these details. Namely, there is also a discontinuous
ransition from a homogeneous non-memory state to a hetero-
eneous memory one as the duration ∆ of the transient period
ncreases, whereas there is a non-linear dependence on κ0, and
he stationary state of the system is ultimately determined by g∆.
herefore, the results obtained in this work – i.e. the benefits of
transient high connectivity period, the second order effect of κ0
nd the crucial effect of g∆ on the stationary state – are robust

with respect to microscopic details of the pruning model.
It is important to note however that a number of simplifica-

tions and assumptions have been taken in the definition of the
model. In fact, in this work we have coupled the simplest models
able to produce the behaviours of interest, namely the associa-
tive memory property and a realistic pruning profile. Hebbian
synaptic weights have thus been considered as a standard way
53
to define memory attractors, which also introduces a dependence
of the neuronal dynamics on the network topology (Amari, 1972;
Amit, 1989; de Franciscis et al., 2011; Hebb, 2005; Hopfield, 1982;
Morelli et al., 2004; Recio & Torres, 2016; Torres et al., 2004; Uhlig
et al., 2013).

Similarly, we have only considered structural plasticity in this
work. Consequently, the synaptic weights are defined ad-hoc and
when a synapse is added into the network it already has the
Hebbian weight given by Eq. (3). This amounts to considering an
instantaneous learning process. There are, however, a few con-
siderations that can support our assumption. Firstly, the memory
states are stable with respect to the change of a few links, and the
number of links changed at each step is much smaller than the
number of links existing already in the network. Thus, it can be
expected that the memory state would remain stable even with
a different initialization of the weights. The weight values could
then change following long-term weight plasticity, which occurs
in faster time-scales than structural plasticity. Consequently, it
can be assumed that the stabilization of the weights occurs on
a faster time-scale than the network changes (Bi & Poo, 2001;
Hebb, 2005; Klintsova & Greenough, 1999; Knoblauch & Som-
mer, 2016). Despite these considerations, synaptic pruning plays
an important role in learning and, equivalently, learning also
plays a fundamental role leading synaptic pruning (Knoblauch
et al., 2014, 2010; Knoblauch & Sommer, 2016). It would thus be
interesting for future works to include an explicit learning mech-
anism in the model to study the interplay of between network
development and learning.

Furthermore, there is also an underlying symmetry between
active and inactive neurons inherited from the canonical Amari–
Hopfield model (Amit, 1989). In particular, this implies that inac-
tive neurons (receiving a large negative local current) are as likely
to gain new synapses as very active neurons (receiving a large
positive current), and that the synapses connecting two silent
neurons are as strong as those connecting two active neurons.
These definitions are in line with a large number of previous
studies on auto-associative memory model (Amari, 1972; Amit,
1989; de Franciscis et al., 2011; Hebb, 2005; Hopfield, 1982;
Morelli et al., 2004; Recio & Torres, 2016; Torres et al., 2004;
Uhlig et al., 2013), but it is however not likely the case for
biological neuronal networks. More realistic situations could be
implemented by small changes in the neuron model, such as
considering different values of a0 to break the symmetry between
active and inactive states. Similarly, the memorized activity pat-
terns could be modified to describe local states considering only
a patch of active nodes, as other studies have done (Knoblauch
et al., 2014; Knoblauch & Sommer, 2016). Different definitions
of the learning rule and neuronal dynamics would change the
details of the network structure, but we expect that our main
results would hold, in accordance with previous studies (Millán,
Torres, Johnson et al., 2018; Millán, Torres, Marro, 2019), and as
long as the basic mechanism linking the neuronal and network
states holds. Moreover, we showed in previous studies (Johnson,
Marro et al., 2010; Millán, Torres, Johnson et al., 2018) that the
generic features of our model also apply to the large scale config-
uration of the brain, and other biological networks such as protein
interaction networks. Thus, the present situation could be applied
to other systems, such as neuronal populations, in which the
common deactivation of two populations can be actively enforced
by a common inhibitory source, for instance.

Another assumption of the model is the consideration of an
undirected symmetric network: wij = wji and eij(t) = eji(t)
∀(i, j) and t , following previous studies (Johnson, Marro et al.,
2010; Johnson et al., 2009; Millán, Torres, Johnson et al., 2018;
Millán, Torres, Marro, 2019). The model could be easily gener-
alized to include non-symmetric connections, either through the
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efinition of asymmetric weights, directed links, or both. In the
urrent setting, we have considered symmetric Hebbian synapses
s a standard way to define memory attractors, and therefore
useful tool to understand the effect of structural plasticity,

nd its coupling with memory, on network dynamics. More in
eneral, symmetric connections are commonly used in the liter-
ture (Amit, 1989; de Franciscis et al., 2011; Hebb, 2005; Morelli
t al., 2004; Recio & Torres, 2016; Torres et al., 2004; Uhlig et al.,
013) as they allow for analytic studies in terms of a Hamilto-
ian description. The introduction of asymmetry can lead to the
mergence of chaos, for instance causing the system to oscillate
mong different states (Sompolinsky & Kanter, 1986), or other in-
tabilities (Johnson, 2020). We expect that the main results of our
tudies would hold within reasonable definitions of asymmetry,
s there are no indications to believe that the feedback between
tructure and dynamics would disappear when considering di-
ected networks. This would be an interesting approach for future
ork.
Overall, the relation between the network structure – beyond

he effect of the mean synaptic density – and its emerging mem-
ry characteristics are not dependent on most of the microscopic
etails. For instance, it is a well-known result that the critical
oint diverges for heterogeneous systems in which hubs are
resent (Barrat et al., 2008), explaining why the memory state
emains stable even for high thermal noise levels in our model.
hus, more detailed models could be considered in general, with
ore biological plausibility, as well as modifications of the cur-

ent model. These could be specifically tailored to reproduce
pecific characteristics of different systems, such as biological
euronal networks, large-scale brain networks, protein interac-
ion networks or artificial neural networks. We expect that, as
ong as the basic ingredients of this model are maintained (i.e. the
xistence of a memory phase and a direct relation between the
ode’s degree and local current), the interplay between structure
nd function, and the effect of different pruning profiles, will hold.

.3. On the memory storage capacity

In this study we have considered how the temporal profile of
ynaptic pruning affects the stability of memory against thermal
oise and the structural properties of the underlying network.
hus, for the sake of simplicity, we have only considered one
tored memory pattern. In previous studies we showed that,
hen more patterns were stored in the network, the existing
hases were maintained but new ones appeared corresponding
o quenched (Millán, Torres, Johnson et al., 2018) and dynami-
al (Millán, Torres, Marro, 2019) memory states, depending on
arameters. Analysing the interplay between different pruning
rofiles and the memory state on those phases would be an
nteresting starting point for new studies that could unravel new
indings. We expect that the second order effect of the maximum
ynaptic density – relative to its stationary value in the adult
rain – would still hold for higher memory loads. The actual
ptimal value of the synaptic density would depend on details
f the model, number of stored patterns and rate of synaptic
urnover. Future works should study this interplay in detail.

Similarly, characterizing the memory capacity of the model
nder these conditions, and how it is affected by different pruning
rofiles, would be an interesting addition to future studies. It is
well known result, for instance, that the capacity of a given
etwork (as well as the stability of the memories against thermal
oise) is higher for higher network densities, as we also showed
xplicitly for this model in previous works (Millán, Torres, Marro,
019). However different pruning profiles can lead to different
apacities during development and adulthood. It is worth noting,
owever, that the model presented here is not intended to opti-
ize the network capacity, as in other studies (Knoblauch et al.,
54
2010). Rather, our goal was to unravel the effect that different
pruning profiles have on the development of the structural and
memory properties of the network. For that, we have placed the
system in a very suboptimal position with respect to memory
retrieval, just in the interface between stable and unstable mem-
ories (Millán, Torres, Johnson et al., 2018), which is subjected to
very strong thermal noise. This allows us to analyse the maximum
effects of different pruning profiles.

4.4. Conclusion

We have presented a general model, whose main aspects
are shared by different biological (such as protein interaction
networks Albert, 2005; Berg et al., 2004; Millán, Torres, Johnson
et al., 2018) and technical systems (Abiodun et al., 2018; Pagani
& Aiello, 2013). Our work here may serve as a starting point
and a very suitable theoretical framework for studying the re-
lationship that may exist between certain neurological disorders
that appear during brain development, such as childhood autism
and schizophrenia in young adults, and different synaptic pruning
profiles, as has recently been suggested (Afroz, Parato, Shen, &
Smith, 2016; Sekar et al., 2016; Sayama et al., 2014). Moreover,
it may also be of use to design new paradigms of artificial neural
networks with technological applications.
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